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The quantum entangled J/y — +E~ pairs from (1.0087 & 0.0044) x 10'° J/y events taken by the
BESIII detector are used to study the nonleptonic two-body weak decays £* — nz™ and £~ — 7iz~. The
CP-0dd weak decay parameters of the decays T+ — nz' (a ) and ¥~ — Az~ (a_) are determined to be
0.0481 £ 0.0031, & 0.0019y and —0.0565 =+ 0.0047 g, & 0.0022, respectively. The decay parameter
a_ is measured for the first time, and the accuracy of a, is improved by a factor of 4 compared to the
previous results. The simultaneously determined decay parameters allow the first precision CP
symmetry test for any hyperon decay with a neutron in the final state with the measurement of
Acp = (ap +a_)/(ar —a_) = —0.080 % 0.052, & 0.028,,. Assuming CP conservation, the average
decay parameter is determined as (a,) = (a, —a@_)/2 = —0.0506 £ 0.0026,, 4 0.0019, while the
ratios a, /ap and a_/a, are —0.0490 % 0.0032,, £ 0.0021 and —0.0571 £ 0.0053, 3= 0.0032y,

where @, and @&, are the decay parameters of the decays £+ — pz® and £~ — pza°, respectively.
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Charge-parity (CP) violation is one of Sakharov’s three
essential conditions for understanding the matter-antimatter
asymmetry in the Universe [1]. Despite the established
presence of CP violation in the decays of K, B, and D
mesons [2—7], the standard model (SM) of particle physics,
as described by the Kobayashi-Maskawa mechanism, is
insufficient in fully explaining the preponderance of matter
over antimatter in the Universe [8]. As a result, it is
imperative to continue searching for new sources of CP
violation, particularly in the hyperon sector [9]. The
nonleptonic decays of spin-1/2 hyperons are suitable
for CP violation studies. In such decays, the decay
asymmetry parameters «, f, and y are defined in terms
of the S-wave (parity violating) and P-wave (parity
conserving) amplitudes’ contributions, and only two of
them are independent [10].

The magnitude of polarization of spin-1/2 hyperons can
be inferred in two-body weak decays due to their self-
analyzing nature. The polar angle distribution of the daughter
nucleons is given by dN/dQ = (N/4z)(1 + aP - p). Here,
P is the hyperon polarization vector, and p is the unit vector
along the nucleon momentum in the hyperon rest frame.
Correspondingly, the decay asymmetry parameter of
the antihyperon is denoted as @. Because a and & are CP
odd, Acp = (e +a)/(a—a) can be used to test CP
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conservation [11,12]. A nonzero value of A-p would indicate
CP violation.

Theoretically, there are two predictions for CP violation
in nonleptonic two-body weak decays of X. In the seminal
work by Donoghue et al., the CP violation contribution in
>+ — nat was predicted to be —1.6 x 107 [13]. The most
recent study by Tandean and Valencia used heavy baryon
chiral perturbation theory and predicted the CP violation
of 2t — nat to be 3.9 x 107* [14]. Although the above
two predictions are at the same level, Ref. [13] does not
consider the P-wave factorization contribution, which can
change the prediction by a factor of 10. To determine the
SM CP violation contribution, the experimentally deter-
mined asymmetry parameters are used as part of the input.
Because of the large experimental uncertainty of the
Xt - na' asymmetry parameter «, the uncertainties in
the CP violation estimations of £+ — nz are greater than
those of other hyperons, and the predicted CP violation is
an order of magnitude greater than those of X* — pz”,
Y™ > nx,and A - pr~ [14].

Recently, it was pointed out that the experimental value
of the decay asymmetry a for =* — pz® is not consistent
with the Al = 1/2 rule [15], where A[ refers to the isospin
difference between the initial and final states. Therefore, a
precision measurement of the decay asymmetry a, for
>t — nxt is needed to determine the contributions of the
Al = 3/2 and Al = 3/2 weak transitions to X decays [16].

Experimentally, the decay asymmetry parameters o, and
its charge-conjugated (c.c.) equivalent &, have been well
measured [17]. For the decay of ™ — na™, there are only
two measurements of a, from fixed-target experiments,
performed more than fifty years ago. Although the two
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FIG. 1. The helicity frame definitions for J/y — Zt%-,
=t — pal(nat), £~ — iz~ (pa°). In the ete™ center-of-mass
system, Oy is the angle between the T and the electron beam
direction. The zs+ axis is the moving direction of £* in the J/y
rest frame, the yy+ axis is perpendicular to the plane of =" and
electron, and the xy+ axis is defined by the right-handed
coordinate system.

existing results 0.069 4= 0.017 [18] and 0.037 & 0.049 [19]
are in agreement with each other, they are relatively
imprecise compared with ; and also the second one is
compatible with zero. Furthermore, the corresponding
decay parameter @_ of ¥~ — 7z~ has never been measured
before. Precision measurements of the decay parameters of
>t — nat and c.c. mode would provide a first precision
test of CP symmetry in hyperon to neutron decays and
supply important experimental input to sharpen CP viola-
tion predictions of all nonleptonic two-body weak decays
of 2. However, the relatively small o, and a_ values, the
polarization value determination, and the difficulties in
neutron and antineutron detection all represent a challenge
for an accurate experimental measurement.

The BESIII experiment provides a unique environment
to study both hyperon production and decay properties in
electron-positron annihilation to * X~ pairs via the inter-
mediate J/y resonance, where the above challenges can
be well addressed. In this entangled quantum system, the
decay parameters of  and £~ are correlated, allowing for
a precise determination of the asymmetry parameters and
the CP symmetry. The e*e™ — J/y — ZtZ~ process is
described by the W electric and magnetic form factors, Gy
and Gﬂ [20]. These two W form factors are formally
equivalent to the X electric and magnetic form factors
[21-25]. They are usually parametrized by two real
parameters a;,,, and A®, which correspond to the angular
decay asymmetry and the relative phase between the two
form factors, respectively. The observable A® is related to
the spin polarization of the produced X*X~ pair. The =
polarization is perpendicular to the production plane and
depends on the opening angle 05+ between the X' and
electron (e”) beam in the reaction center-of-mass frame,
as shown in Fig. 1. The first polarization measurement of
J/w — £Z~ was reported by the BESIII Collaboration
with =+ — pz° and £~ — pz° based on 1.3 x 107 J/y
events [26]. The significant polarization provides the
prerequisite for o, and &_ measurements.

The production and decay process ete™ = J/y —
2+ (— Nrm)Z (- Nx) is described with five observables
&= (05,05, dn, Oy, dy) [20]. Here Oy, ¢y and Oy, ¢y are
the polar and azimuthal angles of the nucleon and anti-
nucleon measured in the rest frames of their respective
mother particles. The differential cross section distribution
W(E) is defined as

W(E) =Ty(&) + ay,7T5(E)

+ aé(Tl(‘g‘) +4/1- ai/w cos(AD)T, (&)
+05//1,,T6(§>> +4/1 - ag/w sin(A®)(aT 5(€)

+aT 4(€)),

where 7;, (i =0,1...6) are angular functions dependent
on € and described in detail in Ref. [20]. According to the
above cross section formula, if the process of J/y — T X~
with T - nzt, £~ - Az~ is used with the a and @
parameters close to zero, the cross section distribution of a
and a dependent parts will be small, and the determination
of the parameters imprecise. Moreover, the simultaneous
detection of both the neutron and antineutron will be
difficult. In addition, the process of J/y — X™XF with
> > nan-, Tt - Azt with the same final state could
contaminate our signal. To overcome these disadvantages,
we instead use J/y — T~ with = — pa’(na™) and
2~ — iz~ (pa°). Benefiting from the large decay param-
eters ay = —0.982 £ 0.014 and @y = 0.99 £ 0.04 [17], the
measurement accuracy can be improved by 17.4 times
compared with the neutron antineutron final state. Also,
since X~ cannot decay to pz’, the J/y — ™+t back-
ground is highly suppressed.

This Letter is based on a data sample of (1.0087 +
0.0044) x 10'° J/y events [27] taken with the BESIII
detector operating at the BEPCII collider. Details about the
design and performance of the BESIII detector are given in
Ref. [28]. Candidate events for the process J/y — XTX~
with subsequent £+ — pa’(na™) and £~ — iz~ (pa®)
decays must have two charged tracks with opposite charges
and at least two photons. Charged tracks detected in the
multilayer drift chamber (MDC) are required to be within a
polar angle (@) range of | cos 0] < 0.93, where 0 is defined
with respect to the z axis, the symmetry axis of the MDC.
For each track, the distance of the closest approach to the
interaction point must be less than 10 cm along the z axis,
and less than 2 cm in the transverse plane.

The particle identification (PID) system identifies the
two candidate charged tracks as pz~ or pa™ based on the
measured energy loss in the MDC and the flight time in
the time-of-flight system. Each track is assigned to the
particle type corresponding to the hypothesis with the
highest confidence level.
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FIG. 2. Distributions of (left) M, versus M .0 for J/y — Z7E~ with =% — pz®, £~ — fiz~, and (right) M, versus Mo for

nm 1Za

J/y = TTE with =+ — nat, £~ — pa°. The red boxes denote the signal regions and the green ones indicate the sideband regions.

Photon candidates are identified using showers in the
electromagnetic calorimeter (EMC). The deposited energy
of each shower must be more than 25 MeV in the barrel
region (| cos 8| < 0.80) and more than 50 MeV in the end-
cap region (0.86 < |cos6| < 0.92). To exclude showers
that originate from charged tracks, the opening angle
subtended by the EMC shower and the position of the
closest charged track at the EMC must be greater than 10°
as measured from the interaction point. To suppress
electronic noise and showers unrelated to the event, the
difference between the EMC time and the event start time is
required to be within [0, 700] ns.

Candidates for z° are selected as photon pairs with an
invariant mass in the interval of (my — 60 MeV/c?) <
M,, < (mu +40 MeV/c?), where mo is the known z°
mass [17]. In addition, a one-constraint (1C) kinematic fit
is performed on the selected photon pairs, constraining
the invariant mass to the known z° mass. The y3. of the
kinematic fit is required to be less than 25. At least one
candidate 7° is required.

To select J/y — XTE~ with ZF — pz° and £~ — 7z~
the antineutron energy deposition in the EMC is required
to be at least 0.5 GeV. The second moment, defined as
S i Eir?/ >, Ej, is required to be greater than 20. Here E;
is the energy deposition in the iy, crystal and r; is the radial
distance of the iy crystal from the cluster center. The
opening angle 6, ; between photon candidates and the 7
track is required to be greater than 20°. For this process, a
four-constraint (4C) kinematic fit is applied by imposing
energy-momentum conservation and an additional z° mass
constraint, where the direction of the 7 is measured and the
energy is unmeasured. A two-constraint (2C) kinematic fit
is applied to the J/y — XTX~ process, with =+ — nz™
and £~ — pz°. Energy-momentum conservation and an
additional z° mass constraint are imposed in this fit, with
the neutron being treated as a missing particle. The 4C and
2C kinematic fit chi-squares, y3 and y3, are both required
to be less than 100. If the number of z° candidates in an
event is more than 1, the combination with the minimum
Xic or y3c is selected as the final candidate.

To investigate possible background after applying the
event selection criteria, an inclusive Monte Carlo (MC)
sample of 10 x 107 J/y events has been examined with
TopoAna [29]. All particle decays are modeled with
EVTGEN [30] using branching fractions either taken from
the Particle Data Group (PDG) [17], when available, or
otherwise estimated with LUNDCHARM [31]. The main
peaking backgrounds are J/y — yEtE~ and J/y —
YMesNe — T, which both contribute 0.2% of the signal
strength and are negligible. The nonpeaking background
mainly includes J/y — ATA™ — pa’nz~ (nz* pa®) and
J/w — paliin~(nz* px®) whose contributions are esti-
mated to be 1.4% and 1.6% with a two-dimensional
sideband method. Figure 2 shows the distributions of
My, versus M0 and M, .- versus Mo for the two
decay modes. The signal regions in the red rectangles
are defined as 1.17 < M, 0(M,0) < 1.20 GeV/c* and

1.18 < M;,-(M,,,+) < 1.20 GeV/c?. To estimate the non-
peaking background contributions, four sideband regions
have been selected, denoted as green rectangles in the plots.
Each sideband region has the same area as the signal region
and is placed at a distance of about 2¢ from the signal
boundary, where ¢ is the invariant mass resolution of X
and X~. The background events are estimated using
fx>7% | B;, where B; is the number of events in the iy,
sideband region, and the scale factor f is defined as the
background ratio between the signal and sideband regions.
Using a two-dimensional fit on the distribution of M,
versus My~ or M, .+ versus M0, the scale factors are
determined to be 0.265 £ 0.001 and 0.259 =+ 0.001 for these
two decay channels, respectively. The numbers of signal
events are found to be 312136 = 577 and 754017 + 924,
while the numbers of background events are 8122 + 187 and
31150 4 709. Here the uncertainties are statistical only.
An unbinned maximum likelihood fit is performed in the
five angular dimensions € [26] simultaneously on the two
datasets to determine the parameters {a Ty AD,; s Ay O }.
Following the approach in Ref. [32], the multidimen-
sional approach takes the reconstruction efficiency into
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TABLE 1.

The decay parameters of J/y — ZtE~, = — pa%(nat), £~ — iz~ (pa). The first uncertainties are

statistical and the second systematic. Dots (- - -) represent no experimental measurement.

Parameter This Letter

Previous result

sy —0.5156 £ 0.0030 £ 0.0061

—0.508 £ 0.006 £ 0.004 [26]

AD,), (rad) —0.2772 4 0.0044 + 0.0041 —0.270 4 0.012 4 0.009 [26]
a, 0.0481 4 0.0031 4 0.0019 0.069 4 0.017 [18]

a_ —0.0565 + 0.0047 + 0.0022 -

a, Ja —0.0490 + 0.0032 + 0.0021 —0.069 + 0.021 [33]
a_/a, —0.0571 4 0.0053 + 0.0032 e

Acp —0.080 4 0.052 + 0.028

(a) 0.0506 4 0.0026 + 0.0019

account in a model-independent way and background
contribution has been considered according to the scale
factors f. The numerical fit results are summarized in
Table I. The relative phase between the V¥ electric and
magnetic form factors is determined to be A®;,, =
(=0.2772 4 0.0044,, £ 0.0041,y) rad, which implies
2 spin polarization is observed. The moment related
to the polarization is defined as

ng

M(cos Oy ) == Z(sin 0} sin @}, — sin 6% sin @ ).
n

i

Here, m = 40 is the number of bins, 7 is the total number of
events in the data sample, and n;, is the number of events
in the ky, cos s+ bin. The expected angular dependence of

the moment is (dM/dcosfy-) ~ /1 — a3, a, sin AD,,

y cos Oy sin Oy . In Fig. 3, the black points represent data
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FIG. 3. The moment M (cos @5+ ) for data, that is not corrected

for acceptance and reconstruction efficiency, as a function of
cosfy: for J/y — ZtE~ with the two decay channels:
>t = pa, £ = Az~ and T - nat, ¥ — pa°. The black
points with error bars are data with background subtracted, the
red solid line is the fit result and the blue dashed line represents
the distribution without polarization uniformly distributed in
phase space. The height of the green band shows the absolute
difference between the two decay channels with background
subtracted.

and follow the expectation as shown by the red line. As
A®,,, isnotzero, itis possible to determine the asymmetry
parameters «, and a_ simultaneously. The asymmetry
decay parameter «, is measured to be 0.0481%
0.003 1 & 0.0019y, with a precision improved by a
factor of 4.7 compared to the previous best measurement
[18]. The asymmetry decay parameter _ is determined
for the first time as —0.0565 + 0.0047, + 0.0022,.
Assuming no CP violation, the average decay asymmetry
is calculated to be (a,)= (a, —a_)/2=0.0506+
0.00264, £ 0.0019y, taking into account the correlation
coefficient of —0.002 between a, and a_.

The systematic uncertainties are listed in Table II, which
is divided into two categories. The first category is from
the event selection, including the uncertainties for MDC
tracking, PID, z°, and 7 reconstructions, kinematic fit,
background estimations, as well as the £+ and £~ mass
window requirements. The second category includes the
uncertainties associated with the fit procedure. The indi-
vidual uncertainties are assumed to be uncorrelated and
are therefore added in quadrature. The uncertainties due to
potential efficiency differences between data and simula-
tion for charged-particle tracking and PID have been
investigated with a J/w — ppaTx~ control sample, and
those due to neutral z° and 7i reconstructions are estimated
from J/y — X (pa®)Z~(pz°) and J/yw — piin~ control

TABLE 1II. The absolute systematic uncertainties in a;,,
ADy),, a_, and a,.

Source ayy,  AD, a_ a,

MC efficiency correction 0.0059 0.0005 0.0016 0.0011
Kinematic fit 0.0003  0.0004 0.0007 0.0003
Signal mass window 0.0015 0.0021 0.0010 0.0009
Background 0.0001  0.0007 0.0003 0.0002
Fitting method 0.0007 0.0028 0.0007 0.0012
Decay parameters 0.0000 0.0020 0.0003 0.0003
Total 0.0061 0.0041 0.0022 0.0019
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samples. Using these control samples, we determine the
correction factors and apply them in the MC simulation to
obtain the nominal results. The uncertainty of the correc-
tion factors is estimated by changing them within lo
regions. The differences to the nominal results are taken
as the MC efficiency correction systematic uncertainties.
The systematic uncertainties due to the kinematic fits are
examined by comparing the detection efficiencies with and
without helix parameter corrections, which are used to
reduce the discrepancies between data and MC simulation
[34]. The differences in detection efficiencies with and
without corrections are assigned as the systematic uncer-
tainties. To estimate the systematic uncertainty associated
with the signal mass window, the window is changed by 3¢
(&5 MeV), where ¢ is the invariant mass resolution of X+
and ™. The fits are repeated using the new mass window,
and the differences of results to the nominal values are
regarded as the corresponding systematic uncertainties. The
systematic uncertainty caused by the background estima-
tion is studied by varying the length and width of four
sideband boxes within +5 MeV. The largest differences in
the parameters are taken as the systematic uncertainties. To
validate the reliability of the fit results, a set of 100 pseudo-
data samples are simulated and subjected to the same
selection criteria. In these samples, the differential cross
section is based on the decay parameters listed in Table I.
The systematic uncertainties from the fit approach are
assumed to be the deviations between the inputs and
average outputs. In the nominal fit, the parameters of «
and a are fixed at the world average values [17]. By
changing the parameter within +1¢ (0.006) regions for a,
and @, the changes between the new and nominal fit results
are taken as systematic uncertainties.

In summary, based on a data sample of (1.0087 £
0.0044) x 10'° J/y events collected at the BESIII detec-
tor, the five-dimensional angular analysis of the processes
of J/wy = T2~ (Tt = pa’, £ = iz and Tt = nxt,
2~ — pa°) is performed. The decay parameters a;,, and
A®;,, are measured to be —0.5156 4 0.0030y, +
0.00615 and (—0.2772 £ 0.0044, £ 0.0041) rad,
respectively, which are consistent with the previous mea-
surements but with improved precision [26]. The nonzero
value of A®,,, in the J/y — T +X~ decay, which implies
the existence of polarization, is confirmed with two differ-
ent X decay channels, J/y — Xt2~ — paiiz~ (nxt pa®)
and J/y — X5 — papa®. The parameters a, and
a,/ay determined in this Letter are consistent with the
PDG averages but with significantly improved precision,
and @_ and a@_/a, are measured for the first time.
The average decay asymmetry parameter is 0.0506 +
0.00264;y &= 0.0019y, which differs from zero by 166.
This result is crucial to test the |AI| = 1/2 rule and study
the high order isospin transitions [33]. Our precise
measurement of the decay asymmetry parameter in the
neutron mode is of vital importance to the CP violation

prediction [14]. Beyond its theoretical implications, it
serves as a crucial input for global hyperon polarization
measurements, which test the vortical structure of heavy-
ion collisions [35-37]. This is the first study to test CP
symmetry in the hyperon to neutron decay, and the result is
consistent with CP conservation. These findings will have
a significant impact on future searches for new physics at
hyperon and Super Tau-Charm facilities [15,38].
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