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Abstract

This study concerns the optimal design of cycle tourist itineraries considering several classes of users. It builds upon a recent

work which first introduced the problem of designing the most attractive itinerary for cycle tourists connecting a given origin to

a given destination, subject to a budget and a time constraint. Starting from a network made of existing cycle-trails, gravel paths,

and unsurfaced field roads, local administrators face the problem of selecting a budget-compliant set of edges to be reconditioned

and turned into paved bike trails. Indeed, investing in enhancing cycle tourism infrastructures proved to be effective in fostering

sustainable development but decision support tools are needed to support decision makers in optimizing scarce public resources

spending. The key issue in this problem is the objective function, namely the route attractiveness. Each node and each edge of the

network yields a reward each time it is traversed, related to the pleasure of cycling along it. Additional pleasure usually decreases

when traversing the same edge or node one more time but it may still be positive. Therefore, the optimal route may contain cycles,

which is a special feature of this problem. In previous studies attractiveness was computed on the basis of each point of interest

located on the edges and at the nodes of the route, and the route maximizing total attractiveness was searched for. The focus was

on the generalist cycle tourist, without thematic preferences. This study takes a more realistic view and proposes a model where

different classes of cycle tourist are considered individually, each one with its own preferences, like the cultural oriented tourist,

the gastronomic fan, or the one fond of wild life and nature. This new perspective yields a new network design problem in the field

of vehicle routing problems with profits, generalizing the Orienteering Problem, that we call the multi-commodity orienteering
problem with network design (MOP-ND): it consists of designing a set of itineraries, one for each user class, sharing the same

origin and the same destination and potentially any edge of the network, so that each itinerary satisfies a maximum duration

constraint and the cost of the whole infrastructure is budget compliant. The objective is to maximize the sum on all user classes

of the attractiveness of the itinerary selected for that class. In this paper we provide a mathematical model for MOP-ND, test it on

realistic data, and compare with the generalist model.
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1. Problem description

Cycle tourism is emerging as a sustainable strategy for promoting economic growth, able to redistribute to an entire

region the incomes due to increased tourist flows. Visitors spend money into lodging, food, and local handicrafts, in

addition to all services related to a holiday by bike such as technical assistance, luggage transportation, and guided

tours. These are small scale business ventures that do not need big capital investments and may encourage young

people not to leave their home in the countryside and contribute to local development. However, the governmental role

is fundamental. As discussed in Cox (2012) where Belgium and the Netherlands are compared, local governments

policies strongly influence the development of a cycle friendly attitude, affecting also the popularity of the bicycle

as a mean of transport. Once a region enjoys few features that make it worth the visit, such as a strong cultural

identity, a territory marked by historical sites, plus pleasant weather and beautiful nature, if it is well connected to the

transportation network only the lack of adequate biking tracks impasses the development of local and international

cycle-tourism. Indeed, cycle tourists don’t look for big expensive facilities while they tend to appreciate unspoilt

surroundings and getting in touch with local people according to a slow motion way of traveling. There is one feature,

though, to which cycle tourists are sensitive, that is safety on the road. For this reason the best way to spur this

business is to set up a network of dedicated tracks where bicycles are the only mean of transport allowed.

In this paper we focus on the Trebon region in South Boemia, Czech Republic, whose local administrators face

the problem of wisely investing scarce public resources for the purpose of setting up a cycle-tourist network by re-

conditioning existing tracks or building brand new ones in a sustainable manner. Potential tracks include field and

forest roads, gravel roads, dismissed rail tracks, as well as, in our case study, abandoned army trails. Decision support

systems based on quantitative methods are necessary to provide decision makers with the best tools to make the right

choices according to optimization criteria, so that the resulting network provides accessibility to the most attractive lo-

cations and allows several different itineraries able to meet distinct cycle-tourist expectations. Indeed, the application

of optimization techniques to the field of recreational systems is flourishing (Shcherbina and Shembeleva (2014)),

the most representative case being given by the many applications of the Orienteering Problem (OP) and its several

variants in the family of routing problems with profits for the sake of tourist route planning (Vansteenwegen et al.

(2011)). The majority of studies concerning the optimized planning of touristic itineraries concentrate on target selec-

tion and on the routing (Gavalas et al. (2014)), assuming that the infrastructure is given: for example Vansteenwegen

and Van Oudheusden (2007) studies the problem of supporting the tourist in selecting his/her own preferred itinerary

according to individual preferences, taking for granted that the tourist exploits the existing transit network to move

around the city, while (Liang et al. (2013)) does not contemplate any infrastructure since activities take place outdoor.

On the opposite, our focus is on the design of the network infrastructure, guided by the potential use that cycle tourists

will make of the resulting network. While disregarded in the tourism framework, the topic of bicycle network design

has been intensively tackled by transportation engineers looking for effective planning strategies to promote the use of

bicycle as a mean of transport. Commonalities and differences can be highlighted between the methodologies adopted

when planning leisure oriented or transportation oriented bicycle infrastructures.

In both cases, how to model the user preferences that guide the cyclist route choice is a challenging problem. Bicycle

as a mean of transport is a central issue in sustainable transportation planning, and public agencies tend to invest in

improving bicycle devoted infrastructures in order to induce modal shift from private car to multi-modal transporta-

tion systems made of a mix of public transit, bicycle, and walking, to reduce traffic congestion, curtail auto emissions

in urban areas, and improve life quality and health conditions by physical activity Rybarczyk and Wu (2010). To

meet these goals cycling in town must be safe and desirable, but how to make people actually change their habits and

switch from car to bicycle is still highly debated. In fact, cyclist behavior and preferences have not so far been fully

understood so to formulate consistent mode choice and route choice models and come up with reliable bicycle travel

demand data associated with potential infrastructure improvements, able to forecast the impact of different measures

aimed at promoting cycling. Supply-based models tend to evaluate infrastructures by quality indexes such as bicycle

level of service (BLOS) or bicycle compatibility index (BCI) that address the safety of itineraries and how comfortable

the roadway is, but several studies on risk perception show the limits of such measures and the need for more sophisti-

cated tools to assess perceived risk Parkin et al. (2007). Indeed, increasing BLOS or BCI alone or reducing perceived

risk will not necessarily induce bicycle traffic. A recent study in Wardman et al. (2007) showed that economic reward

would play as much a role as a devoted segregated cycleway in making people cycling to work. Moreover, cultural
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differences exist among European countries as well as among large cities and country side residents and play a role

in the attitude towards cycling, see Heinen et al. (2011), therefore demand-based models should integrate them to

provide trustworthy travel demand forecasts.

In both settings, i.e. leisure and commuting, travel duration must be limited. When commuting, several studies such as

Furth and Noursalehi (2015) suggest that itineraries not longer that 10% of the shortest path from origin to destination

are considered as viable alternatives, as far as safety is guaranteed. When cycling for leisure, different classes of users

should be considered, each one with its own time limit, ranging from few to several hours.

Another common aspect is the need for a system wise approach, considering the interaction of the new infrastructure

with existing facilities and how users may potentially react to changes. In our project, whose final aim is to design the

whole cycle tourist network, it means to consider the entire set of attractions present in the area, the existing tracks, the

most likely set of origin-destination pairs, and different user classes, attacking the problem from the demand side as

well as from the side of the supply. Likewise, Duthie and Unnikrishnan (2014) describes the challenges of designing

a network of bicycle facilities in the downtown Austin region, minimizing the cost required to upgrade up to a mini-

mum quality a set of roadways and intersections necessary to connect several origin-destination pairs along itineraries

with a maximum delay with respect to the shortest path. A similar study is Smith and Hagani (2012), where a MILP

model for a multi commodity flow with fixed charge network design is proposed and solved by a state of the art solver

for small size instances, to incorporate bike related facilities into an existing urban road network in a cost effective

manner, minimizing the weighted sum of path duration and (the complement to) level of service, emphasizing that a

local improvement on an edge impacts on all the itineraries traversing that edge. The authors conclude that realistic

instances can not be solved by state of the art MILP solvers and suggest to develop ad-hoc heuristics.

In summary, it appears that there is no standard way to design bicycle routes at a network level. We share the same

concern with respect to our problem and we try to contribute to fill this gap in the field of cycle tourism: we believe

that an efficient solution approach for the single o/d multi commodity problem, such as the one here proposed, may

provide a building block for heuristic, decomposition-based, solution approaches for the network design problem.

The present study builds upon a recent work which first introduced the problem of designing the most attractive,

bike devoted, itinerary connecting a given origin to a given destination, subject to a budget and a time constraint:

given a set of either existing or potential cycle-trails, a budget-compliant set of edges had to be selected in order to

be reconditioned and turned into a paved bike trail able to meet bikers expectations. The key issue in this problem is

the objective function, namely the route attractiveness, based on the reward provided by traversing the nodes and the

edges a route is made of. In previous studies attractiveness was computed on the basis of the attractions located on

the edges and at the nodes of the route, and the route maximizing total attractiveness was searched for. The focus was

on what we call the generalist cycle tourist, meaning a tourist who accumulates the rewards related to each attraction

encountered along the way, with no thematic preferences. This study takes a more realistic view and proposes a

model where different classes of cycle tourist are considered individually, each one with its own preferences, so that

the same itinerary provides a different reward depending on the user class. We consider the problem of designing a

set of itineraries with a common origin and a common destination, each addressing the preferences of a particular

class of cycle tourists. Each class focuses on a particular class of attractions. Here we suggest three different user

profiles, namely cultural, gastronomic, and naturalistic, however, any other set of profiles can be considered without

loss of generality. The naturalistic user is attracted by observation decks, waterfalls, and likes to ride paths on scenic

landscapes or along a lake best if equipped with bathing facilities. The cultural profile privileges museums and

galleries, historical monuments, buildings, and temples. The gastronomic oriented cycle tourist searches for food

markets, wineries, restaurants, or places where typical food is produced and sold.

Selecting the most suitable quantitative method for measuring the attractiveness of an itinerary is not straightfor-

ward. We stick with a well assessed methodology adopted in Cernà et al. (2014), which enables us to compare with

a benchmark. While the methodology for data collection is not dealt with in this paper, for sake of completeness we

provide a short description. The first step concerns the identification of the potential classes of points of interests

(PoIs). First, a data mining process on the Internet web sites related to cycle tourism has been carried out to collect

and evaluate natural, cultural, and service facilities related PoIs. Then, local bike riders were interviewed to spot,

list, and evaluate the PoIs in the Treborn Region through questionnaires marking and scoring PoIs for each location

situated on the potential network links. Users were assumed to be identically competent and informed. For each PoI,

bikers scores were averaged to compute the score of the PoI. In Cernà et al. (2014), the first visit attractiveness was
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computed as the sum of the scores of the individual PoIs present at a location or along a link, respectively. When

focusing on different classes of users, the attractiveness function for each user class can be computed adopting the

above mentioned procedure, by disregarding those scores due to PoIs belonging to categories not contemplated within

the user interests. From the above discussion it follows that multiple traversals may increase total reward. So, a

bound on the total duration of the itinerary not only models the real behavior of cycle tourists but also ensures that

the optimization problem is well posed and has a finite solution even if the marginal attractiveness of some location

never becomes negative.Moreover, modeling how reward changes at successive traversals is necessary for a realistic

problem description. Therefore, the graph based mathematical model must handle both non elementary paths and non

linear objective functions. The paper is organized as follows: in Section 2 a mathematical formulation of the problem

is provided, and differences and commonalities with related problems are analyzed. In Section 3 the experimental

campaign on the Trebon region data is described, conclusions are drawn and future work is sketched in Section 4.

2. A MILP model

From a mathematical point of view, the problem can be modeled as a constrained multi-commodity flow with net-

work design, where each commodity represents a user profile who collects only the prizes associated to its own profile

while traversing edges and nodes. We discuss how to model the objective function by generalizing the attractiveness

function proposed in Cernà et al. (2014), and introduce an ILP model underlining common features with the family of

the Orienteering Problem (OP) and the Multicommodity Minimum Cost Flow with Network Design Problem. As in

Cernà et al. (2014), we deal with two-ways, bike-devoted tracks. The network of potential bike tracks is represented as

a mixed graph G = (N, A ∪ E) where N models the set of intersections and E models the set of tracks connecting two

adjacent intersections i, j ∈ N, i < j, while each arc in A = {(i, j), ( j, i) ∀ [i, j
] ∈ E} represents the action of traversing

edge
[
i, j
]

from i to j or vice-versa. For each arc, traveling time ti j > 0 is known and it depends on the track length as

well as on the slope from i to j. The total travel time of an itinerary can not exceed a threshold T . The reconditioning of

edge
[
i, j
]

costs ci j ≥ 0 and the budget for the entire infrastructure is B. On this graph, nu (not necessarily elementary)

paths from a given origin s ∈ N to a given destination t ∈ N are sought, one for each class of users u ∈ U = {1.., nu}.
Attractiveness is defined on edges and nodes. It depends on the user class and not on the direction of traversal. Let

{ϕi
u(.), i ∈ N} and {φi j

u (.),
[
i, j
] ∈ E} denote the family of utility functions for user class u ∈ U. For each user u we

assume the following: i) no traversal yields null reward, so that ϕi
u(0) = φ

i j
u (0) = 0 i ∈ N,

[
i, j
] ∈ E; ii) the reward

at first traversal for each node and edge is given; it is denoted as ϕi
u(1) ∀i ∈ N and φ

i j
u (1) ∀[i, j] ∈ E, which equals

marginal attractiveness at first traversal, due to i); iii) given k̄ the maximum number of traversals admitted (usually

≤ 3), and K = {0, 1..k̄} the associated index set, for each traversal k ∈ K, marginal reward is βku
i = ϕ

i
u(k)−ϕi

u(k−1) for

node i and αku
i j = φ

i j
u (k)− φi j

u (k − 1) for edge [i, j]. Since attractiveness is not linear, we exploit marginal attractiveness

to formalize it as the objective function of an ILP model. Variables represent flow and design decisions. Design is

modeled by a family of boolean variables zi j for each edge [i, j] ∈ E,which describe the connected subnetwork made

of all the edges that belong to any selected itinerary. Flow is multi-commodity, to represent the different classes of

users. For each such class, integer flow variables describe the itinerary from s to t on the infrastructure induced by the

design variables zi j and are also used to model the maximum duration constraint. In particular, for each arc (i, j) ∈ A
and for each user u ∈ U, variables xu

i j represent the number of times user u traverses the arc from i to j along the way

from s to t. It follows that the amount of u-flow (flow of commodity u) on edge [i, j] is given by xu
i j + xu

ji, while the

amount of u-flow through node i is
∑

i j∈FS (i) xu
i j, i.e., the sum of the flow on the arcs of the forward star FS (i).

Let us introduce k̄ boolean variables χku
i j for each edge, user, and k = 1, .., k̄, such that χku

i j = 1 iff on edge [i, j] there

are at least k units of u-flow, i.e., xu
i j + xu

ji ≥ k. Likewise, the boolean variable γku
i = 1 iff at least k units of u-flow

traverse node i. Variables χ and γ are introduced in order i) to model the objective function and ii) to enforce the value

of design variables. In fact, i) φ
i j
u (xu

i j + xu
ji) =
∑k̄

k=1(αku
i j χ

ku
i j ) and ϕi

u(
∑

i j∈FS (i) xu
i j) =

∑k̄
k=1(βku

i γ
ku
i ); ii) zi j is equal to 1 as

soon as there is flow from i to j or vice-versa, whatever the user, i.e. zi j = maxu {χ1u
i j }.

The following ILP model provides a mathematical formulation.

P : max
∑

u∈U

k̄∑

k=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

(i, j)∈A
aku

i j χ
ku
i j +

∑

i∈N
dku

i γ
ku
i

⎞⎟⎟⎟⎟⎟⎟⎠ subject to: (1)
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∑

(i, j)∈FS (i)

xu
i j −

∑

(h,i)∈BS (i)

xu
hi = bi ∀i ∈ N,∀u ∈ U (2)

∑

(i, j)∈A
ti jxu

i j ≤ T ∀u ∈ U (3)

xu
i j + xu

ji =
∑

k∈K
χku

i j ∀[i, j] ∈ E,∀u ∈ U (4)

χku
i j ≤ χk−1,u

i j ∀[i, j] ∈ E,∀u ∈ U, k = 2, . . . , k̄ (5)

zi j ≥ χ1u
i j ∀[i, j] ∈ E,∀u ∈ U (6)

∑

(i, j)∈A:i< j

ci jzi j ≤ B (7)

∑

(h,i)∈BS (i)

xu
hi =
∑

k∈K
γku

i ∀i ∈ N, i � s,∀u ∈ U (8)

∑

(s,i)∈FS (s)

xu
si =
∑

k∈K
γku

s ∀u ∈ U (9)

γku
i ≤ γk−1,u

i ∀i ∈ N,∀k ∈ K,∀u ∈ U (10)

γ1u
i ≥

∑

[i, j]∈E:i∈Nst , j�Nst

χ1u
i j ∀v ∈ Nst,∀Nst ⊆ N,∀u ∈ U (11)

zi j ∈ {0, 1} ∀[i, j] ∈ E (12)

xu
i j ∈ Z+ ∀(i, j) ∈ A,∀u ∈ U (13)

χku
i j ∈ {0, 1} ∀[i, j] ∈ E,∀k ∈ K,∀u ∈ U (14)

γku
i ∈ {0, 1} ∀i ∈ N,∀k ∈ K,∀u ∈ U (15)

The objective function (1) is the maximization of the marginal attractiveness collected by each user at each edge

and node along the chosen itinerary at each kth traversal. Eq.s (2) are flow balance constraints, where FS (i) and BS (i)
denote the forward and the backward star of node i, while bi is −1 for i = s, +1 for i = t, and 0 otherwise. Eq.s (3)

impose a maximum traveling time for each itinerary. Eq.s (4) introduce the family of χ variables, while eq.s (5) ensure

that an edge can not be traversed k times if it has not been traversed k− 1 times. Eq.s (6) introduce zi j as maxu∈U{χ1u
i j }.

Eq.s (7) bounds the infrastructure cost. This is the only constraint which ties together the decisions involving the

different users. Connectivity is enforced for each u-flow by eq.s (11), a potentially exponential number of constraints

which require a positive u-flow in each cut Nst,N \ Nst, where Nst denotes any subset of nodes including s and t,
whenever a node in N \ Nst is selected as part of the itinerary of user u from s to t. Constraints (12-15) bind variables

to be binary or integer.

This problem, which to the best of our knowledge has never been studied, shares features from two well known

combinatorial optimization problems: the Orienteering Problem (OP), where a maximum distance constrained tour is

sought such that it maximizes the sum of the prizes associated to the visited nodes (see Fischetti et al. (2007) for a

polyhedral study an refer to Vansteenwegen et al. (2011) for a recent survey on solution approaches), as well as the

Multi-commodity Flow Network Design Problem. Therefore we call our problem the Multi-commodity Orienteering

Problem with Network Design (MOP-ND).

3. Computational experiments

Computational results refer to real data related to the Trebon region, located close to the Austrian border in the

South Bohemia province of the Czech Republic, whose local administrators face the problem of designing a network

of tracks devoted to cycle tourism in order to support local economy development. The same set of data was used for

developing and testing the single user case, in Cernà et al. (2014), so that we can compare against a benchmark. First

we introduce the input data and then results are presented and discussed.
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3.1. Problem data

The graph is made of a set of potential tracks, most of which require an investment to be reconditioned while

few are already fitting and can be used at zero cost. The individual tracks, corresponding to graph edges, are either

paved roads with low vehicular traffic, unpaved roads, or natural trails already being used for cycling or hiking. Their

surface may be either asphalt, gravel, or they can be field/forest paths of bad quality, single-track (i.e. narrow, one-

way) cycling paths which must be turned two-lanes wide, or concrete gravel path. The design cost depends on present

condition and path length. Nodes are interesting points for tourists or cross-roads. The edge set was designed so that

the main natural and cultural points of interest are reachable, for a total of 83 nodes and 147 edges. Arcs traveling time

is computed with respect to an average speed of 18 km/h. on the flat, and adapted according to slope changes along

the way, considering elevations and descents in each direction, so that travel time may differ in the two directions. The

design cost of each edge is computed by multiplying the length (in meters) of the track to be reconditioned by the cost

of paving for one meter. The estimated costs of a 3 meters wide path are: 115 e to turn it into an asphalt surface and

75 e for gravel one if starting from dirt road. Different scenarios arise depending on the kind of upgrading work to be

done. In the MOP-ND attractiveness depends on the user class. We generated the data so that if all users choose the

same itinerary, the total attractiveness equals the attractiveness of the generalist cyclist. As mentioned, first traversal

attractiveness is based on the PoIs, at second and third traversal marginal attractiveness is one fourth of the previous

one, and becomes null from the fourth traversal on. In the MOP-ND, the single-user first-traversal attractiveness was

randomly split among the three classes. The cultural user has null reward from the second traversal onward, while at

the second and at the third traversal the gastronomic and naturalistic user attractiveness share is computed according

to the same proportion holding at first traversal.

3.2. Computational results

The ILP model introduced in Section 2 was coded in AMPL and solved by ILOG Cplex 12.5.0.0 on a quad core

laptop with i7 processor. Connectivity constrains were dynamically introduced when violated, as follows. Iteratively,

an integer solution is found and the set of nodes not connected to the origin-destination path is recorded. For each

such node one connectivity cut described by eq.s (11) is added and the new ILP model is solved with a warm start.

The origin destination pair is made of nodes 22 − 70, which are located on the right and on the left of the region

map, respectively, to recreate the same situations as in Cernà et al. (2014). Time units are minutes and distance is

measured in kilometers. The shortest path from node 22 to node 70 takes 147 minutes while the cheapest path needs

no investment, since it uses roads that are already paved. The nine scenarios differ regarding maximum duration T ,

considering the cases T = 240, T = 330 and T = 420 minutes, and budget, with cost upper bound B being 0, 1 million

and 2 millions Euro, yielding a total of nine different scenarios, one per combination of T and B.

Table 1. Results for the 9 scenarios: maximum path duration T (minutes) and budget B (103 euros) for each scenario, number of iterations and total

number of connectivity cuts added, Running times in seconds.

Scenario T B It. C.Cuts Running time

1 240 0 4 17 2

2 240 1000 9 37 787

3 240 2000 10 34 276

4 330 0 3 2 23

5 330 1000 8 53 1002

6 330 2000 14 60 4863

7 420 0 4 32 3

8 420 1000 7 53 1519

9 420 2000 9 61 18

In Table 1 we report the description of the nine scenarios with respect to time and budget constraints and a summary

of the solver performance with respect to the number of iterations: the total number of connectivity cuts added and

the total running time in seconds to find the optimal solution for each scenario. The number of iterations ranges from

3 to 14 and the total number of added cuts ranges from 2 to 61 for the set of instances in our test bed. Running time
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Figure 1. The first three scenarios: the most attractive itinerary for each user class compared to the generalist cycle tourist itinerary.

ranges from 2 seconds to 4.803 (1h, 20’, 3”): while it increases with T and B, which influence the feasible region size,

the trend is not monotonic and it seems to be also related to the number of iterations and generated cuts. With respect

to single user case, MOP-ND takes longer, as expected, but still bearable for a design problem. Time increase is due

to the larger number of variables and to the higher difficulty due to the linking constraint, i.e., budget is a limited

resource that different users must share. The present running times are satisfactory since this design problem is solved

off line. However, the performance of the dynamic cut generation procedure could be improved by keeping memory

of previously generated cuts for previous scenarios. Another improvement may come from the integration of valid

inequalities in the MOP-ND model, adapting those developed for the OP. However, this is not a trivial task since here

the topological structure of the selected network may vary while in the OP it is always a tour. It can be observed that

in the zero budget case running time is negligible, which comes at no surprise since the unique linking constraints is

vanished, besides the fact that the set of available edges is limited. This feature could be exploited in a decomposition

based solution approach for the network design problem, where, at each iteration, the set of edges to be reconditioned

is set and each user class can make its best out of those edges, having the time limit as the unique constraint. For each

of the 9 scenarios, Table 2 compares the total reward provided by the three user classes (third column) with the one

obtained in Cernà et al. (2014) for the single user (fourth column), as well as the percentage of the available budget

required by the infrastructure.

Results in Table 2 show that by exploiting the information regarding the different components making up the

reward associated to an edge or a node, and allowing different classes of users to select their best itinerary, we get

a set of itineraries that provide a consistent increase of total attractiveness. Indeed, the multi user case can be seen

as a relaxation of the single user case, since the latter can be obtained by obliging all users to follow the same path.

The fifth column in Table 2 reports the percentage increase of the total reward, which ranges from 11 to 26 percent.

The higher degree of freedom in the present model impacts on the percentage use of the available budget: in the

generalist case, for the lowest time limit T = 240 minutes no more than 80% of the available budget is exploited,
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Figure 2. Scenarios 4, 5 and 6: the most attractive itinerary for each user class compared to the generalist cycle tourist itinerary.

Table 2. Rewards and percentage budget utilization multi-user case vs. single user, for the 9 scenarios.

Scenario C/B% Total reward Reward single user Variation% single user C/B%

1 0 764 623 23 0

2 98.7 858 704 22 79.8

3 90.9 893 708 26 54.3

4 0 1012 863 17 0

5 98.5 1142 1006 14 50.9

6 98.1 1159 1037 12 91.4

7 0 1167 1049 11 0

8 96.3 1381 1243 11 74.2

9 98 1495 1309 14 90.2

which made sense since the shortest path from origin to destination required almost 3/5 of T . In the multi user

model case shown in Table 2, this percentage is always above 90% and often close to 100%. Table 3 reports for

each individual class the duration of the path and the reward in each of the nine scenarios. Despite of the fact that

attractiveness of cultural related PoIs goes to zero after the first visit, when time and budget allow to reach a larger set

of PoIs reward increases substantially, taking advantage of the several noticeable attractions located in the region. For

each user class and scenario, the available time is used almost completely, as it was the case for the single user: this

is due to the possibility of getting additional reward beyond first traversal. As expected, reward increases whenever

resource upper bound does, but the behavior differs for each user class. Indeed, the objective function maximizes

total reward disregarding how this is shared among users. This practice makes sense from the decision maker point

of view, since that particular area could be more gifted regarding certain features to the detriment of others, so that

the attractiveness of one class of user could not increase without penalizing the others of a bigger amount. This
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Figure 3. Scenarios 7,8, and 9: the most attractive itinerary for each user class compared to the generalist cycle tourist itinerary.

Table 3. For each scenario, the duration (T1, T2, and T3) and the reward (R1, R2, and R3) of the selected itinerary for the first, second, and third

user class are reported.

Scenario T1 R1 T2 R2 T3 R3

1 239 255 237 302 235 207

2 239 270 236 335 237 253

3 238 297 238 335 239 261

4 329 329 330 370 326 313

5 323 360 328 399 328 383

6 329 375 329 417 327 367

7 418 389 419 424 416 354

8 418 474 417 470 419 437

9 419 479 419 547 419 469

feature reflects the opportunity for planners to exploit the most the peculiarity of the area without enforcing fairness

among users classes, and it can be considered a good practice as far as this specific tool is embedded into a more

comprehensive methodology that aims at designing the whole network, where several origin destination pairs must be

connected. At that network planning stage, fairness among the different users class can be handled as far as planners

consider it a criterion to be satisfied in order to equally meet the preferences of the whole cycle tourist community,

and thus enlarge the number of potential visitors. This issue will be dealt with in the future work, when tackling

the design at the network level. Now we consider the topology of the itineraries. For each of the 9 scenarios, in

particular scenarios 1, 2 and 3 in Figure 3.2, scenarios 4, 5 and 6 in Figure 3.2, and scenarios 7, 8 and 9 in Figure 3.2,

respectively, the optimal itinerary for each users class is depicted, in the usual order (the gastronomic, the cultural, and

the nature and sport fan). Edges traversed once are depicted in red, those traversed twice in blue and those traversed
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three times in brown. In the fourth map, for each of the 9 scenarios, the most attractive itinerary of the generalist

cycle tourist is shown, with single traversals depicted in green and edges traversed twice in yellow. As expected,

the number of edges traversed twice decreases when budget increases, which can be related to the possibility of

recondition a higher number of tracks. The possibility of diversifying the itinerary for each user class, even though the

total budget is the same, allows for a considerable variety of routes, as it can be seen by comparing with the generalist

case, and this is supported by a noticeable increase in total reward, as shown in Table 2. Recall that, for each edge

and node, the attractiveness perceived by the generalist tourist has been split among the three user classes we consider

here. Therefore, there is no gain due to the fact that three units of flow are now traversing the network from origin to

destination instead of one, i.e., if the chosen itinerary of each class were the same as the generalist tourist itinerary,

the total attractiveness would have been equal in both models.

4. Conclusions and final remarks

The main contributions of this paper are the following: i) we introduced the problem of designing the most attractive

itineraries for a single origin-destination pair for different classes of users, each one with its own preferences, so that

each itinerary is no longer than a given duration and the overall cost due to set up the infrastructure is within a given

budget; ii) we formalized the problem as a combinatorial optimization problem in the family of the routing problems

with profits, and generalized a MILP model the authors proposed for the single user version; iii) the model was tested

on realistic data for the Trebon region in South Boemia, as a step of a larger project aimed at designing a cycle tourist

network made of several interconnected itineraries; results showed that the model can be efficiently solved by state of

the art solvers, paving the way for decomposition based solution approaches for tackling the network design problem;

iv) computational results support the assessment that exploiting the detailed information regarding the preferences of

the different classes of users allows for higher quality infrastructure planning; v) commonalities and differences with

the planning of a bicycle network when promoting bicycle as a mean of transport are analyzed.
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Cernà, A., Cernỳ, J., Malucelli, F., Nonato, M., Polena, L., Giovannini, A., 2014. Designing Optimal Routes for Cycle-tourists. Transportation

Research Procedia 3, 856–865.

Cox, P., 2012. Strategies promoting cycle tourism in Belgium: practices and implications. Tourism Planning and Development 9(1), 25–39.

Duthie, J., Unnikrishnan, A., 2014 Optimization framework for bicycle network design. Journal of Transportation engineering 140(7).

Fischetti, M., Salazar-Gonzalez, J., Toth, P., 2007. The Generalized Traveling Salesman and Orienteering Problems, in The Traveling Salesman

Problem and Its Variations, 609-662, Springer US.

Furth, P.G., Noursalehi, P., 2015. Evaluating the Connectivity of a Bicycling Network. In Transportation Research Board 94th Annual Meeting

(No. 15-5612).

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., 2014. A survey on algorithmic approaches for solving tourist trip design problems.

Journal of Heuristics 20(3), 291–328.

Heinen, E., Kees, Maat, van Wee, B., 2011. The role of attitudes toward characteristics of bicycle commuting on the choice to cycle to work over

various distances. Transportation Research Part D: Transport and Environment, 16(2), 102–109.

Liang, S., Wang, X., Claramunt, C., 2013. Tour Suggestion for Outdoor Activities, in Web and Wireless Geographical Information Systems, LNCS

7820, 54–63.

Parkin, J., Wardman, M., Page, M., 2007. Models of perceived cycling risk and route acceptability. Accident Analysis & Prevention, 39(2), 364–

371.

Rybarczyk, G., Wu, C., 2010. Bicycle facility planning using GIS and multi-criteria decision analysis. Applied Geography 30(2), 282–293.

Shcherbina, O., Shembeleva, E., 2014. Modeling recreational systems using optimization techniques and information technologies. Annals of

Operations Research 221(1), 309–329.

Smith, H.L., Haghani, A., 2012. A Mathematical Optimization Model for a Bicycle Network Design Considering Bicycle Level of Service, in

Transportation Research Board 91st Annual Meeting, 2012 Washington DC, USA, Paper #12-3307.

Vansteenwegen, P., 2011. The orienteering problem: A survey. European Journal of Operational Research 209(1), 1–10.

Vansteenwegen, P., Van Oudheusden, D., 2007. The mobile tourist guide: an or opportunity. Oper. Res. Insight 20(3), 2127.

Wardman, M., Tight, M., Page, M., 2007. Factors influencing the propensity to cycle to work. Transportation Research Part A: Policy and Practice,

41(4), 339–350.


