
Probabilistic Description Logics under the Distribution Semantics

Fabrizio Riguzzia, Elena Bellodib, Evelina Lammab, Riccardo Zeseb

aDipartimento di Matematica e Informatica – University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
bDipartimento di Ingegneria – University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy

Abstract

Representing uncertain information is crucial for modeling real world domains. In this paper we present a
technique for the integration of probabilistic information in Description Logics (DLs) that is based on the
distribution semantics for probabilistic logic programs. In the resulting approach, that we called DISPONTE,
the axioms of a probabilistic knowledge base (KB) can be annotated with a real number between 0 and 1.
A probabilistic knowledge base then defines a probability distribution over regular KBs called worlds and
the probability of a given query can be obtained from the joint distribution of the worlds and the query
by marginalization. We present the algorithm BUNDLE for computing the probability of queries from
DISPONTE knowledge bases. The algorithm exploits an underlying DL reasoner, such as Pellet, that
is able to return explanations for queries. The explanations are encoded in a Binary Decision Diagram
from which the probability of the query is computed. The experimentation of BUNDLE on probabilistic
knowledge bases shows that it can handle knowledge bases of realistic size.

1. Introduction

Representing uncertain information is of foremost importance in order to effectively model real world
domains. This has been fully recognized in the field of Artificial Intelligence where uncertainty has been
the focus of much research since its beginnings. In particular, the integration of logic and probability allows
to model complex domains with many entities interconnected by uncertain relationships. This problem has
been investigated by various authors both in the general case of first order logic (Nilsson, 1986; Halpern, 1990;
Bacchus, 1990) and in the case of restricted logics, such as Description Logics (DLs) and Logic Programming
(LP).

DLs are fragments of first order logic particularly useful for knowledge representation. They are at the
basis of the Semantic Web. The Web Ontology Language (OWL) is a family of languages that are syntactic
variants of various DLs. Many proposals have appeared on the combination of probability theory and DLs
(Heinsohn, 1994; Jaeger, 1994; Koller et al., 1997; Lukasiewicz, 2008; Luna et al., 2011). Probabilistic DLs
play an important role in the Semantic Web where knowledge may come from different sources and may
have different reliability.

In LP, the distribution semantics (Sato, 1995) has emerged as one of the most effective approaches for
representing probabilistic information. It underlies many probabilistic logic programming languages such
as Probabilistic Horn Abduction (Poole, 1993), PRISM (Sato, 1995; Sato and Kameya, 2001), Independent
Choice Logic (Poole, 1997), Logic Programs with Annotated Disjunctions (Vennekens et al., 2004), ProbLog
(De Raedt et al., 2007) and CP-logic (Vennekens et al., 2009).

A program in one of these languages defines a probability distribution over normal logic programs called
worlds. This distribution is extended to queries and the probability of a query is obtained by marginalizing
the joint distribution of the query and the programs. The languages following the distribution semantics

Email addresses: fabrizio.riguzzi@unife.it (Fabrizio Riguzzi), elena.bellodi@unife.it (Elena Bellodi),
evelina.lamma@unife.it (Evelina Lamma), riccardo.zese@unife.it (Riccardo Zese)

Preprint submitted to Elsevier May 28, 2014

differ in the way they define the distribution over logic programs but have the same expressive power:
there are transformations with linear complexity that can convert each one into the others (Vennekens and
Verbaeten, 2003; De Raedt et al., 2008).

The distribution semantics was applied successfully in many domains (De Raedt et al., 2007; Sato and
Kameya, 2001; Bellodi and Riguzzi, 2012) and various inference and learning algorithms are available for it
(Kimmig et al., 2011; Riguzzi, 2009; Bellodi and Riguzzi, 2013).

In (Bellodi et al., 2011; Riguzzi et al., 2012a,b) we applied this approach to DLs obtaining DISPONTE
for “DIstribution Semantics for Probabilistic ONTologiEs” (Spanish for “get ready”). The idea is to an-
notate axioms of a theory with a probability and assume that each axiom is independent of the others.
A DISPONTE knowledge base (KB for short) defines a probability distribution over regular KBs (worlds)
and the probability of a query is obtained from the joint probability of the worlds and the query. The
DISPONTE semantics differs from previous proposals because it minimally extends the language and pro-
vides a unified framework for representing different types of probabilistic knowledge, from assertional to
terminological knowledge. DISPONTE can be applied to any DL, here we present it for a prototypical
expressive DL, SHOIN (D), that is the basis of OWL DL.

We also present the algorithm BUNDLE for “Binary decision diagrams for Uncertain reasoNing on
Description Logic thEories” (Riguzzi et al., 2013a), that performs inference over DISPONTE DLs. BUNDLE
exploits an underlying reasoner such as Pellet (Sirin et al., 2007) that returns explanations for queries.
BUNDLE uses the inference techniques developed for probabilistic logic programs under the distribution
semantics, in particular Binary Decision Diagrams (BDDs), for computing the probability of queries from
a covering set of explanations. BUNDLE first finds explanations for the query and then encodes them in a
BDD from which the probability can be computed in time linear in the size of the diagram.

BUNDLE’s worst case complexity is high since the explanations may grow exponentially in number while
the computation of the probability through Binary Decision Diagrams has #P-complexity in the number of
explanations. Nevertheless, we applied BUNDLE to various real world datasets and we found that it is able
to handle domains of significant size.

The present paper extends previous work (Bellodi et al., 2011; Riguzzi et al., 2012a,b, 2013a) in various
ways. First, we describe the DISPONTE semantics in more details and we discuss how a lower bound on
the probability of a query can be computed, with the quality of the bound monotonically increasing as more
time for inference is allowed. Moreover, we performed an extensive experimental analysis of BUNDLE in
order to investigate its performance in practice. Finally, the paper includes a discussion on computational
complexity and an extensive comparison with related work.

The paper is organized as follows. Section 2 introduces Description Logics with particular reference to
SHOIN (D) while Section 3 discusses DISPONTE. Section 4 illustrates how to compute the probability of
queries to DISPONTE DLs and Section 5 describes the BUNDLE algorithm. Section 6 discusses the com-
plexity of reasoning and Section 7 related work. Section 8 shows the results of experiments with BUNDLE
and, finally, Section 9 concludes the paper.

2. Description Logics

Description Logics (DLs) are knowledge representation formalisms that possess nice computational prop-
erties such as decidability and/or low complexity, see (Baader et al., 2003, 2008) for excellent introductions.
DLs are particularly useful for representing ontologies and have been adopted as the basis of the Semantic
Web.

While DLs are a fragment of predicate logic, they are usually represented using a syntax based on
concepts and roles. A concept corresponds to a set of individuals of the domain while a role corresponds
to a set of couples of individuals of the domain. In order to illustrate DLs, we describe SHOIN (D) as a
prototype of expressive description logics. In the rest of the paper we use A, R and I to indicate atomic
concepts, atomic roles and individuals, respectively. A role is either an atomic role R ∈ R or the inverse R−

of an atomic role R ∈ R. We use R− to denote the set of all inverses of roles in R. Concepts are defined as
follows. Each A ∈ A, ⊥ and > are concepts and if a ∈ I, then {a} is a concept called a nominal. If C, C1

2

and C2 are concepts and R ∈ R∪R−, then (C1 uC2), (C1 tC2) and ¬C are concepts, as well as ∃R.C and
∀R.C and ≥ nR and ≤ nR for an integer n ≥ 0.

An RBox R consists of a finite set of transitivity axioms Trans(R), where R ∈ R, and role inclusion
axioms R v S, where R,S ∈ R∪R−. A TBox T is a finite set of concept inclusion axioms C v D, where C
and D are concepts. We use C ≡ D to abbreviate C v D and D v C. An ABox A is a finite set of concept
membership axioms a : C, role membership axioms (a, b) : R, equality axioms a = b and inequality axioms
a 6= b, where C is a concept, R ∈ R and a, b ∈ I. A knowledge base K = (T ,R,A) consists of a TBox T , an
RBox R and an ABox A.

A SHOIN (D) KB K is assigned a semantics in terms of interpretations I = (∆I , ·I) where ∆I is a
non-empty domain and ·I is the interpretation function that assigns an element in ∆I to each a ∈ I, a
subset of ∆I to each A ∈ A and a subset of ∆I ×∆I to each R ∈ R. The mapping ·I is extended to all
concepts (where RI(x) = {y|(x, y) ∈ RI} and #X denotes the cardinality of the set X) as:

(R−)I = {(y, x)|(x, y) ∈ RI}
>I = ∆I

⊥I = ∅
{a}I = {aI}

(C1 u C2)I = CI1 ∩ CI2
(C1 t C2)I = CI1 ∪ CI2

(¬C)I = ∆I \ CI
(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}
(≥ nR)I = {x ∈ ∆I |#RI(x) ≥ n}
(≤ nR)I = {x ∈ ∆I |#RI(x) ≤ n}

SHOIN (D) adds to SHOIN datatype roles, i.e., roles that map an individual to an element of a
datatype such as integers, floats, etc. Then new concept definitions involving datatype roles are added that
mirror those involving roles introduced above. We also assume that we have predicates over the datatypes.

The satisfaction of an axiom E in an interpretation I = (∆I , ·I), denoted by I |= E, is defined as
follows: (1) I |= Trans(R) iff RI is transitive, (2) I |= R v S iff RI ⊆ SI , (3) I |= C v D iff CI ⊆ DI ,
(4) I |= a : C iff aI ∈ CI , (5) I |= (a, b) : R iff (aI , bI) ∈ RI , (6) I |= a = b iff aI = bI , (7) I |= a 6= b
iff aI 6= bI . I satisfies a set of axioms E , denoted by I |= E , iff I |= E for all E ∈ E . An interpretation I
satisfies a knowledge base K = (T ,R,A), denoted I |= K, iff I satisfies T , R and A. In this case we say
that I is a model of K.

A knowledge base K is satisfiable iff it has a model. An axiom E is entailed by K, denoted K |= E, iff
every model of K satisfies also E. A concept C is satisfiable relative to K iff K has a model I such that
CI 6= ∅.

A DL is decidable if the problem of checking the satisfiability of a KB is decidable. In particular,
SHOIN (D) is decidable iff there are no number restrictions on non-simple roles. A role is non-simple iff it
is transitive or it has transitive subroles.

A query over a KB is usually an axiom for which we want to test the entailment from the KB. The
entailment test may be reduced to checking the unsatisfiability of a concept in the KB, i.e., the emptiness of
the concept. For example, the entailment of the axiom C v D may be tested by checking the unsatisfiability
of the concept C u ¬D.

3. The DISPONTE Semantics for DLs

DISPONTE applies the distribution semantics (Sato, 1995) of probabilistic logic programming to DLs. A
program following this semantics defines a probability distribution over normal logic programs called worlds.
Then the distribution is extended to queries and the probability of a query is obtained by marginalizing the
joint distribution of the query and the programs.

3

3.1. Syntax and Intuition

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms or probabilistic axioms. Certain
axioms take the form of regular DL axioms. Probabilistic axioms take the form

p :: E (1)

where p is a real number in [0, 1] and E is a DL axiom.
The idea of DISPONTE is to associate independent Boolean random variables to the probabilistic axioms.

By assigning values to every random variable we obtain a world, the set of axioms whose random variables
are assigned the value 1.

Every formula obtained from a certain axiom is included in a world w. For each probabilistic axiom, we
decide whether to include it or not in w. A world therefore is a non probabilistic KB that can be assigned
a semantics in the usual way. A query is entailed by a world if it is true in every model of the world.

The probability p can be interpreted as an epistemic probability, i.e., as the degree of our belief in axiom
E. For example, a probabilistic concept membership axiom

p :: a : C

means that we have degree of belief p in C(a). The statement that Tweety flies with probability 0.9 can be
expressed as

0.9 :: tweety : Flies

A probabilistic concept inclusion axiom of the form

p :: C v D (2)

represents the fact that we believe in the truth of C v D with probability p. For example, the axiom

0.9 :: Bird v Flies (3)

means that birds fly with a 90% probability.

3.2. Semantics

We follow the approach of (Poole, 2000) and first give some definitions. An atomic choice is a couple
(Ei, k) where Ei is the ith probabilistic axiom and k ∈ {0, 1}. k indicates whether Ei is chosen to be included
in a world (k = 1) or not (k = 0).

A composite choice κ is a consistent set of atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies
k = m (only one decision is taken for each formula). The probability of a composite choice κ is P (κ) =∏

(Ei,1)∈κ pi
∏

(Ei,0)∈κ(1− pi), where pi is the probability associated with axiom Ei. A selection σ is a total

composite choice, i.e., it contains an atomic choice (Ei, k) for every probabilistic axiom of the theory. A
selection σ identifies a theory wσ called a world in this way: wσ = C ∪ {Ei|(Ei, 1) ∈ σ} where C is the
set of certain axioms. Let us indicate with SK the set of all selections and with WK the set of all worlds.
The probability of a world wσ is P (wσ) = P (σ) =

∏
(Ei,1)∈σ pi

∏
(Ei,0)∈σ(1 − pi). P (wσ) is a probability

distribution over worlds, i.e.,
∑
w∈WK

P (w) = 1.
We can now assign probabilities to queries. Given a world w, the probability of a query Q is defined as

P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of a query can be defined by marginalizing the joint
probability of the query and the worlds:

P (Q) =
∑

w∈WK

P (Q,w) (4)

=
∑

w∈WK

P (Q|w)p(w) (5)

=
∑

w∈WK:w|=Q

P (w) (6)

4

where (4) and (5) follow for the sum and product rule of the theory of probability respectively and (6) holds
because P (Q|w) = 1 if w |= Q and 0 otherwise.

Example 1. Consider the following KB, inspired by the people+pets ontology proposed in (Patel-Schneider
et al., 2003):

0.5 :: ∃hasAnimal.Pet v NatureLover (7)

(kevin,fluffy) : hasAnimal (8)

(kevin, tom) : hasAnimal (9)

fluffy : Cat (10)

tom : Cat (11)

0.6 :: Cat v Pet (12)

The KB indicates that the individuals that own an animal which is a pet are nature lovers with a 50%
probability and that kevin has the animals fluffy and tom. Fluffy and tom are cats and cats are pets with
probability 60%.

The KB has four worlds and the query axiom Q = kevin : NatureLover is true in one of them, the one
corresponding to the following selection:

{((7), 1), ((12), 1)}

where each pair contains the axiom number and the value of its the selector. The other possible worlds,
where the query Q is false, are the following:

{((7), 1), ((12), 0)}
{((7), 0), ((12), 1)}
{((7), 0), ((12), 0)}

The probability of the query is P (Q) = 0.5 · 0.6 = 0.3.

Example 2. Let us consider a slightly different knowledge base:

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Cat (13)

0.3 :: tom : Cat (14)

0.6 :: Cat v Pet (15)

Here individuals that own an animal which is a pet are surely nature lovers and kevin has the animals fluffy
and tom. Moreover, we believe in the fact that fluffy and tom are cats and that cats are pets with a certain
probability.

This KB has eight worlds and the query axiom Q = kevin : NatureLover is true in three of them, those
corresponding to the following selections:

{((13), 1), ((14), 0), ((15), 1)}
{((13), 0), ((14), 1), ((15), 1)}
{((13), 1), ((14), 1), ((15), 1)}

so the probability is

P (Q) = 0.4 · 0.7 · 0.6 + 0.6 · 0.3 · 0.6 + 0.4 · 0.3 · 0.6 = 0.348.

5

Note that if the regular DL KB obtained by stripping the probabilistic annotations is inconsistent, there
will be worlds that are inconsistent too. These worlds will entail the query trivially, as does the regular KB.
A DISPONTE KB with inconsistent worlds should not be used to derive consequences, just as a regular DL
KB that is inconsistent should not.

However, apparently contradictory probabilistic information is allowed. For example, the KB

0.9 :: Bird v Flies
0.1 :: tweety : Flies

tweety : Bird

states that the probability of flying of a bird is 0.9 and the probability of flying of tweety, a particular bird,
is 0.1. The two probabilistic statements are considered as independent evidence for tweety flying and are
combined giving the probability 0.91 for the query tweety : Flies. In fact, this KB has four worlds and
tweety : Flies is true in three of them, giving P (Q) = 0.9 · 0.1 + 0.9 · 0.9 + 0.1 · 0.1 = 0.91.

Thus knowledge about instances of the domain may reinforce general knowledge and vice-versa.

Example 3. The knowledge base

kevin : ∀friend .P erson

(kevin, laura) : friend

(laura, diana) : friend

0.4 :: Trans(friend)

means that all individuals in the friend relationship with kevin are persons, that kevin is a friend of laura,
that laura is a friend of diana and that given three individuals a, b and c, there is a 40% probability that
if a is a friend of b and b is a friend of c then a is a friend of c. In particular, we have a 40% probability
that, if kevin is a friend of laura and laura is a friend of diana, then kevin is a friend of diana. Since the
first two are certain facts, then kevin is a friend of diana with a 40% probability and diana is a person also
with a 40% probability.

The final report of the W3C Uncertainty Reasoning for the World Wide Web Incubator Group (URW3-
XG, 2008) discusses the challenge of reasoning with uncertain information on the World Wide Web. More-
over, it also highglights several use cases for the representation of uncertainty: combining knowledge from
multiple, untrusted sources; discovering and using services in the presence of uncertain information on the
user requirements and the service descriptions; recommending items to users; extracting and annotating
information from the web; automatically performing tasks for users such as making an appointment, and
handling healthcare and life sciences information and knowledge.

By introducing probability in an expressive description logic, such as SHOIN (D) that is one of the
basis of OWL, we are able to tackle these problems as shown in the following example.

Example 4. Consider a KB similar to the one of Example 2 but where we have a single cat, fluffy. Suppose
the user has the knowledge

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

Cat v Pet

and there are two sources of information with different reliability that provide the information that fluffy is
a cat. On one source the user has a degree of belief of 0.4, i.e., he thinks it is correct with a 40% probability,
while on the other source he has a degree of belief 0.3, i.e. he thinks it is correct with a 30% probability. The
user can reason on this knowledge by adding the following statements to his KB:

0.4 :: fluffy : Cat (16)

0.3 :: fluffy : Cat (17)

6

The two statements represent independent evidence on fluffy being a cat.
The query axiom Q = kevin : NatureLover is true in 3 out of the 4 worlds, those corresponding to the

selections:
{((16), 1), ((17), 1)}
{((16), 1), ((17), 0)}
{((16), 0), ((17), 1)}

So P (Q) = 0.4 · 0.3 + 0.4 · 0.7 + 0.6 · 0.3 = 0.58. This is reasonable if the two sources can be considered
as independent. In fact, the probability comes from the disjunction of two independent Boolean random
variables with probabilities respectively 0.4 and 0.3:

P (Q) = P (X1 ∨X2)

= P (X1) + P (X2)− P (X1 ∧X2)

= P (X1) + P (X2)− P (X1)P (X2)

= 0.4 + 0.3− 0.4 · 0.3 = 0.58

4. Inference

We propose an approach for performing inference over DISPONTE DLs in which we first find explanations
for the given query and then compute the probability of the query from them. In order to discuss the
approach, we first need to introduce some definitions.

A composite choice κ identifies a set of worlds ωκ = {wσ|σ ∈ SK, σ ⊇ κ}, the set of worlds whose
selection is a superset of κ, i.e., the set of worlds “compatible” with κ. We define the set of worlds identified
by a set of composite choices K as ωK =

⋃
κ∈K ωκ.

A composite choice κ is an explanation for a query Q if Q is entailed by every world of ωκ. A set of
composite choices K is covering with respect to Q if every world wσ ∈ WK in which Q is entailed is such that
wσ ∈ ωK . Two composite choices κ1 and κ2 are incompatible if their union is inconsistent. For example,
the composite choices κ1 = {(Ei, 1)} and κ2 = {(Ei, 0)} are incompatible where Ei is a probabilistic axiom.

A set K of composite choices is pairwise incompatible if for all κ1 ∈ K,κ2 ∈ K,κ1 6= κ2 implies κ1 and
κ2 are incompatible. For example

K = {κ1, κ2} (18)

with
κ1 = {(Ei, 1)}

and
κ2 = {(Ei, 0), (El, 1)} (19)

is pairwise incompatible.
We define the probability of a pairwise incompatible set of composite choices K as

P (K) =
∑
κ∈K

P (κ) (20)

Two sets of composite choices K1 and K2 are equivalent if ωK1 = ωK2 , i.e., if they identify the same set of
worlds. For example, K in (18) is equivalent to

K ′ = {κ′1, κ′2} (21)

with
κ′1 = {(Ei, 1)}

and
κ′2 = {(El, 1)} (22)

7

If E is an axiom and κ is a composite choice such that κ∩ {(E, 0), (E, 1)} = ∅, the split of κ on E is the set
of composite choices Sκ,E = {κ∪ {(E, 0)}, κ∪ {(E, 1)}}. It is easy to see that κ and Sκ,E identify the same
set of possible worlds, i.e., that ωκ = ωSκ,E . For example, the split of κ′2 in (22) on Ei contains κ2 in (19)
and {(Ei, 1), (El, 1)}.

Poole (2000) proved the following result.

Theorem 1. Given a finite set K of finite composite choices, there exists a finite set K ′ of pairwise incom-
patible finite composite choices such that K and K ′ are equivalent.

Proof. Given a finite set of finite composite choices K, there are two possibilities to form a new set K ′ of
composite choices so that K and K ′ are equivalent:

1. removing dominated elements: if κ1, κ2 ∈ K and κ1 ⊂ κ2, let K ′ = K \ {κ2}.
2. splitting elements: if κ1, κ2 ∈ K are compatible (and neither is a superset of the other), there is a

(E, k) ∈ κ1 \ κ2. We replace κ2 by the split of κ2 on E. Let K ′ = K \ {κ2} ∪ Sκ2,E .

In both cases ωK = ωK′ . If we repeat these two operations until neither is applicable we obtain a splitting
algorithm (see Figure 1) that terminates because K is a finite set of finite composite choices. The resulting
set K ′ is pairwise incompatible and is equivalent to the original set. For example, the splitting algorithm
applied to K ′ (21) can return K (18).

1: procedure split(K)
2: Input: set of composite choices K
3: Output: pairwise incompatible set of composite choices equivalent to K
4: loop
5: if ∃κ1, κ2 ∈ K and κ1 ⊂ κ2 then
6: K ← K \ {κ2}
7: else
8: if ∃κ1, κ2 ∈ K compatible then
9: choose (E, k) ∈ κ1 \ κ2

10: K ← K \ {κ2} ∪ Sκ2,E
11: else
12: exit and return K
13: end if
14: end if
15: end loop
16: end procedure

Figure 1: Splitting Algorithm.

Theorem 2 ((Poole, 1993)). If K1 and K2 are both pairwise incompatible finite sets of finite composite
choices such that they are equivalent then P (K1) = P (K2).

Proof. Consider the set D of all axioms that appear in an atomic choice in either K1 or K2. This set is
finite. Each composite choice in K1 and K2 has atomic choices for a subset of D. For both K1 and K2, we
repeatedly replace each composite choice κ of K1 and K2 with its split Sκ,E on an E from D that does not
appear in κ. This procedure does not change the total probability as the probabilities of (E, 0) and (E, 1)
sum to 1.

At the end of this procedure the two sets of composite choices will be identical. In fact, any difference
can be extended into a possible world belonging to ωK1

but not to ωK2
or vice versa, contradicting the

hypothesis.

For example, K in (18) and K ′′ = {κ′′1 , κ′′2} with κ′′1 = {(Ei, 1), (El, 0)} and κ′′2 = {(El, 1)} are equivalent
and are both pairwise incompatible. Their probabilities are

P (K) = pi + (1− pi)pl = pi + pl − pipl

and
P (K ′′) = pi(1− pl) + pl = pi + pl − pipl

8

Note that if we compute the probability of K ′ in (21) with formula (20) we would obtain pi + pl which is
different from the probabilities of K and K ′′ above, even if K ′ is equivalent to K and K ′′, because K ′ is
not pairwise incompatible.

We can thus define the probability P (K) of a generic set of composite choices K as P (K) = P (K ′), where
K ′ is a mutually incompatible set of composite choices that is equivalent to K, i.e., such that ωK′ = ωK .
Given a query Q, the set KQ = {σ|σ ∈ SK ∧ wσ |= Q}) is a set of pairwise incompatible composite choices.
Since P (Q) =

∑
σ∈K P (σ), then P (Q) = P (KQ).

If K ′ is a set of explanations for Q that is covering, then K ′ and KQ are equivalent so P (Q) = P (K ′).
Thus we do not have to generate all worlds where a query is true in order to compute its probability, finding
a mutually incompatible covering set of explanations is enough.

Theorem 3. Given two finite sets of finite composite choices K1 and K2, if K1 ⊆ K2, then P (K1) ≤ P (K2).

Proof. Let K ′1 be the result of the application of the splitting algorithm to K1. We can apply the same
operations of the algorithm to K2 obtaining K = K ′1 ∪K ′ for a certain K ′. At this point, we can continue
applying the splitting algorithm. If there exists a κ ∈ K and a κ′ ∈ K such that κ′ ⊆ κ, at least one of κ
and κ′ must not belong to K ′1, otherwise κ would have been removed when splitting K ′1. κ is removed from
K while κ′ remains. If there is a compatible couple κ1 and κ2 in K, we can assume that one of the two, say
κ2, does not belong to K ′1, since otherwise it would have been split before. We add to K the split of κ2 on
an atomic choice in κ1 but not in κ2.

Let K ′2 be the results of the splitting algorithm so applied. K ′2 is such that, for each element κ1 of K ′1,
K ′2 contains an element κ2 such that κ2 ⊆ κ1. Therefore, in the summation in (20), for each term in P (K ′1)
there will be a term in P (K ′2) with a larger or equal value so P (K ′1) ≤ P (K ′2).

Thus, if K is a finite set of finite explanations for a query Q but we don’t know if K contains all possible
explanations for Q, i.e., we don’t know whether K is covering, then P (K) will be a lower bound of P (Q).
So we can compute progressively more accurate estimates from below of P (Q) by considering an increasing
number of explanations. Only when K contains all possible explanations, then P (K) = P (Q).

The problem of computing the probability of a query can thus be reduced to that of finding a covering
set of explanations K and then making it pairwise incompatible, so that the probability can be computed
with the summation of (20). To obtain a pairwise incompatible set of explanations, the splitting algorithm
can be applied.

Alternatively, given a covering set of explanations K for a query Q, we can define the Disjunctive Normal
Form (DNF) Boolean formula fK as

fK(X) =
∨
κ∈K

∧
(Ei,1)

Xi

∧
(Ei,0)

Xi (23)

The variables X = {Xi|(Ei, k) ∈ κ, κ ∈ K} are independent Boolean random variables. The probability
that fK(X) assumes value 1 is equal to the probability of Q.

We can now apply knowledge compilation to the propositional formula fK(X) (Darwiche and Marquis,
2002), i.e. translate it to a target language that allows answering queries in polynomial time. A target
language that was found to give good performances is the one of Binary Decision Diagrams (BDD). From
a BDD we can compute the probability of the query with a dynamic programming algorithm that is linear
in the size of the BDD (De Raedt et al., 2007). Riguzzi (2009) showed that this approach is faster than the
splitting algorithm.

A BDD for a function of Boolean variables is a rooted graph that has one level for each Boolean variable.
A node n in a BDD has two children: one corresponding to the 1 value of the variable associated with
the level of n, indicated with child1(n), and one corresponding the 0 value of the variable, indicated with
child0(n). When drawing BDDs, the 0-branch - the one going to child0(n) - is distinguished from the
1-branch by drawing it with a dashed line. The leaves store either 0 or 1.

BDDs can be built by combining simpler BDDs using Boolean operators. While building BDDs, sim-
plification operations can be applied that delete or merge nodes. Merging is performed when the diagram

9

X1 n1

X2 n2

X3 n3

1 0

Figure 2: BDD for function (24).

contains two identical sub-diagrams, while deletion is performed when both arcs from a node point to the
same node. In this way a reduced BDD is obtained, often with a much smaller number of nodes with respect
to the original BDD. The size of the reduced BDD depends on the order of the variables: finding an optimal
order is an NP-complete problem (Bollig and Wegener, 1996) and several heuristic techniques are used in
practice by highly efficient software packages such as CUDD1. Alternative methods involve learning variable
order from examples (Grumberg et al., 2003).

A BDD for the function
f(X) = (X1 ∧X3) ∨ (X2 ∧X3) (24)

is shown in Figure 2. A BDD performs a Shannon expansion of the Boolean formula fK(X), so that,
if X is the variable associated with the root level of a BDD, the formula fK(X) can be represented as

fK(X) = X ∧ fXK (X) ∨ X ∧ fXK (X) where fXK (X) (fXK (X)) is the formula obtained by fK(X) by setting
X to 1 (0). Now the two disjuncts are pairwise exclusive and the probability of fK(X) can be computed

as P (fK(X)) = P (X)P (fXK (X)) + (1 − P (X))P (fXK (X)). In other words, BDDs make the explanations
pairwise incompatible. Figure 3 shows function Prob that implements the dynamic programming algorithm
for computing the probability of a formula encoded as a BDD.

1: function Prob(node)
2: Input: a BDD node
3: Output: the probability of the Boolean function associated with the node
4: if node is a terminal then
5: return value(node) . value(node) is 0 or 1
6: else
7: let X be v(node) . v(node) is the variable associated with node
8: P1 ←Prob(child1(node))
9: P0 ←Prob(child0(node))

10: return P (X) · P1 + (1− P (X)) · P0

11: end if
12: end function

Figure 3: Function that computes the probability of a formula encoded as a BDD.

The function should also store the value of already visited nodes in a table so that, if a node is visited
again, its probability can be retrieved from the table. For the sake of simplicity Figure 3 does not show this
optimization but it is fundamental to achieve linear cost in the number of nodes, as without it the cost of
the function Prob would be proportional to 2n where n is the number of Boolean variables.

Let us discuss inference on some examples.

Example 5. Let us consider the KB of Example 2. A covering set of explanations for the query axiom
Q = kevin : NatureLover is K = {κ1, κ2} where κ1 = {((13), 1), ((15), 1)} and κ2 = {((14), 1), ((15), 1)}.
If we associate the random variables X1 to (13), X2 to (14) and X3 to (15), fK(X) is shown in (24) and
the BDD associated with the set K of explanations is shown in Figure 2.

1Available at http://vlsi.colorado.edu/~fabio/CUDD/

10

X1 n1

X4 n2

X2 n3

X3 n4

1 0

Figure 4: BDD for Example 6.

By applying the algorithm in Figure 3 we get

Prob(n3) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n2) = 0.4 · 0.6 + 0.6 · 0 = 0.24

Prob(n1) = 0.3 · 0.6 + 0.7 · 0.24 = 0.348

so P (Q) = Prob(n1) = 0.348 which corresponds to the probability given by the semantics.

Example 6. Let us consider a slightly different knowledge base:

∃hasAnimal.Pet v NatureLover
(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Dog (25)

0.3 :: tom : Cat (26)

0.6 :: Cat v Pet (27)

0.5 :: Dog v Pet (28)

A covering set of explanations for the query axiom Q = kevin : NatureLover is K = {κ1, κ2} where
κ1 = {((25), 1), ((28), 1)} and κ2 = {((26), 1), ((27), 1)}. If we associate the random variables X1 to (25),
X2 to (26), X3 to (27) and X4 to (28), the BDD associated with the set K of explanations is shown in
Figure 4.
By applying the algorithm in Figure 3 we get

Prob(n4) = 0.6 · 1 + 0.4 · 0 = 0.6

Prob(n3) = 0.3 · 0.6 + 0.7 · 0 = 0.18

Prob(n2) = 0.5 · 1 + 0.5 · 0.18 = 0.59

Prob(n1) = 0.4 · 0.59 + 0.6 · 0.18 = 0.344

so P (Q) = Prob(n1) = 0.344.

5. BUNDLE

The BUNDLE algorithm computes the probability of queries from a probabilistic knowledge base that
follows the DISPONTE semantics. It first finds a covering set of explanations for the query and then makes
them pairwise exclusive by using BDDs. Finally, it computes the probability from the BDD by using function
Prob in Figure 3.

11

The problem of finding explanations for a query has been investigated by various authors (Kalyanpur,
2006; Kalyanpur et al., 2005b; Halaschek-Wiener et al., 2006; Kalyanpur et al., 2007). Schlobach and
Cornet (2003) called it axiom pinpointing and considered it a non-standard reasoning service useful for
tracing derivations and debugging ontologies. In particular, they define minimal axiom sets or MinAs for
short.

Definition 1 (MinA). Let K be a KB and Q an axiom that follows from it, i.e., K |= Q. We call a set
M ⊆ K a minimal axiom set or MinA for Q in K if M |= Q and M is minimal w.r.t. set inclusion. The
set of all possible MinAs is called All-MinAs(Q,K). The problem of enumerating all MinAs is called
min-a-enum.

The set of all MinAs can be used to derive a covering set of explanations. min-a-enum can be solved either
with reasoner dependent (glass-box) approaches or reasoner independent (black-box) approaches (Kalyanpur
et al., 2007). Glass-box approaches are built on existing tableau-based decision procedures and modify the
internals of the reasoner. Black-box approaches use the DL reasoner solely as a subroutine and the internals
of the reasoner do not need to be modified.

The techniques of (Kalyanpur et al., 2005a,b; Halaschek-Wiener et al., 2006; Kalyanpur et al., 2007)
for axiom pinpointing have been integrated into the Pellet reasoner (Sirin et al., 2007). By default, Pellet
solves min-a-enum with a hybrid glass/black-box approach: it finds a single MinA using a modified tableau
algorithm and then finds all the other MinAs using a black box method (the hitting set tree algorithm). The
method involves removing an axiom of the MinA from the KB and looking for alternative explanations. By
repeating this process until the query is not entailed, the set of all explanations is found.

BUNDLE is based on Pellet and uses it for solving the min-a-enum problem. In the following, we first
illustrate Pellet’s algorithm for solving min-a-enum and then we show the whole BUNDLE algorithm.

5.1. Axiom Pinpointing in Pellet

Pellet exploits a tableau algorithm (Schmidt-Schauß and Smolka, 1991) that decides whether an axiom
is entailed or not by a KB by refutation: axiom E is entailed if ¬E has no model in the KB. The algorithm
works on completion graphs also called tableaux : they are ABoxes that can also be seen as graphs, where
each node represents an individual a and is labeled with the set of concepts L(a) it belongs to. Each edge
〈a, b〉 in the graph is labeled with the set of roles L(〈a, b〉) to which the couple (a, b) belongs. The algorithm
starts from a tableau that contains the ABox of the KB and the negation of the axiom to be proved. For
example, if the query is a membership one, C(a), it adds ¬C to the label of a. If we query for the emptyness
(unsatisfiability) of a concept C, the algorithm adds a new anonymous node a to the tableau and adds C
to the label of a. The axiom C v D can be proved by showing that C u¬D is unsatisfiable. The algorithm
repeatedly applies a set of consistency preserving tableau expansion rules until a clash (i.e., a contradiction)
is detected or a clash-free graph is found to which no more rules are applicable. In the following we describe
the tableau algorithm used by Pellet. The algorithm is shown in Figure 5.

The rules used by Pellet to answer queries to SHOIN (D) knowledge bases are shown in Figure 8. Some
of the rules are non-deterministic, i.e., they generate a finite set of tableaux. Thus the algorithm keeps a set
of tableaux T . If a non-deterministic rule is applied to a graph G in T , then G is replaced by the resulting
set of graphs. For example, if the disjunction C tD is present in the label of a node, the rule→ t generates
two graphs, one in which C is added to the node label and the other in which D is added to the node label.

An event during the execution of the algorithm can be (Kalyanpur, 2006): 1) Add(C, a), the addition of
a concept C to L(a); 2) Add(R, 〈a, b〉), the addition of a role R to L(〈a, b〉); 3) Merge(a, b), the merging of
the nodes a, b; 4) 6=(a, b), the addition of the inequality a 6=b to the relation 6=; 5) Report(g), the detection
of a clash g. We use E to denote the set of events recorded during the execution of the algorithm. A clash
is either:

• a couple (C, a) where C and ¬C are present in the label of node a, i.e. {C,¬C} ⊆ L(a);

• a couple (Merge(a, b), 6=(a, b)), where the events Merge(a, b) and 6=(a, b) belong to E .

12

1: function Tableau(C,K)
2: Input: C (the concept to be tested for unsatisfiability)
3: Input: K (the knowledge base)
4: Output: S (a set of axioms) or null
5: Let G0 be an initial completion graph from K containing an anonymous individual a and C ∈ L(a)
6: T ← {G0}
7: repeat
8: Select a rule r applicable to a clash-free graph G from T
9: T ← T \ {G}

10: Let G = {G′
1, ..., G

′
n} be the result of applying r to G

11: T ← T ∪ G
12: until All graphs in T have a clash or no rule is applicable
13: if All graphs in T have a clash then
14: S ← ∅
15: for all G ∈ T do
16: let sG the result of τ for the clash of G
17: S ← S ∪ sG
18: end for
19: S ← S \ {C(a)}
20: return S
21: else
22: return null
23: end if
24: end function

Figure 5: Tableau algorithm executed by Pellet.

Each time a clash is detected in a completion graph G, the algorithm stops applying rules to G. Once
every completion graph in T contains a clash or no more expansion rules can be applied to it, the algorithm
terminates. If all the completion graphs in the final set T contain a clash, the algorithm returns unsatisfiable
as no model can be found. Otherwise, any one clash-free completion graph in T represents a possible model
for C(a) and the algorithm returns satisfiable.

Each expansion rule updates as well a tracing function τ , which associates sets of axioms with events
in the derivation. For example, τ(Add(C, a)), (τ(Add(R, 〈a, b〉))) is the set of axioms needed to explain the
event Add(C, a) (Add(R, 〈a, b〉)). For the sake of brevity, we define τ for couples (concept, individual) and
(role, couple of individuals) as τ(C, a) = τ(Add(C, a)) and τ(R, 〈a, b〉) = τ(Add(R, 〈a, b〉)) respectively. The
function τ is initialized as the empty set for all the elements of its domain except for τ(C, a) and τ(R, 〈a, b〉)
to which the values {a : C} and {(a, b) : R} are assigned if a : C and (a, b) : R are in the ABox respectively.
The expansion rules (Figure 8) add axioms to values of τ .

If g1, ..., gn are the clashes, one for each tableau of the final set, the output of the algorithm Tableau
is S =

⋃
i∈{1,...,n} τ(gi) \ {C(a)} where a is the anonymous individual initially assigned to C. However, this

set may be redundant because additional axioms may also be included in τ , e.g., during the→≤ rule, where
axioms responsible for each of the S successor edges are considered (Kalyanpur, 2006).

Thus S is pruned using a black box approach shown in Figure 6 (Kalyanpur, 2006). This algorithm
executes a loop on S in which it removes an axiom from S in each iteration and checks whether the concept
C turns satisfiable w.r.t. S, in which case the axiom is reinserted into S. The process continues until all
axioms in S have been tested and then returns S. Thus the algorithm for computing a single MinA, shown
in Figure 7, first executes Tableau and then BlackBoxPruning.

1: function BlackBoxPruning(C, S)
2: Input: C (the concept to be tested for unsatisfiability)
3: Input: S (the set of axioms to be pruned)
4: Output: S (the pruned set of axioms)
5: for all axiom E ∈ S do
6: S ← S − {E}
7: if C is satisfiable w.r.t. S then
8: S ← S ∪ {E}
9: end if

10: end for
11: return S
12: end function

Figure 6: Black-Box pruning algorithm.

13

1: function SingleMinA(C,K)
2: Input: C (the concept to be tested for unsatisfiability)
3: Input: K (the knowledge base)
4: Output: S (a MinA for the unsatisfiability of C w.r.t. K) or null
5: S ←Tableau(C,K)
6: if S = null then
7: return null
8: else
9: return BlackBoxPruning(C, S)

10: end if
11: end function

Figure 7: SingleMinA algorithm.

The output S of SingleMinA is guaranteed to be a MinA, as established by the following theorem,
where All-MinAs(C,K) stands for the set of MinAs in which C is unsatisfiable:

Theorem 4. (Kalyanpur, 2006) Let C be an unsatisfiable concept w.r.t. K and let S be the output of the
algorithm SingleMinA with input C and K, then S ∈ All-MinAs(C,K).

SingleMinA returns a single MinA. To solve min-a-enum, Pellet uses the hitting set algorithm (Reiter,
1987). The algorithm, described in detail in (Kalyanpur, 2006), starts from a MinA S and initializes a labeled
tree called Hitting Set Tree (HST) with S as the label of its root v. Then it selects an arbitrary axiom E in
S, it removes it from K, generating a new knowledge base K′ = K−{E}, and tests the unsatisfiability of C
w.r.t. K′. If C is still unsatisfiable, we obtain a new explanation. The algorithm adds a new node w in the
tree and a new edge 〈v, w〉, then it assigns this new explanation to the label of w and the axiom E to the
label of the edge. The algorithm repeats this process until the unsatisfiability test returns negative: in that
case the algorithm labels the new node with OK, makes it a leaf, backtracks to a previous node, selects a
different axiom to be removed from the KB and repeats these operations until the HST is fully built. The
algorithm also eliminates extraneous unsatisfiability tests based on previous results: once a path leading to
a node labeled OK is found, any superset of that path is guaranteed to be a path leading to a node where
C is satisfiable, and thus no additional unsatisfiability test is needed for that path, as indicated by a X in
the node label. When the HST is fully built, all leaves of the tree are labeled with OK or X. The distinct
non leaf nodes of the tree collectively represent the set All-MinAs(C,K).

The correctness and completeness of the hitting set algorithm are given by the following theorem.

Theorem 5. (Kalyanpur, 2006) Let C be a concept unsatisfiable in K and let ExpHST(C,K) be the set of
explanations returned by Pellet’s hitting set algorithm. Then

ExpHST(C,K) = All-MinAs(C,K).

Pellet’s ExpHST(C,K) can also take as input a maximum number of explanations to be generated. If
the limit is reached during the execution of the hitting set algorithm, Pellet stops and returns the set of
explanations found so far.

5.2. Overall BUNDLE

The main BUNDLE function, shown in Figure 9, first builds a data structure PMap that associates each
probabilistic DL axiom Ei with its probability pi. Then BUNDLE uses Pellet’s ExpHST(C,K) function to
compute the MinAs for the unsatisfiability of a concept C. BUNDLE exploits the version of this procedure
in which we can specify the maximum number of explanations to be found.

Two data structures are initialized: V arAx is an array that maintains the association between Boolean
random variables (whose index is the array index) and couples (axiom, probability), and BDD stores a
BDD. BDD is initialized to the zero Boolean function.

Then BUNDLE performs two nested loops that build a BDD representing the set of explanations. To
manipulate BDDs we used JavaBDD2 that is an interface to a number of underlying BDD manipulation
packages. As the underlying package we used CUDD.

2Available at http://javabdd.sourceforge.net/

14

→ unfold: if A ∈ L(a), A atomic and (A v D) ∈ K, then
if D /∈ L(a), then

Add(D,L(a))
τ(D, a) := (τ(A, a) ∪ {A v D})

→ CE: if (C v D) ∈ K, with C not atomic, a not blocked, then
if (¬C tD) /∈ L(a), then

Add((¬C tD), a)
τ((¬C tD), a) := {C v D}

→ u: if (C1 u C2) ∈ L(a), a is not indirectly blocked, then
if {C1, C2} 6⊆ L(a), then

Add({C1, C2}, a)
τ(Ci, a) := τ((C1 u C2), a)

→ t: if (C1 t C2) ∈ L(a), a is not indirectly blocked, then
if {C1, C2} ∩ L(a) = ∅, then

Generate graphs Gi := G for each i ∈ {1, 2}
Add(Ci, a) in Gi for each i ∈ {1, 2}
τ(Ci, a) := τ((C1 t C2), a)

→ ∃: if ∃S.C ∈ L(a), a is not blocked, then
if a has no S-neighbor b with C ∈ L(b), then

create new node b, Add(S, 〈a, b〉), Add(C, b)
τ(C, b) := τ((∃S.C), a)
τ(S, 〈a, b〉) := τ((∃S.C), a)

→ ∀: if ∀(S.C) ∈ L(a), a is not indirectly blocked and there is an S-neighbor b of a, then
if C /∈ L(b), then

Add(C, b)
τ(C, b) := τ((∀S.C), a) ∪ τ(S, 〈a, b〉)

→ ∀+: if ∀(S.C) ∈ L(a), a is not indirectly blocked
and there is an R-neighbor b of a, Trans(R) and R v S, then

if ∀R.C /∈ L(b), then
Add(∀R.C, b)
τ((∀R.C), b) := τ((∀S.C), a) ∪ τ(R, 〈a, b〉) ∪ {Trans(R)} ∪ {R v S}

→≥: if (≥ nS) ∈ L(a), a is not blocked, then
if there are no n safe S-neighbors b1, ..., bn of a with bi 6= bj , then

create n new nodes b1, ..., bn; Add(S, 〈a, bi〉); 6=(bi, bj)
τ(S, 〈a, bi〉) := τ((≥ nS), a)
τ(6=(bi, bj)) := τ((≥ nS), a)

→≤: if (≤ nS) ∈ L(a), a is not indirectly blocked,
and there are m S-neighbors b1, ..., bm of a with m > n, then
For each possible pair bi, bj , 1 ≤ i, j ≤ m; i 6= j then

Generate a graph G′

τ(Merge(bi, bj)) := τ((≤ nS), a) ∪ τ(S, 〈a, b1〉)... ∪ τ(S, 〈a, bm〉)
if bj is a nominal node, then Merge(bi, bj) in G′,
else if bi is a nominal node or ancestor of bj , then Merge(bj , bi)
else Merge(bi, bj) in G′

if bi is merged into bj , then for each concept Ci in L(bi),
τ(Ci, bj) := τ(Ci, bi) ∪ τ(Merge(bi, bj))
(similarly for roles merged, and correspondingly for concepts in bj if merged into bi)

→ O: if, {o} ∈ L(a) ∩ L(b) and not a 6=b, then Merge(a, b)
τ(Merge(a, b)) := τ({o}, a) ∪ τ({o}, b)
For each concept Ci in L(a), τ(Add(Ci,L(b))) := τ(Add(Ci,L(a))) ∪ τ(Merge(a, b))
(similarly for roles merged, and correspondingly for concepts in L(b))

→ NN : if (≤ nS) ∈ L(a), a nominal node, b blockable S-predecessor of a
and there is no m s.t. 1 ≤ m ≤ n, (≤ mS) ∈ L(a)
and there exist m nominal S-neighbors c1, ..., cm of a s.t. ci 6=cj , 1 ≤ j ≤ m, then

generate new Gm for each m, 1 ≤ m ≤ n
and do the following in each Gm:

Add(≤ mS, a), τ((≤ mS), a) := τ((≤ nS), a) ∪ (τ(S, 〈b, a〉)
create b1, ..., bm; add bi 6=bj for 1 ≤ i ≤ j ≤ m.
τ(6=(bi, bj) := τ((≤ nS), a) ∪ τ(S, 〈b, a〉)
Add(S, 〈a, bi〉); Add({oi}, bi);
τ(S, 〈a, bi〉) := τ((≤ nS), a) ∪ τ(S, 〈b, a〉); τ({oi}, bi) := τ((≤ nS), a) ∪ τ(S, 〈b, a〉)

Figure 8: Pellet tableau expansion rules for SHOIN (D) from (Kalyanpur, 2006).

15

1: function Bundle(K, C,maxEx)
2: Input: K (the knowledge base)
3: Input: C (the concept to be tested for unsatisfiability)
4: Input: maxEx (the maximum number of explanations to find)
5: Output: the probability of the unsatisfiability of C w.r.t. K
6: Build Map PMap from DL axioms to sets of couples probability
7: MinAs←ExpHST(C,K,maxEx)
8: Initialize V arAx to empty . V arAx is an array of couples (Axiom, Prob)
9: BDD ←BDDZero

10: for all MinA ∈ CS do
11: BDDE ←BDDOne
12: for all Ax ∈MinA do
13: if K contains a certain axiom Ax then
14: BDDA←BDDOne
15: else
16: p← PMap(Ax)
17: Scan V arAx looking for Ax
18: if !found then
19: Add to V arAx a new cell containing (Ax, p)
20: end if
21: Let i be the position of (Ax, p) in V arAx
22: BDDA← BDDGetIthVar(i)
23: end if
24: BDDE ←BDDAnd(BDDE,BDDA)
25: end for
26: BDD ←BDDOr(BDD,BDDE)
27: end for
28: return Prob(BDD) . V arAx is used to compute P (X) in Prob
29: end function

Figure 9: Function Bundle: computation of the probability of an axiom Q given the KB K.

In the outermost loop, BUNDLE combines BDDs for different explanations. In the inner loop, BUNDLE
generates the BDD for a single explanation.

In the outermost loop, BDDE is initialized to the one Boolean function. In the inner loop, the axioms
of each MinA are considered one by one. If the axiom is certain, then the one Boolean function is conjoined
with BDDE. Otherwise, the value p associated with the axiom is extracted from PMap. The axiom is
searched for in V arAx to see if it has already been assigned a random variable. If not, a cell is added to
V arAx to store the couple. At this point we know the couple position i in V arAx and so the index of its
Boolean variable Xi. We obtain a BDD representing Xi = 1 with BDDGetIthVar and we conjoin it with
BDDE. After the two cycles, function Prob of Figure 3 is called over BDD and its result is returned to
the user.

We now prove BUNDLE correctness.

Theorem 6 (BUNDLE correctness). Given a DISPONTE KB K, a query Q and a limit maxEx for
the number of explanations to find, the probability returned by BUNDLE, Bundle(K, Q,maxEx) is:

• a lower bound on P (Q), i.e., Bundle(K, Q,maxEx)≤ P (Q) if a maximum number of explanations is
set

• equal to P (Q), i.e., Bundle(K, Q,maxEx)= P (Q) otherwise

Proof. Let K be ExpHST(C,K,maxEx). By Theorem 5

K ⊆ All-InstMinAs(C,K)

if a maximum number of explanations is set and

K = All-InstMinAs(C,K)

otherwise. Since BUNDLE computes P (fK(X)) for the Boolean function

fK(X) =
∨
κ∈K

∧
(F,1)∈κ

XF

the theorem holds.

16

6. Computational Complexity

Jung and Lutz (2012) considered the problem of computing the probability of conjunctive queries to
probabilistic databases in the presence of an ontology. Probabilities can occur only in the ABox while the
TBox is certain. In the case where each ABox assertion is associated with a Boolean random variable
independent of all the others, they prove that only very simple conjunctive queries can be answered in
PTime, while most queries are #P-hard when the ontology is a DL-Lite TBox and even when the ontology
is a ELI TBox.

The class #P (Valiant, 1979) describes counting problems associated with decision problems in NP.
More formally, #P is the class of function problems of the form ”compute f(x)”, where f is the number
of accepting paths of a nondeterministic Turing machine running in polynomial time. A prototypical #P
problem is the one of computing the number of satisfying assignments of a CNF Boolean formula. #P
problems were shown very hard. First, a #P problem must be at least as hard as the corresponding NP
problem. Second, Toda (1989) showed that a polynomial-time machine with a #P oracle (P#P) can solve
all problems in PH, the entire polynomial hierarchy.

The setting considered by Jung and Lutz (2012) is subsumed by DISPONTE as it is equivalent to having
probabilistic axioms only in the ABox of a DISPONTE KB. So the complexity result provides a lower bound
for DISPONTE.

In order to investigate the complexity of BUNDLE, we can consider the two problems that it solves for
answering a query. The first one is axiom pinpointing. Its computational complexity has been studied in
a number of works (Peñaloza and Sertkaya, 2009, 2010a,b). Baader et al. (2007) showed that there can be
exponentially many MinAs for a very simple DL that allows only concept intersection.

Example 7. Given an integer n ≥ 1, consider the TBox

Tn = {Bi−1 v Pi uQi, Pi v Bi, Qi v Bi|1 ≤ i ≤ n}

The size of Tn is linear in n and Tn |= B0 v Bn. There are 2n MinAs for B0 v Bn since, for each
i, 1 ≤ i ≤ n, it is enough to have Pi v Bi or Qi v Bi in the set.

Thus the number of explanations for SHOIN (D) may be even larger. Given this fact, we do not consider
complexity with respect to the input only. We say an algorithm runs in output polynomial time (Johnson
et al., 1988) if it computes all the output in time polynomial in the overall size of the input and the
output. Corollary 15 in (Peñaloza and Sertkaya, 2010b) shows that min-a-enum cannot be solved in output
polynomial time for DL-Litebool TBoxes unless P = NP . Since DL-Litebool is a sublogic of SHOIN (D),
this result also holds for SHOIN (D).

The second problem to be solved is computing the probability of a query, that can be seen as computing
the probability of a sum-of-products, as explained below.

Definition 2 (sum-of-products). Given a Boolean expression S in disjunctive normal form (DNF), or a
sum-of-products, in the variables {v1, . . . , vn} and let P (vi) be the probability that vi is true with i = 1, . . . , n,
compute the probability P (S) of S, assuming all variables are independent.

This problem, called sum-of-products, was shown to be #P-hard (see e.g. Rauzy et al., 2003). Given
that the input of the sum-of-products problem is of at least exponential size in the worst case, this means
that computing the probability of an axiom from a SHOIN (D) knowledge base is intractable.

However, the algorithms that have been proposed for solving the two problems were shown to be able
to work on inputs of real world size. For example, all MinAs have been found for various entailments over
many real world ontologies within a few seconds (Kalyanpur, 2006; Kalyanpur et al., 2007). As regards
the sum-of-products problem, algorithms based on BDDs were able to solve problems with hundred of
thousand of variables (see e.g. the works on inference on probabilistic logic programs (De Raedt et al.,
2007; Riguzzi, 2007, 2009; Riguzzi and Swift, 2010; Kimmig et al., 2011; Riguzzi and Swift, 2013)). Also
methods for weighted model counting (Sang et al., 2005; Chavira and Darwiche, 2008) can be used to solve
the sum-of-products problem.

Moreover, Section 8 below shows that in practice we can compute the probability of entailments on KBs
of real-world size in BUNDLE, too.

17

7. Related Work

Bacchus (1990) and Halpern (1990) discuss first-order logics of probability and distinguish statistical
statements from statements about degrees of belief. Halpern (1990) presents two examples: the probability
that a randomly chosen bird flies is 0.9 and the probability that Tweety (a particular bird) flies is 0.9. The
first statement captures statistical information about the world while the second captures a degree of belief.
In order to express the second type of statement, called a “Type 2” statement, Halpern proposes the notation
w(Flies(tweety)) = 0.9, where the function w is used to indicate the probability, while in order to express
the first, called a “Type 1” statement, he proposes the notation wx(Flies(x) ∧Bird(x)) = 0.9wx(Bird(x)).
The latter formula can be read as: given a randomly chosen x in the domain, if x is a bird, the probability
that x flies is 0.9, or the conditional probability that x flies given that it is a bird is 0.9. DISPONTE allows
only Type 2 statements: 0.9 :: Bird v Flies means that birds fly with a probability of 0.9.

Lutz and Schröder (2010) proposed Prob-ALC that is derived directly from Halpern’s probabilistic first
order logic and, as DISPONTE, considers only “Type 2” statements. They do so by adopting a possible
world semantics and allowing concept expressions of the form P≥nC and ∃P≥nR.C in the language, the first
expressing the set of individuals that belong to C with probability greater than n and the second the set of
individuals a connected to at least another individual b of C by role R such that the probability of R(a, b) is
greater than n. Moreover, the ABox may contain expressions of the form P≥nC(a) and P≥nR(a, b) directly
expressing degrees of belief, together with P≥nA where A is an ABox. Prob-ALC is 2-EXPTIME-hard even
when probability values are restricted to 0 and 1. Prob-ALC is complementary to DISPONTE ALC as it
allows new concept and assertional expressions while DISPONTE allows probabilistic axioms.

Jung and Lutz (2012) presented an approach for querying probabilistic databases in the presence of an
OWL2 QL ontology. Each assertion is assumed to be stored in a database and associated with probabilistic
events. All atomic events are assumed to be probabilistically independent, resulting in a semantics very
similar to the distribution semantics. The authors are interested in computing the answer probabilities to
conjunctive queries. Probabilities can occur only in the data, but neither in the ontology nor in the query.
Two types of ABoxes are considered: a general one where events are Boolean combinations of atomic events,
and a restricted one, where each assertion is associated with a distinct atomic event. The latter setting
is subsumed by DISPONTE. Only very simple conjunctive queries in the latter settings can be answered
in PTime, while most queries are #P-hard. The authors underline the general interest and usefulness of
the approach for a wide range of applications including the management of data extracted from the web,
machine translation, and dealing with data that arise from sensor networks.

Heinsohn (1994) proposed an extension of the description logic ALC that is able to express statistical in-
formation on the terminological knowledge such as partial concept overlapping. Similarly, Koller et al. (1997)
presented a probabilistic description logic based on Bayesian networks that deals with statistical termino-
logical knowledge. Both Heinsohn and Koller et al. do not allow probabilistic assertional knowledge about
concept and role instances. Jaeger (1994) allows assertional knowledge about concept and role instances
together with statistical terminological knowledge and combines the resulting probability distributions using
cross-entropy minimization but does not allow Type 2 statements as DISPONTE.

Ding and Peng (2004) proposed a probabilistic extension of OWL that admits a translation into Bayesian
networks. The semantics assigns a probability distribution P (a) over individuals, i.e.

∑
a P (a) = 1, and

assigns a probability to a class C as P (C) =
∑
a∈C P (a), while we assign a probability distribution to

worlds. PR-OWL (Costa et al., 2008; Carvalho et al., 2010) is an upper ontology that provides a framework
for building probabilistic ontologies. It allows to use the first-order probabilistic logic MEBN (Laskey and
Costa, 2005) for representing uncertainty in ontologies.

DISPONTE differs from Heinsohn (1994); Jaeger (1994); Koller et al. (1997); Ding and Peng (2004);
Costa et al. (2008); Carvalho et al. (2010) because it minimally extends the language and provides a unified
framework for representing different types of probabilistic knowledge: from assertional to terminological
knowledge.

Luna et al. (2011) proposed an extension of ALC, called crALC that adopts an interpretation-based
semantics. crALC allows statistical axioms of the form P (C|D) = α, which mean that for any element
x in the domain D, the probability that x is in C given that it is in D is α, and of the form P (R) = β,

18

which mean that for each couple of elements x and y in D, the probability that x is linked to y by the
role R is β. The semantics of crALC is based on probability measures over the space of interpretations
with a fixed domain. crALC allows to express Type 1 knowledge but not Type 2. A crALC KB K can
be represented as a directed acyclic graph G(K) in which a node represents a concept or a role and the
edges represent the relations between them: if a concept C directly uses concept D, then D is a parent
of C in G(K). Moreover, each restriction ∃R.C and ∀R.C is added as a node to G(K). G(K) contains an
edge from R to each restriction directly using it and from each restriction to the concept C appearing in
it. G(K) is a template for generating a ground graph given the domain D in which each node represents
an instantiated logical atom C(a) or R(a.b). Inference can then be performed by a first order loopy belief
propagation algorithm on the ground graph.

A different approach to the combination of DLs with probability is taken in (Giugno and Lukasiewicz,
2002; Lukasiewicz, 2002, 2008). The logic proposed in these papers is called P-SHIQ(D) and allows both
terminological probabilistic knowledge as well as assertional probabilistic knowledge about instances of
concepts and roles. Terminological probabilistic knowledge is expressed using conditional constraints of the
form (D|C)[l, u] that informally mean “generally, if an object belongs to C, then it belongs to D with a
probability in [l, u]”. PRONTO (Klinov, 2008; Klinov and Parsia, 2011) is a system that performs inference
under this semantics. Similarly to (Jaeger, 1994), the terminological knowledge is interpreted statistically
while the assertional knowledge is interpreted in an epistemic way by assigning degrees of beliefs to assertions.
Moreover it also allows to express default knowledge about concepts that can be overridden in subconcepts
and whose semantics is given by Lehmann’s lexicographic default entailment (Lehmann, 1995). These works
are based on Nilsson’s probabilistic logic (Nilsson, 1986), where a probabilistic interpretation Pr defines a
probability distribution over the set of interpretations Int. The probability of a logical formula F according
to Pr, denoted Pr(F), is the sum of all Pr(I) such that I ∈ Int and I |= F . A probabilistic knowledge base
K is a set of probabilistic formulas of the form F ≥ p. A probabilistic interpretation Pr satisfies F ≥ p iff
Pr(F) ≥ p. Pr satisfies K, or Pr is a model of K, iff Pr satisfies all F ≥ p ∈ K. Pr(F) ≥ p is a tight logical
consequence of K iff p is the infimum of Pr(F) in the set of to all models Pr of K. Computing tight logical
consequences from probabilistic knowledge bases can be done by solving a linear optimization problem.

Nilsson’s probabilistic logic differs from the distribution semantics: while the first considers sets of
distributions, the latter computes a single distribution over possible worlds. Nilsson’s logic allows weaker
conclusions: considers a probabilistic ontology composed of the axioms 0.4 :: a : C and 0.5 :: b : C and
a probabilistic theory composed of C(a) ≥ 0.4 and C(b) ≥ 0.5. The distribution semantics allows to say
that P (a : C ∨ b : C) = 0.7, while with Nilsson’s logic the lowest p such that Pr(C(a) ∨ C(b)) ≥ p holds
is 0.5. This is due to the fact that, while in Nilsson’s logic no assumption about the independence of the
statements is made, in the distribution semantics the probabilistic axioms are considered as independent,
which allows to make stronger conclusions. However, this does not restrict expressiveness as one can specify
any joint probability distribution over the logical ground atoms, possibly introducing new atoms if needed.
This is testified by the fact that Bayesian networks can be encoded in probabilistic logic programs under
the distribution semantics (Vennekens et al., 2004) and by the applications of the distribution semantics
in a wide variety of domains (De Raedt et al., 2007; Sato and Kameya, 2001; Bellodi and Riguzzi, 2012).
The use of Nilsson logic causes the approach of (Giugno and Lukasiewicz, 2002; Lukasiewicz, 2002, 2008) to
reason with intervals of probability values, while with DISPONTE we work with point probabilities.

Other approaches, such as (d’Amato et al., 2008; Gottlob et al., 2011), combine a liteweight ontology
language, DL-Lite and Datalog+/- respectively, with graphical models, Bayesian networks and Markov
networks respectively. In both cases, an ontology is composed of a set of annotated axioms and a graphical
model. The annotations are sets of assignments of random variables from the graphical model. The semantics
is assigned by considering the possible worlds of the graphical model and by stating that an axiom holds
in a possible world if the assignments in its annotation hold. The probability of a conclusion is then the
sum of the probabilities of the possible worlds where the conclusion holds. Our approach provides a tighter
integration of probability in ontologies as we do not rely on an additional graphical model.

19

Figure 10: Mean relative error of the probability of queries as a function of the limit on the number of explanation varies.

8. Experiments

In order to test the performance of BUNDLE, we performed two experiments. All experiments have been
performed on a Linux machine with a 3.10 GHz Intel Xeon E5-2687W with 2GB (max) memory allotted to
Java.

In the first one we consider how the execution time and the probability vary when imposing a limit on
the number of explanations. We chose the Grid3 KB that is part of the myGrid project. The Grid KB
has already been used for testing the performances of Pellet in (Kalyanpur et al., 2007). It describes the
bioinformatics domain and contains concepts at a high level of abstraction. For the test, we used a version
of the Grid KB with SHOIN expressiveness that contains 2838 axioms, 550 atomic concepts, 69 properties
and 13 individuals, downloaded from the Tones repository4.

We associated a probability of 0.5 to each axiom of the KB and then we ran 100 different subclass queries.
For generating the queries, we first built the hierarchy of the classes contained in the ontology. After that,
for each query we randomly selected two classes that are connected in the hierarchy, so that each query had
at least one explanation.

We first computed the correct probability of each query by using BUNDLE without a limit on the number
of explanations in order to compute the correct probability. Then we ran each query several times, each
time with an increased limit. The maximum number of explanations is 16: there are 20 queries with 16
explanations but most of the queries have a number of explanations between 1 and 5. We computed the
relative error e between the correct probability p of a query and the probability p′ returned by BUNDLE

with a limit on the number of explanations with the formula e = p−p′
p . Then we averaged the relative error

over all the queries.
In Figure 10 we show how the mean relative error varies with respect to the limit on the number of

explanations, while Table 1 reports the execution times. The values are computed by averaging over all
the 100 queries. The row of Table 1 with “–” in the first column contains the average execution time for
BUNDLE without a limit on the number of explanations. Figure 11 shows the execution time as a function
of the limit on the number of explanations. As can be seen, the quality of the answer increases as the limit
on the number of explanations increases.

3http://www.myGrid.org.uk/
4http://rpc295.cs.man.ac.uk:8080/repository/browser

20

Limit on the Execution
explanations time (s)

2 1.40
4 1.44
6 1.46
8 1.49
10 1.52
12 1.55
14 2.10
16 9.36
– 18.44

Table 1: Execution time depending on the limit on the number of explanations. The last row reports the time spent for finding
the set of all explanations.

Figure 11: Execution time as the limit on the number of explanations to the queries varies.

21

Dimension of Probabilistic TBox
Dataset & Infos 0 250 500 750 1000

Cell time (s) 0.76 2.84 3.88 3.94 4.53
ALE+, 1263 TBox’s axioms TO 0 28 39 50 55

Teleost time (s) 2.11 8.87 31.80 33.82 36.33
ALEI+, 3406 TBox’s axioms TO 0 7 32 32 44

NCI time (s) 3.02 11.37 11.37 16.37 24.90
ALE+, 5423 TBox’s axioms TO 0 1 24 23 36

Table 2: Average execution time for the queries to the Cell, Teleost and NCI KBs. The first column reports the expressiveness
of each KB and the size of the non-probabilistic TBox.

In the second experiment we investigate the scalability of BUNDLE. Following the same method of
evaluation presented by Klinov and Parsia (2011), we considered three different datasets: an extract from
the Cell5 ontology, an extract from the NCI Thesaurus6 and an extract from the Teleost anatomy7 ontology.

The Cell Ontology represents cell types of the prokaryotic, fungal, and eukaryotic organisms. The NCI
ontology is an extract from the NCI Thesaurus that describes human anatomy. The Teleost anatomy (Teleost
for short) ontology is a multi-species anatomy ontology for teleost fishes.

For each of these KBs we considered the versions of increasing size used by Klinov and Parsia (2011):
they added 250, 500, 750 and 1000 new probabilistic conditional constraints to the publicly available non-
probabilistic version of each ontology. We converted these KBs into DISPONTE by translating each con-
ditional constraint (D|C)[l, u] into the probabilistic axiom u :: C v D where u is the upper limit of the
conditional constraint interval. For each KB, we ran a set of 100 different random subclass queries without
specifying a limit on the number of explanations. We created the queries as for the Grid KB: we built the
hierarchy of each KB and we randomly selected two classes connected in the hierarchy for each query, so
that each query had at least one explanation. We imposed a time limit of 5 minutes for BUNDLE to answer
each query. If this limit is reached, BUNDLE’s answer is “time-out”.

In Table 2 we reported, for each version of the datasets, the average execution time and the number of
queries that terminated with a time-out (TO). The averages are computed on the queries that did not end
with a time-out. In addition, for each KB we reported its expressiveness and its number of non-probabilistic
TBox axioms.

As can be seen, BUNDLE answers most queries in a few seconds. However, some queries have a very high
complexity that causes BUNDLE to reach the time-out, confirming the complexity results. In these cases,
since the time-out is reached during the computation of the explanations, limiting the number of explanations
is necessary, obtaining a lower bound on the probability that becomes tighter as more explanations are
allowed.

9. Conclusions

We have presented the DISPONTE semantics for probabilistic DLs that is inspired by the distribu-
tion semantics of probabilistic logic programming. We have discussed the application of DISPONTE to
SHOIN (D), a prototype of an expressive DL. DISPONTE minimally extends the language to which it is
applied and allows both assertional and terminological probabilistic knowledge. We have also presented the
algorithm BUNDLE that is able to compute the probability of queries from DISPONTE KBs. BUNDLE
has been tested on four real world KBs. The experiments show that BUNDLE is able to deal with ontologies
of significant complexity, even if in some situations only an approximated answer takes a reasonable amount
of time. BUNDLE is available for download from http://sites.unife.it/ml/bundle together with the
datasets used in the experiments.

5http://cellontology.org/
6http://ncit.nci.nih.gov/
7http://phenoscape.org/wiki/Teleost_Anatomy_Ontology

22

In the future, we plan to consider extensions of the semantics including statistical or Type 1 knowledge
in the terminology of Halpern (1990). Moreover, alternative approaches for inference will be considered, in
particular reasoning algorithms returning a pinpointing formula such in (Baader and Peñaloza, 2010b,a):
such a formula compactly encodes explanations for the query and can be converted directly into a BDD.
We have also started to study the problem of learning the parameters (Riguzzi et al., 2013b) and we are
planning to tackle the problem of learning the structure of probabilistic KB.

References

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P. F. (Eds.), 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press.

Baader, F., Horrocks, I., Sattler, U., 2008. Description logics. In: Handbook of knowledge representation. Elsevier, Ch. 3, pp.
135–179.

Baader, F., Peñaloza, R., 2010a. Automata-based axiom pinpointing. J. Autom. Reasoning 45 (2), 91–129.
Baader, F., Peñaloza, R., 2010b. Axiom pinpointing in general tableaux. J. Log. Comput. 20 (1), 5–34.
Baader, F., Peñaloza, R., Suntisrivaraporn, B., 2007. Pinpointing in the description logic EL+. In: Annual German Conference

on AI. Vol. 4667 of LNCS. Springer, pp. 52–67.
Bacchus, F., 1990. Representing and reasoning with probabilistic knowledge - a logical approach to probabilities. MIT Press.
Bellodi, E., Lamma, E., Riguzzi, F., Albani, S., 2011. A distribution semantics for probabilistic ontologies. In: Bobillo, F., et al.

(Eds.), International Workshop on Uncertain Reasoning for the Semantic Web. Vol. 778 of CEUR Workshop Proceedings.
Sun SITE Central Europe, pp. 75–86.

Bellodi, E., Riguzzi, F., 2012. Experimentation of an expectation maximization algorithm for probabilistic logic programs.
Intelligenza Artificiale 8 (1), 3–18.

Bellodi, E., Riguzzi, F., 2013. Expectation Maximization over binary decision diagrams for probabilistic logic programs. Intel.
Data Anal. 17 (2), 343–363.

Bollig, B., Wegener, I., 1996. Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Computers 45 (9),
993–1002.

Carvalho, R. N., Laskey, K. B., Costa, P. C. G., 2010. PR-OWL 2.0 - bridging the gap to OWL semantics. In: Bobillo, F., et al.
(Eds.), International Workshop on Uncertain Reasoning for the Semantic Web. Vol. 654 of CEUR Workshop Proceedings.
Sun SITE Central Europe, pp. 73–84.

Chavira, M., Darwiche, A., 2008. On probabilistic inference by weighted model counting. Artif. Intell. 172 (6-7), 772–799.
Costa, P. C. G., Laskey, K. B., Laskey, K. J., 2008. PR-OWL: A Bayesian ontology language for the semantic web. In:

International Workshop on Uncertainty Reasoning for the Semantic Web. Vol. 5327 of LNCS. Springer, pp. 88–107.
d’Amato, C., Fanizzi, N., Lukasiewicz, T., 2008. Tractable reasoning with Bayesian description logics. In: International Con-

ference on Scalable Uncertainty Management. Vol. 5291 of LNCS. Springer, pp. 146–159.
Darwiche, A., Marquis, P., 2002. A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264.
De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr, N., Mantadelis, T., Meert, W.,

Rocha, R., Santos Costa, V., Thon, I., Vennekens, J., 2008. Towards digesting the alphabet-soup of statistical relational
learning. In: NIPS*2008 Workshop on Probabilistic Programming. pp. 1–14.

De Raedt, L., Kimmig, A., Toivonen, H., 2007. ProbLog: A probabilistic Prolog and its application in link discovery. In:
International Joint Conference on Artificial Intelligence. pp. 2462–2467.

Ding, Z., Peng, Y., 2004. A probabilistic extension to ontology language OWL. In: Hawaii International Conference On System
Sciences. IEEE, pp. 1–10.

Giugno, R., Lukasiewicz, T., 2002. P-SHOQ(D): A probabilistic extension of SHOQ(D) for probabilistic ontologies in the
semantic web. In: European Conference on Logics in Artificial Intelligence. Vol. 2424 of LNCS. Springer, pp. 86–97.

Gottlob, G., Lukasiewicz, T., Simari, G. I., 2011. Conjunctive query answering in probabilistic Datalog+/- ontologies. In:
International Conference on Web Reasoning and Rule Systems. Vol. 6902 of LNCS. Springer, pp. 77–92.

Grumberg, O., Livne, S., Markovitch, S., 2003. Learning to order bdd variables in verification. J. Artif. Intell. Res. 18, 83–116.
Halaschek-Wiener, C., Kalyanpur, A., Parsia, B., 2006. Extending tableau tracing for ABox updates. Tech. rep., University of

Maryland.
Halpern, J. Y., 1990. An analysis of first-order logics of probability. Artif. Intell. 46 (3), 311–350.
Heinsohn, J., 1994. Probabilistic description logics. In: Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann,

pp. 311–318.
Jaeger, M., 1994. Probabilistic reasoning in terminological logics. In: International Conference on Principles of Knowledge

Representation and Reasoning. pp. 305–316.
Johnson, D. S., Papadimitriou, C. H., Yannakakis, M., 1988. On generating all maximal independent sets. Inf. Process. Lett.

27 (3), 119–123.
Jung, J. C., Lutz, C., 2012. Ontology-based access to probabilistic data with owl ql. In: Cudré-Mauroux, P., Heflin, J., Sirin,

E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J. X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E.
(Eds.), International Semantic Web Conference. Vol. 7649 of LNCS. Springer, pp. 182–197.

Kalyanpur, A., 2006. Debugging and repair of OWL ontologies. Ph.D. thesis, The Graduate School of the University of
Maryland.

23

Kalyanpur, A., Parsia, B., Cuenca-Grau, B., Sirin, E., 2005a. Tableaux tracing in SHOIN. Tech. Rep. 2005-66, University of
Maryland.

Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E., 2007. Finding all justifications of OWL DL entailments. In: Aberer, K.,
et al. (Eds.), International Semantic Web Conference. Vol. 4825 of LNCS. Springer, pp. 267–280.

Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J. A., 2005b. Debugging unsatisfiable classes in OWL ontologies. J. Web Sem.
3 (4), 268–293.

Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S., Rocha, R., 2011. On the implementation of the probabilistic logic
programming language ProbLog. Theor. Prac. Log. Prog. 11 (2-3), 235–262.

Klinov, P., 2008. Pronto: A non-monotonic probabilistic description logic reasoner. In: European Semantic Web Conference.
Vol. 5021 of LNCS. Springer, pp. 822–826.

Klinov, P., Parsia, B., 2011. A hybrid method for probabilistic satisfiability. In: Bjørner, N., Sofronie-Stokkermans, V. (Eds.),
International Conference on Automated Deduction. Vol. 6803 of LNCS. Springer, pp. 354–368.

Koller, D., Levy, A. Y., Pfeffer, A., 1997. P-CLASSIC: A tractable probablistic description logic. In: National Conference on
Artificial Intelligence. pp. 390–397.

Laskey, K. B., Costa, P. C. G., 2005. Of starships and Klingons: Bayesian logic for the 23rd century. In: Conference in
Uncertainty in Artificial Intelligence. AUAI Press, pp. 346–353.

Lehmann, D. J., 1995. Another perspective on default reasoning. Ann. Math. Artif. Intell. 15 (1), 61–82.
Lukasiewicz, T., 2002. Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Int. 34 (1-3), 35–88.
Lukasiewicz, T., 2008. Expressive probabilistic description logics. Artif. Int. 172 (6-7), 852–883.
Luna, J. E. O., Revoredo, K., Cozman, F. G., 2011. Learning probabilistic description logics: A framework and algorithms. In:

Mexican International Conference on Artificial Intelligence. Vol. 7094 of LNCS. Springer, pp. 28–39.
Lutz, C., Schröder, L., 2010. Probabilistic description logics for subjective uncertainty. In: Lin, F., Sattler, U., Truszczynski,

M. (Eds.), International Conference on Principles of Knowledge Representation and Reasoning. AAAI Press, pp. 393–403.
Nilsson, N. J., 1986. Probabilistic logic. Artif. Intell. 28 (1), 71–87.
Patel-Schneider, P, F., Horrocks, I., Bechhofer, S., 2003. Tutorial on OWL.
Peñaloza, R., Sertkaya, B., 2009. Axiom pinpointing is hard. In: International Workshop on Description Logics. Vol. 477 of

CEUR Workshop Proceedings. CEUR-WS.org, pp. 1–12.
Peñaloza, R., Sertkaya, B., 2010a. Complexity of axiom pinpointing in the DL-Lite family. In: International Workshop on

Description Logics. Vol. 573 of CEUR Workshop Proceedings. CEUR-WS.org, pp. 1–12.
Peñaloza, R., Sertkaya, B., 2010b. Complexity of axiom pinpointing in the DL-Lite family of description logics. In: European

Conference on Artificial Intelligence. IOS Press, pp. 29–34.
Poole, D., 1993. Probabilistic horn abduction and Bayesian networks. Artif. Intell. 64 (1).
Poole, D., 1997. The Independent Choice Logic for modelling multiple agents under uncertainty. Artif. Intell. 94 (1-2), 7–56.
Poole, D., 2000. Abducing through negation as failure: stable models within the independent choice logic. J. Log. Program.

44 (1-3), 5–35.
Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C., January 2003. A practical comparison of methods to assess sum-of-products.

Reliability Engineering and System Safety 79 (1), 33–42.
Reiter, R., 1987. A theory of diagnosis from first principles. Artif. Intell. 32 (1), 57–95.
Riguzzi, F., 2007. A top down interpreter for LPAD and CP-logic. In: Congress of the Italian Association for Artificial

Intelligence. Vol. 4733 of LNAI. Springer, pp. 109–120.
Riguzzi, F., 2009. Extended semantics and inference for the Independent Choice Logic. Log. J. IGPL 17 (6), 589–629.
Riguzzi, F., Bellodi, E., Lamma, E., 2012a. Probabilistic Datalog+/- under the distribution semantics. In: Kazakov, Y., Lembo,

D., Wolter, F. (Eds.), International Workshop on Description Logics. Vol. 846 of CEUR Workshop Proceedings. Sun SITE
Central Europe, pp. 1–11.

Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., 2012b. Epistemic and statistical probabilistic ontologies. In: Bobillo, F., et al.
(Eds.), International Workshop on Uncertain Reasoning for the Semantic Web. Vol. 900 of CEUR Workshop Proceedings.
Sun SITE Central Europe, pp. 3–14.

Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., 2013a. BUNDLE: A reasoner for probabilistic ontologies. In: Faber, W., Lembo,
D. (Eds.), International Conference on Web Reasoning and Rule Systems. Vol. 7994 of LNCS. Springer, pp. 183–197.

Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., 2013b. Parameter learning for probabilistic ontologies. In: Faber, W., Lembo, D.
(Eds.), International Conference on Web Reasoning and Rule Systems. Vol. 7994 of LNCS. Springer, pp. 265–270.

Riguzzi, F., Swift, T., 2010. Tabling and Answer Subsumption for Reasoning on Logic Programs with Annotated Disjunctions.
In: Technical Communications of the International Conference on Logic Programming. Vol. 7 of Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 162–171.

Riguzzi, F., Swift, T., 2013. Well-definedness and efficient inference for probabilistic logic programming under the distribution
semantics. Theory Pract. Log. Program. 13 (Special Issue 02 - 25th Annual GULP Conference), 279–302.

Sang, T., Beame, P., Kautz, H. A., 2005. Performing bayesian inference by weighted model counting. In: Veloso, M. M.,
Kambhampati, S. (Eds.), National Conference on Artificial Intelligence. AAAI Press / The MIT Press, pp. 475–482.

Sato, T., 1995. A statistical learning method for logic programs with distribution semantics. In: International Conference on
Logic Programming. MIT Press, pp. 715–729.

Sato, T., Kameya, Y., 2001. Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15,
391–454.

Schlobach, S., Cornet, R., 2003. Non-standard reasoning services for the debugging of description logic terminologies. In:
Gottlob, G., Walsh, T. (Eds.), International Joint Conference on Artificial Intelligence. Morgan Kaufmann, pp. 355–362.

Schmidt-Schauß, M., Smolka, G., 1991. Attributive concept descriptions with complements. Artif. Intell. 48 (1), 1–26.

24

Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y., 2007. Pellet: A practical OWL-DL reasoner. J. Web Sem.
5 (2), 51–53.

Toda, S., 1989. On the computational power of PP and +P. In: Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, pp. 514–519.

URW3-XG, 2008. Uncertainty reasoning for the World Wide Web, final report.
Valiant, L. G., 1979. The complexity of enumeration and reliability problems. SIAM J. Comp. 8 (3), 410–421.
Vennekens, J., Denecker, M., Bruynooghe, M., 2009. CP-logic: A language of causal probabilistic events and its relation to

logic programming. Theory Pract. Log. Program. 9 (3), 245–308.
Vennekens, J., Verbaeten, S., 2003. Logic programs with annotated disjunctions. Tech. Rep. CW386, KU Leuven.
Vennekens, J., Verbaeten, S., Bruynooghe, M., 2004. Logic programs with annotated disjunctions. In: International Conference

on Logic Programming. Vol. 3131 of LNCS. Springer, pp. 195–209.

25

