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Abstract: In this paper the steady three-dimensional stagnation-point flow of
an incompressible, homogeneous, electrically conducting Newtonian fluid over
a flat plate is investigated numerically. The fluid is permeated by a uniform
external magnetic field H0. The effects of the magnetic field on the velocity
profiles are presented graphically and discussed. This paper completes the
analysis concerning the Newtonian fluids devoleped in [4].

The obtained results indicate that the thickness of the boundary layer de-
creases when the magnetic field increases. Moreover H0 tends to prevent the
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1. Introduction

The three-dimensional stagnation-point flow occurs when a jet of fluid impinges
on a rigid body. This is an important example of flow where the three velocity
components appear.

This motion has been object of many investigations starting from the paper
of Homman in 1936 ([1], [2], [3]). Through similarity transformations, the study
of such a flow is reduced to a non-linear ordinary differential boundary value
problem. The obtained system depends upon a parameter c > −1 which is a
measure of three-dimensionality.

The aim of this paper is to complete our previous analysis concerning the
steady three-dimensional flow of an incompressible, homogeneous, electrically
conducting Newtonian fluid permeated by a uniform external magnetic field H0

near a three-dimensional stagnation-point of a rigid wall ([4]). The coordinate
axes are fixed so that the stagnation-point is the origin and the rigid wall
coincides with the plane x2 = 0.

In [4] we have proved that, if we impress an external magnetic field H0,
and we neglect the induced magnetic field (as it is customary when the mag-
netic Reynolds number is very small), then the steady three-dimensional MHD
stagnation-point flow is possible if, and only if, H0 has the direction of one
of the coordinate axes. In all cases by means of similarity transformations,
we find that the flow has to satisfy a non-linear ordinary differential boundary
value problem whose form depends on the direction of H0. The magnetic field
influences the solutions of the three problems through the Hartmann number
M2.

In this paper we solve the boundary value problems by numerical integra-
tion, because they are not solvable by means of analytical functions due to
non-linearity.

We underline that if M2 = 0, then the systems we find reduce to the system
governing the flow of a Newtonian fluid in the absence of the magnetic field. For
this last problem, some results concerning existence are known in the literature
([5], [6], [3]). In the presence of the magnetic field, there are not theoretical
results concerning the existence of solutions. Moreover from the numerical point
of view we underline that the case in which H0 is orthogonal to the rigid wall
(our Case II) is the unique one usually studied in the literature.

By means of our numerical results, we find that H0 tends to prevent the
reverse flow which occurs in the absence of the magnetic field for suitable neg-
ative values of c ([3]). The influence of the magnetic field on the reverse flow
was also found in [7] in other physical situations.
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The presence of H0 modifies also the thickness of the boundary layer which
decreases as M2 increases. This effect occurs in all cases studied and it is
standard in MHD.

By using numerical integration, we classify the stagnation-point as nodal or
saddle point and as attachment or separation point. The classification depends
on c and M2. In Case II and Case III, as for M2 = 0, the origin is a point
of attachment. In Case I, we find a new result: when M2 is sufficiently large
and c assumes suitable negative values, then the stagnation-point becomes a
separation point. Further in all the three cases, if c > 0 or where there is the
reverse flow, the origin is a nodal point, while when c < 0 and the reverse flow
does not appear, it is a saddle point.

We notice that from a theoretical point of view, MHD flows of this type are
fundamental in fluid dynamics. From a practical point of view, stagnation-point
flows are ubiquitous in the sense that they inevitably appear as a component of
more complicated flow fields. So the investigation in this area is motivated by
the possibility of solving exactly the boundary layer equations at the stagnation
point and by their relevance to a wide range of engineering, industrial and
technical applications. The paper is organized in this way:

In Section 2, we formulate the problem, recall the results contained in [4]
and define the nodal, saddle, attachment and separation points.

In Section 3, we integrate numerically the previous problems, and discuss
the behaviour of the solutions.

Section 4 is devoted to conclusions.

2. Overview of the Problem

In [4] we have studied the steady three-dimensional MHD stagnation-point flow
of an incompressible homogeneous electrically conducting Newtonian fluid to-
wards a flat surface. We assume that the flat surface is the rigid, fixed, non-
electrically conducting wall of equation x2 = 0, so that the flow is confined to
the half-space S = {(x1, x2, x3) ∈ R

3 : (x1, x3) ∈ R
2, x2 > 0} (see Figure 1).

As it is well known ([8], [3]), the three-dimensional stagnation-point flow is
described by a velocity field of the form

v1 = ax1f
′(η), v2 = −

√
νa[f(η) + cg(η)], v3 = cax3g

′(η), (1)

where a is a positive parameter, c is a constant which is a measure of three-
dimensionality, f, g are sufficiently regular unknown dimensionless functions
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Figure 1: Flow description.

and η =

√

a

ν
x2. We exclude in our analysis c = 0, because this describes the

orthogonal plane stagnation-point flow .
Moreover the usual adherence condition on the boundary supplies

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0. (2)

As it is customary, we assume that at infinity, the flow approaches the flow
of an inviscid fluid impinging on the flat plane η = h ([3], [4]), whose velocity
is given by:

v1 = ax1, v2 = −
√
νa(1 + c)(η − h), v3 = cax3, η ≥ h. (3)

The constant h in (3) is the three-dimensional displacement thickness ([3]) and
it is related to the behaviour of f and g at infinity. Actually, if

lim
η→+∞

[f(η)− η] = −α, lim
η→+∞

[g(η) − η] = −β (4)

with α, β some constants, then

lim
η→+∞

[f(η) + cg(η) − (1 + c)η] = −(1 + c)h, (5)

from which

h =
α+ cβ

1 + c
.

The constants α, β are not assigned a priori, but their values can be found
by solving the problem. As we will see, the three-dimensional displacement
thickness h can be positive or negative.

We exclude the case c ≤ −1 because we impose in (3) the condition v2 < 0,
so that the inviscid fluid moves towards the wall η = h. Hence we assume
c ∈ (−1, 0) ∪ (0,+∞).

In [4] we have proved the following
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Theorem 1. Let a homogeneous, incompressible, electrically conducting
Newtonian fluid occupy the half-space S. If we impress the external magnetic
field H0 parallel to one of the axes (with unit vector ei for i = 1, 2, 3) and if
we neglect the induced magnetic field, then the steady three-dimensional MHD
stagnation-point flow of such a fluid has the form (1), E = 0, and

(I) if H0 = H0e1, then (f, g) satisfies the problem

f ′′′ + (f + cg)f ′′ − f ′2 + 1 = 0,

g′′′ + (f + cg)g′′ − cg′
2
+ c+M2(1− g′) = 0, (6)

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

lim
η→+∞

f ′(η) = 1, lim
η→+∞

g′(η) = 1, (7)

where M2 is the Hartmann number 1;

(II) if H0 = H0e2, then (f, g) satisfies

f ′′′ + (f + cg)f ′′ − f ′2 + 1 +M2(1− f ′) = 0,

g′′′ + (f + cg)g′′ − cg′
2
+ c+M2(1− g′) = 0, (8)

with the boundary conditions (7);

(III) if H0 = H0e3, then (f, g) satisfies

f ′′′ + (f + cg)f ′′ − f ′2 + 1 +M2(1− f ′) = 0,

g′′′ + (f + cg)g′′ − cg′
2
+ c = 0, (9)

with the boundary conditions (7).

Remark 2. If M2 = 0, then equations (6), (8), (9) reduce to

f ′′′ + (f + cg)f ′′ − f ′2 + 1 = 0,

g′′′ + (f + cg)g′′ − cg′
2
+ c = 0 (10)

1For the convenience of the reader, we recall that M2 =
σeµ

2

eH
2

0

ρa
, where σe is the electrical

conductivity, µe is the magnetic permeability, ρ is the mass density of the fluid (positive
constants).
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which are the dimensionless equations governing the three-dimensional stagnation-
point flow of a Newtonian fluid in the absence of H0. In [3] it is proved that
the problem (10), (7) does not admit solution for c < −1. As far as existence
of solutions is concerned, we refer to [5], [6].

Remark 3. In [4] we have shown that the pressure field which corresponds
to the three problems of the previous theorem is respectively :

p =− ρ
a2

2
{x21 +

ν

a
[f(η) + cg(η)]2 + c2x23} − ρaν[f ′(η) + cg′(η)]

+ ρa2M2

{

ν

a

∫ η

0
[f(s) + cg(s)]ds − c

2
x23

}

+ p0, (11)

p =− ρ
a2

2

{

x21 +
ν

a
[f(η) + cg(η)]2 + c2x23

}

− ρaν[f ′(η) + cg′(η)]

− ρa2M2(x21 + cx23) + p0, (12)

p =− ρ
a2

2
{x21 +

ν

a
[f(η) + cg(η)]2 + c2x23} − ρaν[f ′(η) + cg′(η)]

+ ρa2M2

{

ν

a

∫ η

0
[f(s) + cg(s)]ds − x21

2

}

+ p0. (13)

It is important to explicit the pressure field because, as it is well known, when
a fluid moves past a body, if one of the components of the pressure gradient
along a body surface has the same sign of the corresponding component of the
velocity, then the reverse flow appears.

In the absence of the external magnetic field for the three-dimensional
stagnation-point flow, the numerical results ([3], [9]) show that there exists
a negative value of c (cr) such that if c ≥ cr, then g′, g′′ > 0 ∀η > 0, and if
c < cr then near the wall g′, g′′ < 0, so that the reverse flow appears (i.e. v3

has the same sign of
∂p

∂x3
).

The reverse flow is also related to a sign change of the scalar component of
the skin friction (τ0) in the direction of e3 (see (15).

When an external magnetic field H0 is impressed, as one can see from (11),
(12), (13), the pressure field depends on H0 through the Hartmann number
M2, which influences the sign of the components of the pressure gradient along
the wall. For this reason, as we will see in the next section, the presence of
the external magnetic field tends to prevent the occurrence of the reverse. This
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behaviour appears more clearly in Cases I-II, and it has also been observed in
[7] in other physical situations.

Remark 4. As it is underlined in [10], at a very small distance η from the
surface of an obstacle, the velocity of a Newtonian fluid is approximately

v ∼=
√

ν

a

τ0

µ
η, (14)

where τ0 is the skin friction vector, which in our situation is given by

τ0 = ρa
√
νa[x1f

′′(0)e1 + cx3g
′′(0)e3]. (15)

Moreover the normal component of the velocity at a higher order of approxi-
mation is

v2 ∼= −1

2

ν

a
div

(

τ0

µ

)

η2 := −1

2
∆sη

2. (16)

We see from (14) that close to the obstacle the direction of streamlines becomes
parallel to its surface, except where τ0 = 0. This condition that both tangential
components of skin friction vanish simultaneously, is satisfied in general only at
isolated points of the surface, which are called ’points of separation’ if ∆s < 0 (so
that the normal velocity (16) is positive) and ’points of attachment’ if ∆s > 0.

In our analysis, the only isolated point such that τ0 = 0 is the origin, i.e.
the stagnation-point, and

∆s =
√
νa[f ′′(0) + cg′′(0)].

Streamlines very near to the surface lie closely along the skin friction line, as
(14) indicates.

There is just one skin friction line and one vortex line through each point of
the surface, except a point of attachment or separation. These last are ’singular
points’ of the differential equations of both systems of curves. Such singular
points are classified into two main types, depending on the sign of:

Js =
∂τ01

∂x1

∂τ03

∂x3
− ∂τ01

∂x3

∂τ03

∂x1
. (17)

A singular point where Js < 0 is a ’saddle point’, and where Js > 0 there is a
’nodal point’.

We remark that we have

Js = ρ2νa3[cf ′′(0)g′′(0)].
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From these considerations it is clear that we need to know the signs of c, f ′′(0),
g′′(0) in order to classify the stagnation-point.

As it is underlined in [9],2 in the case M2 = 0 from the numerical results
one has that the stagnation-point is a nodal point of attachment if c > 0 or
c < cr = −0.4294, while it is a saddle point of attachment if cr ≤ c < 0.

Finally there is a limiting direction of our flow at the boundary, which is
also the direction of the resultant skin friction, and this direction is inclined to
the main stream at an angle ǫ:

ǫ = arctan

(

c
x3

x1

g′′(0)

f ′′(0)

)

− arctan

(

c
x3

x1

)

. (18)

3. Numerical Results and Discussion

In this section we discuss the numerical solutions of the three problems here
considered. These numerical solutions are obtained using the MATLAB routine
bvp4c described in [11].

The values of the parameter c are chosen according to [3], [2].
In the sequel, we will see that the solution (f, g) of the three problems here

considered satisfies the conditions (4); therefore we define:

• ηf (ηg) the value of η such that f ′(ηf ) = 0.99 (g′(ηg) = 0.99).

Hence if η > ηf (η > ηg), then f ∼= η − α (g ∼= η − β).
From the numerical integration we will find that the influence of the viscos-

ity on the velocity appears only in a layer lining the boundary whose thickness
is δ = max(ηf , ηg).

3.1. Case I: H0 = H0e1

We have solved problem (6), (7) numerically.
Figure 2 shows the graphics of f, f ′, f ′′ for M2 = 1, and c = 0.25. As one

can see,
lim

η→+∞
f ′′(η) = 0, lim

η→+∞
f ′(η) = 1.

The numerical integration furnishes the value of α when M2 and c change,
as it is shown in Table 1.

2We remark that in [9] the Author corrected the classification of the stagnation-point
contained in [3]. In the literature, most of the papers refer to the uncorrected classification in
[3].
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Figure 2: Case I: f profile for M2 = 1 and c = 0.25.

M2 c f ′′(0) g′′(0) h α β ηf ηg δ

0 -0.75 1.2465 -0.4690 -5.0704 0.6378 2.5405 2.3772 4.5298 4.5298
0 -0.25 1.2251 0.2681 0.4211 0.6593 1.3741 2.4684 3.6223 3.6223
0 0.25 1.2476 0.8051 0.6699 0.6294 0.8317 2.2624 2.6363 2.6363
0 1.00 1.3119 1.3119 0.5689 0.5689 0.5689 1.9444 1.9444 1.9444
1 -0.75 1.2051 0.4660 -1.8314 0.6897 1.5300 2.7009 4.4766 4.4766
1 -0.25 1.2166 0.9234 0.6001 0.6692 0.8768 2.5219 3.0639 3.0639
1 0.25 1.2521 1.2537 0.6300 0.6253 0.6487 2.2449 2.3264 2.3264
1 1.00 1.3216 1.6383 0.5288 0.5627 0.4950 1.9227 1.7971 1.9227
5 -0.75 1.1543 1.9982 1.5127 0.7639 0.5143 3.1703 2.3676 3.1703
5 -0.25 1.2055 2.1771 0.7593 0.6812 0.4470 2.5788 1.9361 2.5788
5 0.25 1.2602 2.3433 0.5752 0.6188 0.4011 2.2191 1.6772 2.2191
5 1.00 1.3434 2.5735 0.4514 0.5498 0.3530 1.8797 1.4309 1.8797

Table 1: Case I: descriptive quantities of motion for some values of c
and M2

Our results are consistent with the previous studies when M2 = 0 ([3], [2]).
In particular when M2 = 0 and c = 1 we obtain the η− axial symmetric flow:
α = β = h and f ′′(0) = g′′(0). We notice that there are no results in the
literature if M2 6= 0.

As far as the behaviour of g, g′, g′′ is concerned, we recall that cr is the
negative value of c such that if c ≥ cr, then g′ > 0 ∀η > 0, and if c < cr then
the reverse flow appears at a very small distance from the wall, i.e. v3 has the

same sign of
∂p

∂x3
. If c < cr then the behaviour of g, g′, g′′ is shown in Figure

31, otherwise it is given in Figure 32.

Table 1 shows that if M2 is fixed, then when c increases, the values of
f ′′(0), g′′(0) increase, while the values of α, β, ηf , ηg decrease. Hence the
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Figure 3: Case I: The first picture shows the profile of g in the reverse
flow (M2 = 0.2, c = −0.75, δ = 4.5482). The second picture shows the
profile of g in the absence of the reverse flow (M2 = 1, c = 0.25).

thickness of the boundary layer decreases when c increases.
In Table 1, we see also the values of the descriptive quantities of the motion

when M2 increases. In this case g′′(0) and ηf increase, while β and ηg decrease.
As far as f ′′(0) and α are concerned, when M2 increases, we have that f ′′(0)
increases if c > 0, otherwise decreases, and α decreases if c > 0, otherwise
increases.

We have that the thickness δ of the boundary layer depends on M2 and
decreases whenM2 increases (as easily seen in Figures 4). This effect is standard
in magnetohydrodynamics.

Finally from Table 1 we remark that the value of h, which is the the hight
of the plane towards which the inviscid fluid moves, regardless of the values of
M2, increases if c < 0, while it decreases if c > 0.

Table 2 shows that as the Hartmann number M2 increases, the value of cr
for which the reverse flow does not occur (i.e. when g′′(0) = 0) decreases and
when M2 = 0.8123, the reverse flow does not occur at all for any value of c.

Hence the magnetic field prevents the occurrence of the reverse flow. This
fact could be explained by observing that

∂p

∂x3
= −ρa2cx3(c+M2)

from which one can see that the signs of c and of (c +M2) modify the sign of
∂p

∂x3
.

As far as the classification of the stagnation-point is concerned, we have
found a very interesting new result: for negative values of c when M2 ≥ 2.6662,
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Figure 4: Case I: profiles of f ′ (41) and g′ (42,3) for several values of
M2.

M2 cr

0.00 -0.4294
0.10 -0.4991
0.30 -0.6393
0.50 -0.7802
0.70 -0.9210
0.80 -0.9913

0.8122 -0.9999
0.8123 no reverse flow

Table 2: Case I: Values cr when M2 increases

the origin becomes a point of separation, unlike of what occurs in the absence
of the magnetic field or in the next two cases, as we will see. We note that
if M2 < 2.6662, then the stagnation-point is always a point of attachment.
Moreover if c > 0 or where there is the reverse flow, the origin is a nodal point,
while when c < 0 and the reverse flow does not appear, it is a saddle point (as
we can see from Table 3).
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M2 c f ′′(0) + cg′′(0) f ′′(0) g′′(0)

0 -0.90 1.8438 1.2592 -0.6495
0 -0.75 1.5982 1.2465 -0.4690
0 -0.50 1.2844 1.2301 -0.1087
0 -0.25 1.1581 1.2251 0.2681
0 -0.10 1.1825 1.2284 0.4594
1 -0.90 0.9409 1.2097 0.2987
1 -0.75 0.8556 1.2051 0.4660
1 -0.50 0.8481 1.2064 0.7166
1 -0.25 0.9858 1.2166 0.9234
1 -0.10 1.1225 1.2257 1.0319
10 -0.90 -1.5431 1.1165 2.9552
10 -0.75 -1.1093 1.1355 2.9930
10 -0.50 -0.3599 1.1676 3.0550
10 -0.25 0.4212 1.2002 3.1160
10 -0.10 0.9044 1.2196 3.1520
30 -0.90 -3.7355 1.0857 5.3570
30 -0.75 -2.9234 1.1101 5.3780
30 -0.50 -1.5552 1.1513 5.4129
30 -0.25 -0.1696 1.1923 5.4475
30 -0.10 0.6698 1.2166 5.4682

Table 3: Case I: values of f ′′(0) + cg′′(0) for several values of c, M2

-1 cr 0
nodal point
of attachment

saddle point
of attachment

nodal point
of attachment

M <0.8123 (Reverse flow in (-1,
2

c ) )r

c -1 0
saddle point of attachment nodal point

of attachment

0.8123≤M <2.6662 (no reverse flow)
2

c

-1 cs 0
saddle point
of separation

saddle point
of attachment

nodal point
of attachment

M 2.6662 (no reverse flow)
2
≥

c

Figure 5: Case I: classification of the stagnation-point in dependence
on M2 and c

In Table 4, for some values of M2 ≥ 2.6662, we list the negative value of
c (cs), for which if c < cs then the origin is a separation point, while if c ≥ cs
then it is an attachment point. The change of the origin from attachment point
to separation point could be explained by the form of system (6). Since M2

directly influences g and only indirectly influences f , then when M2 increases,
g′′(0) becomes much greater than f ′′(0) as we can see from tables 1, 2.

In order to summarize the classification of the stagnation-point in depen-
dence on M2 and c, we provide Figure 5.
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M2 cs

4.00 -0.6593
5.00 -0.5677
10.00 -0.3836
15.00 -0.3110

Table 4: Case I: Values of cs when M2 increases (separation point -
attachment point)

M2 c f ′′(0) g′′(0) h α β ηf ηg δ

1 -0.75 1.5678 0.4894 -2.1123 0.5628 1.4544 2.3006 4.3855 4.3855
1 -0.25 1.5752 0.9395 0.4523 0.5522 0.8521 2.1961 2.9803 2.9803
1 0.25 1.5980 1.2647 0.5505 0.5286 0.6385 2.0156 2.2864 2.2864
1 1.00 1.6453 1.6453 0.4910 0.4910 0.4910 1.7797 1.7797 1.7797
5 -0.75 2.5290 2.0177 0.0298 0.3796 0.4962 1.6836 2.2264 2.2264
5 -0.25 2.5429 2.1942 0.3489 0.3706 0.4358 1.5941 1.8581 1.8581
5 0.25 2.5589 2.3582 0.3680 0.3616 0.3935 1.5114 1.6282 1.6282
5 1.00 2.5858 2.5858 0.3484 0.3484 0.3484 1.4025 1.4025 1.4025

Table 5: Case II: descriptive quantities of motion for some values of c
and M2

3.2. Case II: H0 = H0e2

We have solved problem (8), (7) numerically.

The behaviour of f , f ′, f ′′, g, g′, g′′ is the same as in Case I. In particular,
when c < cr the reverse flow appears.

We refer to Figures 2 and 3 for the solution of the problem.

The numerical integration furnishes f ′′(0), g′′(0), h, α, β, ηf , and ηg: their
values, when M2 and c change, are shown in Table 5.

We notice that if M2 is fixed, then the descriptive quantities behave as in
Case I when c increases.

When c is fixed, we find that if M2 increases, then f ′′(0), g′′(0) increase,
while the other parameters decrease.

Hence we have that the thickness δ of the boundary layer decreases when
M2 increases (as easily seen in Figures 6). In this case the thickness of the
boundary layer is smaller than in Case I.

Table 6 shows that as the Hartmann numberM2 increases, then the value of
cr for which the reverse flow does not occur decreases and when M2 = 0.7583,
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Figure 6: Case II: profiles of f ′ (61) and g′ (62,3) for several values of
M2.

the reverse flow does not occur at all for any value of c. In this case

∂p

∂x3
= −ρa2cx3(c+ 2M2)

from which one can see that the signs of c and of (c+ 2M2) modify the sign of
∂p

∂x3
.

As far as the classification of the stagnation-point is concerned, we have
found that f ′′(0) + cg′′(0) is always positive, so that the origin is a point of
attachment. We remark that in this case M2 directly influences f and g, as we
can see from system (8).

Moreover if c > 0 or where there is the reverse flow, then the origin is a
nodal point, while when c < 0 and the reverse flow does not appear, it is a
saddle point. These results are the same as for M2 = 0.
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M2 cr

0.10 -0.5024
0.30 -0.6479
0.50 -0.7922
0.70 -0.9342

0.7583 -0.9751
0.7584 no reverse flow

Table 6: Case II: Values cr when M2 increases

M2 c f ′′(0) g′′(0) h α β ηf ηg δ

1 -0.75 1.5941 -0.4355 -5.1702 0.5358 2.4378 2.1012 4.4881 4.4881
1 -0.25 1.5805 0.3035 0.2946 0.5472 1.3049 2.1626 3.5180 3.5180
1 0.25 1.5950 0.8234 0.5869 0.5309 0.8112 2.0279 2.5816 2.5816
1 1.00 1.6383 1.3216 0.5288 0.4950 0.5627 1.7971 1.9227 1.9227
5 -0.75 2.5541 -0.3729 -5.3339 0.3648 2.2644 1.5462 4.4113 4.4113
5 -0.25 2.5486 0.3663 0.0909 0.3676 1.1979 1.5692 3.3504 3.3504
5 0.25 2.5547 0.8599 0.4457 0.3635 0.7748 1.5251 2.4881 2.4881
5 1.00 2.5735 1.3434 0.4514 0.3530 0.5498 1.4309 1.8797 1.8797

Table 7: Case III: descriptive quantities of motion for some values of c
and M2

3.3. Case III: H0 = H0e3

We have solved problem (9), (7) numerically.

The behaviour of f , f ′, f ′′, g, g′, g′′ is the same as in Case I and Case II.
In particular, when c < cr the reverse flow appears.

We refer to Figures 2 and 3 for the solution of the problem.

The numerical integration furnishes f ′′(0), g′′(0), h, α, β, ηf , and ηg: their
values, when M2 and c change, are shown in Table 7.

We notice that if M2 is fixed, then the descriptive quantities behave as in
Case I when c increases, even if they do not change in a relevant way compared
to the previous cases.

When c is fixed, we note that if M2 increases, then f ′′(0), g′′(0) increase,
while the other parameters decrease.

Hence the thickness δ of the boundary layer decreases when M2 increases
(as easily seen in Figures 7) and the boundary layer is thinner than in Case II.

Table 8 shows that as the Hartmann number M2 increases, then the value
of cr for which the reverse flow does not occur (i.e. when g′′(0) = 0) decreases
very slowly, so that in this case the influence of the magnetic field is much less



440 A. Borrelli, G. Giantesio, M.C. Patria

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f′

← M2=0

c=−0.25

← M2=1

← M2=4

← M2=5

← M2=10

← M2=15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.2

0

0.2

0.4

0.6

0.8

1

η

g′

← M2=0

c=−0.75

← M2=1

← M2=4

← M2=5

← M2=10

← M2=15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

g′

← M2=0

c=−0.25

← M2=1
← M2=4

← M2=5

← M2=10
← M2=15

Figure 7: Case III: profiles of f ′ (71) and g′ (72,3) for several values of
M2.

M2 cr

1.00 -0.4564
10.00 -0.5295
50.00 -0.5768
100.00 -0.5904

Table 8: Case III: Values cr when M2 increases

significant with respect to CaseS I-II. In this regard we observe that
∂p

∂x3
=

−ρa2c2x3,
∂p

∂x1
= −ρa2x1(1 +M2) so that they have the same sign that they

would in the absence of the external magnetic field. In particular, we see that
the reverse flow always appears for physically meaningful values of M2.

As in the previous case, the origin is always a point of attachment. As one
can see, M2 directly influences f and only indirectly influences g in system (9),
so that when M2 increases, f ′′(0) becomes much greater than g′′(0).

Moreover if c > 0 or where there is the reverse flow, the origin is a nodal
point, while when c < 0 and the reverse flow does not appear, it is a saddle
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point.

4. Conclusions

A numerical study is performed for the steady three-dimensional MHD stagnation-
point flow of an incompressible, homogeneous electrically conducting Newtonian
fluid over a flat plate in the presence of a uniform external magnetic field. This
paper completes our previous analysis concerning the Newtonian fluids ([4])
where we have proved that, if we impress an external magnetic field H0, and
we neglect the induced magnetic field, then the steady three-dimensional MHD
stagnation-point flow is possible if, and only if, H0 has the direction of one of
the coordinate axes.

We have solved numerically the three non-linear ordinary boundary value
problems by using the MATLAB routine bvp4c.

The results of Cases I-III are totally new.

The following conclusions can be made for the three cases considered.

• The presence of the magnetic field modifies the thickness δ of the bound-
ary layer which decreases as M2 (the Hartmann number) increases.

• H0 tends to prevent the occurrence of the reverse flow in a relevant way
in Cases I-II.

• The three-dimensional displacement thickness h can be positive or nega-
tive. When the reverse flow appears it is negative.

• In Case II, δ and the value of M2 starting from which the reverse flow
does not appear for any values of c are smaller than in the other cases.

• The stagnation-point has been classified as nodal or saddle point and as
attachment or separation point. In Case II and Case III, as for M2 = 0,
the origin is a point of attachment.

In Case I, we find a new result: whenM2 is sufficiently large and c assumes
suitable negative values, then the stagnation-point becomes a separation
point.

Further in all cases if c > 0 or where there is the reverse flow, the origin
is a nodal point, while when c < 0 and the reverse flow does not appear,
it is a saddle point.
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