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a b s t r a c t

In this paper the steady three-dimensional stagnation-point flow of an incompressible, ho-
mogeneous, electrically conducting micropolar fluid over a flat plate is numerically inves-
tigated. The fluid is permeated by a uniform external magnetic field H0. The effects of the
magnetic field on the velocity and on the microrotation profiles are presented graphically
and discussed. The results obtained indicate that the thickness of the boundary layer de-
creases when the magnetic field increases. Moreover H0 tends to prevent the occurrence
of the reverse flow and of the reverse microrotation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The three-dimensional stagnation-point flow occurs when a jet of fluid impinges on a rigid body. This is an important
example of flow where the three velocity components appear.

This motion has been object of many investigations starting from the paper of Homman in 1936 [1–3]. Through similar-
ity transformations, the study of such a flow is reduced to a non-linear ordinary differential boundary value problem. The
obtained system depends upon a parameter c > −1 which is a measure of three-dimensionality.

The aim of this paper is to complete our previous analysis concerning the steady three-dimensional flow of an incom-
pressible, homogeneous, electrically conducting micropolar fluid permeated by a uniform external magnetic field H0 near
a three-dimensional stagnation-point of a rigid wall [4]. The coordinate axes are so fixed that the stagnation-point is the
origin and that the rigid wall coincides with the plane x2 = 0.

We notice that our results continue to hold even if the obstacle is the surface of a body with any shape, because near the
stagnation-point the body may be represented by its tangent plane (the plane x2 = 0).

Themicropolar fluids introduced by Eringen [5] physically represent fluids consisting of rigid randomly oriented particles
suspended in a viscousmediumwhich have an intrinsic rotationalmicromotion (for example biological fluids in thin vessels,
polymeric suspensions, slurries, colloidal fluids). Extensive reviews on the theory and its applications can be found in [5,6].
We remark that, in recent years a vast amount of literature concerning the analytical solutions of flow of a micropolar fluid
is available [7–10]. Moreover many papers concerning the applications and numerical simulations have been published
[11–19]. We underline that in most of the studies in the literature a restrictive approach has been followed on the material
parameterswhichmake the equations to contain only one parameter [20], while in our researchwedo not require restrictive
conditions so that three material parameters appear in the dimensionless ODEs.

This paper completes the study concerning the micropolar fluids developed in [4], where we have proved that, if an
external magnetic field H0 is impressed, and the induced magnetic field is neglected (as it is customary when the magnetic
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Fig. 1. Flow description.

Reynolds number is very small), then the steady three-dimensional MHD stagnation-point flow is possible if, and only if,H0
has the direction of one of the coordinate axes.

By means of similarity transformations, we find that the flow has to satisfy a non-linear ordinary differential boundary
value problem whose form depends on the direction of H0. The solutions of the three problems depend on H0 through the
Hartmann numberM2.

In this paper we solve the boundary value problems by numerical integration, because they are not solvable in closed
form due to non-linearity.

We underline that if M2
= 0, then the systems we find reduce to the system governing the flow of a micropolar fluid in

the absence of themagnetic field [21], while the results forM2
≠ 0 are totally new. Moreover our results forM2

= 0 extend
the previous one contained in [21], where, the Authors did not take into consideration the occurrence of the reverse flow,
the thickness of the boundary layer and the influence of some parameters on the solution.

Thanks to the numerical integration, in the three cases, in addition to the well known phenomenon of the reverse flow,
we find a new interesting result: the microrotation presents a zone of reverse microrotation for some negative values of c .
The range of c for which the reverse microrotation appears is included in the range of c for which the reverse flow occurs.
Further we find thatH0 tends to prevent the occurrence of the reverse flow and the occurrence of the reverse microrotation.

The presence of H0 modifies also the thickness of the boundary layer which decreases asM2 increases. This effect occurs
in all cases studied and it is standard in MHD.

Finally, it is interesting to compare these resultswith the corresponding results for theNewtonian fluids [22]: in particular
the micropolar fluids reduce the thickness of the boundary layer, the magnitude of the skin friction, and the negative value
of c for which the reverse flow does not occur starting fromM2

= 0.2 (CASEs I–II).
The paper is organized in this way:
in Section 2, we formulate the problem, and recall the results contained in [4].
In Section 3, we integrate numerically the previous problems, and discuss the physics of the results obtained.
Section 4 is devoted to conclusions.

2. Overview of the problem

In [4] we have studied the steady three-dimensional MHD stagnation-point flow of an incompressible homogeneous
electrically conducting micropolar fluid towards a flat surface. We assume that the flat surface is the rigid, fixed, non-
electrically conducting wall of equation x2 = 0, so that the flow is confined to the half-space S = {(x1, x2, x3) ∈ R3

:

(x1, x3) ∈ R2, x2 > 0} (see Fig. 1).
We recall that in the absence of external mechanical body forces and body couples, the MHD equations for such a fluid

are [6]

v · ∇v = −
1
ρ

∇p + (ν + νr)△v + 2νr(∇ × w) +
µe

ρ
(∇ × H) × H,

∇ · v = 0,
Iv · ∇w = λ△w + λ0∇(∇ · w) − 4νrw + 2νr(∇ × v),
∇ × H = σe(E + µev × H),

∇ × E = 0, ∇ · E = 0, ∇ · H = 0, in S (1)

where v is the velocity field, w is the microrotation field, p is the pressure, E and H are the electric and magnetic fields,
respectively, ν is the kinematic Newtonian viscosity coefficient, νr is the microrotation viscosity coefficient, λ, λ0 (positive
constants) are material parameters related to the coefficients of angular viscosity, I is the microinertia coefficient, ρ is the
mass density (constant >0), µe is the magnetic permeability, and σe is the electrical conductivity (µe, σe = constants > 0).

As it is well known, the three-dimensional stagnation-point flow is described by a velocity field of the form [23]

v1 = ax1f ′(η), v2 = −


(ν + νr)a[f (η) + cg(η)], v3 = cax3g ′(η), (2)
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and by a microrotation field of the form [21]

w1 = −c
a2

2νr


ν + νr

a
x3F(η), w2 = 0, w3 =

a2

2νr


ν + νr

a
x1G(η), (3)

where a is a positive parameter, c is a constant which is a measure of three-dimensionality, f , g, F ,G are sufficiently regular
unknown dimensionless functions and η =


a

ν+νr
x2.

We exclude in our analysis c = 0, because this describes the orthogonal plane stagnation-point flow.
Moreover, the usual adherence condition on the boundary supplies

f (0) = 0, f ′(0) = 0, g(0) = 0, g ′(0) = 0,
F(0) = 0, G(0) = 0. (4)

As it is customary, we assume that at infinity, the flow approaches the flow of an inviscid fluid impinging on the flat plane
η = h [4], whose velocity is given by:

v1 = ax1, v2 = −


(ν + νr)a(1 + c)(η − h), v3 = cax3, η ≥ h. (5)

Therefore, to (4) we also must append the following conditions

lim
η→+∞

f ′(η) = 1, lim
η→+∞

g ′(η) = 1,

lim
η→+∞

F(η) = 0, lim
η→+∞

G(η) = 0. (6)

The constant h in (5) is the three-dimensional displacement thickness [3] and it is related to the behaviour of f and g at
infinity. Actually, if

lim
η→+∞

[f (η) − η] = −α, lim
η→+∞

[g(η) − η] = −β (7)

with α, β some constants, then

lim
η→+∞

[f (η) + cg(η) − (1 + c)η] = −(1 + c)h, (8)

from which

h =
α + cβ
1 + c

.

The constants α, β are not assigned a priori, but their values can be found by solving the problem. As we will see, the three-
dimensional displacement thickness h can be positive or negative.

We exclude the case c ≤ −1 because we impose in (5) the condition v2 < 0, so that the inviscid fluid moves towards
the wall η = h. Hence in the further analysis we assume that c ∈ (−1, 0) ∪ (0, +∞).

Supposing that a uniformexternalmagnetic fieldH0 is impressed and that the electric field is absent, under thehypothesis
that the magnetic Reynolds number is very small, so that the induced magnetic field is negligible in comparison with the
imposed field, we have proved in [4] the following

Theorem 1. Let a homogeneous, incompressible, electrically conducting micropolar fluid occupy the half-space S. If we neglect
the induced magnetic field, then the steady three-dimensional MHD stagnation-point flow of such a fluid is possible if, and only
if, the external magnetic field H0 is parallel to one of the axes (with unit vector ei for i = 1, 2, 3). Moreover, the flow has the
form (2), (3), E = 0, and

(I) if H0 = H0e1, then (f , g, F ,G) satisfies problem

f ′′′
+ (f + cg)f ′′

− f ′2
+ 1 + G′

= 0,

g ′′′
+ (f + cg)g ′′

− cg ′2
+ c + F ′

+ M2(1 − g ′) = 0, (9)
F ′′

+ c3F ′(f + cg) − F(c3cg ′
+ c2) − c1g ′′

= 0,

G′′
+ c3G′(f + cg) − G(c3f ′

+ c2) − c1f ′′
= 0, (10)

f (0) = 0, f ′(0) = 0, g(0) = 0, g ′(0) = 0,
F(0) = 0, G(0) = 0,
lim

η→+∞
f ′(η) = 1, lim

η→+∞
g ′(η) = 1,

lim
η→+∞

F(η) = 0, lim
η→+∞

G(η) = 0, (11)
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where M2
=

σeµ
2
eH

2
0

ρa is the Hartmann number and

c1 =
4ν2

r

λa
, c2 =

4νr(ν + νr)

λa
, c3 =

I
λ

(ν + νr); (12)

(II) if H0 = H0e2, then (f , g, F ,G) satisfies problem

f ′′′
+ (f + cg)f ′′

− f ′2
+ 1 + G′

+ M2(1 − f ′) = 0,

g ′′′
+ (f + cg)g ′′

− cg ′2
+ c + F ′

+ M2(1 − g ′) = 0, (13)

with (10) and the boundary conditions (11);
(III) if H0 = H0e3, then (f , g, F ,G) satisfies problem

f ′′′
+ (f + cg)f ′′

− f ′2
+ 1 + G′

+ M2(1 − f ′) = 0,

g ′′′
+ (f + cg)g ′′

− cg ′2
+ c + F ′

= 0, (14)

with (10) and the boundary conditions (11).

Remark 2. If M2
= 0, then Eqs. (9) (or (13), or (14)), (10) reduce to equations found by Guram and Anwar Kamal in [21].

Remark 3. We notice that, the pressure field which corresponds to the three cases of Theorem 1 is respectively:

p = −ρ
a2

2


x21 +

ν + νr

a
[f (η) + cg(η)]2 + c2x23


− ρa(ν + νr)[f ′(η) + cg ′(η)]

− 2νrρ
ν + νr

a

 η

0
[cF(s) + G(s)]ds + ρa2M2


ν + νr

a

 η

0
[f (s) + cg(s)]ds −

c
2
x23


+ p0, (15)

p = −ρ
a2

2


x21 +

ν + νr

a
[f (η) + cg(η)]2 + c2x23


− ρa(ν + νr)[f ′(η) + cg ′(η)]

− 2νrρ
ν + νr

a

 η

0
[cF(s) + G(s)]ds − ρa2M2(x21 + cx23) + p0, (16)

p = −ρ
a2

2


x21 +

ν + νr

a
[f (η) + cg(η)]2 + c2x23


− ρa(ν + νr)[f ′(η) + cg ′(η)]

− 2νrρ
ν + νr

a

 η

0
[cF(s) + G(s)]ds + ρa2M2


ν + νr

a

 η

0
[f (s) + cg(s)]ds −

x21
2


+ p0. (17)

It is important to explicit the pressure field because, as we will see in Section 3, if one of the components of the pressure
gradient parallel to the wall has the same sign of the corresponding component of the velocity or of the microrotation curl
field, then the reverse flow or the reverse microrotation appears.

3. Numerical results and discussion from a physical point of view

In this section, we discuss the numerical solutions of the problems studied in Theorem 1. These numerical solutions
are obtained using the MATLAB routine bvp4c. Such a routine is a finite difference code that implements the three-stage
Lobatto IIIa formula. This is a collocation formula and here the collocation polynomial provides a C1-continuous solution that
is fourth-order accurate uniformly in [0, 5]. Mesh selection and error control are based on the residual of the continuous
solution. We set the relative and the absolute tolerance equal to 10−7. The method was used and described in [24].

The values of the parameters c, c1, c2, c3 are chosen according to [2,3,21]. Of course by virtue of (12), c2 > c1.
The numerical integration points out some results which are very interesting from a physical point of view.
First of all, we see that the solution (f , g, F ,G) of the three problems considered in Theorem 1 satisfies the conditions (6)

and (7); therefore we define:

• ηf (ηg) the value of η such that f ′(ηf ) = 0.99 (g ′(ηg) = 0.99);
• ηF (ηG) the value of η such that F(ηF ) = −0.01 (G(ηG) = −0.01).

Hence if η > ηf (η > ηg), then f ∼= η − α (g ∼= η − β), and if η > ηF (η > ηG), then F ∼= 0 (G ∼= 0).
Therefore, the numerical integration shows that the influence of the viscosity on the velocity and on the microrotation

appears only in a layer lining the boundary whose thickness is δv = max(ηf , ηg) for the velocity and δw = max(ηF , ηG) for
the microrotation. Such a phenomenon is known from the experimental observations.
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The thickness δ of the boundary layer for the flow is defined as

δ = max(δv, δw).

Another very significant feature from a physical point of view is the occurrence of the reverse flow and of the reverse
microrotation.

This effect is well known for the velocity field of a Newtonian fluid [3,22,25], while the reverse microrotation has never
been observed in the literature.

The numerical results show that there exists a negative value cr of c such that if c ≥ cr , then g ′, g ′′ > 0 ∀η > 0, and if
c < cr then near the wall g ′, g ′′ < 0, so that the reverse flow appears (i.e. v3 has the same sign of ∂p

∂x3
). Moreover we have

found numerically that there exists a negative value crw of c such that if c ≥ crw , then F ′(0) < 0, F(η) < 0 ∀η > 0, and if
c < crw then near the wall F , F ′ > 0 so that the reverse microrotation appears (i.e. (∇ × w)3 =

a2
2νr

cx3F ′(η) has the same
sign of ∂p

∂x3
).We underline that when the reversemicrorotation appears,w1 is positive if x3 < 0, while it is negative if x3 > 0.

The reverse flow and the reverse microrotation are also related to a sign change of the scalar component of the skin
friction (τ0) in the direction of e3 and of the scalar component of the skin couple friction (γ0) in the direction of e1:

τ0 = ρa3/2(ν + νr)
1/2

{x1[f ′′(0) + G(0)]e1 + cx3[g ′′(0) + F(0)]e3}
= ρa3/2(ν + νr)

1/2
[x1f ′′(0)e1 + cx3g ′′(0)e3], (18)

γ0 = ρλ
a2

2νr
[−cx3F ′(0)e1 + x1G′(0)e3]. (19)

As one can see from (15), (16), (17), the pressure field depends on the externalmagnetic field through the Hartmann number
M2, which influences the sign of the components of the pressure gradient along the surface. For this reason, as we deduce
from the numerical results, the presence of the external magnetic field tends to prevent the occurrence of the reverse flow
and of the reverse microrotation. This behaviour appears more clearly in CASEs I–II. The influence of the external magnetic
field on the reverse flow has already been observed in [26] for a Newtonian fluid in other physical situations.

Before considering the CASEs I–II–III, it is convenient to examine the three-dimensional stagnation-point flow for a
micropolar fluid in the absence of the external magnetic field. Our results are consistent with the previous studies when
M2

= 0 [21], where, however, the Authors did not consider the occurrence of the reverse flow and of the reverse
microrotation, the thickness of the boundary layer, the parameters α, β, h and the influence of c1, c2, c3 on the solution.
Hence our results forM2

= 0 extend and complete the previous one.
In particular when M2

= 0 and c = 1 we obtain the η − axial symmetric flow: α = β = h, f ′′(0) = g ′′(0) and
F ′(0) = G′(0).

3.1. M2
= 0

In Table 1 we display the values of f ′′(0), g ′′(0), F ′(0), G′(0), h, α, β, ηf , ηg , ηF and ηG when c, c1, c2, c3 change and
M2

= 0. f ′′(0), g ′′(0), F ′(0), G′(0) are important for the physics of the problem because they appear in the expression of τ0
and γ0 (see (18) and (19)) and they influence the occurrence of the reverse flow and the reverse microrotation. We recall
that h is the three dimensional displacement thickness so that η = h is the flat plane towardswhich the inviscid fluid, whose
flow is approached at infinity by the micropolar fluid, impinges. We remark that h can be negative.

FromTable 1 it appears that ifwe fix twoparameters among c1, c2, c3, then the influence of c1 on thedescriptive quantities
of motion is more evident.

Figs. 2–4 elucidate the dependence of the functions f ′, g ′, F , G, on the parameters c1, c2, c3 when M2
= 0. We can see

that the functions which appearmost influenced by c1, c2, c3 are F and G, in other words themicrorotation, as we can expect
because this vector characterizes the micropolar fluid. More precisely, the profiles of F and G rise as c2 or c3 increase and
c1 decreases; c1 is the parameter that most influences the microrotation. The other two functions, f ′ and g ′, do not show
considerable variations as c1, c2, c3 assume different values.

We do not display the graphics of f , g, F , G because they are analogous to those which we will show in the presence of
the external magnetic field.

We now consider the influence of the magnetic field. We underline that there are no results in the literature whenever
M2

≠ 0.

3.2. Case I: H0 = H0e1

As we have already seen, the external magnetic field influences directly the velocity through M2 which appears only in
Eq. (9)2.

We have solved problem (9), (10), (11) numerically.
Fig. 5 shows the graphics of f , f ′, f ′′.
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Table 1
Descriptive quantities of motion for some values of c, c1, c2, c3 , andM2 .

M2 c c1 c2 c3 f ′′(0) g ′′(0) F ′(0) G′(0) h α β ηf ηg ηF ηG

0 −0.75 0.1 1.5 0.1 1.2357 −0.4704 −0.0005 −0.0536 −4.9584 0.6343 2.4986 2.3204 4.4516 3.6586 1.5789
0.5 1.2371 −0.4709 −0.0015 −0.0514 −4.9640 0.6347 2.5009 2.3332 4.4701 3.4224 1.3102

3.0 0.1 1.2389 −0.4692 0.0050 −0.0448 −5.0094 0.6352 2.5167 2.3424 4.4915 2.8943 0.9930
0.5 1.2395 −0.4695 0.0046 −0.0438 −5.0111 0.6353 2.5175 2.3486 4.4976 2.7868 0.8370

0.5 1.5 0.1 1.1916 −0.4715 −0.0123 −0.2680 −4.3976 0.6209 2.2937 2.1157 3.9136 4.5392 2.9134
0.5 1.1984 −0.4753 −0.0163 −0.2573 −4.4520 0.6225 2.3140 2.1616 4.0678 4.3181 2.4464

3.0 0.1 1.2082 −0.4694 0.0222 −0.2242 −4.7357 0.6248 2.4116 2.2046 4.2871 4.2340 2.3241
0.5 1.2112 −0.4708 0.0202 −0.2194 −4.7497 0.6256 2.4173 2.2319 4.3326 4.0645 2.1007

−0.25 0.1 1.5 0.1 1.2144 0.2605 −0.0289 −0.0529 0.4224 0.6558 1.3558 2.4106 3.5133 2.6648 1.6156
0.5 1.2156 0.2611 −0.0290 −0.0508 0.4226 0.6560 1.3563 2.4222 3.5366 2.4337 1.3547

3.0 0.1 1.2176 0.2636 −0.0205 −0.0441 0.4214 0.6566 1.3625 2.4334 3.5658 1.7784 0.9979
0.5 1.2181 0.2638 −0.0207 −0.0432 0.4215 0.6568 1.3627 2.4387 3.5745 1.6902 0.8452

0.5 1.5 0.1 1.1705 0.2296 −0.1479 −0.2643 0.4289 0.6414 1.2788 2.1959 3.0656 3.8678 2.9608
0.5 1.1770 0.2323 −0.1490 −0.2541 0.4294 0.6427 1.2825 2.2389 3.1574 3.4688 2.5088

3.0 0.1 1.1870 0.2454 −0.1042 −0.2205 0.4228 0.6458 1.3148 2.2932 3.3251 3.3429 2.3762
0.5 1.1897 0.2462 −0.1051 −0.2160 0.4232 0.6464 1.3160 2.3177 3.3681 3.1414 2.1642

0.25 0.1 1.5 0.1 1.2369 0.7946 −0.0454 −0.0537 0.6662 0.6263 0.8257 2.2136 2.5693 1.9307 1.5711
0.5 1.2383 0.7958 −0.0443 −0.0514 0.6664 0.6265 0.8260 2.2241 2.5848 1.6679 1.2934

3.0 0.1 1.2400 0.7982 −0.0362 −0.0449 0.6671 0.6270 0.8274 2.2319 2.5978 1.2652 1.0015
0.5 1.2406 0.7986 −0.0359 −0.0439 0.6672 0.6271 0.8275 2.2371 2.6044 1.1405 0.8419

0.5 1.5 0.1 1.1931 0.7515 −0.2276 −0.2687 0.6514 0.6139 0.8013 2.0329 2.3194 3.1593 2.8349
0.5 1.2003 0.7576 −0.2227 −0.2575 0.6524 0.6149 0.8027 2.0717 2.3749 2.6586 2.3296

3.0 0.1 1.2092 0.7698 −0.1817 −0.2247 0.6559 0.6174 0.8099 2.1111 2.4429 2.6063 2.2902
0.5 1.2124 0.7722 −0.1801 −0.2198 0.6564 0.6179 0.8104 2.1339 2.4727 2.3687 2.0482

1.00 0.1 1.5 0.1 1.3013 1.3013 −0.0558 −0.0558 0.5665 0.5665 0.5665 1.9071 1.9071 1.4569 1.4569
0.5 1.3030 1.3030 −0.0531 −0.0531 0.5667 0.5667 0.5667 1.9166 1.9166 1.1527 1.1527

3.0 0.1 1.3043 1.3043 −0.0470 −0.0470 0.5670 0.5670 0.5670 1.9201 1.9201 0.9782 0.9782
0.5 1.3051 1.3051 −0.0458 −0.0458 0.5671 0.5671 0.5671 1.9251 1.9251 0.8015 0.8015

0.5 1.5 0.1 1.2583 1.2583 −0.2793 −0.2793 0.5568 0.5568 0.5568 1.7701 1.7701 2.6108 2.6108
0.5 1.2669 1.2669 −0.2657 −0.2657 0.5576 0.5576 0.5576 1.8056 1.8056 2.0339 2.0339

3.0 0.1 1.2734 1.2734 −0.2354 −0.2354 0.5594 0.5594 0.5594 1.8246 1.8246 2.1206 2.1206
0.5 1.2774 1.2774 −0.2292 −0.2292 0.5598 0.5598 0.5598 1.8464 1.8464 1.8292 1.8292

Table 2
Case I: descriptive quantities of motion for some values of c, c1, c2, c3 , andM2 .

M2 c c1 c2 c3 f ′′(0) g ′′(0) F ′(0) G′(0) h α β ηf ηg ηF ηG

1 −0.75 0.1 3.0 0.1 1.1976 0.4614 −0.0224 −0.0433 −1.8080 0.6867 1.5182 2.6606 4.4420 1.2244 0.9894
−0.25 0.1 3.0 0.1 1.2091 0.9168 −0.0367 −0.0438 0.5981 0.6665 0.8716 2.4862 3.0164 1.1615 0.9980
0.25 0.1 3.0 0.1 1.2445 1.2464 −0.0444 −0.0451 0.6276 0.6230 0.6459 2.2146 2.2937 1.0270 0.9997
1.00 0.1 3.0 0.1 1.3139 1.6307 −0.0514 −0.0473 0.5272 0.5608 0.4935 1.8986 1.7754 0.8585 0.9722

5 −0.75 0.1 3.0 0.1 1.1468 1.9911 −0.0532 −0.0415 1.5051 0.7605 0.5124 3.1253 2.3336 0.7609 0.9647
−0.25 0.1 3.0 0.1 1.1979 2.1699 −0.0560 −0.0434 0.7560 0.6784 0.4456 2.5426 1.9112 0.7170 0.9995
0.25 0.1 3.0 0.1 1.2526 2.3362 −0.0582 −0.0453 0.5731 0.6164 0.4000 2.1889 1.6579 0.6640 0.9960
1.00 0.1 3.0 0.1 1.3359 2.5665 −0.0608 −0.0479 0.4501 0.5479 0.3523 1.8557 1.4165 0.5817 0.9585

As one can see,

lim
η→+∞

f ′′(η) = 0, lim
η→+∞

f ′(η) = 1, lim
η→+∞

f (η) − η = −α.

As far as the behaviour of g, g ′, g ′′ is concerned, if c < cr (reverse flow appears) then it is shown in Fig. 61, otherwise it is
given in Fig. 62.

Moreover, we have found a new interesting result: the function F presents a zone of reverse microrotation for some
negative values of c . If c < crw (F ′(0) > 0) then the behaviour of F , F ′ is shown in Fig. 71, otherwise it is given in Fig. 72.

We underline that the thickness of the reverse microrotation zone is very small.
Fig. 8 shows the profiles of G,G′.
Table 2 shows the behaviour of the descriptive quantities of motion whenM2 and c change. We remark that in this table

we consider only c1 = 0.1, c2 = 3.0, c3 = 0.1 because the influence of these three parameters on the solution is the same
as in the absence of the external magnetic field.

IfM2 increases, then g ′′(0) increases, while F ′(0), β, ηg , ηF decrease. G′(0), h, α, ηf , ηG increase if c < 0, otherwise they
decrease, and f ′′(0) increases if c > 0, otherwise it decreases.

Further we underline that the thickness δ = (ηf , ηg , ηF , ηG) of the boundary layer depends on M2 and decreases when
M2 increases (as easily seen in Figs. 9 and 10). This effect is standard in magnetohydrodynamics.

As it was underlined at the beginning of the Section 3, the magnetic field tends to prevent the occurrence of the reverse
flow. So Tables 3 and 4 show that as the Hartmann number M2 increases, the values of cr and of crw for the reverse flow
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Fig. 2. f ′, g ′, F ,G profiles for M2
= 0, c2 = 3, c3 = 0.5 when c1 = 0.1 and c1 = 0.5. In the first four pictures c = −0.25 and there are not reverse flow

and reverse microrotation. The last two pictures show the behaviour of g ′ and F with respect to c1 when the reverse flow and the reverse microrotation
occur (c = −0.75).

and the reverse microrotation decrease. In particular from M2
= 0.7810 (M2

= 0.5148), the reverse flow (the reverse
microrotation) does not occur at all for any value of c . This fact could be explained by observing that ∂p

∂x3
= −ρa2cx3(c+M2)

from which one can see that the signs of c and of (c + M2) modify the sign of ∂p
∂x3

.

3.3. Case II: H0 = H0e2

The external magnetic field influences directly the velocity through the presence ofM2 in Eq. (13).
We have solved problem (13), (10), (11) numerically.
The behaviour of f , f ′, f ′′, g , g ′, g ′′, F , F ′, G, G′ is the same as in Case I. In particular, when c < cr the reverse flow appears

and the behaviour of g, g ′, g ′′ is shown in Fig. 111. Moreover the function F presents a zone of reverse microrotation for
some negative values of c. If c < crw then the behaviour of F , F ′ is shown in Fig. 112.
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Fig. 3. f ′, g ′, F ,G profiles for M2
= 0, c1 = 0.5, c3 = 0.5 when c2 = 1.5 and c2 = 3. In the first four pictures c = −0.25 and there are not reverse flow

and reverse microrotation. The last two pictures show the behaviour of g ′ and F with respect to c2 when the reverse flow and the reverse microrotation
occur (c = −0.75).

We refer to Figs. 5, 62, 72, 8 for the solution in the absence of reverse flow and reverse microrotation.
The values of the descriptive quantities of the motion are listed in Table 5 whenM2 and c change.
We notice that ifM2 is fixed, then the descriptive quantities of motion behave as in Case I when c increases.
When c, c1, c2, c3 are fixed, from Table 5 we find that if M2 increases, then f ′′(0), g ′′(0), |F ′(0)|, |G′(0)| increase, while

the other parameters decrease.
Hence the thickness δ of the boundary layer depends on M2 and decreases when M2 increases (as easily seen in Figs. 12

and 13). We underline that in this case the boundary layer is thinner than in Case I.
Tables 6 and 7 show that as the Hartmann number M2 increases, the values of cr and of crw for the reverse flow and

the reverse microrotation decrease. In particular from M2
= 0.7615 (M2

= 0.4903), the reverse flow (the reverse
microrotation) does not occur at all for any value of c . Hence the magnetic field tends to prevent the occurrence of the
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Fig. 4. f ′, g ′, F ,G profiles for M2
= 0, c1 = 0.5, c2 = 3 when c3 = 0.1 and c3 = 0.5. In the first four pictures c = −0.25 and there are not reverse flow

and reverse microrotation. The last two pictures show the behaviour of g ′ and F with respect to c3 when the reverse flow and the reverse microrotation
occur (c = −0.75).

Table 3
Case I: values cr when M2 increases (c1 =

0.1, c2 = 3.0, c3 = 0.1).

M2 cr

0.00 −0.4286
0.10 −0.4989
0.20 −0.5697
0.30 −0.6412
0.40 −0.7136
0.50 −0.7869
0.60 −0.8615
0.70 −0.9374
0.7809 −0.9999
0.7810 No reverse flow
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Fig. 5. Case I: f , f ′, f ′′ profiles.

Fig. 6. Case I: The first picture shows the profiles of g, g ′, g ′′ in the reverse flow. The second picture shows the profiles of g, g ′, g ′′ in the absence of the
reverse flow.

Table 4
Case I: values crw whenM2 increases (c1 = 0.1, c2 =

3.0, c3 = 0.1).

M2 crw

0.00 −0.6428
0.10 −0.7116
0.20 −0.7805
0.30 −0.8497
0.40 −0.9192
0.50 −0.9895
0.5147 −0.9999
0.5148 No reverse microrotation

reverse flow. In this case ∂p
∂x3

= −ρa2cx3(c + 2M2) from which one can see that the signs of c and of (c + 2M2) modify the

sign of ∂p
∂x3

.
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Fig. 7. Case I: the first picture shows the profiles of F , F ′ in the reverse microrotation. The second picture shows the profiles of F , F ′ in the absence of the
reverse microrotation.

Fig. 8. Case I: G,G′ profiles.

Table 5
Case II: descriptive quantities of motion for some values of c, c1, c2, c3 , andM2 .

M2 c c1 c2 c3 f ′′(0) g ′′(0) F ′(0) G′(0) h α β ηf ηg ηF ηG

1 −0.75 0.1 3.0 0.1 1.5603 0.4847 −0.0236 −0.0491 −2.0850 0.5607 1.4425 2.2677 4.3453 1.1640 0.8639
−0.25 0.1 3.0 0.1 1.5677 0.9328 −0.0373 −0.0494 0.4514 0.5503 0.8470 2.1661 2.9329 1.1634 0.8677
0.25 0.1 3.0 0.1 1.5905 1.2574 −0.0448 −0.0501 0.5486 0.5268 0.6358 1.9894 2.2541 1.0224 0.8687
1.00 0.1 3.0 0.1 1.6378 1.6378 −0.0516 −0.0516 0.4895 0.4895 0.4895 1.7582 1.7582 0.8549 0.8549

5 −0.75 0.1 3.0 0.1 2.5220 2.0106 −0.0538 −0.0597 0.0316 0.3786 0.4943 1.6646 2.1937 0.7644 0.5850
−0.25 0.1 3.0 0.1 2.5359 2.1870 −0.0564 −0.0601 0.3482 0.3697 0.4345 1.5766 1.8339 0.7145 0.5855
0.25 0.1 3.0 0.1 2.5519 2.3512 −0.0586 −0.0605 0.3671 0.3608 0.3925 1.4954 1.6094 0.6597 0.5837
1.00 0.1 3.0 0.1 2.5788 2.5788 −0.0611 −0.0611 0.3477 0.3477 0.3477 1.3885 1.3885 0.5770 0.5770

We point out that the values ofM2 starting fromwhich the reverse flow and the reverse microrotation do not appear for
any values of c are smaller than in Case I.

3.4. Case III: H0 = H0e3

The external magnetic field influences directly the velocity throughM2 which appears only in Eq. (14)1.
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Fig. 9. Case I: profiles of f ′ (91) and g ′ (92,3) for several values of M2 which elucidate the boundary layer thickness.

Table 6
Case II: values cr when M2 increases (c1 =

0.1, c2 = 3.0, c3 = 0.1).

M2 cr

0.00 −0.4286
0.10 −0.5022
0.20 −0.5759
0.30 −0.6499
0.40 −0.7244
0.50 −0.7994
0.60 −0.8753
0.70 −0.9521
0.7614 −0.9999
0.7615 No reverse flow

We have solved problem (14), (10), (11) numerically.
Fig. 141 shows the graphics of g, g ′, g ′′ when c < cr (reverse flow), while we display the profiles of F , F ′ when c < crw

in 142 (reverse microrotation).
We refer to Figs. 5, 62, 72, 8 for the behaviour of the solution in the absence of reverse flow and reverse microrotation.
In Table 8 we give the values of the descriptive quantities of motion whenM2 and c change.
We notice that ifM2 is fixed, then the descriptive quantities behave as in CASEs I–II when c increases.
When c, c1, c2, c3 are fixed, from Table 8 we find that if M2 increases, then f ′′(0), |g ′′(0)|, |F ′(0)|, |G′(0)| increase, while

the other parameters decrease.
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Fig. 10. Case I: profiles of F (101,2) and G (103) for several values ofM2 which elucidate the boundary layer thickness.

Fig. 11. Case II: the first picture shows the profiles of g, g ′, g ′′ in the reverse flow. The first picture shows the profiles of F , F ′ in the reverse microrotation.

Hence the thickness δ of the boundary layer depends on M2 and decreases when M2 increases (as easily seen in Figs. 15
and 16). We underline that the boundary layer in Case II is thinner than in this case.
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Fig. 12. Case II: profiles of f ′ (121) and g ′ (122,3) for several values ofM2 which elucidate the boundary layer thickness.

Table 7
Case II: values crw when M2 increases (c1 = 0.1, c2 =

3.0, c3 = 0.1).

M2 crw

0.00 −0.6428
0.10 −0.7162
0.20 −0.7891
0.30 −0.8617
0.40 −0.9343
0.4902 −0.9999
0.4903 No reverse microrotation

Table 8
Case III: descriptive quantities of motion for some values of c, c1, c2, c3 , andM2 .

M2 c c1 c2 c3 f ′′(0) g ′′(0) F ′(0) G′(0) h α β ηf ηg ηF ηG

1 −0.75 0.1 3.0 0.1 1.5865 −0.4357 0.0033 −0.0500 −5.1062 0.5339 2.4140 2.0722 4.4471 2.8076 0.8650
−0.25 0.1 3.0 0.1 1.5730 0.2990 −0.0221 −0.0495 0.2958 0.5453 1.2938 2.1332 3.4613 1.7201 0.8674
0.25 0.1 3.0 0.1 1.5874 0.8165 −0.0369 −0.0500 0.5847 0.5291 0.8069 2.0017 2.5434 1.2509 0.8695
1.00 0.1 3.0 0.1 1.6307 1.3139 −0.0473 −0.0514 0.5272 0.4935 0.5608 1.7754 1.8986 0.9722 0.8585

5 −0.75 0.1 3.0 0.1 2.5471 −0.3730 0.0002 −0.0604 −5.2656 0.3639 2.2405 1.5296 4.3655 2.6548 0.5839
−0.25 0.1 3.0 0.1 2.5416 0.3618 −0.0247 −0.0602 0.0932 0.3668 1.1874 1.5522 3.2934 1.6262 0.5847
0.25 0.1 3.0 0.1 2.5477 0.8531 −0.0382 −0.0604 0.4443 0.3627 0.7706 1.5089 2.4504 1.2210 0.5849
1.00 0.1 3.0 0.1 2.5665 1.3359 −0.0479 −0.0608 0.4501 0.3523 0.5479 1.4165 1.8557 0.9585 0.5817
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Fig. 13. Case II: profiles of F (131) and G (132,3) for several values ofM2 which elucidate the boundary layer thickness.

Fig. 14. Case III: the first picture shows the profiles of g, g ′, g ′′ in the reverse flow. The second picture shows the profiles of F , F ′ in the absence of the
reverse microrotation.
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Fig. 15. Case III: profiles of f ′ (151) and g ′ (152,3) for several values ofM2 which elucidate the boundary layer thickness.

Table 9
Case III: values cr when M2 increases
(c1 = 0.1, c2 = 3.0, c3 = 0.1).

M2 cr

0.00 −0.4286
1.00 −0.4558
2.00 −0.4735

10.00 −0.5297
20.00 −0.5531
50.00 −0.5780

100.00 −0.5919

Tables 9 and 10 show that as the Hartmann numberM2 increases, the values of cr and of crw decrease very slowly, so that
in this case the influence of the magnetic field is much less significant with respect to CASEs I–II. In this regard we observe
that ∂p

∂x3
,

∂p
∂x1

have the same sign that they would have in the absence of the external magnetic field.
In particular, we see that the reverse flow and the reverse microrotation always appear for physically meaningful values

ofM2.

4. Conclusions

A numerical study is performed for the steady three-dimensional MHD stagnation-point flow of an incompressible,
homogeneous electrically conducting micropolar fluid over a flat plate in the presence of a uniform external magnetic field.
The main advantage of using a micropolar fluid model to study this problem in comparison with other classes of non-
Newtonian fluids is that it takes into account the rotation of fluid particles by means of an independent kinematic vector
called themicrorotation vector. Thismodel is considered to describe, for example, biological fluids in thin vessels, polymeric
suspensions, slurries, colloidal fluids.
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Fig. 16. Case III: profiles of F (161) and G (162,3) for several values ofM2 which elucidate the boundary layer thickness.

Table 10
Case III: values crw when M2 increases
(c1 = 0.1, c2 = 3.0, c3 = 0.1).

M2 crw

0.00 −0.6428
1.00 −0.6804
2.00 −0.7044

10.00 −0.7775
20.00 −0.8064
50.00 −0.8360

100.00 −0.8521

This paper completes our previous analysis for the micropolar fluids in [4], where we have proved that, if we impress an
externalmagnetic fieldH0, andwe neglect the inducedmagnetic field (as it is customary in the literaturewhen themagnetic
Reynolds number is very small), then the steady three-dimensional MHD stagnation-point flow is possible if, and only if,H0
has the direction of one of the coordinate axes.

In particular, we have solved numerically the three non-linear ordinary boundary value problems by using the MATLAB
routine bvp4c.

The following conclusions can be made for the three cases considered.
• The presence of the magnetic field modifies the thickness δ of the boundary layer which decreases asM2 increases.
• A new interesting result for some negative values of c has been observed for themicrorotation: as well as for the velocity,

the microrotation presents a zone of reverse microrotation, where F ′(0) > 0.
• H0 tends to prevent the occurrence of the reverse flow and of the reverse microrotation in a relevant way in CASEs I–II.
• Analysing the values of cr and crw , we can see that the range of c for which the reverse microrotation appears is included

in the range of c for which the reverse flow occurs.
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• The material micropolar parameters c1, c2, c3 influence most the microrotation and c1 is the parameter that affects most
among c1, c2, c3.

• The three-dimensional displacement thickness h can be positive or negative and it is always negative when the reverse
flow appears.

• In Case II, δ and the values of M2 starting from which the reverse flow and the reverse microrotation do not appear for
any values of c are smaller than in the other cases.

• In the literature there are no papers concerning the influence of electromagnetic field on the three-dimensional
stagnation-point flow of micropolar fluids. Our results are consistent with the previous studies when M2

= 0 [21] and
they extend them.

Moreover, it can be interesting to compare these results with the corresponding results for the Newtonian fluid [22]:

• the micropolar fluids reduce the thickness of the boundary layer.
• the presence of the microrotation decreases the values of f ′′(0) and of g ′′(0), so that the magnitude of the skin friction is

smaller than that in the Newtonian case.
• if the fluid is micropolar, then in CASEs I–II whenM2 > 0.2, cr is smaller.

As in theNewtonian case, for amicropolar fluid, the origin canbe classified as nodal or saddle and as attachment or separation
point: this classification depends on the values of f ′′(0) and of g ′′(0) and it is analogous to the analysis contained in [22].

As far as the applications are concerned, from a theoretical point of view, MHD flows of this type are fundamental in
fluid dynamics. From a practical point of view, it may be noticed that stagnation-point flows are ubiquitous in the sense that
they inevitably appear as a component of more complicated flow fields. So the investigation in this area is motivated by the
possibility of solving exactly the boundary layer equations at the stagnation point and by their relevance to a wide range of
engineering, industrial and technical applications.
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