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1. INTRODUCTION

Increasing demands on reliability for safety critical systems
such as aircraft or spacecraft require robust control and
fault diagnosis capabilities as these systems are potentially
subjected to unexpected anomalies and faults in actuators,
input-output sensors, components, or subsystems. Conse-
quently, fault diagnosis capabilities and requirements for
aerospace applications have recently been receiving a great
deal of attention in the research community [1, 2]. A fault
diagnosis system needs to detect and isolate the presence and
location of the faults, on the basis also of the control sys-
tem architectures. Development of appropriate techniques
and solutions for these tasks are known as the fault detec-
tion and isolation (FDI) problem. There are, broadly speak-
ing, two main approaches for addressing the FDI problem,
namely, hardware-based and model-based techniques [3, 4].
A common and important approach in model-based tech-
niques is known as the residual-based method. A number of
researchers have developed residual-based methods for dy-
namic systems such as the parity space [5], state estimation
[6], unknown input observer (UIO), Kalman filters (KFs)
[3], and parameter identification [6].Intelligent techniques
[7] can be also exploited. Furthermore, the Massoumnia’s

geometric method [8] was successfully extended to nonlin-
ear systems [9, 10]. A crucial issue with any FDI scheme is
its robustness properties and a viable procedure for practical
application of FDI techniques is really necessary. Moreover,
robust FDI for the case of aircraft systems and applications is
still an open problem for further research.

The first part of this work deals with the residual gen-
erator design for the FDI of input-output sensors of a gen-
eral aviation aircraft subject to turbulence, wind gust distur-
bances, and measurement noises. The developed PM scheme
belongs to the parity space approach [5] and it is based on
an input-output polynomial description of the system under
diagnosis. In particular, the use of input-output forms allows
to easily obtain the analytical description for the disturbance-
decoupled residual generators. These dynamic filters, organ-
ised into bank structures, are able to achieve fault isolation
properties. An appropriate choice of their parameters allows
to maximise robustness with respect to both measurement
noise and modelling errors, while optimising fault sensitiv-
ity characteristics. The development of NLGA methodology
is based on the works by De Persis and Isidori [10]. It was
shown that the problem of the FDI for nonlinear systems is
solvable if and only if there is an unobservability distribu-
tion that leads to a quotient subsystem which is unaffected
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by all faults but one. If such a distribution exists, an appro-
priate coordinate transformations in the state space can be
exploited for designing a residual generator only for the ob-
servable subsystem. This technique was applied for the first
time to a vertical takeoff and landing (VTOL) aircraft with
reference to a reduced-order model [11]. The NLGA resid-
ual generators have been designed in order to be analytically
decoupled from the vertical and lateral components of the
wind (gusts and turbulence). Moreover, a new full analyt-
ical developed mixed H−/H∞ optimisation is proposed in
order to design the NLGA residual generators so that a good
tradeoff between the fault sensitivity and the robustness with
respect to measurements and model errors is achieved. The
designed residual generators have been tested on a PIPER PA-
30 aircraft flight simulator that was implemented in Matlab-
Simulink environments. With respect to the related works
by the same authors [12, 13], the main contribution of
this paper regards the enhancement in the designs of the
proposed FDI schemes. Moreover, the final performances
have been evaluated by adopting a typical aircraft reference
trajectory embedding several steady-state flight conditions,
such as straight flight phases and coordinated turns. Com-
parisons with different disturbance-decoupling methods for
FDI based on neural networks (NNs) and unknown input
Kalman filter (UIKF) have been also provided. Finally, exten-
sive experiments exploiting Monte Carlo analysis are used for
assessing the overall capabilities of the developed FDI meth-
ods, in the presence of uncertainty, measurement, and mod-
elling errors.

2. AIRCRAFT MODEL OVERVIEW

This section recalls briefly the description of the monitored
aircraft whose main parameters and variables are reported in
Table 1.

The considered aircraft simulation model consists of a
PIPER PA-30, based on the classical nonlinear 6 degrees
of freedom (DoF) rigid body formulation [14] whose mo-
tion occurs as a consequence of applied forces and moments
(aerodynamic, propulsive, and gravitational). A set of lo-
cal approximations for these forces has been computed and
scheduled depending on the values assumed by true airspeed
(TAS), curvature radius, flight path angle, altitude, and flap
deflection. In this way, it is possible to obtain a mathemati-
cal model for each flight condition. This model is suitable for
a state-space representation, as it can be made explicit. The
parameters in the analytic representation of the aerodynamic
actions have been obtained from wind tunnel experimen-
tal data, and the aerodynamic actions are expressed along
the axes of the wind reference system. It should be observed
that aerodynamic forces and moments are not implemented
by the classical linearised expressions (stability derivatives)
but by means of cubic splines approximating the nonlinear
experimental curves. The nonlinear 6 DoF model has been
completed by means of the PIPER PA-30 propulsion system
consisting of two 4-pistons aspirated engines, with the throt-
tle valve aperture δth as input and the overall thrust intensity
as output. The overall simulation model, used to perform
all the following tests, consists of the aircraft 6 DoF flight

Table 1: Nomenclature.

α Angle of attack

β Angle of sideslip

pω Roll rate

qω Pitch rate

rω Yaw rate

φ Bank angle

θ Elevation angle

ψ Heading angle

ne Engine shaft angular rate⎡
⎣

Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz

⎤
⎦ Inertia moment matrix

V True airspeed (TAS)

δe Elevator deflection angle

δa Aileron deflection angle

δr Rudder deflection angle

δth Throttle aperture percentage

H Altitude

γ Flight path angle

m Airplane mass

ωu, ωv , ωw Wind gust components

dynamics and the engine model completed with the model
of input-output sensors, the servo actuators, the atmosphere
turbulence Dryden description, the wind gust disturbances,
and a classical autopilot. Moreover, the sensor models embed
all the possible sources of disturbance (calibration and align-
ment errors, scale factor, white and coloured noises, limited
bandwidth, g-sensitivity, gyro drift, etc.).

The linear model used by the proposed PM FDI approach
described in Section 3 embeds the linearisation both of the 6
DoF model and of the propulsion system as follows:

ẋ(t) = Ax(t) + Bc(t) + Ed(t) (1)

with

x(t) = [ΔV(t)Δα(t)Δβ(t)Δpω(t)Δqω(t)Δrω(t)

· · ·Δφ(t)Δθ(t)Δψ(t)Δne(t)]T ,

c(t) = [Δδe(t)Δδa(t)Δδr(t)Δδth(t)]T ,

d(t) = [wu(t)wv(t)ww(t)]T ,

(2)

where Δ denotes the variations of the considered variables
while c(t) and d(t) are the control inputs and the distur-
bances, respectively. The disturbance contribution of the
wind gusts as air velocity components, wu, wv, and ww, along
body axes was also considered. The output equation associ-
ated with the model (1) is of the type y(t) = Cx(t), where
the rows of C correspond to rows of the identity matrix, de-
pending on the measured variables.

On the other hand, regarding the NLGA FDI scheme
described in Section 4, it requires a nonlinear input affine
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system [10], but the adopted simulation model of the aircraft
does not fulfil this requirement. For this reason, the follow-
ing simplified aircraft model is used:

V̇ = −
(
CD0 + CDαα + CDα2α

2
)

m
V 2

+ g(sin α cos θ cosφ − cosα sin θ)

+
cos α
m

tp
V

(
t0 + t1ne

)
δth +wvsinα,

α̇ = −
(
CL0 + CLαα

)

m
V+

g

V
(cos α cos θ cosφ+sin α sin θ)

+ qω +
sin α
m

tp
V 2

(
t0 + t1ne

)
δth +

cos α
V

wv,

β̇ =
(
CD0 + CDαα + CDα2α

2
)

sin β + CYβ β cos β

m
V

+ g
cos θ sinφ

V
+ pω sin α− rω cos α

+
cos α sin β

m

tp
V 2

(
t0 + t1ne

)
δth +

1
V
w
 ,

ṗω =
(
Clβ β + Clp pω

)

Ix
V 2 +

(
Iy − Iz

)

Ix
qωrω +

Cδa
Ix
V 2δa,

q̇ω =
(
Cm0 + Cmαα + Cmqqω

)

Iy
V 2 +

(
Iz − Ix

)

Iy
pωrω

+
Cδe
Iy
V 2δe +

td
Iy

tp
V

(
t0 + t1ne

)
δth,

ṙω =
(
Cnββ + Cnrrω

)

Iz
V 2 +

(
Ix − Iy

)

Iz
pωqω +

Cδr
Iz
V 2δr ,

φ̇ = pω +
(
qω sin φ + rω cosφ

)
tan θ,

θ̇ = qω cosφ − rω sinφ,

ψ̇ =
(
qω sin φ + rω cosφ

)

cos θ

ṅe = tnn
3
e +

t f
ne

(
t0 + t1ne

)
δth,

(3)

where C(·) are the aerodynamic coefficients; t(·) are the en-
gine parameters; and wv, wl are the vertical and lateral wind
disturbance components. In particular, the model of (3) has
been obtained on the basis of some assumptions.In particu-
lar, the expressions of aerodynamic forces and moments have
been represented by means of series expansions in the neigh-
bourhood of the steady-state flight condition, then only the
main terms are considered. The engine model has been sim-
plified by linearising the power with respect to the angular
rate behaviour in the neighbourhood of the trim point. The
second-order coupling between the longitudinal and lateral-
directional dynamics have been neglected. The x-body axis
component of the wind has been neglected. In fact, the air-
craft behaviour is much more sensitive to the y-body and

z-body axis wind components. Finally, the rudder effect in
the equation describing the β dynamics has been neglected.
It is worth noting that Section 5 has shown that the designs
and the simulations of the NLGA residual generators are ro-
bust with respect to the last approximation. In fact, the model
of the β dynamics will never be used.

3. PM RESIDUAL GENERATORS

Let us consider the input-output representation of a
continuous-time, time-invariant linear dynamic system af-
fected by faults and disturbances in the form

P(s)y(t) = Qc(s)c(t) +Qd(s)d(t) +Qf (s) f (t), (4)

where y(t) ∈ Rm is the output vector, c(t) ∈ Rlc is the input
vector, d(t) ∈ Rld is the disturbance vector, and f (t) ∈ Rl f

is the fault vector; P(s), Qc(s), Qd(s), and Qf (s) are known
polynomial matrices of proper dimensions.

Models of type (4) can be frequently found in prac-
tice by applying well-known physical laws to describe the
input-output dynamical links of various systems. Algorithms
to transform multivariable state-space models to equivalent
multiple-input-multiple-output (MIMO) polynomial repre-
sentations and vice versa are available [15]. Suitable software
routines for multivariable system transformations have been
implemented by the authors in the Matlab environment. In
fact, the Matlab software for state-space and transfer func-
tion conversions is not able to manage directly MIMO mod-
els, since they are considered as concatenations of single-
input-single-output (SISO) systems.

An important aspect of the residual generator design
concerns the decoupling properties of the disturbance d(t).
The decoupling can be obtained premultiplying all the terms
of (4) by the matrix L(s) ∈ Nl(Qd(s)), that is, the left null-
space of the matrix Qd(s):

L(s)P(s)y(t)− L(s)Qc(s)c(t) = L(s)Qf (s) f (t). (5)

Hence, the residual generator for the system of (4) is repre-
sented by

R(s)r(t) = L(s)P(s)y(t)− L(s)Qc(s)c(t)

= L(s)Qf (s) f (t),
(6)

where it is assumed that r(t) ∈ R and L(s) is a polyno-
mial row vector. The polynomial R(s) can be arbitrarily se-
lected among the polynomials with degree greater than or
equal to n∗r , where n∗r is the maximum row-degree of the pair
{L(s)P(s),L(s)Qc(s)}. Moreover, if all the roots of R(s) lie in
the open left-half s-plane, it assures the stability of the filter
of (6). Without loss of generality, it is assumed that R(0) = 1.

Remark 1. If the matrix Qd(s) is of full-column rank (i.e.,
rank Qd(s) = ld), Nl(Qd(s)) has dimension m − ld. There-
fore, a polynomial matrix B(s), whose rows represents a min-
imal polynomial basis of Nl(Qd(s)), has m − ld rows and m
columns.

This work is focused on the problem of detecting and iso-
lating additive faults acting on the input and output sensors
of the monitored system. If the input-output measurements
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are modelled by the relations of (7):

c∗(t) = c(t) + fc(t),

y∗(t) = y(t) + fo(t),
(7)

the system of (4) becomes

P(s)
(
y∗(t)− fo(t)

) = Qc(s)
(
c∗(t)− fc(t)

)
+Qd(s)d(t),

(8)

under the assumptions that Qf (s) f (t) = [−Qc(s),P(s)] ·
[ f Tc (t), f To (t)]T . Thus, the residual generator of (6) is writ-
ten as

R(s)r(t) = L(s)P(s)y∗(t)− L(s)Qc(s)c∗(t)

= L(s)P(s) fo(t)− L(s)Qc(s) fc(t).
(9)

Remark 2. The residual generator described by (7) and (9)
can be seen as an errors-in-variables (EIV) model [16] with
respect the input and output variables, as the measurements
that feed the residual function are affected by additive faults.
This description highlights the importance of the residual
generator in the form of (9).

Remark 3. The diagnostic capabilities of the residual genera-
tor of (6) strongly depend on the choice of the terms L(s) and
R(s). This paper proposes a method for the design of these
polynomials, under the assumption that f (t) is a scalar and,
consequently, Qf (s) is a vector. The rationale of this assump-
tion is commented in Section 3.2 where the fault isolation
method is proposed.

In the following, the freedom design in the selection of
the rows of the polynomial matrix L(s) is investigated when
q = m − ld ≥ 2. These degrees of freedom are used to opti-
mise the sensitivity properties of r(t) with respect to the fault
f (t), for example, by maximising the steady-state gain of the
transfer function Gf (s) = L(s)Qf (s)/R(s).

If bi(s) (i = 1, . . . , q) are the row vectors of the basis B(s),
L(s) can be expressed as linear combination of these vectors:

L(s) =
q∑

i=1

kibi(s), (10)

where ki are real constants maximising:

lim
s→0

1
R(s)

[ q∑

i=1

kibi(s)

]
Qf (s) =

[ q∑

i=1

kibi(0)

]
Qf (0) (11)

with the constraint

q∑

i=1

k2
i = 1. (12)

Under these assumptions, when the fault f (t) is a step-
function of magnitude F,the steady-state residual value is

lim
t→∞r(t) = lim

s→0
s
L(s)Qf (s)

R(s)
F

s
=
[ q∑

i=1

kibi(0)

]
Qf (0)F. (13)

If the following real vectors are defined as

k =

⎡
⎢⎢⎢⎢⎢⎢⎣

k1

k2

...

kq

⎤
⎥⎥⎥⎥⎥⎥⎦

, a = B(0)Qf (0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1

a2

...

aq

⎤
⎥⎥⎥⎥⎥⎥⎦

, (14)

the problem of the maximisation of the residual fault sensi-
tivity can be recast as follows.

Proposition 1. Given the vector a, the vector k that maximises
the steady-state fault sensitivity, that is, the function W given
by the expression

W = aTk =
q∑

i=1

aiki, (15)

under the constraint of (12), can be found by solving

k̃ = arg maxW(k). (16)

The solution to the problem described by Proposition 1
can be derived as follows. The constraint of (12) describes
a hypersphere, whilst the expression of the function of (15)
is a hyperplane. The unknown coefficients k must belong
to both the hyperplane and the hypersphere. Therefore, the
points of tangency between the hypersphere and the hyper-
plane represents the solutions that maximise or minimiseW .
As shown below, the solution of the problem described by
Proposition 1 exists and is unique.

Proof. From (12), k1 is expressed as a function of k2,
k3, . . . , kq, and it is substituted into (15):

W = a1

√
1− k2

2 − k2
3 − · · · − k2

q + a2k2 + · · · + aqkq.

(17)

By computing∇W = 0, that is,

∂W

∂k2
= 1

2
a1

−2k2√
1− k2

2 − k2
3 − · · · − k2

q

+ a2 = 0,

∂W

∂k3
= 1

2
a1

−2k3√
1− k2

2 − k2
3 − · · · − k2

q

+ a3 = 0,

...

∂W

∂kq
= 1

2
a1

−2kq√
1− k2

2 − k2
3 − · · · − k2

q

+ aq = 0,

(18)

and squaring the expression, after algebraic manipulation:

a2
2 =

(
a2

2 + a2
1

)
k2

2 + a2
2k

2
3 + · · · + a2

2k
2
q ,

a2
3 = a2

3k
2
2 +

(
a2

3 + a2
1

)
k2

3 + · · · + a2
3k

2
q ,

...

a2
q = a2

qk
2
2 + a2

qk
2
3 + · · · +

(
a2
q + a2

1

)
k2
q ,

(19)
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an expression in the form of Ax = b is obtained, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
a2

2 + a2
1

)
a2

2 · · · a2
2

a2
3

(
a2

3 + a2
1

) · · · a2
3

...
...

. . .
...

a2
q a2

q · · · (
a2
q + a2

1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k2
2

k2
3

...

k2
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a2
2

a2
3

...

a2
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(20)

The unknown vector x̃, under the constraint of (12), can be
expressed as follows:

x̃ =

⎡
⎢⎢⎢⎣

1−
q−1∑

i=1

(
A−1b

)
i

A−1b

⎤
⎥⎥⎥⎦ , (21)

where (A−1b)i is the ith element of the vector A−1b. The vec-
tor x̃ represents the squares of the solution of the problem of
Proposition 1.

Let us indicate Ω the set of the vectors k whose elements
are the square roots of the elements of x̃. As every element
can be taken both with signs “+” and “−”, such vectors are

2q. Therefore, the solution k̃ of Proposition 1 can be refor-
mulated as

k̃ = arg max
k∈Ω

W(k). (22)

Remark 4. The matrix A can be expressed as A = E + a2
1Iq−1,

where E is a matrix with equal columns. If a1 /= 0, this as-
sumption guarantees the existence of A−1, and consequently
the existence and the uniqueness of the solution A−1b. Ob-
viously, if a1 = 0 and aj /= 0, it is sufficient to express kj as
function of the remaining variables and to reapply the same
procedure.

Remark 5. The same solution can be found by maximising
the function |W|. Due to the symmetry properties, the max-
imisation of |W| admits two solutions corresponding to the
maximum and the minimum of the function W . Moreover,
the choice of the quadratic constraint of (12) guarantees the
unicity of the solution to the problem of Proposition 1.

Remark 6. The problem described by Proposition 1 could
have been solved also in a numerical way, that is, by searching
k that maximises W on the surface of the q-dimensional hy-
persphere. However, the computational cost of this numeri-
cal solution can be a drawback when q is big.

3.1. PM residual design

Section 3 has shown how to maximise the steady-state
gain of the continuous-time transfer function Gf (s) =
L(s)Qf (s)/R(s) trough a suitable choice of the real vector k

(i.e., k = k̃). The design of the filter of (6) has been com-
pleted here by introducing a method for assigning both the
zeros and the poles of the continuous-time transfer function
Gf (s). The zeros and poles location influences the transient
characteristics (maximum overshoot, delay time, rise time,
settling time, etc.) of the filter of (6). In many applications,
these characteristics must be kept within tolerable or pre-
scribed limits in order to guarantee good performances of
the filter in terms, for example, of fault detection times and
false-alarm probabilities.

Remark 7. When k = k̃, the polynomial L(s)Qf (s) =
kTB(s)Qf (s) is fixed and no freedom degree is left to arbitrar-
ily assign the zeros. In order to solve this problem, a polyno-
mial vector k(s) can be considered. Under this assumption,
L(s) still belongs to the subspace Nl(Qd(s)), where the terms
ki are polynomial coefficients.

The previous consideration leads to introduce the poly-
nomial E(s) = kT(s)B(s)Qf (s), where k(s) is a q-dimensional
polynomial vector whose ith element has the form

ki(s) =
nk∑

j=0

k
j
i s
j . (23)

The degree nk and the q × nk coefficients k
j
i are freedom de-

sign ( j /= 0) that are exploited for obtaining the desired roots
of the polynomial E(s). However, in order to maximise the
steady-state gain, as shown in Section 3, the following condi-
tion must hold:

k(0) = k̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k̃1

k̃2

...

k̃q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇐⇒ k0

i = k̃i, i = 1, . . . , q. (24)

Definition 1. H(s) is the reference polynomial whose roots
are the zeros to be assigned:

H(s) =
nh∑

j=0

hjs j . (25)

Since the constraint of (24) must hold, H(0) = k̃TB(0) ·
Qf (0). Obviously, this assumption does not provide any re-
striction on the roots assignable. Under the previous consid-
erations, the zero assignment and pole placement problem is
formulated as follows.

Proposition 2. The degree nk and the coefficients k
j
i have to

be determined under the constraint of (24) in order to obtain
E(s) = H(s).

Proof. In Section 3, the polynomial vector a(s) = B(s)Qf (s)
was defined. Its ith element is a known polynomial of a
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certain degree, nai . If na is defined as follows:

na = max
i=1,...,q

nai , (26)

the ith element of a(s) can be always written as a polynomial
of degree na:

ai(s) =
na∑

j=0

a
j
i s
j (27)

by imposing that a
j
i = 0 when j > nai .

As E(s) = kT(s)a(s), by multiplying (23) and (27), it re-
sults

E(s) =
q∑

i=1

nk+na∑

j=0

( ∑

α+β= j
kαi a

β
i

)
s j =

nk+na∑

j=0

e js j , (28)

where

e j =
q∑

i=1

∑

α+β= j
kαi a

β
i . (29)

Equations (28) and (29) assume that kαi = 0 when α > nk and

a
β
i = 0 when β > na. Note that the coefficients e1, . . . , enk+na

depend on the freedom design k1
i , . . . , knki . On the other hand,

e0 is fixed as the coefficients k0
i are assigned by (24).

Let us suppose that nh ≤ nk + na. By imposing E(s) =
H(s), from (29) and (25), the following expressions are com-
puted:

q∑

i=1

∑

α+β= j (α /= 0)

kαi a
β
i = hj −

q∑

i=1

k0
i a

j
i , j = 1, . . . ,nk + na.

(30)

Equations (24) and (30) represent a linear system with nk+na
equations and q × nk unknowns, which can be expressed in
the classical form Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
1 · · · a0

q 0 · · · 0 0 · · · 0

...
. . .

... a0
1 · · · a0

q

ana1 · · · anaq
...

. . .
...

0 · · · 0 ana1 · · · anaq
...

. . .
...

0 · · · 0 0 · · · 0

. . .

...
. . .

...
...

. . .
... 0 · · · 0

a0
1 · · · a0

q

...
. . .

...

0 · · · 0 0 · · · 0 ana1 · · · anaq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1
1

...

k1
q

k2
1

...

k2
q

...

...

knk1

...

knkq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 −
q∑

i=1

k0
i a

1
i

...

hna −
q∑

i=1

k0
i a

na
i

hna+1

...

hna+nk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

The degree nk of the polynomials ki(s) has to be cho-
sen in order to obtain a solvable system (i.e., rank A =
rank [Ab]).

In order to understand the proposed solution, the follow-
ing points should be considered.

(i) The choice of nk must guarantee that the relations nh ≤
nk + na are satisfied.

(ii) When q ≥ 2, the difference between the number of
unknown terms and the number of equations, that is,
(q − 1) × nk − na, is greater than zero if nk is selected
sufficiently high.

(iii) Even if the system admits solutions, the inverse of the
matrix A may not exist; in such case there are infinite
solutions and the one associated to the pseudoinverse
of A, that is, A+b can be computed.

Remark 8. The use of a polynomial vector k(s) instead of a
real vector k has the drawback of increasing the complexity
of the residual generator. Many FDI applications require that

Gf (s)

Gf (0)
= F(0)
F(s)

, (32)

where F(s) is an arbitrary polynomial. These cases do not
require a k(s) such that E(s) = Gf (0), but it is enough con-

sidering k = k̃ and imposing

R(s) = E0(s)F(s)
Gf (0)F(0)

, (33)

where E0(s) = k̃B(s)Qf (s). However, there is a restriction on
the choice of F(s). In fact, due to the realisability condition,
deg{F(s)} > n∗r − deg{E0(s)}. Moreover, the method cannot
be applied if E0(s) admits one or more roots with positive real
part, as the residual generator would become unstable. These
cases require an approximate solution.

Remark 9. This section is focused on the design of residual
generators on the basis of a given reference function with
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disturbance-decoupling and fault sensitivity maximisation
properties. The pole location influences the transient dy-
namics of the designed residual filters, while the steady-state
properties depend on the PM residual design, as it maximises
the residual steady-state values with respect to step faults af-
fecting input and output sensors. The poles of the residual
functions could be optimised with respect to both fault and
disturbance terms, as shown, for example, in a work by the
same authors [17].

3.2. PM fault isolation

This section addresses the design problem of residual gener-
ator banks for the isolation of faults affecting the input and
the output sensors. This design is performed by using the
disturbance-decoupling method suggested in Section 3.

To univocally isolate a fault concerning one of the output
sensors, under the hypotheses that the input sensors and the
remaining output sensors are fault-free, a bank of residual
generator filters is used. The number of these generators is
equal to the number m of the system outputs, and the ith
device (i = 1, . . . ,m) is driven by all but the ith output and
all the inputs of the system. In this case, a fault on the ith
output sensor affects all but the ith residual generator.

In presence of a fault on the jth output sensor, the mea-
sured output y∗(t) can be expressed as follows:

y∗(t) = y(t) + foj (t), (34)

with

foj (t) =
[
0 · · · 0 hoj (t) 0 · · · 0

]T
, (35)

where hoj (t) represents the jth output fault function.
In these conditions, the system of (4) becomes

P(s)y∗(t)− pj(s)hoj (t) = Qc(s)c(t) +Qd(s)d(t), (36)

where pj(s) is the jth column of the matrix P(s).
Let us indicate Loi(s) a polynomial row vector belonging

to the basis of the left null space of the matrix [Qd(s) | pi(s)].
The expression of the ith filter when a fault is acting on the
jth output sensor is obtained by multiplying (36) by Loi(s):

Roi(s)roi(t) = Loi(s)P
i(s)y∗i(t)− Loi(s)Qc(s)c(t)

=
{
Loi(s)pj(s)hoj (t) for j /= i,
0 for j = i,

(37)

where Pi(s) is the matrix obtained by deleting from P(s) the
ith column, and y∗i(t) represents the (m − 1)-dimensional
vector obtained by deleting from y∗(t) its ith component.

From the comparison between (37) and (6) with f (t) ∈
R if q′ = m − ld − 1 ≥ 2, the methods shown in Sections
3 and 3.1 can be exploited for the design of the ith filter. In
particular, the parameters of this filter can be properly chosen
in order to optimise its performances when a fault is acting
on the jth output sensor.

In more detail, as shown in Section 3, Loi(s) is chosen to
maximise the steady-state gain in the presence of the fault
foj (t). Moreover, as shown in Section 3.1, Roi(s) is chosen to
obtain a fixed behaviour of the transfer function due to the
fault foj (t).

It is worth noting that the similar design technique can
be used for input sensor fault isolation.

The problem requirements determine the selection of the
specific fault with respect to which the design depends. Most
often in practice, it is important to obtain good performance
with respect to all possible faults rather than optimal be-
haviour with respect to one specific fault. In this situation,
a different design of the filter behaviour for each fault situa-
tion is needed.

4. NLGA RESIDUAL GENERATORS

The considered NLGA to the FDI problem is suggested in
[18] and formally developed in [10]. It consists in finding, by
means of a coordinate change in the state space and in the
output space, an observable subsystem which, if possible, is
affected by the fault and not affected by disturbance. In this
way, necessary and sufficient conditions for the FDI problem
to be solvable are given. Finally, a residual generator can be
designed on the basis of the model of the observable subsys-
tem.

More precisely, the approach considers a nonlinear sys-
tem model in the form

ẋ = n(x) + g(x)c + 
(x) f + p(x)d,

y = h(x)
(38)

in which the state vector x ∈ X (an open subset of R
n),
c(t) ∈ R
c is the control input vector, f (t) ∈ R is the fault,
d(t) ∈ R
d the disturbance vector (embedding also the faults
which have to be decoupled), and y ∈ R
m the output vector;
whilst n(x), 
(x), the columns of g(x) and p(x) are smooth
vector fields; and h(x) is a smooth map.

Therefore, if P represents the distribution spanned by the
column of p(x), the NLGA method can be devised as it fol-
lows: first, determine the largest observability codistribution
contained in P⊥, denoted with Ω∗ [10].

If 
(x) /∈Ω∗, the design procedure can continue, other-
wise, the fault is not detectable; whenever the previous con-
dition is satisfied, it can be found a surjection Ψ1 and a func-
tion Φ1 fulfilling Ω∗ ∩ span{dh} = span{d(Ψ1 ◦ h)} and
Ω∗ = span{d(Φ1)}, respectively. The functions Ψ(y) and
Φ(x) defined as

Ψ(y)=
(
y1

y2

)
=
(
Ψ1(y)

H2y

)
, Φ(x)=

⎛
⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

Φ1(x)

H2h(x)

Φ3(x)

⎞
⎟⎟⎠

(39)

are (local) diffeomorphisms, where H2 is a selection matrix
(i.e., a matrix in which any row has all 0 entries but one,
which is equal to 1), Φ1(x) represents the measured part of
the state which is affected by f and not affected by d, and
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Φ3(x) represents the not measured part of the state which is
affected by f and by d.

In the new (local) coordinate defined previously, the sys-
tem of (38) is described by the relations in the form

ẋ1 = n1
(
x1, x2

)
+ g1

(
x1, x2)c + 
1

(
x1, x2, x3) f ,

ẋ2 = n2
(
x1, x2, x3

)
+ g2

(
x1, x2, x3

)
c

+ 
2
(
x1, x2, x3

)
f + p2

(
x1, x2, x3

)
d,

ẋ3 = n3
(
x1, x2, x3

)
+ g3

(
x1, x2, x3

)
c

+ 
3
(
x1, x2, x3

)
f + p3

(
x1, x2, x3

)
d,

y1 = h
(
x1
)
,

y2 = x2

(40)

with 
1(x1, x2, x3) not identically zero. Denoting x2 with y2
and considering it as an independent input, it can be singled
out the x1-subsystem:

ẋ1 = n1(x1, y2) + g1(x1, y2)c + 
1(x1, y2, x3) f ,

y1 = h(x1),
(41)

which is affected by the single fault f and decoupled from the
disturbance vector. This subsystem has been exploited for the
design of the residual generator for the FDI of the fault f .

As already described in Section 2, the proposed NLGA
FDI scheme is designed on the basis of a model structure of
the input affine type as described in [10]. For this reason, the
aircraft simulation model has been simplified and the non-
linear model of (3) has been considered for the NLGA de-
sign.

Under these assumptions, by means of computations de-
tailed in [19], the residual generators for detecting the faults
affecting the aircraft input sensors are obtained. In particu-
lar, the residual generator for the elevator rδe(t), with kδe > 0,
is described by the relation

ξ̇1 = V 2

m

[− (
CD0 + CDαα + CDα2α

2)cos α
]

+
V 2

m

(
CL0 + CLαα

)
sinα− g sin θ

+Vqωsin α−
(
Cm0 + Cmαα + Cmqqω

)

mtd
V 2

−
(
Iz − Ix

)

mtd
pωrω − Cδe

mtd
V 2δe

+ kδe

[(
Vcos α− Iy

mtd
qω

)
− ξ1

]
,

rδe =
(
V cosα− Iy

mtd
qω

)
− ξ1.

(42)

The aileron residual generator rδa(t), with kδa > 0, has the
form

ξ̇2 =
(
Clββ + Clp pω

)

Ix
V 2 +

(
Iy − Iz

)

Ix
qωrω

+
Cδa
Ix
V 2δa + kδa

(
pω − ξ2

)
,

rδa = pω − ξ2.

(43)

The rudder residual generator rδr (t), with kδr > 0, is written
in the form

ξ̇3 =
(
Cnββ + Cnrrω

)

Iz
V 2 +

(
Ix − Iy

)

Iz
pωqω

+
Cδr
Iz
V 2δr + kδr

(
rω − ξ3

)
,

rδr = rω − ξ3.

(44)

The throttle residual generator rδth (t), with kδth > 0, has the
form

ξ̇4 = tnn
3
e +

t f
ne

(
t0 + t1ne

)
δth + kδth

(
ne − ξ4

)
,

rδth = ne − ξ4.
(45)

Remark 10. It is worth observing that each residual genera-
tor is affected by a single input sensor fault and is decoupled
from the wind components and the faults affecting the re-
maining input sensors. This feature can be obtained by defin-
ing a different p(x) for each residual generator design [19].
In this way, the tuning of the residual generator gains kδe , kδa ,
kδr , and kδth can be carried out independently. Finally, by a
straightforward analysis, the positive sign of each gain is a
necessary and sufficient condition for the asymptotic stabil-
ity of the dynamics (42)–(45).

A procedure optimising the tradeoff between the fault
sensitivity and the robustness to the modelling errors and
disturbances of the generic residual generator is proposed in
the next section.

4.1. NLGA robustness improvement

The proposed NLGA-based scheme consists of two design
steps:

(1) the structural decoupling of critical disturbances
(wind gust and turbulence) and critical modelling er-
rors can be obtained as described in Section 4;

(2) the nonlinear residual generators robustness is im-
proved by minimising the effects of both noncritical
disturbances and modelling errors, whilst maximising
the fault effects on the residual signals.

In order to apply the robustness improvement procedure
presented in this section, the considered framework is re-
stricted to suitable scalar components of the x1-subsystem
(41). In particular, the vectors x1 and y1 are decomposed as
follows:

x1 =
[
x11

x1c

]
, y1 =

[
y11

y1c

]
, (46)
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where x11 ∈ R, y11 ∈ R, and, correspondingly, it follows
that

n1(·) =
[
n11(·)
n1c(·)

]
, g1(·) =

[
g11(·)
g1c(·)

]
, 
1(·) =

[

11(·)

1c(·)

]

(47)

Let us consider the following conditions:

y11 = h11(x11) y1c = h1c(x1c) 
11(·) /= 0 , (48)

where h11(·) is a smooth map and h1c(·) is an invertible
smooth map. It is important to highlight that if the con-
straints (48) are satisfied, the decomposition (46)-(47) can
always be applied to obtain the following x11-subsystem:

ẋ11 = n11
(
x11, y1c, y2

)
+ g11

(
x11, y1c, y2

)
c

+ 
11
(
x11, y1c, y2, x3

)
f ,

y11 = h11
(
x11

)
.

(49)

As can be seen in [19], the conditions (48) are satisfied for
the considered aircraft application, hence, from now on, the
scalar x11-subsystem (49) is referred to in place of the x1-
subsystem (41).

It can be noted that the tuning of the residual generator
gains, in the framework of the x11-subsystem (49), cannot
be properly carried out. In fact, the critical disturbances are
structurally decoupled but the noncritical ones are not con-
sidered. For this reason, to achieve robustness of the residual
generators, the tuning of the gains is performed by embed-
ding the description of the noncritical disturbances in the
x11-subsystem as follows:

ẋ11 = n11
(
x11, y1c, y2

)
+ g11

(
x11, y1c, y2

)
c

+ 
11
(
x11, y1c, y2, x3

)
f + e

(
x11, y1c, y2, x3

)
ζ ,

y11 = x11 + ν,

(50)

where, to simplify the treatment without loss of generality
(accordingly to the considered aircraft application), the state
variable x11 is supposed to be directly measured. Moreover,
the variable ν ∈ R is the measurement noise on x11. Finally,
the variable ζ ∈ R and the related scalar field e(·) represent
the noncritical effects which have not been considered in the
simplified aircraft model (3) used for the NLGA scheme.

The following system, which is referred to as filter form,
represents a generic scalar residual generator (based on the
subsystem (50)) to which (42)–(45) belong as a particular
case

ξ̇ f = n11
(
y11, y1c, y2

)
+ g11

(
y11, y1c, y2

)
c + k f

(
y11 − ξ f

)
,

r f = y11 − ξ f ,
(51)

where the gain k f has to be tuned in order to minimise the
effects of the disturbances ζ and ν whilst maximise the effects
of the fault f on the residual r f . The quantification both of
the disturbances and of the fault effects on the residual can
be obtained by defining the estimation error

x̃ f = x11 − ξ f , (52)

which allows to write the following equivalent residual
model:

˙̃x f = n11
(
x11, y1c, y2

)− n11
(
y11, y1c, y2

)

+ g11
(
x11, y1c, y2

)
c − g11

(
y11, y1c, y2

)
c

+ 
11
(
x11, y1c, y2, x3

)
f + e

(
x11, y1c, y2, x3

)
ζ

− k f x̃ f − k f ν,

r f = x̃ f + ν.

(53)

In order to apply the effective mixed H−/H∞ approach
[3, 20] to tune k f , the system (53) has to be linearised in
the neighbourhood of a stationary flight condition, as sug-
gested in [2] with reference to the H∞ optimisation of non-
linear unknown input observers. It is worth observing that
the considered aircraft application is characterised by small
excursions of the state, input, and output variables with re-
spect to their trim values x10, x30, c0, y10, and y20, hence the
robustness of the nonlinear residual generator is achieved.
The linearisation of (53) is the following:

˙̃x f = −k f x̃ f − k f ν + mf + q̆ζ̆ ,

r f = x̃ f + ν,
(54)

where

a′= ∂n11(·)
∂x11

∣∣∣∣
(x10,y20)

, b = g11(·)|(x10,y20),

m = 
11(·)|(x10,y20,x30), q = e(·)|(x10,y20,x30),

q̆ζ̆ = qζ − a′ν.

(55)

Now, it is important to note that in place of the residual gen-
erators in the filter form (51), the following observer form of
the residual generators can be used:

ξ̇o = n11
(
ξo, y1c, y2

)
+ g11

(
ξo, y1c, y2

)
c + ko

(
y11 − ξo

)
,

ro = y11 − ξo.
(56)

For the same reasons previously described, the estimation er-
ror x̃o is introduced:

x̃o = x11 − ξo, (57)

hence

˙̃xo = n11
(
x11, y1c, y2

)− n11(ξo, y1c, y2

)

+ g11(x11, y1c, y2

)
c − g11(ξo, y1c, y2

)
c

+ 
11
(
x11, y1c, y2, x3

)
f + e

(
x11, y1c, y2, x3

)
ζ

− kox̃o − koν,

ro = x̃o + ν.

(58)

The linearisation of (58) is

˙̃xo =
(
a′ − ko

)
x̃o − koν + mf + qζ ,

ro = x̃o + ν.
(59)
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Both the linearised models (54) and (59) of the residual gen-
erators in the filter form and observer form, respectively, can
be represented by the following general form:

˙̃x = (a− k)x̃ +
(
E1 − kE2

)
ε + mf,

r = x̃ + E2ε
(60)

with E1 = [cce11 0] as well as the following positions:

general form x̃ ε r a k e11 E2

filter form x̃ f

⎡
⎣ζ̆

ν

⎤
⎦ r f 0 k f q̆

[
0 1

]

observer form x̃o

[
ζ

ν

]
ro a ko q

[
0 1

]
.

(61)

On the basis of (60) and (61), the mixed H−/H∞ [3, 20]
procedure is developed for the robustness improvement of
the residual generators both in the filter and observer form.
Since the considered NLGA residual generators are scalar, the
H−/H∞ procedure leads to a new analytical solution.

The following definition will be used throughout the sec-
tion.

Definition 2. The norms H∞ and H− of a stable transfer
function G are defined as

‖G‖∞ = sup
ω≥0

σ[G( jω)], ‖G‖− = σ[G( j0)], (62)

where σ represents the maximum singular value, whilst σ the
minimum singular value. The problem of the tradeoff be-
tween disturbances robustness and fault sensitivity is stated
as follows.

Problem 1 (Mixed H−/H∞ residual robustness improve-
ment). Given two scalars β > 0 and γ > 0, find the set K
defined as:

K = {k ∈ R : (a− k) < 0, ‖Grε‖∞ < γ, ‖Gr f ‖− > β},
(63)

where

Grε(s) = (s− a + k)−1(E1 − kE2
)

+ E2, (64)

Gr f (s) = (s− a + k)−1m. (65)

In order to obtain the analytical solution of Problem 1, the
following propositions are given.

Proposition 3. For all k ∈ R, (a− k) < 0, then

∥∥Grε

∥∥2
∞ = max

{
1,

(
e2

11 + a2
)

(k − a)2

}
, (66)

sup
{k∈R:(a−k)<0}

∥∥Grε

∥∥∞ = +∞. (67)

Proof. From the definition (64)

Grε(s) =
[

e11

s− a + k

s− a
s− a + k

]
, (68)

hence it is possible to write

{
σ
[
Grε( jω)

]}2 = e2
11

(k − a)2 + ω2
+

a2 + ω2

(k − a)2 + ω2

=
(
e2

11 + a2
)

+ ω2

(k − a)2 + ω2

(69)

so that it follows

∥∥Grε

∥∥2
∞ = sup

ξ≥0

(
e2

11 + a2
)

+ ξ
(
k − a)2

+ ξ
. (70)

From the last expression, it is straightforward to obtain (66)
and (67).

Proposition 4. The set

Kγ =
{
k ∈ R : (a− k) < 0,

∥∥Grε

∥∥∞ < γ, γ > 1
}

(71)

is given by

k > k with k = a +

√
e2

11 + a2

γ
. (72)

Proof. By means of Proposition 3, it is possible to write
(
e2

11 + a2
)

(k − a)2 < γ2, (73)

which holds for

k > a +

√
e2

11 + a2

γ
. (74)

Proposition 5. If γ > 1, then {‖Gr f ‖− : ‖Grε‖∞ < γ} is given
by

0 < ‖Gr f ‖− < βmax(γ) where βmax(γ) = mγ√
e2

11 + a2
.

(75)

Proof. From the definition (65), it results Gr f (s) = m/(s −
a+ k) and assuming, without loss of generality, that m > 0, it
follows ‖Gr f ‖− = m/(k − a). By imposing ‖Gr f ‖− > β with
β > 0, the constraint k < a + (m/β) has to hold. Then, by
recalling the result of Proposition 4, the maximum feasible
value of β fulfilling the constraint ‖Grε‖∞ < γ is given by

k = a +
m

βmax(γ)
, (76)

hence

βmax(γ) = m

k − a =
mγ√
e2

11 + a2
. (77)
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Theorem 1. Given γ > 1 and β ∈]0,βmax(γ)[, the set K ful-
filling the constraints of Problem 1 is given by

K =
{
k ∈R : k ∈]k, k[, k = a +

m

βmax(γ)
, k = a +

m

β

}
.

(78)

Proof. The proof of the theorem is not reported, as it is
straightforward from Propositions 3, 4, and 5.

Remark 11. Let us consider the following performance index
to maximise

J = ‖Gr f ‖−
‖Grε‖∞ . (79)

From (66), it follows

‖Grε‖∞ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, k >
(
a +

√
e2

11 + a2

)

√
e2

11 + a2

k − a , a < k ≤
(
a +

√
e2

11 + a2
) (80)

hence

J =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m

k − a , k >
(
a +

√
e2

11 + a2
)

,

m√
e2

11 + a2
, a < k ≤

(
a +

√
e2

11 + a2
)
.

(81)

From (81), it can be observed that

J = m

k − a <
m√

e2
11 + a2

, k >
(
a +

√
e2

11 + a2
)
. (82)

In this way, the maximum value of the performance index J
is

Jmax= m√
e2

11 +a2
∀k∈KJ=

{
k ∈ R :a<k≤

(
a+

√
e2

11 +a2
)}
.

(83)

The method proposed in this paper guarantees the maxi-
mum value of the performance index J as well as the con-

straints ‖Grε‖∞ < γ and ‖Gr f ‖− > β if β ≥ m/
√
e2

11 + a2.

In fact, from β ≥ m/
√
e2

11 + a2 it follows

‖Gr f ‖− =
m

k − a > β ≥
m√

e2
11 + a2

, (84)

hence k < (a +
√
e2

11 + a2).
Finally, from (75) it is always possible to find a β such that

m√
e2

11 + a2
≤ β ≤ βmax(γ) ∀γ > 1. (85)

On the basis of Theorem 1, k can be designed by means of
the following procedure.

Procedure 1. (1) Choose γ > 1 to obtain a desired level of
disturbance attenuation.

(2) Compute βmax(γ) and choose β ∈]0,βmax(γ)[ to ob-
tain a desired level of fault sensitivity.

(3) Choose k ∈]k, k[, with k = a + m/βmax(γ) and k =
a +m/β.

(4) Apply the chosen gain k to the k f of (51) or to the ko
of (56) if the NLGA residual generator is in the filter form or
in the observer form, respectively.

5. FDI PERFORMANCE ESTIMATION

To show the diagnostic characteristics brought by the appli-
cation of the proposed FDI schemes to general aviation air-
crafts, some numerical results obtained in the Matlab and
Simulink environments are reported. The final performances
that are achieved with the developed FDI schemes are finally
reported. These performances are evaluated by means of ex-
tensive simulations applied to the aircraft simulation model.
This section presents also some comparisons of the devel-
oped PM and NLGA FDI strategies with NN and UIKF FDI
schemes.

The designed PM residual generator filters are fed by the
4 component input vector c(t) and the 9 component out-
put vector y(t) acquired from the simulation aircraft model
previously described. In particular, a bank of 4 residual gen-
erator filters has been used to detect input sensor faults re-
garding the 4 input control variables. Moreover, in order to
obtain the fault isolation properties, each residual generator
function of the considered bank is fed by all but one of the
4 control input signals and by the 9 output variables. Obvi-
ously, the residual generator bank has been designed to be
decoupled from the 3 component wind disturbance vector
d(t) = [wu(t),wv(t),ww(t)]T . As to the NLGA residual gen-
erator filters, the aircraft synthesis model of (3), adopted for
the design, is simplified with respect to the simulation model.
Analogously to the PM, the approximations of the NLGA
synthesis nonlinear model are related to a particular steady-
state flight condition. For this reason, the switching for the
NLGA FDI scheme is also required when a generic reference
trajectory is followed. Hence, it is important to evaluate the
robustness characteristic of a single design of NLGA resid-
ual generators when a large set of flight conditions is dealt
with.

It is worth noting that the aircraft reference trajectories
are typically made up of a sequence of steady-state flight
conditions, each one described by the associated input state
output set point and the linearised model of (1). As a con-
sequence, all the FDI linear techniques are usually imple-
mented by switching among the residual generators related
to the different steady-state flight conditions. The target of
this work is to reduce the switching by adopting robust PM
residual generators. In particular, the robustness is achieved
by using the same residual generators for a large set of flight
conditions. The chosen single steady-state flight condition
for designing both of the PM and of the NLGA residual
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generators is a coordinated turn characterised as follows:

(i) the true airspeed is 50 m/s;
(ii) the curvature radius is 1000 m;

(iii) the flight-path angle is 0◦;
(iv) the altitude is 330 m;
(v) the flap deflection is 0◦.

This represents one of most general flight condition due to
the coupling of the longitudinal and lateral dynamics. More-
over, it is used in simulation to highlight the performances of
the proposed methods in the nominal flight condition.

Regarding the PM, the detection properties of the filters
in terms of fault sensitivity and disturbance rejection can
be achieved according to Section 3. The synthesis of the dy-
namic filters for FDI has been performed by choosing a suit-
able linear combination of residual generator functions. This
choice has to maximise the steady-state gain of the transfer
functions between input sensor fault signals. The roots of the
R(s) polynomial matrix have been optimised for maximis-
ing the fault detection promptness, as well as to minimise
the occurrence of false alarms. In order to assess the PM di-
agnosis technique, different fault sizes have been simulated
on each sensor. Single faults in the input sensors have been
generated by producing abrupt (step) and ramp (slowly de-
veloping) faults in the input signals c(t). The residual signals
indicate fault occurrence according to whether their values
are lower or higher than the thresholds fixed in fault-free
conditions. The residual processing methods can be based
on simple residual geometrical analysis or comparison with
fixed thresholds [3]. More complex residual evaluation can
rely on statistical properties of the residuals and hypothesis
testing [6], or based on adaptive thresholds, that is, the so-
called threshold selector [21].

In this paper, the threshold test for FDI is performed with
the logic described by (86):

r − νσr ≤ r(t) ≤ r + νσr for f (t) = 0,

r(t) < r − νσr or r(t) > r + νσr for f (t) /= 0,
(86)

that is, the comparison of r(t) with respect its statistical nor-
mal characteristics. r and σ2

r are the normal values for the
mean and variance of the fault-free residual, respectively. In
order to separate normal from faulty behaviour, the tolerance
parameter ν (normally ν ≥ 3) is selected and properly tuned.
Hence, by a proper choice of the parameter ν, a good trade-
off can be achieved between the maximisation of fault detec-
tion probability and the minimisation of false-alarm proba-
bility. In practice, the threshold values depend on the residual
error amount due to measurement errors, linearised model
approximations, and disturbance signals that are not com-
pletely decoupled.

Thus, in this case, a suitable value of ν = 4 for the com-
putation of the positive and negative thresholds in (86) has
been considered. To summarise the performances of the PM
FDI scheme, the minimal detectable step faults on the vari-
ous input sensors are collected in Table 2.

On the other hand, the minimal detectable ramp faults
are reported in Table 3.

Table 2: PM FDI technique: minimal step faults with ν = 4.

ci(t) Variable Fault size Delay time

Elevator δe 2◦ 18 s

Aileron δa 3◦ 6 s

Rudder δr 4◦ 8 s

Throttle aperture % δth 2% 15 s

Table 3: PM FDI technique: minimal ramp faults with ν = 4.

ci(t) Variable Fault size Delay time

Elevator δe 0.11◦/s 26 s

Aileron δa 0.50◦/s 11 s

Rudder δr 0.49◦/s 12 s

Throttle aperture % δth 0.13◦/s 19 s

Table 4: NLGA FDI technique: minimal step faults with ν = 8.

ci(t) Variable Fault size Delay time

Elevator δe 2◦ 5 s

Aileron δa 2◦ 3 s

Rudder δr 2◦ 6 s

Throttle aperture % δth 6% 3 s

Table 5: NLGA FDI technique: minimal ramp faults with ν = 8.

ci(t) Variable Fault size Delay time

Elevator δe 0.21◦/s 11 s

Aileron δa 0.45◦/s 12 s

Rudder δr 0.32◦/s 10 s

Throttle aperture % δth 0.15◦/s 15 s

Concerning the NLGA, the synthesis of the residual gen-
erators has been performed by using filter gains that optimise
the fault sensitivity and reduce as much as possible the oc-
currence of false alarms due to model uncertainties and to
disturbances not completely decoupled. This robustness re-
quirement has been fulfilled by designing the residual gains
according to the Procedure 1. For example, with reference to
the fourth residual generator, Procedure 1 has led to Kδth = 1
which satisfies the norm bounds γ = 1.2 and β = 400.
This guarantees a good separation of the residual signal with
‖ f ‖L2

≥ 0.05 and ‖d‖L2 ≤ 10, where L2-norm is consid-
ered.

In order to assess the NLGA diagnosis technique, single
step and ramp faults have been used. Moreover, also in this
case the threshold values have been chosen in simulation ac-
cording to (86). A suitable value of ν = 8 for the computation
of the positive and negative thresholds in (86) has been con-
sidered. For what concern NLGA FDI scheme, the minimal
detectable step faults on the various input sensors are sum-
marised in Table 4.

On the other hand, the minimal detectable input sensor
ramp faults are reported in Table 5.

The minimal detectable step fault values in Tables 2, 3,
4, and 5 are expressed in the unit of measure of the sensor
signals. The fault step sizes and ramp slopes are relative to the
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Figure 1: PM residuals for the 1st input sensor ramp fault fc1 (t) isolation with ν = 4.

case in which the occurrence of a fault is detected and isolated
as soon as possible. The detection delay times represent the
worst case results, as they are evaluated on the basis of the
time taken by the slowest residual function to cross the settled
threshold. These experiments represent a further validation
of the residual generator robustness with respect to the fault
type, as the the residual function sensitivity was optimised
only with respect to step faults.

As an example, Figure 1 shows the 4 PM residual func-
tions generated for the complete trajectory. On the basis of
the fault-free and faulty conditions, this bank provides the
correct isolation of the considered input sensor ramp fault.

The horizontal lines represent the levels of the fault-free
thresholds that are settled according to test (86) with ν =
4. The first residual function depicted in Figure 1, provides
also the isolation of the fault fc(t) regarding the 1st input
sensor.

The second example of Figure 2 shows the 4 residual
functions generated by the NLGA filter bank applied to the
complete aircraft trajectory. The horizontal lines represent
the thresholds with ν = 12. Note that, due to the NLGA de-

sign technique, only the 1st residual related to the δe signal
of the filter bank is sensitive to a ramp fault affecting the 1st
input sensor.

5.1. Reliability and robustness evaluation

In this section, the robustness characteristics of the proposed
PM and NLGA FDI schemes have been evaluated and com-
pared also with respect to the UIKF scheme [3] and the NN
technique [7]. In particular, a bank of UIKF has been ex-
ploited for diagnosing faults of the monitored process. This
technique seems to be robust with respect to the modelling
uncertainties, the system parameter variations, and the mea-
surement noise, which can obscure the performance of an
FDI system by acting as a source of false faults. The procedure
recalled here requires the design of a UIKF bank and the basic
scheme is the standard one: a set of measured variables of the
system is compared with the corresponding signals estimated
by filters to generate residual functions. The diagnosis has
been performed by detecting the changes of UIKF residuals
caused by a fault. The FDI input sensor scheme exploits a



14 Journal of Control Science and Engineering

4003002001000

Time (s)

−20

−5

10

25

40
δe NLGA residuals

(a)

4003002001000

Time (s)

−0.2

−0.1

0

0.1

0.2
δa NLGA residuals

(b)

4003002001000

Time (s)

−0.1

−0.05

0

0.05

0.1
δr NLGA residuals

(c)

4003002001000

Time (s)

−50

0

50

100
δth NLGA residuals

(d)

Figure 2: NLGA residuals for the 1st input sensor fault isolation with ν = 12.

number of KF equal to the number of input variables. Each
filter is designed to be insensitive to a different input sensor
of the process and its disturbances (the so-called unknown
inputs). Moreover, the considered UIKF bank was obtained
by following the design technique described in [3, Section
3.5, pages 99–105], whilst the noise covariance matrices were
estimated as described in [22, Section 3.3, pages 70–74 and
Section 4.6, pages 130-131]. Each of the 4 UIKF of the bank
was decoupled from both one input sensor fault and the wind
gust disturbance component, thus providing the optimal fil-
tering of the input-output measurement noise sequences. On
the other hand, a dynamic NN bank has been exploited in or-
der to find the dynamic connection from a particular fault re-
garding the input sensors to a particular residual. In this case,
the learning capability of NN is used for identifying the non-
linear dynamics of the monitored plant. The dynamic NN
provides the prediction of the process output with an arbi-
trary degree of accuracy, depending on the NN structure, its
parameters, and a sufficient number of neurons. Once the
NN has been properly trained, the residuals have been com-
puted as the difference between predicted and measured pro-

cess outputs. The FDI is therefore achieved by monitoring
residual changes. The NN learning is typically an offline pro-
cedure. Normal operation data are acquired from the mon-
itored plant and are exploited for the NN training. Regard-
ing the NN FDI method and according to a generalised ob-
server scheme (GOS) [3], a bank of 4 time-delayed three-
layers multilayer perceptron (MLP) NN with 15 neurons in
the input layer, 25 neurons in the hidden layer, and 1 neuron
in the output layer is implemented. Each NN was designed
to be insensitive to each input sensor fault, and the NN were
trained in order to provide the optimal output prediction on
the basis of the training pattern and target sequences [7].

In the following of this section, the performances of the
different FDI schemes have been evaluated by considering a
more complex aircraft trajectory. This has been obtained by
means of the guidance and control functions of a standard
autopilot which stabilises the aircraft motion towards the ref-
erence trajectory as depicted in Figure 3. The reference tra-
jectory is made up of 4 branches (2 straight flights and 2 turn
flights) so that a closed path is obtained. It is worth observing
that only 2 steady-state flight conditions are used to follow
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Figure 3: Aircraft complete trajectory example.

Table 6: Performances of the FDI schemes for a complete aircraft
trajectory.

Variable PM NLGA UIKF NN

ν 4 12 9 5

δe 4◦ 3◦ 4◦ 3◦

δa 5◦ 3◦ 5◦ 4◦

δr 5◦ 3◦ 4◦ 4◦

δth 7% 10% 11% 12%

Mean detection delay 26 s 25 s 31 s 27 s

alternatively the 4 branches of the reference trajectory:

(i) straight flight condition: true airspeed = 50 [m/s];
radius of curvature = ∞; flight-path angle = 0◦;
altitude = 330 [m]; flap deflection = 0◦;

(ii) turn flight condition: true airspeed = 50 [m/s]; radius
of curvature = 1000 [m]; flight-path angle = 0◦; alti-
tude = 330 [m]; flap deflection = 0◦.

The reference turn flight condition is used to design the
PM and the NLGA filters. The achieved results are reported
in Tables 2 and 4, respectively. The performed tests represent
a also a possible reliability evaluation of the considered FDI
techniques. In fact, in this case the diagnosis requires that
the residual generators are robust with respect to the flight
conditions that do not match the nominal trajectory used for
the design.

As an example, the fault-free and faulty residuals gener-
ated by the designed NN and UIKF banks are shown in Fig-
ures 4 and 5, respectively.

Table 6 summarises the results obtained by considering
the observers and filters (corresponding to the PM, NLGA,
UIKF,and NN) for the input sensor FDI whose parameters
have been designed and optimised for the steady-state coor-
dinated turn represented by the 2nd reference flight condi-
tion of the complete trajectory. Table 6 reports the perfor-
mances of the considered FDI techniques in terms of the
minimal detectable step faults on the various input sensors,
as well as the corresponding parameters ν for the residual
evaluation of (86). The mean detection delay is also reported

in Table 6 in order to compare the effectiveness of the differ-
ent FDI schemes.

The choice of ν has been performed with reference to the
particular flight conditions involved in the complete trajec-
tory following. In particular, the selected value of ν for each
FDI observer or filter represents a tradeoff between two ob-
jectives, that is, for increasing the residual fault sensitivity
and promptness, as well as for minimising the occurrence of
false alarms due to the switching among the reference flight
conditions needed to stabilise the aircraft motion towards the
reference trajectory. Table 6 shows how the proper design of
the parameter ν allows to obtain good performances with all
the considered FDI schemes, hence the robustness with re-
spect to the proposed complete trajectory is always achieved.

It is worth noting that the NLGA has a theoretical advan-
tage by taking into account the nonlinear dynamics of the air-
craft. However, the behaviour of the related nonlinear resid-
ual generators is quite sensitive to the model uncertainties
due to variation of the flight condition. In fact, the NLGA
FDI scheme requires high values of ν which have to be in-
creased (from 8 to 12 in this work) when the aircraft motion
regarding the complete trajectory is considered in place of
the nominal flight condition. In particular, even though the
analysis was restricted just to the aircraft turn phase of the
complete trajectory, a performance worsening would hap-
pen, since the steady-state condition (nominal flight condi-
tion) is quite far to be reached. However, the filter design
based on the NLGA lead to a satisfactory fault detection,
above all in terms of promptness. On the other hand, regard-
ing the PM, it is rather simple to note the good FDI perfor-
mances, even if optimisation stages can be required. The ν
values selected for the PM are lower, but the related residual
fault sensitivities are even smaller. Similar comments can be
made for the UIKF and NN techniques.

The simulation model applied to the complete trajec-
tory is an effective way to test the performances of the pro-
posed FDI methods with respect to modelling mismatch and
measurement errors. The obtained results demonstrate the
reliability of the PM-, NLGA-, UIKF-, and NN-based FDI
schemes as long as proper design procedures are adopted.

5.2. Monte Carlo analysis

In this section, further experiment results have been re-
ported. They regard the performance evaluation of the de-
veloped FDI scheme with respect to uncertainty acting on
the system. Hence, the simulation of different fault-free and
faulty data sequences was performed by exploiting the air-
craft Matlab-Simulink simulator and a Monte Carlo analysis
implemented in the Matlab environment. The Monte Carlo
tool is useful at this stage as the FDI performances depend on
the residual error magnitude due to the system uncertainty,
as well as the signal c(t) and y(t) measurement errors. It is
worth noting how the Monte Carlo simulations have been
achieved by perturbing the parameters of the PM filter resid-
uals by additive white Gaussian noises with standard devia-
tion values equal to a fixed percentage p of the element val-
ues. The same experiments have been performed by statis-
tically varying the main parameters of the NLGA filters. In



16 Journal of Control Science and Engineering

9080706050403020100

Time (s)

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
δe residuals

(a)

9080706050403020100

Time (s)

−1

−0.5

0

0.5
δa residuals

(b)

9080706050403020100

Time (s)

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
δr residuals

(c)

9080706050403020100

Time (s)

−1

−0.5

0

0.5
δth residuals

(d)

Figure 4: NN residuals with ramp fault.

these conditions, the Monte Carlo analysis represents a fur-
ther method for estimating the reliability and the robustness
of the developed FDI schemes, when applied to the consid-
ered aircraft.

For robustness and reliability experimental analysis of the
FDI schemes, some performance indices have been used. The
performances of the FDI method are then evaluated on a
number of Monte Carlo runs equal to 1000. This number
of simulations is carried out to determine the indices listed
below with a given degree of accuracy.

False-Alarm Probability (rfa): the number of wrongly de-
tected faults divided by total fault cases.

Missed-Fault Probability(rmf): for each fault, the total
number of undetected faults, divided by the total number of
times that the fault case occurs.

True Detection/Isolation Probability (rtd, rti): for a par-
ticular fault case, the number of times it is correctly de-
tected/isolated, divided by total number of times that the
fault case occurs.

Mean Detection/Isolation Delay (τmd, τmi): for a particular
fault case, the average detection/isolation delay time.

These indices are hence computed for the number
of Monte Carlo simulations and for each fault case.
Table 7summarises the results obtained by considering the
PM dynamic filters for the input sensor FDI for a complete
aircraft trajectory and with p = 10%.

The same analysis can be applied again to the resid-
ual generated by means of the NLGA, NN, and UIKF FDI
schemes. The results are summarised in Tables 8, 9, and
10.

Tables 7, 8, 9, and 10 show how the proper design of the
dynamic filters with a proper choice of the FDI thresholds al-
low to achieve false-alarm and missed-fault probabilities less
than 0.6%, detection and isolation probabilities bigger than
99.4%, with minimal detection and isolation delay times.
The results demonstrate also that Monte Carlo simulation is
an effective tool for testing and comparing the design robust-
ness of the proposed FDI methods with respect to modelling
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Figure 5: UIKF residuals with ramp fault.

Table 7: PM Monte Carlo analysis with ν = 4 and p = 10%.

Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.002 0.003 0.997 27 s

δa 0.001 0.001 0.999 18 s

δr 0.002 0.003 0.997 25 s

δth 0.003 0.002 0.998 35 s

Table 8: NLGA Monte Carlo analysis with ν = 12 and p = 10%.

Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.003 0.004 0.996 30 s

δa 0.002 0.002 0.998 15 s

δr 0.001 0.001 0.999 23 s

δth 0.004 0.003 0.997 32 s

uncertainty (p = 10%) and fixed measurement errors. This
last simulation technique example hence facilitates an assess-

Table 9: NN Monte Carlo analysis with ν = 5.

Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.004 0.005 0.995 33 s

δa 0.003 0.003 0.997 23 s

δr 0.004 0.004 0.996 29 s

δth 0.005 0.003 0.997 38 s

Table 10: UIKF Monte Carlo analysis with ν = 9.

Faulty sensor rfa rmf rtd, rti τmd, τmi

δe 0.003 0.004 0.996 26 s

δa 0.002 0.002 0.998 17 s

δr 0.001 0.002 0.998 26 s

δth 0.004 0.003 0.997 37 s

ment of the reliability of the developed, analysed, and applied
FDI methods.
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6. CONCLUSION

The paper provided the development and application of
two FDI techniques based on a PM scheme and on an
NLGA method, respectively. The PM procedure led to resid-
ual generators optimising the tradeoff between disturbance-
decoupling and fault sensitivity. Moreover, the application of
the PM FDI scheme resulted robust with respect to model
uncertainties. On the other hand, the NLGA relies on a novel
design scheme based on the structural decoupling of distur-
bances and modelling errors, Thus, the mixed H−/H∞ op-
timisation of the tradeoff between fault sensitivity, distur-
bances, and modelling errors has been proposed. The PM
and NLGA residual generators were tested by considering a
nonlinear aircraft simulator model that takes into account
also the wind gusts, the Dryden turbulence, the input-output
sensors measurement errors, as well as the engine and the
servo actuators. Moreover, in order to verify the robustness
characteristics and the achievable performances of the ap-
proaches, the simulation results considered a typical aircraft
reference trajectory consisting of several steady-state flight
conditions. The effectiveness of the developed PM and NLGA
FDI schemes was shown by simulations and a comparison
with widely used data-driven and model-based disturbance-
decoupling FDI schemes, such as NN and UIKF diagnosis
methods, was provided. The reliability and the robustness
properties of the proposed residual generators to model un-
certainty and disturbances and measurement noise for the
aircraft nonlinear model were investigated via Monte Carlo
simulations. Further works extensive comparative studies
for robustness of the FDI algorithms when applied to real
data.
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