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Abstract: The β-thalassemias are a group of monogenic hereditary hematological disorders caused
by deletions and/or mutations of the β-globin gene, leading to low or absent production of adult
hemoglobin (HbA). For β-thalassemia, sirolimus has been under clinical consideration in two trials
(NCT03877809 and NCT04247750). A reduced immune response to anti-SARS-CoV-2 vaccination
has been reported in organ recipient patients treated with the immunosuppressant sirolimus. There-
fore, there was some concern regarding the fact that monotherapy with sirolimus would reduce
the antibody response after SARS-CoV-2 vaccination. In the representative clinical case reported in
this study, sirolimus treatment induced the expected increase of fetal hemoglobin (HbF) but did not
prevent the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna). In our
opinion, this case report should stimulate further studies on β-thalassemia patients under sirolimus
monotherapy in order to confirm the safety (or even the positive effects) of sirolimus with respect
to the humoral response to anti-SARS-CoV-2 vaccination. In addition, considering the extensive
use of sirolimus for the treatment of other human pathologies (for instance, in organ transplanta-
tion, systemic lupus erythematosus, autoimmune cytopenia, and lymphangioleiomyomatosis), this
case report study might be of general interest, as large numbers of patients are currently under
sirolimus treatment.
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1. Introduction

The β-thalassemias are a heterogenous group of monogenic hereditary hematological
disorders caused by deletions and/or mutations of the β-globin gene [1–3]. Since these
alterations are associated with a total (β0) or a partial (β+) suppression of the expression
of this gene, causing the absence or reduction of adult hemoglobin (HbA) production,
the reactivation of the silent γ-globin genes can ameliorate the clinical parameters of
β-thalassemia patients in association with a “de novo” production of fetal hemoglobin
(HbF) [4–8].

The mTOR (mammalian target of rapamycin) inhibitor sirolimus [9–11] has been pro-
posed as a potent HbF inducer in vitro [12,13] in experimental animals [14–16] and when ad-
ministered to patients carrying sickle-cell disease (SCD) [17,18] and β-thalassemia [19] traits.
On the other hand, mTOR inhibitors retain immunomodulating properties [20]. Therefore,
especially considering the coronavirus disease 2019 (COVID-19) pandemic [21,22], the
use of mTOR inhibitors should be carefully monitored with respect to potential effects
on humoral (i.e., production of neutralizing antibodies) [23] and cellular (i.e., memory
T-cell) [24,25] responses against severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) antigens. This is of great relevance for the following considerations: (a) sirolimus
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is the prototype of a large class of mTOR inhibitor analogues; (b) it was approved by the
FDA (U.S. Food and Drug Administration) as an immunosuppressant in combination with
cyclosporine and corticosteroids for prophylaxis of organ rejection; and (c) sirolimus is ex-
tensively employed in long-term monotherapy for several diseases, including the treatment
of solid organ transplantation [26–28], systemic lupus erythematosus [29], autoimmune
cytopenia [30], and lymphangioleiomyomatosis [31]. An extended list of diseases that
can be treated with sirolimus can be found in Zuccato et al. and Gamberini et al. [19,32].
Moreover, sirolimus and mTOR inhibitors have been evaluated for the possible promotion
of health span in adults [33].

Concerning this issue, reduced immune response to the SARS-CoV-2 vaccine has
been observed in organ recipients receiving sirolimus-based immunosuppressant ther-
apy [34]. Accordingly, the production of anti-SARS-CoV-2 antibodies in patients receiving
sirolimus has been monitored in recent studies performed on liver and kidney transplant
recipients [35,36].

Sirolimus is at present employed in two clinical trials conducted on β-thalassemia
patients (NCT03877809 and NCT04247750) [32]. These two trials are based on the use of
low dosages of sirolimus with the main objective of verifying its efficacy as an in vivo
HbF inducer, aiming to reduce the number of transfusions needed with overall good
tolerability [19,32]. In this context, for determining the possible effects of sirolimus on
anti-SARS-CoV-2 vaccination, β-thalassemia patients participating in the clinical trial
NCT04247750 are very informative.

According to the protocol summarized in Figures 1A and 2, all the enrolled β-
thalassemia patients received two doses of either the BNT162b2 (Pfizer–BioNTech) or
the mRNA-1273 (Moderna) vaccines before starting a daily intake of 2 mg of sirolimus as
described by Gamberini et al. [32] and by Zuccato et al. [19]. In addition, all the patients
received a booster dose about 6 months later (Figure 1A), between V6 and V8.
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Figure 1. Scheme depicting some key activities within the T04247750 clinical trial (A), along with the
timing of SARS-CoV-2 vaccination (orange triangles) and blood sampling (yellow arrows) considered
in this report. The large longitudinal arrow in panel A identifies the sirolimus treatment that usually
started 20 days after the administration of the second dose of the mRNA-1273 (Moderna) vaccine.
(B) HPLC analysis of the hemoglobins of EPO-cultured ErPCs isolated from the sirolimus-treated
patient at V6 (left side of panel (B)) and V8 (right side of panel (B)) and cultured as described by
Zuccato et al. [19] and by Gamberini et al. [32].
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BS3, and BS4. The days from mRNA-1273 (Moderna) dose #2 (BS1 and BS2) and booster dose #3
(BS3 and BS4) are indicated in parenthesis. A blood sampling was programmed (BS0) just before
the vaccination in order to exclude SARS-CoV-2 infection. Two blood samplings (BS1 and BS2) were
programmed after 30–50 (BS1) and 150–200 (BS2) days from BNT162b2 dose #2. Two blood samplings
(BS3 and BS4) were programmed after 30–50 (BS3) and 110–160 (BS4) days from BNT162b2 booster
dose #3.

For the analysis of the effects of sirolimus on parameters of erythropoiesis, visits were
programmed after 10 (V3), 90 (V6), 180 (V8), and 360 (V11) days after starting sirolimus
intake (Figure 1A). In this report, the HbF production by erythroid precursor cells (ErPCs)
isolated from the patient at V6 and V8 and differentiated by culturing with erythropoietin
(EPO) was considered. The HbF production by these cells was determined in order to
confirm the response of the patient to sirolimus treatment. For determination of anti-SARS-
CoV-2 antibodies, blood sampling was performed before the administration of the first dose
(BS0), after 30–50 (BS1) and 150–200 (BS2) days from the second dose, then after 30–50 (BS3)
and 110–160 days (BS4) from the booster dose (Figure 2). These two blood samplings (early
and late) have been programmed, considering several studies indicating that immunity
gradually waned after having received the second dose of vaccine [37–39].

2. Case Presentation

The studied case was a male transfusion-dependent TM (Thalassemia Major) patient,
41 years old, homozygous for the β039-Thalassemia mutation.

He started the first blood transfusion when he was 2 years old, was splenectomized
in 1996, and participated in the NCT04247750 clinical trial. More clinical information is
reported in Table 1.

According to the general scheme of the study depicted in Figures 1A and 2, he started
the intake of sirolimus after about 20 days from the second dose of mRNA-1273 (Moderna)
anti-SARS-CoV-2 vaccine. The response of this patient to sirolimus treatment is documented
by the HPLC (High-Performance Liquid Chromatography) analysis of the erythropoietin
(EPO)-differentiated ErPCs, in agreement with the protocols and the methods described in
Gamberini et al. [32] and Zuccato et al. [19].

Figure 1B shows that a sirolimus-mediated increase of HbF was appreciable when
EPO-induced ErPCs from the patient treated for 90 days (V6) with sirolimus were compared
with ErPCs after 180 days of sirolimus treatment (V8). The HbF content increased from
21.99% (V6) to 40.52% (V8) (1.84-fold). These preliminary analyses support the concept that
the patient was responding to sirolimus treatment.
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Table 1. Clinical parameters and therapies.

Clinical parameters Comments/ongoing therapies at the time of recruitment to the
NCT04247750 trial

A. General parameters

Genotype Homozygous for the β039-Thalassemia mutation
XmnI polymorphism: -/-

Start of regular transfusion therapy 12 December 1983; age 2.8 years

Transfusion regime In 2020, 38 units of red blood cells were infused. Mean
pre-transfusional Hb: 9.4 g/dL; iron intake: 0.33 mg/kg/die

Start of regular chelation therapy 1 January 1984; age 2.9 years

Chelation therapy

Various schemes were used, including chelating agents in
monotherapy or in combination. Since 4 February 2021, alternate
combination therapy with desferrioxamine sc (28 mg/kg 3/7) and
deferasirox FC per os (20.2 mg/kg 4/7) is ongoing

Iron overload

Severe hepatic and cardiac accumulation was found in 2008 by
RM-T2; progressive improvement up to normalization of the
deposits was obtained on 6 June 2021 (MRI-T2: cardiac T2 40 ms,
LIC 2.19 mg/g liver dry tissue)
Serum ferritin: high mean annual values (>2000 ng/mL) from 2008
to 2011; <500 ng/mL from 2019; on 16 March 2021:
ferritin 428 ng/mL

Splenectomy 15 March 1996; age 15 years

Adenotonsillectomy 15 September 2008; age 17 years

B. Clinical complications

Allergic Chronic Asthma (Since pediatric age; allergy
developed against alternaria and grasses)

Beclomethasone 200 mcg plus formoterol 2 mcg (Foster®): 2
inhalations per day

Piastrinosis (1996, after splenectomy) Lysine acetylsalicylate (cardirene®)300 mg/day

Osteoporosis (2003) Aledronic acid (dralenos®) 70 mg/week

Postpuberal hypogonatropic hypogonadism (2006) Testosterone gel (tostrex®) 40 mg/day (4 pumps in a single dose)

Dilated cardiopathy with ventricular dysfunction secondary
to cardiac
siderosis (2006)

Bisoprolol 1.25 mg/day, losartan 50 mg plus hydrochlorothiazide
12.5 mg/day

Vitamin D deficiency (2012) Cholecalciferol (dibase®) 1250 IU/day

Growth Hormone deficiency (2014) Somatotropin (humatrope®) 6 mg/day, 6 days/week

Hyper calciuria (2016) /

Paravertebral ectopic erythropoyesis mass (2017; diameter 2
cm, stable at follow-up) /

SARS-CoV-2 infection Never infected

The response to vaccination was determined by quantifying anti-RBD (Spike) antibod-
ies (Abbott Laboratories, Wiesbaden, Germany). The values of the anti-SARS-CoV-2 IgG
(immunoglobulin G) (AU/mL) were determined in BS1, BS2, BS3, and BS4 and reported in
Figure 2. The highest BS1/BS2 SARS-CoV-2 IgG value of the propositus of this case report
study was 362.73. This value is coherent with the data obtained when BS3 and BS4 were
considered. In fact, the BS3 SARS-CoV-2 IgG value of the propositus was 1727.00 (Figure 2),
which is a value much higher than those found in BS1/BS2. Interestingly, the BS4 value
was also high, suggesting that the production of anti-SARS-CoV-2 IgG was durable after
more than three months from booster dose #3 of the mRNA-1273 (Moderna) vaccine.

Taken together, these data demonstrated that in this patient, sirolimus allowed the
production of SARS-CoV-2 IgGs after vaccination with mRNA-1273 (Moderna) [37].
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3. Discussion

A reduced immune response to anti-SARS-CoV-2 vaccination has been observed in
organ recipients receiving immunosuppressant sirolimus-based treatment [33]. Therefore,
there was some concern regarding the fact that monotherapy with sirolimus would reduce
the antibody response after SARS-CoV-2 vaccination. On the other hand, recent studies
have concluded that negative effects of sirolimus are not present in sirolimus-treated
patients [34,35]. For instance, Cheng et al. reported that the neutralizing antibody responses
to a SARS-CoV-2 vaccine were unchanged in sirolimus-treated lymphangioleiomyomatosis
patients, suggesting that monotherapy with sirolimus or other mTOR inhibitors does
not prevent antibody responses to SARS-CoV-2 vaccines [40]. In other studies, a positive,
beneficial effect of sirolimus and mTOR inhibitors on anti-SARS-CoV-2 antibody production
was reported [24,41,42]. For instance, an immunosuppressive regimen based on low doses of
the mTOR inhibitor everolimus was found by de Boer et al. to be associated with a higher
humoral response rate after COVID-19 vaccination in elderly kidney transplant recipients [42].

This issue is of relevance for patients with hematological diseases, including β-
thalassemia and sickle-cell disease (SCD). In this respect, sirolimus has been proposed as
a possible therapeutic strategy for in vivo enhancement of HbF production in β-thalassemia
and SCD [8] and is under clinical consideration for β-thalassemia in two trials (NCT03877809
and NCT04247750) [19,33]. However, the immune response of SARS-CoV-2 vaccines was
unknown in β-thalassemia patients on monotherapy with sirolimus and other mTOR in-
hibitors. In this respect, β-thalassemia patients participating in the clinical trial NCT04247750
might be very informative. According to the protocol shown in Figures 1A and 2, all the en-
rolled β-thalassemia patients received two doses of either the BNT162b2 (Pfizer–BioNTech)
or the mRNA-1273 (Moderna) vaccines before starting with the daily intake of 2 mg of
sirolimus as described by Gamberini et al. [32] and by Zuccato et al. [19]. The anti-SARS-
CoV-2 IgG levels (Figure 2) were found to be comparable to those reported elsewhere of
β-thalassemia patients (not treated with sirolimus) [43–45].

Our data are also of interest when considered together with our previously published
observation on the effects of sirolimus on memory T-cells of sirolimus treated β-thalassemia
patients [46]. In this study, Zurlo et al. found that sirolimus treatment has a positive impact
on the biological activity and number of memory CD4+ and CD8+ T cells releasing IFN-γ
following stimulation with antigenic stimuli present in immunological memory [46]. As a
final comment, we would like to underline that our study might be considered of interest
to β-thalassemia and SCD patients living in counties where these diseases are widespread
and there is a need to control the COVID-19 pandemic with extensive anti-SARS-CoV-2
vaccination programs.

4. Conclusions

The results shown in Figure 2 demonstrate that sirolimus treatment does not prevent
the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna).
In our opinion, this case report study should stimulate further studies on β-thalassemia
patients under sirolimus monotherapy. The aim of these further investigations should
verify and confirm the safety (or even the positive effects) of sirolimus with respect to
the responses to anti-SARS-CoV-2 vaccination. In addition, considering the extensive
use of sirolimus for the treatment of other human pathologies (for instance, in organ
transplantation, systemic lupus erythematosus, autoimmune cytopenia, and lymphan-
gioleiomyomatosis) [26–31], this case report study might be of general interest, as large
numbers of patients are currently under sirolimus treatment or will be treated in future
clinical trials with sirolimus.
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