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Abstract

This work proposes a novel methodology for the automatic multi-objective optimisation of sensor paths
in Structural Health Monitoring (SHM) sensor networks using Archived Multi-Objective Simulated Anneal-
ing (AMOSA). Using all of the sensor paths within a sensor network may not always be beneficial during
damage detection. Many sensor paths may experience significant signal noise, attenuation, and wave mode
conversion due to the presence of features, such as stiffeners, and hence impair the detection accuracy of the
overall system. Many paths will also contribute little to the overall coverage level or damage detection accu-
racy of the network, and can be ignored, reducing complexity. Knowing which paths to include, and which
to exclude, can require significant prior expert knowledge, which may not always be available. Furthermore,
even when expert knowledge is considered, the optimum path selection might not be achieved. Therefore,
this work proposes a novel automatic procedure for optimising the sensor paths of a SHM sensor network
to maximise coverage level, maximise damage detection accuracy, and minimise the overall signal noise in
the network due to geometric features. This procedure was tested on a real-world large composite stiffened
panel, with many geometric features in the form of frames and stiffeners. Compared to using all of the avail-
able sensor pairs, the optimized network exhibits superior performance in terms of detection accuracy and
overall noise. It was also found to provide very similar performance, in terms of coverage level and overall
signal noise, to a sensor path network designed based on prior expert knowledge, but provided up to 35%
higher damage detection accuracy. As a result, the novel procedure proposed in this work has the capability
to design high-performing SHM sensor path networks for structures with complex geometries, but without
the need for prior expert knowledge, making SHM more accessible to the engineering community.

Keywords: Structural Health Monitoring (SHM), Composites, Impact Damage, Multi-Objective Optimi-
sation, Simulated Annealing (SA), Archived Multi-Objective Simulated Annealing (AMOSA)

1 Introduction
Structural Health Monitoring (SHM) offers engineers the opportunity to transition to Condition-Based Main-
tenance (CBM) practices, whereby maintenance is performed only if damage is detected by integrated sensors,
reducing overall maintenance costs. Current damage tolerance philosophy in the aviation industry requires the
use of conservative safety factors for composite materials due to their susceptibility to low velocity impact
damage. SHM systems can provide regular and on-demand health assessment of the structure. Therefore, the
design of a SHM enabled composite structure can be optimized to improve material utilization and reduce
the overall weight of the structure [1]. The accuracy of the SHM system is of utmost importance, and high
accuracy is vital for achieving the high reliability targets required in the aviation industry. The implementation
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of the SHM system must also consider the costs associated with its procurement, installation and operation [2].
Since simply increasing the number of sensors can lead to financially sub-optimal or unfeasible designs.

A key approach to optimising SHM systems is the optimisation of sensor locations within the system. This
approach has attracted a great deal of interest amongst the research community and has lead to significant
improvements in the damage detectability of SHM systems [3–14]. One of the most notable works on this
topic is a recent review by Ostachowicz et al. [3], which provides a comprehensive overview of the devel-
opment of novel sensor placement optimisation techniques for a wide range of different sensor technologies
and optimisation algorithms based on different performance indices. Among the most common performance
indices is the coverage area index, which describes the coverage area provided by the sensors of a SHM net-
work. One of the most relevant examples of this is by Thiene et al. [4], where a Maximum Area Coverage
(MAC) approach was developed for optimising the position of sensors within a SHM network for damage
localization in composite structures. A genetic algorithm was used to determine the optimal combination of
sensor locations that maximised the coverage area of the network based from an initial set of possible loca-
tions. The resulting sensor networks were validated via experimental measurements and they were found to
provide accurate damage localization. Another relevant example is by Salmanpour et al. [5], where a similar
approach to Thiene et al. [4] was taken for optimal transducer network placement using a genetic algorithm,
but was designed specifically for a delay and sum damage detection algorithm. The optimisation was carried
out using a fitness function based on coverage area and signal attenuation. The optimised sensor networks
were successfully validated using experimental data. Another example is by Gao et al. [6], where the design
of a sensor network for a composite aircraft tail was optimised to maximise coverage level. Further examples
are provided by [7] and [8]. Another common performance index is the signal attenuation index, which de-
scribes the level of signal attenuation in the sensor network. This was also investigated by Thiene et al. [4]
and by Salmanpour et al. [5]. Probability of sensor malfunction has also been investigated by the research
community as a performance index. Mallardo et al. [9] used this index with a Bayesian inference approach,
under the presence of sensor data uncertainties, to optimise the positions of sensors for improving impact lo-
calisation accuracy. The reliability and robustness of the proposed approach were validated with experimental
examples. A performance index based on economic cost was investigated by Mkwananzi et al. [10], who
optimised sensor positions to minimise capital costs and costs associated with detection errors. As a result of
this optimisation, it was shown that costs associated with detection errors could be reduced by 40%. Modal
characteristics have also been used as performance indexes. Sun and Buyukozturk [14] took an integer opti-
misation approach to the optimisation of sensor locations using modal characteristics. Results indicate that the
proposed methodology is efficient and effective in optimisation the locations of the sensors. Ferreira Gomes
et al. [11] employed a multi-objective genetic algorithm to search for the optimal locations of sensors. The
objectives were based on information collected by the Fisher Information Matrix (FIM) and mode shape inter-
polation, and it was demonstrated that the proposed method could distribute a small number of sensors on a
structure and guarantee the quality of information obtained from these sensors. Other examples of the use of
the FIM are [12] and [13]. More detailed information on the use of different performance indices for sensor
location optimisation can be seen in a recent review by Barthorpe and Worden [15].

In this study, the focus is on SHM systems based on guided waves. These systems employ surface mounted
or embedded piezoelectric transducers to generate and record propagating ultrasonic guided waves in thin-
walled structures and have been demonstrated to be capable of reliably detecting Barely Visible Impact Dam-
age (BVID) in composites. From the works mentioned in the previous paragraph, it is evident that the research
community has developed a number of novel methodologies for optimising the position of sensors to minimise
or maximise various objective functions, such as damage detection accuracy, or coverage level. However, once
this optimisation has been conducted and the optimum sensor positions found, the optimum selection of sen-
sor paths to be included during damage detection has not been studied. Although counter-intuitive, using all
possible sensor paths within a network may not be the optimum strategy. Many sensor paths may experience
significant signal attenuation, increased noise, and wave mode conversion due to the presence of features, such
as stiffeners etc. A-priori expert knowledge of which paths to include and which to exclude might require
significant expert knowledge, which may not be available in some situations, such as in the case of complex
geometries. An example of choosing optimal sensor paths based on a-priori expert knowledge is given by
Yue et al. [16], who developed a manual approach to optimizing sensor paths for maximizing impact damage
detection in large composite stiffened panels. The optimal sensor paths were selected based on prior expert
knowledge of SHM systems. To detect damage, outlier analysis was performed using damage index data ex-
tracted from signals in pristine and damaged composite stiffened panels. The same path selection approach
was also used in Giannakeas et al. [17] for large composite stiffened panels. A drawback of the manual opti-
mization approach used in these works is that it can require significant prior expert knowledge to determine the
combination of sensor paths that maximises the coverage level of the network, maximises damage detection
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accuracy, and minimises signal noise due to geometric features. In many situations, this expert knowledge
may not be available, and even when it is available, the ability to select the optimum combination of sensor
paths is not guaranteed.

It is thus evident that an automatic approach, requiring minimal a-priori expert knowledge, is needed for
the selecting the optimal combination of sensor paths. However, the authors have only been able to find one
relevant example of this in the literature. Verma et al. [18] developed an automatic optimisation procedure in
which the paths of 10 Wireless Sensor Nodes (WSN) were successfully automatically optimised to maximise
coverage level and minimise path length. However, the damage detection accuracy of the sensor network was
not considered as part of the optimisation procedure, and signal noise in the network due to geometric features
was also not considered. The procedure also did not involve the use of experimental data, which could limit
its use in real-world applications.

The main novelty of the present paper is the development of a novel automatic procedure for optimising
the sensor paths in a SHM network. Previous works on sensor path optimisation have either taken a manual
approach to this problem [16, 17], or they have not involved the use of experimental measurements [18].
By taking an automatic approach to this problem, the novel path optimisation procedure developed in this
work would be able to generate a sensor path network similar in performance to one generated manually
using extensive prior knowledge, without actually needing extensive prior knowledge from the user, and while
requiring minimal user intervention. Furthermore, by employing experimental data and measurements to
inform the novel automatic optimisation procedure, this procedure is provided with a stronger connection and
relevancy to the real world.

The objectives of the novel automatic sensor path optimisation procedure developed in this work are:

1. To maximise the damage detection accuracy of the sensor network. This is based on the damage detec-
tion approach presented by Yue et al. [16] and Giannakeas et al. [17].

2. To maximise the sensor coverage area of the sensor network. This is based on the Maximum Area
Coverage (MAC) approach developed by Thiene et al. [4].

3. To minimise the overall noise present in the sensor network.

A significant benefit of the proposed optimization procedure is that it is scalable to different structures
of varying complexity, and can be used with panels of any material, and with any Ultrasonic Guided Wave
(UGW) damage detection methodology. The proposed procedure does not change based on the details of the
damage detection methodology. However, the objectives used in the procedure should be based on UGW
principles for damage detection.

The proposed optimization procedure is validated using a large flat aircraft stiffened composite panel. The
experimental measurements collected from the integrated SHM system are used to drive the path selection.
The performance of the procedure is compared against the case where all sensor pairs are selected, and also
against the case where expert knowledge is available [16].

The layout of this paper is as follows: The damage detection methodology is described in section 2. The
experiment details, and how they link to the damage detection methodology, are given in section 3. The novel
methodology for sensor path optimisation is developed in section 4. Finally, in section 5, the results of the
novel optimisation procedure for a large composite stiffened panel subjected to impact damage are presented
and discussed.

2 Damage Detection Methodology
The damage detection approach presented by Yue et al. [16] and Giannakeas et al. [17] is used in this study
to extract damage sensitive features that indicate the existence of damage. The optimization algorithm will
leverage this information to select the sensor paths that provide the best detection capabilities.

Damage detection is performed by comparing a baseline measurement that is recorded at the defect-free
state of a structure with a current measurement of unknown state. This comparison is facilitated though the
introduction of a damage index based on the correlation coefficient. Let B[i, j](t) and Cm

[i, j](t) denote the baseline

and current signals recorded for the path between the ith and jth (i, j = 1, . . . ,Ns) sensors. Then the damage
index is:

DIm
[i, j] = 1− corr

[
B[i, j](t),C

m
[i, j](t)

]
where m = 1, . . . ,M (1)
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where, Ns is the total number of sensors and M is the total number of measurements. It is noted that a
window function has been applied in both B[i, j](t) and Cm

[i, j](t) to consider only the first wavepacket and avoid
contamination from boundary reflections.

During path optimization, each sensor path in a network appears once. Due to signal reciprocity, a damage
index will be computed, for example, for the path going from sensor 1 to sensor 2 and another for the path
going from sensor 2 to sensor 1. Therefore, the average damage index for the paths between sensor k (k =
1,2, . . . ,Ns −1) and sensor l (l = k+1,k+2, . . . ,Ns) is calculated to generate a single damage index for each
unique path as:

DIm
unique,[k,l] =

(
DIm

[k,l]−DIm
[l,k]

)
2

where m = 1, . . . ,M (2)

For example, DIm
unique,[1,2] = (DIm

[1,2]−DIm
[2,1])/2.

Let Np denote the total number of unique sensor pairs considered in the network. Then a vector Dm can be
defined for the mth measurement as:

Dm = [µm,σm] (3)

where µm and σm are respectively the mean and standard deviation damage features, computed as:

µm =
1

Np

Ns−1

∑
k=1

Ns

∑
l=k+1

DIm
unique,[k,l] (4)

and:

σm =

√√√√ 1
Np

Ns−1

∑
k=1

Ns

∑
l=k+1

(
DIm

unique,[k,l]−µm

)
(5)

Given a reference dataset, D0
r , which is constructed using pristine measurements, the health of a structure

is assessed by computing the Mahalanobis distance as:

MSDm =

√(
Dm −D0

r

)T
Σ−1

(
Dm −D0

r

)
(6)

where D0
r and Σ are the mean and covariance matrices, respectively.

Eq. (6), involves fitting a normal distribution to the reference dataset, D0
r , for the computation of D0

r and Σ.
Therefore, the MSDm value of the mth measurement is its distance from the centre of the normal distribution,
expressed in terms of the standard deviations. A 99.9% confidence ellipse can be drawn that defines the
threshold limit. Measurements that lie outside this confidence ellipse are identified as damage measurements.
While measurements that lie inside this confidence ellipse are identified as pristine measurements. The MSDm
is used in the subsequent sections to quantify the accuracy of the SHM system and drive the selection of the
optimum pairs. For further details on the damage detection algorithm, the interested reader is referred to [16]
and [17] and the references therein.

3 Experiment Details
In this work, a 1.624 m × 0.94 m flat composite stiffened panel [16] was used for the collection of guided wave
measurements. The frames of the panel are made of aluminium while the skin and the omega stiffeners are
manufactured using Carbon Fiber Reinforced Polymer (CFRP) laminates of thermoset M21/194/34%/T800S
unidirectional prepreg (Hexcel, GB). The stacking sequence of the composite is [±45/02/90/0]s and the total
thickness is tlmt =2.208 mm.

The central frame separates the panel into two bays. 12 DuraAct piezoceramic disks are surface mounted
at each bay to monitor the health status of the panel. The panel geometry and sensor locations are illustrated
in Figure 1. A National Instrument waveform generator and a PXI 5105 Oscilloscope are used to actuate
and sense the propagating guided waves. To evaluate the performance of the SHM system, guided wave
measurements were recorded at both the pristine and damaged state of the structure. An INSTRON CREST
9350 drop tower with a 20mm hemispherical impactor was used to impact the panel and introduce BVID. Since
one of the objectives of this work is to optimise sensors paths to maximise the damage detection accuracy of a
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SHM network, the impact energy was selected to result in interlaminar delamination, undetectable via visual
inspection. The presence and size of the BVID produced after each impact was confirmed using a portable
C-scan device (Dolphin Cam). Three identical panels were used and a total of eight impacts were conducted,
three in bay 1 and five in bay 2. Figures 1 and 2 show the flat panel used in this work. The locations of the
impacts are shown, as well as C-scan images of the damage produced by the impacts. All impact events are
summarized in Table 1. These impact energies were chosen as they are representative of a typical tool drop
impact event.

Figure 1: A diagram of the flat panel, showing the locations of the bays, sensors, stiffeners, frames, and
impacts. The boundaries of the sensors networks are shown.

5
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Figure 2: The flat panel used in this work. The locations of the impacts are shown, as well as C-scan images
of the damage produced by the impacts.

Table 1: Details of the three impacts in bay 1 and the five impacts in bay 2.

Name Bay Impact Energy (J) Location

B1 - Imp1 1 1 20 Top flange of stiffener between sensors 2 and 6
B1 - Imp2 1 2 20 Skin between sensors 7 and 8
B1 - Imp3 1 3 35 Bottom flange of stiffener between sensors 9 and 10

B2 - Imp1 2 1 20 Top flange of stiffener between sensors 2 and 6
B2 - Imp2 2 2 20 Skin between sensors 6 and 7
B2 - Imp3 2 3 35 Bottom flange of stiffener between sensors 5 and 6
B2 - Imp4 2 4 30 Bottom flange of stiffener between sensors 5 and 6
B2 - Imp5 2 5 35 Bottom flange of stiffener between sensors 9 and 10

Since the two bays are identical in layout and symmetric about the central frame, bay 1 can be mirrored
onto bay 2 to generate a superimposed approximation of the flat panel. As a result, the optimization procedure
can utilise the signal data from both bays, improving its reliability. This also means that the optimization
procedure only needs to be carried out on the superimposed approximation, and not each bay individually.
Once the optimal combination of sensor pairs is determined, this combination can be used directly with bay 2.
However, it will need to be mirrored before it can be used with bay 1. The superimposed approximation of the
flat panel is illustrated in Figure 3.

6
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Figure 3: The superimposed approximation of the flat panel. Generated by mirroring bay 1 onto bay 2.

An extensive dataset of SHM measurements was collected from the flat panels. First, the panels were added
to a climatic chamber and measurements were collected for temperatures T = 25, 26, 30, 35, 40 and 45◦C. The
signals recorded at T=25◦C are considered the baseline signals, B[i, j](t) in Equation (1). Measurements at
different temperature settings were used to consider the uncertainty in the environmental and operational con-
ditions. In total, 34 pristine measurements were collected. These measurements were used for the construction
of D0

r and the computation of D0
r and Σ in Equation (6). Subsequently, the impacts summarized in Table 1

were performed and SHM measurements were collected after each event. All impact measurements were per-
formed at room temperature. In total 42 measurements were collected from the impact events. To facilitate the
optimization of the network, guided wave signals were recorded along all possible permutations of the sensors.
During interrogation, each sensor acted in turn as the actuators while the rest record the signals received. A
5-tone, Hanning windowed function was used to generate the excitation signal with central frequency fc=50
kHz, and amplitude A=6 V.

4 Sensor Path Network Optimisation
If a sensor network contains Ns sensors, then the total number of possible sensor paths is Np = (Ns −1)×Ns.
In the simplified approximation of the flat panel network that contains 12 sensors, the total number of possible
sensor paths is Np = (12− 1)× 12 = 132. However, each path should be considered only once during the
optimization. For example, there would be a path going from sensor 1 to sensor 2 and there will be a path
going from sensor 2 to sensor 1. Therefore, the number of possible unique paths, Npunique , is:

Npunique = (Ns −1)×Ns/2 (7)

where Ns is the number of sensors in a SHM network. Therefore, for the network considered here, the total
number of unique sensor paths is Npunique = (12−1)×12/2 = 66. For a sensor network with Npunique possible
unique paths, a (1×Npunique ) vector Pcomb can be created to describe all the possible combinations of unique
paths in the network:

Pcomb =
[
p[1,1] p[1,2] . . . p[(Ns−1),Ns]

]
(8)

where p[k,l] is the path between sensor k (k = 1,2, . . . ,Ns − 1) and sensor l (l = k + 1,k + 2, . . . ,Ns) of the
network, and can take either a value of 0 (the path isn’t used) or 1 (the path is used). For example, the sensor
network shown in Figure 4 is composed of 4 sensors. Therefore, there are Npunique = (4−1)×4/2 = 6 possible
unique paths. If every unique path in the network is used, except for the path between sensors 1 and 3, as
shown in Figure 4, the vector Pcomb for this example will be:

Pcomb =
[
p[1,2] p[1,3] p[1,4] p[2,3] p[2,4] p[3,4]

]
=
[
1 0 1 1 1 1

]
(9)
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Figure 4: An example of a sensor path network consisting of four sensors. Five of the six possible sensor

paths are used in the network.

For a sensor network consisting of Npunique possible unique paths, the total number of unique sensor path
combinations is:

Npunique,combs =

Npunique

∑
n=1

Npunique!
n!(Npunique −n)!

(10)

For the panel studied here, as shown in Figure 3, there are 12 sensors, so Ns = 12. Therefore, Npunique = 66
and Npunique,combs = 7.38× 1019. The requirement for the optimisation procedure is to find an optimal or near-
optimal sensor path combination out of these 7.38×1019 possible unique combinations.

To reduce the computation time needed to investigate this large number of combinations, the optimisation
procedure is split into two stages. In the first stage, the optimal paths connecting the 10 sensors on the net-
work boundary are determined using Simulated Annealing (SA). This always results in 10 sensor paths being
selected in the first stage. The purpose of this optimisation is to avoid large coverage gaps by ensuring that the
paths along the boundary of the network are selected.

In the second stage, the optimal paths of the remaining 56 paths are then determined using a multi-objective
form of Simulated Annealing (SA), known as Archived Multi-Objective Simulated Annealing (AMOSA) [19].
This means that up to 56 paths can be selected in the second stage. AMOSA is used to create a Pareto front
balancing the three competing objectives described in section 1. To help visualise this, an example of an
optimised network at the end of the first and second stages is shown in Figure 5.

Figure 5: A example of an optimised network at (a) the end of the first stage and (b) the end of the second
stage.

By splitting the procedure into two stages, the number of possible unique sensor path combinations in the
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first stage is 10! = 3.63× 106, while in the second stage it is ∑
56
n=1

56!
n!(56−n)! = 7.21× 1016. Therefore, the

maximum number of combinations to be investigated is reduced by a factor of over 1000 from 7.38×1019 to
7.21×1016.

4.1 Sensor Path Network Optimisation: Boundary Paths
In this section, the paths between the sensors on the boundary of the network are optimised using simulated
annealing. Sensors on the interior of the network will be ignored in the optimisation procedure outlined in this
section.

4.1.1 Simulated Annealing

Simulated annealing is probabilistic tool for global combinatorial optimisation problems that enables gradual
convergence to a global near-optimal solution via a temperature cooling mechanism, analogous to the cooling
used in the annealing technique in metallurgy to alter a material’s physical properties [20].

In each iteration, simulated annealing slightly perturbs the current solution Sc to create a new solution
Sn that is close to the current solution, it then determines whether the new solution is better or worse than
the current solution in terms of the objective function E. If it is better, then the new solution is accepted as
the current solution of the next iteration. If it is worse, then it can still be accepted based on an acceptance
probability PAccept :

PAccept(Sn) = exp
(
− ∆E

kT

)
(11)

where k = 1, and ∆E = E(Sn)−E(Sc) = En −Ec. En is the objective function of the new solution, Ec is the
objective function of the current solution, and T is the temperature parameter. T in simulated annealing is
analogous to the temperature of the metal in the annealing metallurgical technique, in which a metal is heated
to high temperature and then cooled. Starting from a high initial temperature T0, T is decreased at the end of
each iteration according to a user-defined cooling scheme. The cooling scheme used in this work is:

Tt = αTt−1 (12)

where α = 0.99. In this work, the starting temperature was selected to be T0 = 1.
When a metal is heated to high temperatures in the annealing metallurgical technique, the metal’s atoms are

highly mobile, and become less mobile as the metal cools. This behaviour is replicated in simulated annealing
via the temperature parameter T . It is clear from Eq. (11) that PAccept is a function of T , and as T decreases,
PAccept also decreases, which means that new solutions worse than the current solution are less likely to be
accepted. In practice, this means that simulated annealing becomes less mobile in selecting new solutions as T
decreases. PAccept is also a function of the difference ∆E between the new solution Sn and the current solution
Sc. As the difference ∆E increases, the acceptance probability PAccept decreases, which means that if the new
solution Sn is significantly worse than the current solution Sc, it is much less likely to be accepted. All of this
combined means that as T decreases, new solutions that are worse than the current solution are less likely to be
selected, especially if they are much worse. Therefore, when T is high, simulated annealing is highly mobile
in selecting new solutions. This helps prevent simulated annealing converging to a local optimum.

In this work, the simulated annealing procedure was stopped when the new solution Sn remained unchanged
after 100 consecutive iterations, indicating that convergence has been achieved.

4.1.2 Path Optimisation

Ideally, when designing a sensor path network, the paths along the boundary of the network should be selected
to avoid large gaps in sensor coverage. Also, as mentioned earlier, by determining the optimal boundary
paths first, the efficiency of the overall optimisation procedure can be improved since the number of possible
combinations to consider is reduced.

In this first optimisation stage, only the optimal paths between the boundary sensors are determined. For
complex geometries or complex sensor layouts it can be difficult for engineers unfamiliar with sensor networks
to identify which sensors are on the boundary of the sensor network. To reduce the reliance of the proposed
method on the experience of the user, the sensors on the boundary of the sensor network are automatically
determined. Using the coordinates of the sensors, the convex hull of the sensor network can be calculated,
and is shown in Figure 6. This convex hull can be visualized as the shape enclosed by a rubber band stretched
around the sensor network.
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Figure 6: The convex hull of the sensor network.

Sensors which lie coincident with the convex hull’s perimeter are identified as boundary sensors. These are
sensors 1-12, excluding sensors 6 and 7. Before starting the SA optimisation procedure, a vector containing
these sensors in a randomised order can be created:

Vbnd =
[
1 2 9 8 12 10 11 4 5 3

]
(13)

The order in which the sensors appear in the vector Vbnd determines the paths taken. For example, based
on the order of sensors shown in Eq. (13), the path from sensor 1 to sensor 2 is selected, the path 2 - 9 is
selected, and so on. Based on the order of sensors in Eq. (13), the path 3 - 1 is also selected. The sensor path
network for Vbnd in Eq. (13) is shown in Figure 7 (left). This vector Vbnd is used as the current solution of the
first iteration Sc,0 in the simulated annealing methodology described in section 4.1.1. The new solution Sn,t
of iteration t is created by randomly perturbing the current solution Sc,t . This perturbation involves randomly
picking two sensors from Sc,t and switching their positions.
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(a)
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(b)

Figure 7: The sensor path network (a) before optimisation and (b) after optimisation.

When optimising the paths between the boundary sensors, the combination of sensors appearing in Vbnd
that provides the shortest total path distance should be selected. This combination corresponds to selecting
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paths that ensure coverage of the boundary while minimizing the length of individual paths. For instance,
selecting path 1-2 and path 2-3 is preferred compared to selecting path 1-3 as similar coverage is achieved
while shorter paths are selected. Signal attenuation is related to the path length and a better signal to noise
ratio can be achieved over short distances [16]. By introducing the vector Vbnd , it is ensured that each sensor
will be selected exactly once while by minimizing the total path distance, dtot .Therefore, the optimisation
procedure will select the paths along the boundary of the network. This problem is analogous to the ’travelling
salesman’ problem.

The total path distance, dtot , is the objective function E in simulated annealing:

E(S) = dtot(S) =
Nbnd

∑
i=1

d[k,l] k = S(i) l = S( j) (14)

where

j =
{

i+1, if i+1 ≤ Nbnd
1, otherwise (15)

and Nbnd is the number of sensors on the boundary and it is the length of vector Vbnd in Eq. (13). The distance
between sensor k and sensor l, d[k,l], is:

d[k,l] =
√

(xk − xl)2 +(yk − yl)2 (16)

For example, d[5,12] is the distance between sensor 5 and sensor 12. (xk,yk) and (xl ,yl) are the coordinates
of sensors k and l, respectively.

SA was used to determine the optimal paths between the boundary sensors to minimise dtot . The sensor
path network for the boundary sensors before and after the optimisation can be seen in Figure 7. A total of 147
iterations were needed to achieve convergence in simulated annealing.

It can be seen in Figure 7 that the optimisation procedure significantly reduced the total path distance. The
total path distance before the optimisation was dtot = 3.09 m, while after the optimisation it was dtot = 1.66
m, a 46% decrease. The final solution found from simulated annealing was:

SFinal =
[
1 2 3 4 8 12 11 10 9 5

]
(17)

This optimal combination of sensor paths is shown in Figure 7.

4.2 Sensor Path Network Optimisation: Remaining Paths
As mentioned in section 4, there are a total of 66 unique sensor paths that can be selected in the network. In
section 4.1, 10 boundary paths were selected. Therefore, there are 56 remaining paths that need to be opti-
mised. The goal of this optimisation procedure is to determine the optimal combination of remaining sensor
paths to balance the three competing objectives described in section 1. All sensors 1-12 will be investigated in
the optimisation procedure outlined in this section.

Since there are multiple objectives involved, the normal simulated annealing approach outlined in section
4.1.1 cannot be used since it is for single-objective optimisation. Therefore, Archived Multi-Objective Simu-
lated Annealing (AMOSA) [19], a special form of simulated annealing for multi-objective optimisation is used
in this work.

4.2.1 Archived Multi-Objective Simulated Annealing (AMOSA)

The concept of Pareto-dominance is often found in multi-objective optimisation problems which involve com-
peting objectives, whereby improving one objective can lead to a worsening of one or more other objectives.
In these types of problems, if a solution provides worse outcomes for all of the objectives compared to other
solutions, this solution is said to be Pareto-dominated. However, if a solution provides better outcomes for
one or more objectives compared to other solutions, it is said to be Pareto-non-dominated or Pareto-optimal.
Archived Multi-Objective Simulated Annealing (AMOSA) is a special form of simulated annealing for multi-
objective optimisation. As the AMOSA algorithm progresses, it stores Pareto-optimal solutions in an archive.
AMOSA incorporates the concept of Pareto-dominance using a parameter named domination. For a given
number of objective functions Ei, the level of domination between a new solution Sn and an archived solution
Sa is:
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∆dom(Sn,Sa) = ∏
i

Ei(Sn )̸=Ei(Sa)

|Ei(Sn)−Ei(Sa)|
Ri

(18)

where Ri is the range of the i’th objective function.
As in simulated annealing, in every iteration AMOSA slightly perturbs the current solution Sc to create a

new solution Sn that is close to the current solution, it then determines whether the new solution is better or
worse than the current solution in terms of the objective functions Ei. If it is better, then the new solution is
accepted as the current solution of the next iteration, and it is added to the archive. If it is worse, then it can
still be accepted as the current solution, and accepted into the archive, based on its nearness to the archive [19],
as described by an acceptance probability PAccept . If the current solution Sc dominates the new solution Sn,
PAccept is:

PAccept(Sn) =
1

1+ exp(∆domavr(Sn)kT )
(19)

where ∆domavr is the average domination between the new solution Sn and all of the archived solutions, and
k = 1×106. However, if the new solution Sn dominates the current solution Sc, PAccept is:

PAccept(Sn) =
1

1+ exp(−∆dommin(Sn)kT )
(20)

where ∆dommin is the minimum domination between the new solution Sn and all of the archived solutions.
At the end of each iteration, the temperature parameter T is decreased according to a user-defined cooling

scheme. The cooling scheme used in this work is:

Tt = αTt−1 (21)

where α = 0.999. In this work, the starting temperature was selected to be T0 = 1×106.
In this work, AMOSA was stopped when the new solution Sn remained unchanged after 100 consecutive

iterations, indicating that convergence has been achieved.

4.2.2 Path Optimisation

For the path optimization, AMOSA involves a number of objective functions Ei (see Eq. (18)). For the problem
studied here, there are three objectives, so i = 1, . . . ,3. The definitions of these three objective functions are
described in detail below:

Objective 1: Damage Detection Accuracy It is necessary to define a parameter to describe the accuracy of
the damage identification. In this work, an MSD ratio, based on the Mahalanobis distance introduced in Eq.
(6), is defined to achieve this:

MSD ratio =
Minimum MSD of the damage measurements
Maximum MSD of the pristine measurements

=
MSDdamage

min

MSDpristine
max

(22)

It is assumed that by maximising the MSD ratio in Eq. (22), the damage detection accuracy of the network
is also maximised. This is because to maximise the MSD ratio, it is necessary to maximise MSDdamage

min , and
minimise MSDpristine

max . Maximising MSDdamage
min results in the damage measurements moving further away from

the pristine measurements, improving detection reliability. While minimising MSDpristine
max involves moving

the pristine measurements closer together and making the 99.9% confidence ellipse smaller, reducing the
likelihood of a damage measurements being incorrectly identified as a pristine measurement. The steps for
calculating the MSD ratio are visualised in Figure 8.
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(a) Step 1: Plot the pristine and damage measurements.

(b) Step 2: Fit a normal distribution to the pristine measure-
ments.

(c) Step 3: Calculate MSDdamage
min . (d) Step 4: Calculate MSDpristine

max .

Figure 8: The four steps for calculating the MSD ratio.

Objective 2: Coverage Level In this work, the coverage area of a sensor path is calculated by drawing an
ellipse between the two sensors of the path, as shown in Figure 9.

Figure 9: The coverage area of a sensor path between two sensors is determined using the area of an ellipse
connecting the two sensors.

The semi-major axis a in Figure 9 can be expressed in terms of the distance d[k,l] between the k’th and the
l’th sensor:

2a = d[k,l] =
√
(xk − xl)2 +(yk − yl)2 =

√
d2

x +d2
y (23)

For a composite panel with the same thickness and material used in this work, it has been demonstrated that
the typical diameter of a detectable BVID is around 5 cm [16]. Therefore, in this current work, the semi-minor
axis b was given a fixed value of 2.5 cm, so that the width of the ellipse 2b is similar to the typical size of a
detectable BVID.

The coverage area of the path between sensor k and sensor l shown in Figure 9 is:
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A[k,l] = πab (24)

The total coverage provided by the sensor paths of a network is calculated as a percentage of the area
enclosed by the boundary of the sensor network:

Coverage (%) = 100
Apaths,tot

Aboundary
(25)

where Apaths,tot is the total ellipse area of all the sensor paths in the network. The boundary of the sensor
network can be seen in Figure 10. The boundary shown in Figure 10 was determined by calculating the convex
hull of the sensor network, then an offset was applied to this hull to avoid cutting off any sensor path ellipses
for sensors near the boundary. The area enclosed by this boundary is Aboundary = 0.21m2.
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Figure 10: The boundary of the sensor network.

Objective 3: Total Sensor Path Noise Some sensor paths may pass through geometric features, such as
stiffeners or holes, causing their signals to become attenuated, significantly increasing the noise levels in the
signals. This increase in noise could significantly reduce damage detection accuracy. Therefore, sensor paths
that demonstrate significant levels of noise should be automatically removed from the sensor network.

To determine the noise levels of each sensor path, the damage indices for the pristine measurements, DIpristine
unique ,

were calculated using Eq. (2) and plotted in Figure 11.
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Figure 11: The damage indices of the pristine measurements. The paths that pass over two stiffeners are

highlighted. The sensor network is shown on the right to aid comparisons.

It is clear from Figure 11 that there is a much larger spread in DIpristine
unique for the sensor paths that pass over

both stiffeners (highlighted in red in Figure 11). These are the paths going from sensors 1, 2, 3, and 4 to sensors
9, 10, 11, and 12. Following this, the variance of DIpristine

unique for each path was calculated plotted in Figure 12.

Figure 12: The variance of the damage indices of the pristine measurements. The paths that pass over two
stiffeners are highlighted. The sensor network is shown on the right to aid comparisons.

It can be seen in Figure 12 that the paths that cross over both stiffeners give the highest variance in DIpristine
unique ,

which is intuitive. To more clearly show the impact of the two stiffeners on the variance, the variance can be
mapped onto the sensor network, as shown in Figure 13.
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Figure 13: Damage index variance map for the entire sensor network.

The damage index variance map in Figure 13 makes it clear that longer paths, and paths that pass over both
stiffeners demonstrate much higher variance in their damage indices. As a result, there is a great deal of noise
in the pristine damage indices of these paths, making them less reliable for damage detection. Therefore, when
optimising the damage detection accuracy of the network, sensor paths with high variance in DIpristine

unique , such as
long paths or paths that pass over both stiffeners, should not be selected. This can be achieved automatically in
the optimisation procedure by setting an objective of minimising the total noise of all the sensor paths included
in the sensor network. This total noise can be calculated by summing the values of var(DIpristine

unique ) shown in
Figure 12 for all of the sensor paths included in the sensor network. For example, if the sensor network only
included paths 1-9, 2-10, and 5-12, the total path noise would be var(DIpristine

unique )[1,9] + var(DIpristine
unique )[2,10] +

var(DIpristine
unique )[5,12] = 0.0134+0.0070+0.0008 = 0.0212.

5 Results
As mentioned in section 4.2, the three objective functions used in Archived Multi-Objective Simulated An-
nealing (AMOSA) were:

1. To maximise the damage detection accuracy of the sensor network. This corresponds to maximising the
MSD ratio introduced in section 4.2.

2. To maximise the sensor coverage area of the sensor network.

3. To minimise the overall noise present in the sensor network.

The results obtained from AMOSA for these three objective functions can be seen in Figure 14. Side views
of Figure 14 can be seen in Figures 15 to 17. A total of 10,000 AMOSA iterations were completed, producing
10,000 solutions. Of these, 1,148 were non-dominated solutions, also known as Pareto front solutions, and
8,852 were dominated solutions, also known as non-Pareto front solutions. These solutions are shown as red
and blue markers, respectively, in Figure 14.
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Figure 14: Results from the multi-objective sensor path optimisation using AMOSA.

In Figure 15, it is clear that as the coverage level increases, the total path noise also increases. This is due
to the fact that longer sensor paths contribute more to the coverage level, but also significantly increase total
path noise, as found in section 4.2.2.

Figure 15: Results from the multi-objective sensor path optimisation using AMOSA. Side view of Figure 14,
Total path noise vs. Coverage.

Figure 16 shows that the damage detection accuracy, in the form of the MSD ratio, decreases as the total
path noise increases. This is because an increase in total path noise leads to a wider spread of the pristine and
damage measurements, therefore increasing MSDpristine

max , decreasing MSDdamage
min . This results in a decrease in

the MSD ratio, and can result in damage measurements being incorrectly identified as pristine measurements,
also known as false negatives. The opposite is true at lower noise levels (<0.05), which give very high MSD
ratios.
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Figure 16: Results from the multi-objective sensor path optimisation using AMOSA. Side view of Figure 14,
MSD ratio vs. Total path noise.

It can be seen in Figure 17 that for coverage levels below 60%, there is no clear relationship between the
MSD ratio and the coverage level. However, once the coverage level is above 60%, it is clear that the MSD
ratio decreases as coverage level increases. This is due to the fact that higher coverage levels are strongly
associated with higher values of total path noise, as shown in Figure 15, thereby reducing damage detection
accuracy.

Figure 17: Results from the multi-objective sensor path optimisation using AMOSA. Side view of Figure 14,
MSD ratio vs. Coverage.

Given that there are 1,148 Pareto front solutions in Figure 14, it can be difficult to choose a suitable solution.
To simplify the process of choosing a suitable solution, the engineer can apply a filter to these solutions by
defining suitable ranges for the objective functions. For example, the engineer could define Coverage > 60%
as a suitable range for the coverage level and MSD ratio > 1.5 as a suitable range for the MSD ratio. Using
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these ranges for Coverage and the MSD ratio, the 1,148 Pareto front solutions in Figure 14 can be filtered
down to the 48 Pareto front solutions shown in Figure 18. From these, the engineer can more easily select a
suitable solution. Three potentially suitable Pareto front solutions have been highlighted in Figure 18 by blue
circles and labelled ’A’, ’B’, and ’C’. Solution ’A’ demonstrates a high MSD ratio and low total path noise,
but low coverage level, solution ’C’ demonstrates a high coverage level, but low MSD ratio and high total path
noise, while solution ’B’ provides a balance between them.

Figure 18: Pareto front solutions obtained for the case where the coverage level is above 60% and the MSD
ratio is greater than 1.5. Three potentially suitable Pareto front solutions have been highlighted by blue circles

and labelled ’A’, ’B’, and ’C’.

To further assist the engineer in choosing the most suitable solution from solutions ’A’, ’B’, and ’C’ in
Figure 18, the values of the coverage, MSD ratio, and total path noise for these three solutions can be seen in
Table 2. The coverage maps for solutions ’A’, ’B’, and ’C’ are shown in Figure 19. The means and standard
deviations of the damage indices for the pristine and damage measurements for solutions ’A’, ’B’, and ’C’ are
shown in Figure 20. To see how well solutions ’A’, ’B’, and ’C’ perform against the case where all of the
sensor paths are used, and the case where prior expert knowledge is used to select the sensor paths, the results
for these two cases are given in Table 2, Figure 19, and Figure 20. For the case of prior expert knowledge, the
sensor paths selected in Yue et al. [16] were used.

Table 2: Values of the objectives for solutions ’A’, ’B’, ’C’, and the case where all sensor paths are used.
Higher values of coverage and MSD ratio are better, while lower values of total path noise are better.

Sensor network Number of sensor paths Coverage (%) MSD ratio Total path noise

AMOSA solution ’A’ 44 61.3 6.51 0.057
AMOSA solution ’B’ 45 63.4 1.80 0.087
AMOSA solution ’C’ 50 67.1 1.71 0.13
All sensor paths 66 74.0 0.05 0.42
Prior expert knowledge [16] 41 60.7 4.83 0.054

19

Page 20 of 24

http://mc.manuscriptcentral.com/shmij

Structural Health Monitoring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
(a) Solution ’A’. (b) Solution ’B’.

(c) Solution ’C’. (d) All sensor paths.

(e) Prior expert knowledge [16].

Figure 19: Coverage maps for different sensor networks. The network boundary is shown as a dashed blue
line.
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(a) Solution ’A’.
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(e) Prior expert knowledge [16].
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Confidence Interval (99.9%)

Figure 20: Means and standard deviations of the damage indices for the pristine and damage measurements
for different sensor networks.

As shown in Figure 19, solution ’A’ and solution ’C’ provide the lowest and highest coverage levels,
respectively, amongst the AMOSA solutions considered. The coverage levels for solution ’A’ and the solution
with prior expert knowledge are very similar, but there are some slight differences - unlike the solution where
prior expert knowledge is used, solution ’A’ uses paths 1-3, 2-4, 6-8, and 10-12, while it doesn’t use path 6-7.
The inclusion or exclusion of these paths does not cause much difference in coverage, but has a significant
impact on the MSD ratio, as seen in Table 2.

As expected, the solution involving all of the sensors paths provides the highest coverage level, since it
utilises the sensor paths that cross over both stiffeners. Solution ’A’ does not use any sensor paths crossing
two stiffeners, while solutions ’B’ and ’C’ utilise four and seven respectively. These paths provide the largest
increase in coverage level amongst all of the paths, but they also provide the largest increase in total path noise,
which reduces damage detection accuracy, as represented by the MSD ratio. This is clearly seen in the data
presented in Table 2, where solution ’A’ provides the highest MSD ratio and lowest total path noise. Compared
to the case where prior expert knowledge is used to select the sensor paths, solution ’A’ provides a very similar
coverage level (61.3% vs. 60.7 %) and total path noise (0.057 vs. 0.054).

The lower total path noise from the solution with prior expert knowledge could be because the performance
index total path noise is being used in this work and not average path noise. Therefore, as the number of
paths in a network increases, the total path noise also increases. As a result, a network with less paths can
demonstrate a lower total path noise. Since the solution with prior expert knowledge has a low number of
paths compared to the other solutions investigated, it follows that it would also have a low total path noise.

The impact on damage identification accuracy from utilising more sensor paths that cross over both stiff-
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eners is most clearly depicted in Figure 20. It can be seen in this Figure that it becomes progressively more
difficult to distinguish the damaged measurements from the pristine measurements as more sensor paths cross-
ing over both stiffeners are used. This is represented by the MSD ratio, which drops sharply from 6.51 for
solution ’A’, to 0.04 for the solution where all of the sensor paths are used.

Solution ’A’ provides significantly higher damage detection accuracy than the solution where prior expert
knowledge is used - solution ’A’ gives an MSD ratio of 6.51 compared to an MSD ratio of 4.83 for the solution
where prior expert knowledge is used, an increase of 35%. This difference can be seen visually in Figure 20 -
there is less spread in the pristine measurements in 20(a) compared with Figure 20(e). The confidence interval
envelope in Figure 20(a) is also more narrow than in Figure 20(e). This difference could be because solution
’A’ uses a slightly different network of paths compared to the the solution where prior expert knowledge is
used. Unlike the solution where prior expert knowledge is used, solution ’A’ uses paths 1-3, 2-4, 6-8, and 10-
12, while it doesn’t use path 6-7. Paths such as 1-3, 2-4, 6-8, and 10-12 are not typically considered in SHM
networks, since if a network contains paths 1-2, 2-3, and 3-4, then adding path 1-3 or 2-4 will not noticeably
improve the coverage of the network [16]. However, based on the high MSD ratio of solution ’A’, the addition
of these paths could significantly improve damage detection and the overall performance of the SHM network.

6 Conclusions
This work proposed a novel methodology for the automatic multi-objective optimisation of sensor paths in a
Structural Health Monitoring (SHM) sensor network using Simulated Annealing (SA). Using all of the sensor
paths within a sensor network may not always improve the performance of the network. In fact, the removal
of some paths may even improve the overall performance of a SHM sensor network. For example, the results
obtained in this study indicate that the removal of paths that demonstrate a high level of overlap with other
paths, or paths that cross multiple structural features (e.g. stiffeners), can improve multiple objectives. The
former do not provide any additional information while the later contain significant noise that affects the
detection accuracy of the SHM system. Removing these paths leads also to a reduction in the complexity of
the network.

Knowing which paths to include, and which to exclude, can require significant prior expert knowledge,
especially in the case of structures with complex geometries. Furthermore, paths selected on the basis of
the engineer’s expertise and knowledge do not necessarily provide an optimal solution, as such an optimal
solution should take into account different and complex performance measures. Therefore, the automatic
multi-objective optimization procedure developed in this work aims to select the paths of a SHM sensor net-
work that maximise coverage level, maximise damage detection accuracy, and minimise signal noise due to
the presence of geometric features, with minimal user intervention.

Furthermore, a significant benefit of the proposed optimization procedure is that it is scalable to different
structures of varying complexity, and can be used with panels of any material, and with any Ultrasonic Guided
Wave (UGW) damage detection methodology. The proposed procedure does not change based on the details
of the damage detection methodology, but the objectives used in the procedure should be based on UGW
principles for damage detection.

The proposed procedure was tested on a real-world large composite stiffened panel, with many geometric
features in the form of frames and stiffeners [16]. The panel was subjected to impact damage from eight im-
pact events. A Pareto front was created using a multi-objective form of Simulated Annealing (SA) known as
Archived Multi-Objective Simulated Annealing (AMOSA) to balance the three competing objectives. Com-
pared to selecting all possible paths, the optimized sensor paths achieve higher damage detection accuracy
and lower signal noise, although the coverage is slightly lower. Compared to the case where expert knowl-
edge was used to select the sensor paths, the proposed optimization procedure provided a similar coverage
level and total path noise, but gave 35% higher damage detection accuracy. These results demonstrate that the
novel automatic optimisation procedure proposed in this work is capable of providing a sensor path network
whose performance is superior or equal to the performance of sensor path networks designed using prior expert
knowledge, with minimal user input.
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