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Abstract Making use of a mixed variational formulation based on the Green function of the substrate, which
assumes as independent fields the structure displacements and the contact pressure, a simple and efficient finite
element-boundary integral equation coupling method is derived and applied to the stability analysis of beams
and frames resting on an elastic half-plane. Slender Euler–Bernoulli beams with different combinations of end
constraints are considered. The examples illustrate the convergence to the existing exact solutions and provide
new estimates of the buckling loads for different boundary conditions. Finally, nonlinear incremental analyses
of rectangular pipes with compressed columns and free or pinned foundation ends are performed, showing
that pipes stiffer than the soil may exhibit snap-through instability.

Keywords Buckling · Euler–Bernoulli beam · Soil–structure interaction · Frictionless contact · Mixed finite
elements · Flamant solution

1 Introduction

The stability of beams and frames resting on a substrate or soil is important in many engineering fields and
has been previously studied by many researchers. In the civil engineering field, examples of this problem are
the stability of road pavements and the lateral buckling of welded railway rails. In this context, the pioneering
works of Wieghardt [1] and Prager [2] are based on the assumption that the beam is resting on a continuously
distributed set of springs. In 1937, Biot [3] studied the problem of an infinite beam on an elastic continuum
loaded by vertical forces and, in the same year, Reissner [4] first studied the related stability problem. Then,
the interest in this problem grew, motivated by early structural problems of sandwich elements, and Gough
et al. [5] extended Biot and Reissner results including various conditions of contact between the infinite beam
and the elastic half-space. The study of sandwich elements continued up to recent years [6–8]. Recently, the
main interest has been motivated by thin film buckling and the research has been driven by developments in
electronics industry [9,10]. In this context, the case of buckling without delamination is often called wrinkling.

In [11], the buckling of a simply supported beam on Winkler soil is studied. Other boundary conditions,
such as beam with clamped ends and beam with free ends, were studied and compared with the former [12]. In
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the context of sandwich plates, Goodier and Hsu [13] underlined the presence of nonsinusoidal local buckling
modes located at the beam ends. Assuming the more realistic relationship between foundation pressure and
beam displacement suggested in [1], Smith [14] determined the buckling loads of a beam with pinned ends.
With regard to the simply supported beam of finite length on an elastic half-plane, Gallagher [15] evaluated
the buckling loads using a governing fourth-order integro-differential equation solved by means of a series
of Chebyshev polynomials, whereas Bosakov [16] applied the Ritz method, but its solution is accurate for
short beams stiffer than the soil only. To the authors’ knowledge, no more analytical or numerical analyses
concerning the buckling of a slender beam of finite length in frictionless contact with an elastic half-plane are
available.

In the present work, the critical loads of Euler–Bernoulli beams with finite length resting in frictionless
contact with an elastic two-dimensional half-space are evaluated by generalizing the finite element-boundary
integral equation (FE-BIE) coupling method proposed in [17], where the static analysis of foundation beams
with free ends is considered. In particular, the soil is represented as an elastic half-space in plane state condi-
tions. Hence, making use of the Green function of the soil, a proper relationship between beam deflection and
contact pressure is adopted. A mixed variational formulation is used, with variational functions represented
by structure displacements and pressure soil reaction. The corresponding FE model for the soil–beam system
adopts classical beam elements and constant soil reaction underlying each foundation element. Unlike what
is claimed in [17], possible constraints cannot be applied to global stiffness and geometric matrices as usual
because the Green function of the soil holds for a half-plane loaded by a point force normal to its boundary,
which must be free to deform elsewhere. In this paper, a penalty approach is adopted to include constraint
equations in the mixed variational formulation of the foundation-soil system. Making use of a parameter that
takes into account both the beam slenderness and the soil stiffness, comparisons with analytical solutions and
traditional two-dimensional (2D) FEs are given.

Moreover, rectangular frames on an elastic half-space with compressed columns are considered. Buck-
ling loads and mode shapes are determined varying the soil stiffness for two different restraint conditions. In
addition, the geometric nonlinear behavior of the frames is investigated and the load multipliers at the limit
point are compared with the buckling loads, showing that pipes stiffer than the soil may exhibit snap-through
instability. It is worth noting that conventional 2D FEs model describes hardly the global buckling modes of
frames on an elastic half-space because many local modes characterize the substrate near the column ends.

2 Basic relationships

An elastic beam of length L , cross-section height h, and width b, resting on a semi-infinite linearly elastic
substrate, is referred to a Cartesian coordinate system (0; x, y), where x coincides with both the centroidal
axis and the boundary of the half-plane and y is directed downward. In the following, Eb and Es indicate
the Young moduli of beam and substrate, respectively. Analogously, Poisson ratios of beam and substrate are
denoted by νb and νs , respectively. Generalized plane stress or plane strain regime is considered; in the latter
case, both the beam and the half-plane have an unitary values of the width b. The beam is loaded at the ends
by a concentrated compressive force P as shown in Fig. 1. A vertical load p(x) distributed along the beam
axis x can also be considered. In the interface between beam and soil, frictionless and bilateral conditions are
assumed. Consequently, a vertical soil reaction r(x) is enforced to both beam and substrate and the vertical
displacement v(x) of the beam coincides with that of the half-plane boundary.

The potential energy �b of the beam, including second-order effects, can be written as [18]:

�b = 1

2

∫

L

[Db(v
′′(x))2 − P (v′(x))2]dx − b

∫

L

(p(x) − r(x)) v(x)dx (1)

PP

L

x

yli

Fig. 1 Foundation beam with axial load subdivided into equal FEs
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where prime denotes differentiation with respect to x and Db = E0 bh 3/12 is the bending rigidity, with
E0 = Eb or E0 = Eb/(1 − ν2

b ) for a generalized plane stress or plane strain state, respectively.
The potential energy of the soil is given by [17]:

�s = −b

2

∫

L

r(x) v(x)dx = −b

2

∫

L

r(x)dx
∫

L

g(x, x̂) r(x̂)dx̂ (2)

where the vertical displacement v(x) is replaced by the boundary integral equation known as Flamant solu-
tion [19], which uses the Green function g(x, x̂) corresponding to the solution to the elastic problem for a
homogeneous isotropic half-plane loaded by a point force normal to its boundary:

g(x, x̂) = − 2
π E

ln |x − x̂ | (3)

with E = Es or E = Es/(1 − ν2
s ) for a generalized plane stress or plane strain state, respectively.

Many constraint equations Ri
(
v, v′) = 0 between displacements or rotations may be assigned along the

beam axis. For example, a pinned–pinned beam requires the equation v(L/2) − v(−L/2) = 0. These con-
straint equations can be included in the total potential energy � of the beam-substrate system by means of a
penalty approach [20]:

�(v, r) = �b(v, r) + �s(r) + k

2

∑
i
[Ri (v, v′)]2 (4)

where k is the penalty parameter, whose value should be large enough to satisfy the constraint equations accu-
rately. For beams with free ends, the rigid body displacement related to the Flamant solution can be removed by
choosing an arbitrary abscissa x̄ where a null value of v(x̄) is forced. It is worth noting that Flamant solution (3)
holds for a half-plane loaded by a point force normal to its boundary, which must be free to deform elsewhere.
The penalty approach allows to reformulate a problem with constraints as one without constraints. This topic
was not detailed in [17].

A simple discretization of the beam-substrate system can be created by subdividing the beam into FEs
of length li (Fig. 1) and considering a constant soil reaction for each foundation element [17]. With regard
to the beam shape functions, classical Hermitian polynomials are assumed [20]. For a prismatic beam, the
stationarity condition of the total potential energy � written in discrete form provides the following system:

[
Db
L3

(
K̃b − P L2

Db
K̃g

)
bH

bHT − b
E G̃

]{
q
r

}
=

{
bF
0

}
(5)

where the vector q collects the nodal displacements, r denotes the vector of the constant soil reactions, F is the
vector of the external loads, Db/L 3K̃b is the elastic stiffness matrix of the beam, P/LK̃g is the geometric (or
incremental) stiffness matrix, and the elements of the matrices H and G̃ are reported in “Appendix”, together
with the element matrices K̃bi and K̃gi . The system in Eq. (5) yields the following solution:

r = EG̃−1HTq (6)
[
K̃b − λK̃g + K̃soil

]
q = F

bL3

Db
(7)

where the stiffness matrix of the soil

K̃soil = (αL)3 HG̃−1HT, (8)

the load multiplier λ and the parameter αL are defined as follows;

λ = P L2

Db
, (9a)

αL = 3

√
EbL3

Db
. (9b)
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According to references [3,17,21], the parameter αL given by Eq. (9b) describes the beam-substrate system.
Low values of αL characterize short beams stiffer than the soil, whereas high values of αL describe more
flexible beams, this latter case is suitable to represent long beams on a stiff soil.

The adopted mixed finite element is particularly simple and effective, as shown in [17] for the static case,
where the numerical properties of the proposed FE model are also discussed. With regard to the determination
of critical load Pcr, a homogeneous system associated with Eq. (7) must be considered and the buckling loads
are given by the roots λcr of the equation det [K̃b − λK̃g + K̃soil] = 0, which can be suitably reduced to a
standard eigenvalue problem. Making use of Eq. (9a) and the definition of Euler critical load:

Pcr,E = π2 Db

L2 (10)

the dimensionless buckling loads turn out to be given by Pcr/Pcr,E = λcr/ π2.
In the case of a structure connected to the foundation beam, system (7) can be partitioned as shown in [17],

where nodal displacements with or without nodes shared with the foundation beam are selected. Moreover,
the geometric matrix of each beam FE is handled in the usual way.

3 Slender beams with different boundary conditions

3.1 Convergence test for beams with free ends

In order to compare the proposed model with a classical model that uses 2D elastic elements to describe the
soil, a convergence test is presented first. Two different cases, representing a quite stiff beam (αL = 5) and a
flexible beam (αL = 25), are considered. In both cases, the foundation beam is modeled as an Euler–Bernoulli
beam subdivided into equal FEs, with a number of elements nel equal to powers of two up to 256 FEs. Each
beam element of the proposed model includes a single soil element, whereas in the 2D model, the soil is
modeled by a square mesh of quadrilateral elements in plane state. The mesh used for the soil has a total
width equal to 8L . At the boundaries, the displacements in the normal direction are fixed. Two nested square
meshes, with width equal to 4L and 2L , are built close to the foundation beam. Each edge of the quadrilateral
elements of the smaller mesh has the same size of the beam elements. In Fig. 2, the case of the foundation beam
subdivided into 4 beam FEs is shown. The adopted mesh for the 2D model allows to accurately determine
the displacements underlying the foundation beam, with a number of elements lower than that required by a
simple mesh of quadrilateral elements. The frictionless connection between beam and soil nodes is established
by vertical master–slave links. The adopted 2D code uses a geometric stiffness matrix also for the 2D soil FEs.

2L
4L

8L

8L

L

Fig. 2 Mesh adopted for the 2D model with foundation beam subdivided into 4 equal FEs
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Table 1 First three dimensionless critical loads Pcr/Pcr,E for a beam with free ends corresponding to the present analysis (PA)
or 2D models as a function of nel for αL equal to 5 and 25

nel αL = 5 αL = 25
PA 2D PA 2D
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

22 1.688 1.889 4.956 2.267 2.939 4.917 6.776 9.240 29.47 19.45 25.48 46.13
23 1.880 2.131 5.008 2.159 2.630 4.993 23.81 23.85 65.54 60.80 62.31 65.65
24 1.949 2.233 5.019 2.087 2.474 5.017 40.58 40.65 77.51 61.61 61.69 75.05
25 1.977 2.279 5.022 2.046 2.396 5.022 47.60 47.66 78.08 57.85 57.89 77.36
26 1.990 2.300 5.023 2.025 2.356 5.022 50.14 50.20 78.16 55.21 55.26 77.97
27 1.996 2.311 5.023 2.014 2.337 5.022 51.19 51.25 78.17 53.71 53.77 78.12
28 1.999 2.316 5.023 2.008 2.327 5.022 51.66 51.72 78.17 52.93 52.98 78.16
211 2.004 2.318 5.023 – – – 52.06 52.11 78.17 – – –

(a) αL = 5
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Fig. 3 Relative errors δPcr for first three buckling loads as a function of nel for αL = 5 (a) and αL = 25 (b). Lines with crosses
or dots correspond to present analysis or 2D models, respectively

The number of equations of the 2D model n2D
eq is related to the number of equations of the present analysis

nPA
eq by means of the following relation:

n2D
eq

∼= 2
(

nPA
eq

)2
(11)

nPA
eq = 2 nel + 2 as usual.

The present analysis performed with a beam having 2,048 FEs is used as reference to determine the first
three buckling loads P ref

cr , see Table 1 for nel = 211. Moreover, Table 1 shows the first three dimensionless
critical loads Pcr/Pcr,E , evaluated with the 2D model and the present analysis, as a function of nel for αL
equal to 5 and 25. Figure 3a, b shows the relative error δPcr = (PFEM

cr − P ref
cr )/P ref

cr as a function of nel for
αL = 5 and 25, respectively. Both methods converge with a rate lower than n−1

el for the first two eigenvalues,
but CPU time t2D of the 2D model is greater than 5 (tPA)2.5, where tPA is the CPU time of the present analysis.
Moreover, the relative errors are lower than 1 % with at least 128 beam FEs. Thus, the present model can be
considered effective for the determination of buckling loads and mode shapes, and a number of 256 equal FEs
are adopted for all cases reported in this section. In the following, beams with different boundary conditions
are discussed (sliding–sliding, pinned–pinned, and free–free) and, for each case, the critical loads are evaluated
for increasing values of αL .

Assuming a perfect adhesion between the foundation beam and the half-plane and adopting a 2D model
with nel = 256, the first three dimensionless critical loads Pcr/Pcr,E are equal to 2.272, 2.709, 5.436 for
αL = 5 and turn out to be equal to 61.03, 61.13, 93.92 for αL = 25. Therefore, comparison with the values
reported in Table 1 shows that the frictionless contact condition yields buckling loads about 15 % lower than
those determined in the case of a perfect adhesion.
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Fig. 4 Dimensionless critical loads Pcr (continuous lines) and Pcr,m (dashed lines) versus αL for beam with sliding ends

3.2 Beam of finite length with sliding ends

The case of a beam with sliding ends is considered first. This case may refer to a rectangular pipe with a
top beam simply supported on rigid columns; thus, the structure prevents rotations at the ends of the foun-
dation beam but allows independent vertical displacements. The constraint equations to be used in Eq. (4)
are R1 = v′ (L/2) − v′(−L/2) = 0 and R2 = v′ (L/2) + v′(−L/2) = 0. Assuming a penalty parameter
k = 109 li Db/L3 = 109/256Db/L2 that ensures a stable numerical solution of Eq. (7), the values of the first
ten dimensionless buckling loads are characterized by an error lower than 10−5.

Figure 4a shows the first six dimensionless buckling loads Pcr/Pcr,E versus αL . Alternatively, Fig. 4b
shows the ratio Pcr/[Pcr,E (αL)2]. The curves in Fig. 4a, b exhibit curve veering and crossing points, and
interchange themselves for increasing values of αL , with a behavior analogous to a beam resting on Winkler
soil [11,12,18], where the coordinates of the intersection points may be known exactly, but the curve veering
is not present.

It is worth noting that the critical loads of a beam of infinite length resting on a two-dimensional half-space
and on an infinite number of equidistant supports are given by [4]:

Pcr,m = Pcr,E

[
m2 + (αL)3

2m π3

]
for m = 1, 2, 3, . . . (12)

For αL = 0, that is, for a beam without supporting soil, Eq. (12) provides the buckling loads of a beam
with sliding ends as well as of a simply supported beam. The first mode shape corresponds to the longest
wavelength permitted by the end restraints. For αL �= 0, buckling loads given by Eq. (12) are close to the
numerical solutions for the first two critical loads (see dashed lines in Fig. 4a). Moreover, for any given m, the
smallest critical load Pcr,R can be obtained by substituting αL = 3

√
4 π m [4] into Eq. (12):

Pcr,R = 3m2 Pcr,E = 3
3
√

16 π2
Pcr,E (αL)2 = 0.121Pcr,E (αL)2. (13)

For increasing values of αL , Fig. 4b shows that the first critical load Pcr converges to Eq. (13). In fact, for
low values of αL (short beams and/or soft soil), the numerical solution is in good agreement with Eq. (12),
whereas for high values of αL (long beams and/or stiff soil), it is well approximated by Eq. (13). Furthermore,
Eq. (13) allows evaluation of the critical stress in a form frequently used in the design of structural sandwich
panels [6–8]:

σcr,R = Pcr,R

bh
= 32/3

4
3
√

E2 E0 = 0.52E2/3 E1/3
0 . (14)

For αL = 5, Fig. 5a shows the first two mode shapes that are characterized by one and two half-waves,
whereas, for αL = 10, two and three half-waves are observed (Fig. 5b). As αL increases, short wavelengths
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Fig. 5 First (continuous line) and second (dashed line) mode shape for a beam with sliding ends and αL equal to 5 (a), 10 (b),
25 (c), 50 (d)

of the first two mode shapes are obtained (Fig. 5c, d). The same behavior can be detected in beam on Winkler
soil [11,18]. The critical wavelength �cr,R of the sinusoidal waveform assumed in [4] is equal to [10]:

�cr,R = 2 π h 3

√
E0

3E
= 2 π 3

√
4

α
= 9.97

α
(15)

where direct proportionality between the wavelength �cr,R and the thickness h of the beam is predicted.
Eq. (15) has been used in advanced metrology methods to measure the elastic modulus of polymeric thin
film [22]. Disregarding the half-waves near the beam ends, the present analysis predicts a constant critical
wavelength equal to �cr,R for at least the first two mode shapes checked. Thus, the eigenvectors shown in Fig.
5 have almost constant wavelength and variable amplitude, unlike the mode shape assumed in [4], which turns
out to be sinusoidal with constant amplitude and wavelength. Usually, Euler–Bernoulli beam model holds for
sufficiently high values of the critical half-wavelength, for example, �cr,R/2 > 10 h; thus, Eq. (15) yields
α h < 1/2 or equivalently αL < 0.5 L/h. For beam with αL > 0.5L/h, the transverse shear deformation of
the beam may become important and needs to be considered [23].

3.3 Beam of finite length with pinned ends

The case of a foundation beam with pinned ends may refer to a rigid portal frame whose columns are hinged
to the foundation beam; thus, the structure enforces zero relative displacement at the beam ends, but allows
independent rotations. The constraint equation to be applied to Eq. (4) is R1 = v (L/2) − v(−L/2) = 0.
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Fig. 6 Dimensionless critical loads Pcr (continuous lines), Pcr, m (dashed lines) and Pcr,B (dots) versus αL for beam with pinned
ends

Assuming a penalty parameter k = 106 Db/L3 that ensures a stable numerical solution of Eq. (7), the values
of the first ten dimensionless buckling loads are characterized by an error lower than 10−5.

In Fig. 6a, the first seven dimensionless buckling loads Pcr/Pcr,E are plotted versus the parameter αL .
Alternatively, Fig. 6b shows the ratio Pcr/[Pcr,E (αL)2]. For αL = 0, the numerical results coincide with the
exact solutions given by Eq. (12) (see dashed lines in Fig. 6a). For αL �= 0, reference is made to the solution
Pcr,B suggested in [16], where symmetric cosine functions are adopted:

Pcr,B = Pcr,E

[
(2m + 1)2 + 2(αL)3

(2m + 1)π3 F(m, m, 0)

]
for m = 0, 1, 2, . . . (16)

and the function F(m, m, 0) is reported in [16]. The first buckling load is well approximated by Eq. (16) for
αL < 7 (see dots in Fig. 6a, b), and by Eq. (12) for αL < 3. Moreover, Fig. 6a, b shows that Eq. (16) is unable
to provide eigenvalues corresponding to antisymmetric buckling. Conversely, for increasing values of αL , first
and second critical loads converge to (Fig. 6b):

Pcr,1 = 0.083Pcr,E (αL)2, (17)

Pcr,2 = 0.106Pcr,E (αL)2, (18)

whereas third and fourth critical loads turn out to be very close to the Reissner solution and converge to
Eq. (13). Therefore, the existence of critical loads lower than Pcr,R in Eq. (13) is clearly shown. In particular,
Eqs. (17) and (18) yield the following critical stresses:

σcr,1 = Pcr,1

bh
= 0.36E2/3 E1/3

0 , (19)

σcr,2 = Pcr,2

bh
= 0.46E2/3 E1/3

0 . (20)

For αL = 5, Fig. 7a shows that first and second mode shapes present one and two half-waves, respectively,
whereas for αL = 25 (Fig. 7b), the half-waves cannot be easily defined like in previous cases and the buck-
ling modes show the greatest amplitudes near the beam ends. Indeed, the critical loads in Eqs. (17) and (18)
correspond to these localized buckling modes.

The behavior of the beam with pinned ends on an elastic half-space is found to be different from that of
the beam with sliding ends, which does not present localized eigenmodes for increasing values of αL (long
beam and/or stiff soil). With regard to Winkler soil, reference is usually made to [12], where the solution of the
beam with pinned ends converges to the critical load of the beam with clamped ends [12,24]. Nonetheless, for
a beam with pinned ends resting on Winkler soil, Goodier and Hsu [13] have shown the occurrence of mode
shapes localized at the beam ends.
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Fig. 7 First (continuous line) and second (dashed line) mode shape for a beam with pinned ends and αL equal to 5 (a), 25 (b)
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Fig. 8 Dimensionless critical loads Pcr (continuous lines) and Pcr,R (dashed line) versus αL for beam with free ends

3.4 Beam of finite length with free ends

In Fig. 8a, the dimensionless critical loads Pcr/Pcr,E are plotted versus αL values; the dashed line shows the
function given by Eq. (13). However, the first and second eigenvalues appear quite far from this solution and,
for increasing αL , converge to the critical load Pcr,1 in Eq. (17). Indeed, it is worth noting that a beam with
free ends and symmetric behavior is practically coincident with a beam with pinned ends. It is interesting to
observe that the first and second eigenvalues are quite different for very small values of αL and present some
intersection points, whereas for αL ≥ 10, they both converge to the value given by Eq. (17). For increasing
values of αL , the third and fourth eigenvalues are close to Reissner solution and converge to the value given
by Eq. (13) for the beam with sliding ends.

In absence of soil, the critical value of a beam with free ends is obviously zero, but for very short beam
or very soft soil (αL = 1), the first mode is antisymmetric and represents a rigid body movement, whereas
the second one is symmetric and sinusoidal with one half-wave (Fig. 9a). For αL = 5, the first mode shape
becomes symmetric and the second one antisymmetric (Fig. 9b). Moreover, for αL ≥ 5, the first and second
critical loads are very close to the one given by Eq. (17) and both mode shapes tend to be localized near the
beam ends, as shown for αL = 25 in Fig. 9c, where the first mode shape is coincident with the one found for
the beam with pinned ends (Fig. 7b).

Figure 10 shows the first mode shape for a beam with sliding ends, and the third mode shape for beams
with pinned and free ends resting on a stiff soil (αL = 25). Eigenvectors are practically coincident in the
neighborhood of beam midpoint and present small differences at the beam ends, due to the different restraints.
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Fig. 9 First (continuous line) and second (dashed line) mode shape for a beam with free ends and αL equal to 1 (a), 5 (b), 25
(c), 50 (d)
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Fig. 10 First mode shape for a beam with sliding ends (continuous line), and third mode shape for beam with pinned (diamond
symbol) and free (plus symbol) ends resting on stiff soil (αL = 25)

The behavior of the beam with free ends on an elastic half-space is quite similar to the corresponding case
of beam on Winkler soil, where first and second critical loads converge to one half of the smallest critical load
of a beam with clamped or sliding ends [12,18,24].
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Table 2 First four dimensionless critical loads Pcr/[Pcr,E (αL)2] for beams of infinite length with different boundary conditions

End restraints 1st 2nd 3rd 4th
Free–free 0.083 0.083 0.121 0.121
Pinned–pinned 0.083 0.106 0.121 0.121
Sliding–free 0.083 0.121 0.121 0.125
Sliding–pinned 0.094 0.121 0.121 0.125
Sliding–sliding 0.121 0.121 0.125 0.125

PP

Lp

L

Fig. 11 Rectangular pipe with compressed columns

3.5 Beam of infinite length with different boundary conditions

Figures 4b, 6b, 8b show that the dimensionless critical loads converge to well definite limits; consequently,
sufficiently high value of αL allows to consider beams as if they were of infinite length. Table 2 collects
the first four dimensionless critical loads Pcr/[Pcr,E (αL)2] for beam with αL = 50 and different boundary
conditions. In particular, in the sliding–pinned case, the constraint equations that have to be used in Eq. (4)
are R1 = v (L/2) − v(−L/2) = 0 and R2 = v′(−L/2) − [v(−L/2) − v (L/2)]/L = 0, whereas in the
sliding–free case, the constraint equation is R1 = v′(−L/2) = 0. In this case, the first buckling mode is
localized at the free end. Reissner result given by Eq. (13) is well achieved by beams with two sliding ends.
Nevertheless, beams with different boundary conditions show that the first critical load is significantly smaller
than that obtained by Reissner solution.

4 Rectangular pipe on an elastic half-plane

As suggested in the static case [17], the proposed model allows us to study easily the coupling of the foundation
beam with structures described by traditional FEs. To this end, a rectangular frame of length L and height L p
is considered (Fig. 11); both the foundation and the top beam have the same bending rigidity Db, whereas
Dp indicates the column bending rigidity. Concentrated forces P are applied at upper column ends. In the
following, introducing the dimensionless parameters

η = L

L p
, ρ = Db

Dp
, ψ = ρ

η
, λp = P L2

p

Dp
= ρ

η2 λ, (21)

two cases with ψ = 0.5(ρ = 1, η = 2) and ψ = 2.0(ρ = 4,η = 2) are considered. A number of 32 equal FEs
is adopted for the foundation beam, whereas the other frame elements are subdivided into 16 equal FEs.

4.1 Buckling of rectangular pipes with free and pinned foundation beam ends

Buckling analyses are restricted to the determination of the first two critical loads and the corresponding mode
shapes. Free and pinned foundation beam ends are considered, and in the latter case, the penalty function R1
introduced in Sect. 3.3 is used.
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Fig. 12 Rectangular pipe with ψ = 0.5 (a) and 2.0 (b). First and second dimensionless critical loads λp,cr (continuous lines
and dots) and λp,lim (cross symbol) versus αL . Continuous lines and dots describe pipe with free and pinned foundation ends,
respectively

Figure 12a, b shows the first two dimensionless critical loads λp,cr as a function of αL for ψ = 0.5 and
ψ = 2.0, respectively. Continuous lines represent the pipe with free foundation ends, whereas dots represent
critical loads of the frames with pinned foundation ends. For very soft soil and free foundation ends, the first
critical load tends to zero and the corresponding mode shape is a rigid body movement (Fig. 13a), whereas,
for pipe with pinned foundation ends (Fig. 13c), the first critical load is close to the analytical solution of the
rectangular pipe without supporting soil, that is, λp,cr = 3.90 for ψ = 0.5 and λp,cr = 7.28 for ψ = 2.0.
For very stiff soil and both restraint conditions, foundation deflections are small (Fig. 13b, d) and the first
critical load converges to the critical load of a portal frame with built-in bases (λp,cr = 6.03 for ψ = 0.5 and
λp,cr = 8.43 for ψ = 2.0).

With regard to the second eigenvalue, both restraint conditions give equal buckling loads and identical
mode shapes (Fig. 13e, f); thus, a pipe with free ends behaves like one with pinned foundation ends. For
very soft substrate, soil reactions extend along the whole foundation length. Therefore, the second critical
load can be overestimated by the corresponding value λp,cr,sup of a pipe without supporting soil and it can be
underestimated by the critical load λp,cr,inf of a self-equilibrate pipe having concentrated forces at top column
ends and a distributed load equal to 2P/L on the foundation beam, which simulates constant soil reactions.
For ψ = 0.5 and αL tending to zero, the second critical load tends to λp,cr = 12.4 (Fig. 12a), bounded by
λp,cr,inf = 11.6 and λp,cr,sup = 13.5. Moreover, the symmetric mode shape depicted in Fig. 13e clearly shows
a foundation deflection larger than the upper beam deflection. This behavior is caused by the compressive
force in foundation beam, which reduces its flexural stiffness. For ψ = 2.0 and αL tending to zero, the sec-
ond critical load tends to λp,cr = 20.6 (Fig. 12b), bounded by λp,cr,inf = 20.3 and λp,cr,sup = 21.6. For
increasing αL , the second critical load converges to the corresponding value of a portal frame with built-in
bases

(
λp,cr = 23.0 for ψ = 0.5, λp,cr = 28.4 for ψ = 2.0

)
. For pipes having the same geometry, but differ-

ent bending rigidity ratios ρ, the stiffer the foundation beam, the lower the soil stiffness necessary to converge
to a portal frame with built-in bases. Hence, for ψ = 2.0 (ρ = 4,η = 2), Fig. 12b shows that convergence
to λp,cr = 28.4 is almost achieved for αL > 50, whereas, for ψ = 0.5 (ρ = 1, η = 2), Fig. 12a shows
that convergence to λp,cr = 23.0 is slower and the mode shape depicted in Fig. 13f is characterized by small
foundation deflections.

4.2 Nonlinear incremental analyses of rectangular pipes

With regard to the second mode shape, the axial forces in the columns are statically determinate and are equal
to P , but the axial forces in top and foundation beams are statically indeterminate and depend nonlinearly on
the load multiplier λp; thus, a snap-through instability is to be expected [18]. In order to obtain a more correct
study of the pipe stability, nonlinear incremental analyses are carried out, taking into account the axial force
variation in top and foundation beams. To this purpose, the axial degrees of freedom are added to the beam
FEs and the element stiffness matrix is modified as usual [20]; the axial-to-bending rigidity ratio E0bh/Db is
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Fig. 13 Rectangular pipe with ψ = 0.5. Mode shapes for αL = 1 (a, c, e), and 25 (b, d, f). First mode shape for a pipe with free
(a, b) and pinned (c, d) foundation ends. Second mode shape (e, f) for a pipe with either free or pinned foundation ends

taken equal to 12/h2 with beam slenderness L/h = 10. Displacement control has been performed by using
the formulation proposed in [25].

With regard to the pipe with ρ = 1, η = 2 (ψ = 0.5) and αL = 1, Fig. 14a shows load multiplier λp
as a function of the rotation φ at the foundation beam end. In particular, the straight line No. 1 represents
the linear analysis, the curve No. 2 corresponds to a nonlinear incremental analysis that takes into account
second-order effects, but assumes axial forces proportional to those obtained with the linear analysis; in this
case, load multiplier λp converges to λp,cr = 12.4, determined with the buckling analysis. The curve No.
3 represents a nonlinear incremental analysis that upgrades the axial forces in each load step and the load
multiplier λp attains the limit point λp,lim = 5.2, which is 58 % lower than λp,cr = 12.4 determined with
the buckling analysis. Figure 14b shows the load multiplier λp as a function of the dimensionless axial force
in the foundation beam Nb L2

p/Dp (positive sign is assigned to compression forces), and Nb increases more
than linearly with respect to the load multiplier λp, up to the attainment of the buckling load of the foundation
beam.

For other values of αL , the load multipliers λp,lim at limit point are determined and added to Fig. 12a
by using cross symbols. The differences between buckling and nonlinear incremental analysis are large up to
αL = 10, whereas for stiffer soil, the load multipliers λp,lim are quite close to the buckling loads λp,cr. For pipe
with ρ = 4, η = 2 (ψ = 2.0), Fig. 12b shows that differences between buckling and nonlinear incremental
analysis are large up to αL = 5.

Finally, for αL = 1 and 5, Tables 3 and 4 show the ratio λp,lim/λp,cr for some values of the pipe param-
eters ρ and η. Each diagonal in Tables 3 and 4 exhibits the same value of ψ, which provides the same λp,cr
regardless of the chosen parameters ρ and η. Conversely, small limit load multiplier λp,lim occurs with low
values of ρ and if L > 2 L p. However, Fig. 14a shows that the limit load multiplier λp,lim requires significant
rotation. Consequently, ordinary structures collapse for the achievement of strength limit rather than by elastic
instability.
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Fig. 14 Rectangular pipe with ψ = 0.5 and αL = 1. Load multiplier λp as a function of the rotation φ at the foundation
beam end (a) and the dimensionless axial force in foundation beam Nb L2

p/Dp (b) for linear analysis (straight line 1), nonlinear
incremental analysis with second-order effects (curve 2), nonlinear incremental analysis that upgrade the axial forces in each load
step (curve 3)

Table 3 Ratio λp,lim/λp,cr for rectangular pipes on an elastic half-plane with αL = 1

αL = 1 η = L/L p

0.5 1 2 4
ρ = Db/Dp

0.5 1.00 0.80 0.52 0.27
1 1.00 1.00 0.42 0.27
2 1.00 0.99 0.53 0.29
4 1.00 1.00 0.68 0.32

Table 4 Ratio λp,lim/λp,cr for rectangular pipes on an elastic half-plane with αL = 5

αL = 5 η = L/L p

0.5 1 2 4
ρ = Db/Dp

0.5 1.00 0.96 0.65 0.25
1 1.00 1.00 0.49 0.25
2 1.00 0.96 0.65 0.26
4 1.00 1.00 0.84 0.31

5 Conclusions

A simple and effective FE-BIE coupling method is proposed and applied to stability problems of beams on an
elastic half-plane having finite length and different end restraints. The proposed coupled FE-BIE model has
turned out to be fast and effective in evaluating buckling loads and corresponding mode shapes. The adopted
Euler–Bernoulli beam model holds if αL < 0.5 L/h; conversely, the transverse shear deformation of the beam
may become important and needs to be considered [23]. For increasing beam slenderness and/or soil stiffness,
a variation of the critical loads proportional to (αL)2 has been found. For low values of αL , the well-known
analytic results derived by Reissner [4] for a beam of infinite length on an elastic half-plane are quite similar
to those of a beam with either pinned or sliding ends, whereas, for large values of αL , Reissner results are
well achieved by beams with sliding ends. Nevertheless, beams with pinned or free ends show that the first
two critical loads are significantly smaller than those obtained by Reissner solution. The corresponding mode
shapes are characterized by large amplitudes in the neighborhood of the beam ends, whereas third and fourth
critical loads converge to the value given by Reissner. Finally, nonlinear incremental analyses of rectangular
frames with compressed columns and free or pinned foundation ends have been considered. As for pipes with
pinned foundation ends, snap-through instability is significant for pipes stiffer than the soil.

Mixed variational principle, similar to the one presented in [17], was used in [26] to study an axially loaded
thin structures perfectly bonded to an elastic substrate and in [23] to determine the buckling loads of Timo-
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shenko beams in frictionless contact with an elastic half-plane. Future investigations might adopt alternative
Green functions, for example, associated with an elastic non-homogeneous half-plane or with a finite thickness
layer resting on a rigid base. The generalization of the proposed method to contact problems with a poroelastic
substrate or friction requires more detailed investigations.
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Appendix

For a prismatic beam element subjected to uniform loads p(x) and with constant soil pressure, element matrices
appearing in Eq. (5) are

K̃bi =
(

L

li

)3

⎡
⎢⎣

12 −6li −12 −6li
4l2

i 6li 2l2
i

12 6li
sym 4l2

i

⎤
⎥⎦ , K̃gi = L

li

⎡
⎢⎣

6/5 −li/10 −6/5 −li/10
2l2

i /15 li/10 −l2
i /30

6/5 li/10
sym 2l2

i /15

⎤
⎥⎦

Fi = p[li/2,−l2
i /12, li/2, l2

i /12]T, Hi = [li/2,−l2
i /12, li/2, l2

i /12]T,

g̃i i = 2
π

l2
i

(
3

2
− ln li

)
,

g̃i j = 2
π

[
3

2
li l j + G(x j+1 − xi+1) − G(x j+1 − xi ) − G(x j − xi+1) + G(x j − xi )

]
for i �= j

where G(x) = x2/2 ln |x |.
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