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Abstract 

This paper presents a procedure for the multi-objective design of looped water distribution systems. The main block of the 
procedure encompasses four sub-algorithms. Since one sub-algorithm co-ordinates the others (which then operate in a 
subordinate way), the procedure can be inserted into the category of low level hybrid procedures. The results of the algorithm 
are optimal solutions in the cost-reliability space, with reliability being compactly expressed through the network resilience 
metric. The application to four case studies shows the benefits of the new algorithm in terms of numerical and computational 
efficiency with respect to a multi-objective genetic algorithm.  
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1. Introduction 

One of the most challenging problems to test the efficiency of optimization techniques is, no doubt, the design 
of water networks, since it features numerous decisional variables to be considered and numerous constraints to be 
satisfied. 

In the last decades, network design has been more and more frequently faced through the multi-objective 
approach (Todini, 2000; Prasad et al., 2003; Farmani et al., 2006 to name a few contributions to the field in the 
scientific literature). This approach makes it possible to obtain a Pareto front of optimal solutions in the trade-off 
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between cost and reliability, with the latter being often expressed through compact indexes, such as the pressure 
head surplus (Gessler and Walski, 1985), the resilience index (Todini, 2000) or the network resilience index 
(Prasad and Park, 2004), representative of network redundancy in terms of pressure heads. In order to face this 
problem, simply heuristic (Todini, 2000) and heuristic evolutionary (Prasad et al., 2003; Farmani et al., 2006) 
techniques have been adopted yielding good results in the case of small case studies; however, when the 
complexity increases, the growth of the computation burden due to the increase in the number of decisional 
variables reduces significantly the efficiency of these optimization techniques. 

A first strategy that may be adopted to obtain an improved computational efficiency in tackling the network 
design problem has recently been proposed by Wang et al. (2013) and consists of the use of procedures, such as 
AMALGAM (Vrugt and Robinson, 2007) and MOHO (Moral and Dulikravich, 2008), made up of various inner 
algorithms which cooperate; the objective of the combination of algorithms is to combine the power of different 
methods and thus to obtain a better final solution than that which would be obtained if only one algorithm were 
adopted. According to the classification proposed by Talbi (2002), AMALGAM and MOHO can be considered as a 
high-level hybrid procedures since the various algorithms which compose them collaborate in parallel. Wang et al. 
(2013) showed the benefits of their high level hybridization with respect to the performance of the NSGAII (Deb et 
al., 2002) algorithm in many case studies of small to medium size. Nevertheless, the Authors state that in case 
studies of large size the high-level hybrid procedures lose their adaptive capabilities. 

On the other hand, Creaco and Franchini (2012) proposed a hybrid procedure which combines the multi-
objective genetic algorithm NSGAII and linear programming; the role of NSGAII in this procedure is to provide 
linear programming with the instructions for the design of a group of branched networks (each one fed by a single 
source point) concealed inside the original looped network layout and then to assign a single diameter to the pipes 
that have to be re-inserted in order to re-close network loops. These instructions are encoded in a very small 
number of genes, i.e. 3, in all the kinds of case study (small, average and large networks) and then the adaptive 
capability of the procedure is not affected significantly by a growth of the network complexity. The merits of the 
procedure in terms of computational and numerical efficiency were highlighted by the Authors by comparing it 
with the traditional approach, which consists in considering in NSGAII so numerous decisional variables as the 
number of pipes that have to be sized. According to the classification proposed by Talbi (2002), the Creaco and 
Franchini (2012) procedure can be considered as a low-level hybrid procedure since its two inner algorithms 
(NSGAII and linear programming) do not cooperate at the same level and in fact the latter is embedded in the 
former. However, a drawback in this effective and efficient procedure lies in the fact that it does not consider 
explicitly any pipe flow velocity constraints and it does not make it possible to obtain diameter uniformity in the 
network, which is a key ingredient of reliability. These weaknesses have been corrected in the present work. The 
following sections first describe the structure of the upgraded procedure; then, the applications to four case studies, 
the analysis of the results and the conclusions follow. 

2. Methods 

2.1. Overview 

The solution of the network multi-objective design problem (Todini, 2000; Prasad et al., 2003) leads to a curve 
of optimal solutions (Pareto front) being defined in the minimum cost-reliability space. These solutions feature 
growing values of cost and reliability. The total cost C of the network can be calculated as the sum of the costs of 
the np pipes: 
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where cj and Lj represent the unit cost associated with diameter Dj and the length of the generic j-th pipe. 
As to reliability, the network resilience proposed by Prasad and Park (2004) is adopted as a measure of network 

redundancy in terms of pressure heads with respect to the minimum values which ensure full demand satisfaction. 
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Its relationship with performance index in the context of network design is clearly highlighted by Creaco et al. 
(2013). If no pumping station is present in the network, it can be expressed by the following formula: 
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where, for the generic k-th demanding node, qk and Hk represent the demand and the head (the latter evaluated 
by means of a simulation model) and Hdes,k is the sum of node elevation zk and hdes,k (Tanymboh et al., 2001),  
minimum value of the pressure head which ensures full demand satisfaction at the k-th demanding node. Hres and 
Qres are the head and the outgoing water discharge from the generic r-th source point. Finally, Ck represents the 
uniformity of the diameters Di,k of the np,k pipes connected to the generic k-th demanding node and is calculated 
through the following relationship: 
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where Di,k is the i-th pipe in the k-th node and np,k is the number of pipes related to the k-th node. The latter 
coefficient takes on values in between 1/np,k  and 1, where values tending to 1/ np,k are associated with not uniform 
diameters whereas a value equal to 1 indicates that the diameters of all the pipes connected to a node are equal. If 
only one pipe is connected to a certain node, the values 1/np,k  and 1 then coincide. 

The resilience index of eq. (2), instead, takes on values within the range 0-1, where lower and higher values 
correspond to networks with small diameters and high energy dissipations and large diameters and small energy 
dissipations respectively. In this context, it is also worth highlighting that, since in the numerator of eq. (2) 
diameter uniformity coefficient Ck is multiplied by qk (Hk-Hdes,k), it is clear that diameter uniformity gives real 
benefits in terms of In only for nodes with high demand and high pressure head excess with respect to Hdes,k. In 
other words, if a node has low demand and/or low pressure head excess, an increase in the diameter uniformity is 
not paid back by a significant growth of network resilience In. 

The Prasad and Park (2004) resilience index is a generalization of the Todini (2000) resilience index IR; as a 
matter of fact, the latter parameter, which does not consider explicitly the uniformity of pipes connected to each 
node, can be re-obtained by assuming Ck=1 in eq. (2); it then holds that: 
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Here we propose that the Pareto front of optimal solutions in the space cost C (eq. 1) – network resilience In (eq. 
2) should be obtained by an efficient hybrid procedure made up of two blocks (Fig. 1) and based on the 
combination of various algorithms; the first preliminary block makes it possible to detect one or more 
decompositions of the looped network each one generating a set of single source branched networks. The second 
main block encompasses a cascade of four different algorithms for the network multi-objective design: the first and 
main algorithm (A1) is the NSGAII multi-objective genetic algorithm. The individuals of the population of this 
algorithm are made up of only five genes: the first makes it possible to detect time by time which of the 
decompositions detected in the preliminary block has to be applied to the looped network; the second and third 
genes are parameters that have to be supplied to the second algorithm, i.e. to the linear programming (A2) 
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performing the branched network design; the fourth and fifth genes are parameters that have to be supplied to the 
third algorithm (heuristic algorithm A3), which re-closes network loops with the smallest diameter considered in 
the design phase and then improves the uniformity of the diameters of the pipes connected to each network node; 
the fourth algorithm (heuristic algorithm A4) modifies some pipe diameters in order that maximum flow velocity 
constraints are respected all over the network. The final network configuration is assessed in terms of cost (eq. 1) 
and network resilience (eq. 2), which are the objective functions of A1. 

In this context, it is worth highlighting that, naturally, the rationale behind the procedure herein presented 
(based on the design of the branched networks concealed inside the looped network, loop re-closure and diameter 
modification) comes from a significant simplification of the design problem and may thus lead to a reduction in the 
research space. However, this weakness is balanced by its simplicity, which leads to the procedure easily 
converging and finding good solutions, as will be shown in the next sections. 

In the next subsections the description of the two blocks and of the various algorithms follows. 
 

 

Fig. 1. Logic flux of the procedure proposed. 

2.2. Preliminary block 

The procedure proposed in this paper features a preliminary block for the decomposition of the looped network 
into different groups of branched networks, where each branched network is fed by a single source. As already 
shown by Stephenson (1984), Ciaponi and Papiri (1985) and Creaco and Franchini (2012), this can be 
accomplished by solving the minimum cost-flow problem, i.e. by minimizing, while preserving the continuity 
equations at network demanding nodes, the following function Cs, surrogate of network cost: 
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where exponent n takes on values ≤ 1; Q j, water discharge of  the generic j-th pipe, is the decisional variable of 
the minimization problem. The solution of the previous minimization problem makes it possible to detect low cost 
branched structures (each one related to a selected value of n) even in topologically complex networks featuring 
multiple source points. 

When n=1, the previous minimization problem is successfully solved by linear programming if each network 
pipe is transformed into a couple of oriented arcs, in each of which flow must respect a pre-fixed direction (Orlin, 
1997). As a matter of fact, the solution will feature a series of Q values for the various arcs of the network; the 
pipes for which the two corresponding arcs feature values of Q equal to 0 in the final solution represent the pipes 
that have to be removed in order to transform the looped network into the lowest cost group of branched networks 
(see Creaco and Franchini, 2012 for further details). 
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When n<1, the problem becomes concave and the application of typical line-search methods does not ensure 
that a global minimum is reached which is however not important at this level of the procedure. In order to obtain 
the global minimum, algorithms for the exploration of the whole collection of possible branched networks 
concealed inside the looped network can be used (Read and Tarjan, 1975). However, the latter algorithms can be 
applied only to small networks because they become computationally burdensome in the case of medium-large 
networks. 

Summing up, by solving the minimization problem of eq. (5) for various values of exponent n, it is possible to 
obtain various decompositions of the looped network into different groups of single source branched networks. 

2.3. Main block 

Multi-objective genetic algorithm (A1) 
 
The first algorithm (A1) of the main block of the procedure is the multi-objective genetic algorithm NSGAII . In 

this algorithm, the population is made up of individuals featuring only five genes: the first gene g1 makes it 
possible to select time by time which of the decompositions detected as described in section 2.2 has to be 
considered for network design: it takes on integer values within the range 1-no, where no is the total number of 
decompositions detected in the preliminary block. The second gene g2 is a real number, which takes on real values 
around 1 and represents the ratio of the minimum pressure head hdes_b,k to be considered for branched network 
design to the minimum pressure head hdes,,k required for the design of the network with closed loops (here we 
assume that each node can have its own minimum pressure constraint). The third gene g3 is a real number variable 
within the range 0-1 and encodes parameter IRb, which represents the minimum resilience index (see eq. 4) for the 
branched network design. The fourth and fifth genes, g4 and g5, whose suitable range of values have to be searched 
for, by trial and error, during the application of the procedure, refer to the uniformity that has to be prescribed to 
the diameters of the pipes connected to each network node. In particular, as better clarified in section A3, g4 yields 
the average value of uniformity associated with the network nodes whereas g5 (which is a weight) makes it 
possible to calculate the uniformity degree corresponding to the generic k-th node of the network on the basis of 
the value of the product qk (Hk-Hdes,k) that the node itself features.  

The encoding of the individuals of the genetic algorithm is very simple because it involves only five genes for 
networks of whatever size. Hence comes the easiness for the procedure to quickly converge towards good 
solutions. The higher computational efficiency with respect to the traditional approach, which requires the use of 
one gene for each pipe that has to be sized in the network (see, for instance, Prasad et al., 2003), becomes more 
evident for the complex networks, made up of numerous pipes; this advantage will be clearly highlighted in the 
application section. 

For each population individual the two objective functions, network cost C (eq. 1) to be minimized and network 
resilience In (eq. 2) to be maximized, are evaluated on the network with reclosed loops, that is obtained after 
applying the cascade of algorithms shown in Fig.1, which are useful to design the branched network(s) concealed 
inside the looped network (A2), to re-close network loops with the smallest diameter and modify the diameters of 
some pipes in order to improve diameter uniformity in the k-th node (A3), and to slightly increase the diameters of 
those pipes which do not respect the maximum velocity constraint. In particular, network resilience In (eq. 2) is 
evaluated on the basis of the results of a demand driven simulation (Todini and Pilati, 1988), performed with 
reference to peak demand and old pipe operation conditions. Penalties are applied to objective functions C and In in 
order to penalize network configurations which do not respect nodal minimum (hdes,k) and maximum (hmax,k) 
pressure head constraints. 

 
Linear programming for branched network design (A2) 
 
The optimal design of the branched network(s) can be carried out for prefixed values of minimum pressure head 

(hdes_b,k) and resilience index IRb constraints, derived from genes g1 and g2 of the genetic algorithm (A1). In this 
problem, given a set of nD diameters Di for each pipe of the branched network(s), the unknown variables are, with 
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reference to the j-th network pipe, the lengths lj,i of the sub-pipes fitted with diameter Di. The objective of this 
design is to minimize the overall cost of the branched network while satisfying the minimum acceptable pressure 
and resilience constraints for the pre-selected configuration of nodal demands. The design entails solving a linear 
programming problem, with the following cost function to be minimized: 
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where ci is the unit cost associated with diameter Di and npb is the number of pipes in the branched network(s) 
For each network pipe j, the constraint that the sum of sub-pipe lengths lj,i is equal to the length Lj of the whole 

pipe needs to be considered: 
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For the path leading from the reservoir (with head Hres) supplying the k-th node (with elevation zk) to the k-th 
node itself, the sum of the head losses in the nk pipes belonging to the path has to be so low as to allow the 
minimum acceptable pressure hdes_b,k constraint to be satisfied at node k. This can be expressed as: 
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where Jj,i is the energy friction slope relative to sub-pipe lj,i of pipe Lj; Hdes_b,k is the desired total head at node k 
for full demand satisfaction, being the sum of node elevation zk and prefixed minimum pressure hdes_b,k of the 
branched network. 

At the same time, starting from the definition of resilience proposed by Todini (2000) of eq. (4), the minimum 
resilience constraint can be expressed as follows in terms of lj,i: 
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where qk and Qres,r are the demand at the k-th node (among the n1 demanding nodes) and the water discharge 
leaving the r-th reservoir respectively. IRb is the minimum prefixed value of the resilience index for the branched 
network(s) (derived from genes g2). 

Though the sub-pipes featuring all the diameters Di in the set are simultaneously considered for each pipe in the 
linear programming problem, the solution generally yields lengths greater than 0 only for one or two sub-pipes. 
However, since the objective of the design is generally to assign a single diameter to each pipe, the diameter of the 
longest sub-pipe is extended to the whole pipe length. This entails considering the branched network configuration 
with undivided pipes closest to the optimal solution furnished by linear programming, which, as stated above, may 
potentially feature multiple diameters for some pipes. 

 
Heuristic algorithm for loop closure and diameter uniformity (A3) 
 
After the design of the branched network(s) has been performed through linear programming (A2), network 

loops are reclosed using the smallest diameter considered within the design problem. Then, an iterative algorithm 
(A3) is performed in order to improve, for each node, the uniformity of the pipes connected. Since the uniformity 
to be imposed at the generic k-th node must depend on the value of the product qk (Hk-Hdes,k) for the node itself (see 
section 2.1), a demand driven simulation is performed on the network in order to assess the head Hk values at the 
various network nodes prior to the application of A3 and then to evaluate, for the various network nodes, the 
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products qk (Hk-Hdes,k), on the basis of which the diameters Di of the pipes connected to the generic node are 
modified in order to respect the following pipe diameter uniformity constraint:  
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where Uk is a uniformity parameter derived for the k-th node from genes g4 and g5 of algorithm A1 through the 
following formula: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+=
W
WWggU k

k 54 1 ,  (11) 

where quantity Wk comes from the following manipulation made on the products qk (Hk-Hdes,k), in order to avoid 
the presence of any negative values:  
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where  is the average value of Wk. 
As a matter of fact, prescribing eq. (10) at each node makes it possible to correct the diameters of those pipe 

connected, which turn out to be smaller than a certain fraction of the (average) mean value of the diameters 
connected to the node itself. If at the k-th node the generic i-th diameter does not respect the constraint of eq. (10), 
this diameter is replaced with the smallest diameter considered in the design problem which respects the constraint 
itself. The fraction Uk is calculated through eq. (11), which is a linear relationship whose parameters are related to 
the genes g4 and g5 of the genetic algorithm. Eq. (11) entails that the fraction Uk is high at those nodes which 
feature a high value of Wk (i.e. where the product qk (Hk-Hdes,k) is high). 

Algorithm A3 is applied iteratively. During each iteration, the constraint in eq. (10) is verified at all network 
nodes. Iterations go on as long as corrections are made on pipe diameters. Incidentally, when Uk>1 eq. (10) cannot 
be verified. As a consequence the diameters of the pipes linked to the k-th node increase up to their maximum 
possible value.  

 
Heuristic algorithm to impose maximum velocity constraints (A4) 
 
Algorithm A4 is iterative and makes it possible to impose an eventual maximum velocity constraint to network 

pipes. At each iteration, a demand driven simulation is performed in order to detect pipes whose velocity is higher 
than the threshold value Vmax. In particular, the pipe with the highest excess from Vmax can be detected and its 
diameter can be replaced with the immediately larger diameter. Iterations (inside the global cycle controlled by the 
NSGAII) go on as long as there are pipes which feature velocity values higher than Vmax. 

3. Applications 

The applications concerned the design of all the network pipes in four case studies drawn from Bragalli et al. 
(2012), i.e. the networks of Blacksbourgh, Fossolo, Pescara and Modena (main characteristics reported in the 
following Table 1). In these case studies design has to be performed in the peak demand and old pipe scenario. 
Furthermore, in each case study, constraints concerning minimum and maximum pressure heads at nodes and 
maximum flow velocities in network pipes are prescribed (even though not reported here) and optimizations have 
to be performed considering the network cost (see eq. 1) and resilience (see eq. 2) as objective functions to 
minimize and maximize respectively. 



376   E. Creaco and M. Franchini  /  Procedia Engineering   70  ( 2014 )  369 – 378 

The applications described in this section were performed using a single processor of a 2.70GHz Pentium® 
Dual-Core CPU. All the algorithms used were implemented in the Matlab2011b environment. 

Prior to the application of the hybrid procedure proposed in this paper, optimizations were performed as 
benchmark using the traditional approach (algorithm NSGAII with individuals made up of so numerous genes as 
the number of network pipes to be sized). Unlike the hybrid procedure, in which constraint respect comes directly 
from the application of algorithms A3 and A4, penalizations in the objective functions are made in the traditional 
approach in order to encourage the survival of those individuals which satisfy the constraints and to hinder the 
survival of those individuals which do not satisfy them. In the optimizations carried out through the traditional 
approach, the numbers of individuals and generations considered, along with the computation time required, are 
reported in Table 1. 

Table 1. For each case study, numbers n0 of source points, n1 of demanding nodes, p of pipes and total demand Dtot. As to the application of the 
traditional approach and of the new hybrid procedure, numbers of individuals and of generations and computation time. 

case study n0 n1 p Dtot (L/s) traditional approach hybrid procedure 

          
individuals 

 
generations 
 

comp. time 
(min) 

individuals 
 

generations 
 

comp. time 
(min) 

Blacksbourgh 1 30 35 98 100 250 1 50 20 2 

Fossolo 1 36 58 34 100 500 3 50 20 3 

Pescara 3 68 99 498 100 1000 10 50 50 7 

Modena 4 268 317 407 100 1000 45 50 50 91 
 

As to the preliminary block of the hybrid procedure proposed in this paper, useful to find optimal 
decompositions of the original network into branched networks, an algorithm for the exploration of the whole 
collection of possible branched networks concealed inside the looped network was used for the Blacksbourgh and 
Fossolo networks. This made it possible to find 7 and 6 optimal decompositions associated with values of the 
exponent coefficient n of eq. (5) within the range 0.7-1.0. Since the application of the algorithm was too 
burdensome for the two other case studies, only the optimal decomposition derived by the Orlin (1997) method for 
n=1 was taken into account; the application of methods aimed at searching for approximate solutions in the case of 
n<1 was not considered in this context. 

The main block of the hybrid procedure was then applied. To this end, the genes of algorithm A1 of the 
procedure were generated considering the lower and higher values reported in the following Table 2. Ranges for 
genes g4 and g5 were defined after some attempts.  The numbers of individuals and generations adopted for the 
hybrid procedure (see Table 1) were assessed in order to ensure the convergence of the procedure and to have the 
same order of computation time as the benchmark optimizations performed using the NSGAII. 

The results of the hybrid procedure in terms of Pareto front are reported and compared with the results of the 
traditional approach in the graphs in Fig.2. The comparison shows that the Pareto fronts obtained by the new 
hybrid procedure dominate the corresponding fronts obtained by using the traditional approach under all 
conditions. It is also worth highlighting that the Pareto fronts obtained by the new hybrid procedure are also better 
in terms of extension, since the new procedure always seems to be able to detect the extreme solutions (i.e. those 
featuring the lowest and highest values of cost and In respectively). Furthermore, as expected, the largest distance 
between the Pareto front obtained by the hybrid procedure and that obtained by using the traditional approach is 
noticed in the last case study, the Modena network (Fig. 2d), which is the most burdensome from the 
computational viewpoint and then better highlights the computational and numerical efficiency of the hybrid 
procedure presented herein, which is not affected significantly by the growth of the size in the design problem. 
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Table 2. For each case study, range of values considered for the generation of the five genes of the individuals of 
algorithm A1 of the hybrid procedure. 

gene Blacksburgh Fossolo Pescara Modena 

  
lower 
value 

higher 
value 

lower 
value 

higher 
value 

lower 
value 

higher 
value 

lower 
value 

higher 
value 

1 (network decompositions) 1 7 1 6 1 1 1 1 

2 (minimum pressure) 0.05 1.3 0.05 1.3 0.05 1.3 0.05 1.3 

3 (resilience) 0 1 0 1 0 1 0 1 

4 (diameter uniformity) 0 1.5 0 1.5 0 1.5 0 1.5 

5 (uniformity variation) 0 2 0 0 0 2 0 2 
 

 

Fig. 2. Final Pareto fronts obtained by the new hybrid procedure and the traditional for the networks of a) Blacksbourgh, b) Fossolo, c) Pescara 
and d) Modena. In graph d) the Pareto front obtained by the hybrid procedure after 5 generations is also shown. 

The last analysis that is worth conducting in this study concerns how the results of the hybrid procedure 
optimization vary during generations. To this end the Pareto front obtained after 5 generations (only 9 min of 
computation time) is also reported in graph d) in Fig. 2, with reference to Modena network. The analysis shows 
that the Pareto front obtained after 5 generations is very close to that obtained after 50 generations in terms of 
position and still dominates the Pareto front obtained by using the traditional approach. The only difference with 
respect to the front obtained after 50 generations lies in the fact that it comprises much less solutions. Nevertheless, 

0.0

0.2

0.4

0.6

0.8

1.0

0 2000000 4000000 6000000 8000000

In

cost (€)

hybrid

traditional

hybrid 5 gen

0.0

0.2

0.4

0.6

0.8

1.0

0 250000 500000 750000 1000000

In

cost ($)

hybrid

traditional

0.0

0.2

0.4

0.6

0.8

1.0

0 250000 500000 750000 1000000

In

cost (€)

hybrid

traditional

0.0

0.2

0.4

0.6

0.8

1.0

0 2000000 4000000 6000000 8000000

In

cost (€)

hybrid

traditional

a)

c)

b)

d)



378   E. Creaco and M. Franchini  /  Procedia Engineering   70  ( 2014 )  369 – 378 

the closeness of the fronts highlights the capability of the hybrid procedure to detect quickly good solutions in the 
trade-off between cost and network resilience. 

4. Conclusions 

The results of this study point out that low level hybrid optimization procedures are computationally and 
numerically efficient in the context of multi-objective water network design, even when constraints concerning 
nodal pressure heads and pipe flow velocities are prescribed in the network. As a matter of fact, these procedures 
proved to be able to detect quickly good solutions in the trade-off between cost and network resilience in case 
studies of various complexity. 

A further development of this study could be represented by the comparison with high level hybrid optimization 
procedures, in a bid to understand which is the most suitable choice depending on the size of the network to be 
designed. 
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