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About the onset of the Hopf bifurcation for convective flows in horizontal annuli
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Abstract. Experimental and numerical results cannot yet settle whether, between horizontal coaxial cylinders, if the curvature
is large, the first transition for convection is an exchange of stability or rather an Hopf bifurcation. We directly show that
if the curvature tends to infinity, no periodic linear perturbation exists when the Rayleigh number is equal to the critical
one for nonlinear stability.
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1. Introduction

We can expect convective flows in any nonisothermal setting where a fluid moves in a gravitational field.
In actual facts, in Bénard’s problem the rest state can occur, in spite of the buoyancy force, with a
downward temperature gradient. However, this happens just because the steady conductive temperature
gradient has exactly the same direction of the weight, pointwise in the layer. On the other hand, if a fluid
lies between two horizontal coaxial cylindrical surfaces, with the inner one kept at a higher temperature
with respect to the outer one, conduction would be in the radial direction so that no rest state is possible
[1,2].

Just to fix the ideas, let us denote by �e3 the vertical ascendant direction of the z-axis, so that �g as
the opposite orientation, let us denote with ϕ ∈ [0, 2π) the angle between the horizontal x-axis and the
position vector, while Ro is the outer radius and Ri is the inner one, then the boundary condition for the
temperature field T is

T (Ro, ϕ, t) = To , T (Ri, ϕ, t) = Ti , (1.1)

for all time t and for all ϕ. We have to assume positive Ti − To := δT > 0 in order to have convective
motions, which are observed, 2-D and steady below a threshold for all positive δT , no matter how small
(see [3] both for experimental and numerical results). Precisely, with 2-D we mean bi-dimensional flows
characterized by velocity fields with no components in the horizontal y-direction of the cylinder axis and
which, as vector functions, do not depend on the variable y, as well as the scalar function T .

Conversely, in the flat layer a critical value for δT exists, under which the null velocity field �v is
observed. It corresponds to the basic solution for the full set of balance laws which exists also for large
δT , though in such a case it cannot be observed because it becomes an unstable solution.

Let us consider the Oberbeck–Boussinesq approximation of the full set of balance laws, from which the
O–B system, the most studied model for convection, rigorously follows under suitable smallness conditions
on nondimensional quantities (see, for instance, [4]). As we are going to see, a basic steady solution of the
system exists in the annulus for all values of the relevant physical quantities, possibly unstable for large
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Fig. 1. Flow region

Fig. 2. The line represents the critical Rayleigh number above which dual steady solutions exist for Pr = 0.7. Below the
dashed line experiments show prevailing steady 2D flow. From [2]

δT . Such steady flows are nonzero because the system of partial differential equations is not homogeneous
in the annulus.

To be more precise, in the present physical setting, there are dimensionless parameters which are
analogous to the usual ones for convection in a layer, i.e., the Prandtl and Rayleigh numbers:

Pr :=
ν

D
Ra :=

αgδT

νD
(Ro − Ri)3 ,

where ν, D, α and g, respectively, denote kinematic viscosity, thermal diffusivity, thermal expansion
coefficient and gravity acceleration. But now, a further independent dimensionless parameter, besides the
two above mentioned, is necessary to study the dynamical system. It is the inverse relative gap

A :=
2Ri

Ro − Ri
.

As Pr depends only on the chosen fluid, A depends only on the chosen geometry and increases as the
curvature decreases. On the other hand, most of the experimental results deal with air (Pr = 0.7) and
consist in qualitative studies of the flows as Ra increases. In fact, by definition Ra proves to be the
relevant parameter for the convective transitions, since thermal expansion and difference of temperature
make the convective transport increase. On the opposite, viscosity and heat diffusion work against the
buoyancy force.

The physical consistency of the O–B system of equations is not discussed here, but we want to point
out that although the isochoric motion condition is in the system, it can hold true also for compressible
fluids, such as perfect gases, as recently shown in [5]. Compared to the classical O–B system, the system
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rigorously derived in [5] is different only for an extra independent nondimensional parameter. Such pa-
rameter involves the compressibility factor and lies in front of the convective term of the energy equation.
In fact, for the sake of thermodynamical consistency, several convective models including compressibility
were recently analyzed, see, for instance, [6] and also [7–10]. The model in [5] is specific for gases and
includes the constraint of divergence free flow into a rigorous derivation through a perturbation theory.

Thus, let us define the family of nondimensional domains

Ω =
{

(r, ϕ) ∈ R
2 :

A
2

< r <
A
2

+ 1
}

;

then, the nondimensional system we study is

∇ · �v = 0

1
Pr

(
∂�v

∂t
+ �v · ∇�v

)
− Δ�v + ∇p =

Ra
b

sin ϕ�er + Raτ �e3

∂τ

∂t
+ �v · ∇τ − Δτ =

1
b

vr

r
. (1.2)

By the Helmholtz–Weyl decomposition, the equation for the pressure field p decouples from the system,
so that one can consider as unknown (�v, τ) with Dirichlet conditions at the boundary of Ω for both the
fields. As a matter of fact, τ := T −T ∗ is such that the solution of ΔT ∗ = 0 absorbs boundary conditions
(1.1) for T . By replacing the explicit expression of T ∗, one gets

τ =
T − Ti

Ti − To
+

ln r − ln Ri

ln Ro − ln Ri
.

Moreover, the parameter b is a function of A. Precisely,

b = ln
(

1 +
2
A

)
(1.3)

diverges as A tends to zero.
By looking at the first term on the right-hand side of the second equation in (1.2), one sees that it is

not gradient-like. That is why the system is not homogeneous when projected in the space of divergence
free vector fields, so that the rest state is not a solution.

The region of the parameter space we are going to investigate is approximately A < 2, because the
outcome of the observations and numerical experiments (see, for instance, [3,11,12]) says that there
could be 2-D oscillating solutions if Ra is large. More, the critical value of Ra corresponding to the first
transition could be unbounded as A tends to zero but, on the other hand, we theoretically proved, in
[2], that the basic solution tends to zero as A tends to zero. So, a further motivation comes from the
possibility to overcome, in the limit for small A, the mathematical difficulties related to the lack of an
analytic expression for the basic solution.

The organization of the paper is the following: In Sect. 2, estimates for the gradient of the basic
solution in L2(Ω) are given, as well as a linear homogeneous version of system (1.2). Such system proves
to be the Stokes limit as A tends to zero of the system whose unknown is the perturbation to the steady
solutions of (1.2). Finally, the result for nonlinear stability is recalled and the critical value Rac is defined
as a function of A, since it is a maximum taken over an L2-space whose domain depends on A. Moreover,
Rac is bounded from below in the given region.

In Sect. 3, we prove that the solutions of the Euler–Lagrange equations arising from the definition of
Rac are a complete basis for the Hilbert space of the steady solutions of system (1.2). Next, we project on
that basis the system for the linear perturbation of the steady solution and write the Galerkin ordinary
differential equation system. Finally, by simple linear algebra tools, we show that no time periodic solution
exists for the system if Ra ≤ Rac.
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In conclusion, for our problem we define a critical value Rac identifying nonlinear stability in the limit
as A tends to zero, so that the steady basic solution is stable for lower Ra. In Bénard’s problem, such a
critical value coincides with the one for linear instability, i.e., for Ra = Rac, a new steady solution arises,
and for Ra > Rac, there exists at least one linear perturbation whose norm grows in time. In the present
situation, by taking the limit as A tends to zero, we do not know whether for Ra = Rac a new stable
solution arises but, in case, it would not be an oscillating solution, although it could be a further steady
solution, as suggested by numerical results in [11].

2. Notation and preliminary results

For q > 1, we use Lebesgue and Sobolev spaces Lq(Ω) and Wm,q(Ω), with Lq-norm defined as

‖u‖q =

⎛
⎝∫

Ω

|u|qdx

⎞
⎠

1
q

< ∞ ,

for scalar- and vector-valued functions, as well as for their distributional derivatives up to order m ∈ N,
but for q = ∞ the norm is obtained by taking the supremum. Next, we denote with L2(Ω) and (L2(Ω))2

the Hilbert spaces of scalar and vector functions, which are, respectively, endowed with the inner products

〈u|v〉 :=
∫
Ω

uv dx 〈�u|�v〉 :=
∫
Ω

�u · �v dx .

For the sake of simplicity, we are going to use both for vector and scalar function a single symbol for the
Poincaré constant in inequality

‖u‖2 ≤ cp‖∇u‖2 ,

which holds true in Ω with cp estimated by (see [13])

cp ≤ kp(A) := min
{

1
2

√
1 +

2
A ;

√
2

π

(
1 +

A
2

)}
.

When dealing with a Cartesian product of Hilbert spaces, the inner product is the sum of the inner
products, and so are the norms.

In order to find the solutions of the O–B system, we describe the velocity field by defining H(Ω) and
Wm,2

0 (Ω) as the closure of all solenoidal vector fields �u (i.e., ∇·�u = 0) belonging to (C∞
0 (Ω))2, respectively,

in the norm of (L2(Ω))2 and (Wm,2(Ω))2; of course, for the temperature field we simply consider L2(Ω)
and Wm,2

0 (Ω), which are the closure of C∞
0 (Ω) in the norm of Wm,2(Ω) (here m = 0, 1, 2). For the

solutions of the unsteady problem and the related Bochner spaces, we use the notation Lq(0, T ;Wm,2
0 (Ω))

or Lq(0, T ;Wm,2
0 (Ω)), but for m = 0 we write H(Ω) in place of W0,2

0 (Ω) and L2(Ω) in place of W 0,2
0 (Ω).

The global existence of steady solutions of (1.2) is proved in [2]. Here, with global existence we mean
that existence is proved in any point of the 3D parameter space. Steady solutions are expected to be
symmetric with respect to the z-axis, not only because of experimental outcomes but also because the
body force and the domain possess such mirror symmetry. Actually, if one could prove that steady
solutions are unique they would enjoy the symmetry property as a consequence of uniqueness. But from
the experiments they are not unique, neither uniqueness was ever proved for large Ra. Therefore, in [2] the
expression of (�v, τ) is constructed by the Galerkin method with two bases of symmetric 2-D divergence
free vector and scalar fields, respectively.

Theorem 2.1. For arbitrary Ra, A and Pr, there exists a weak steady solution

(�vs, τs) ∈ W1,2
0 (Ω) × W 1,2(Ω)
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of system (1.2) verifying

‖∇�vs‖2 ≤ cRa b−1 ‖∇τs‖2 ≤ cRa b
− 3

2 (2.1)

where c = c(Ra,A) is a uniformly continuous function.

For the existence and the regularity of time-dependent solutions, one can recall the results in [1],
starting with the definition of weak solution

Definition 2.1. A couple

(�v, τ) ∈ [L∞(0, T ;H(Ω)) ∩ L2(0, T ;W1,2
0 (Ω))] × [L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2

0 (Ω))]

is a weak solution for system (1.2) in [0, T ], if a.e. for t ∈ (0, T )

〈∇�v,∇�ϕ〉 + 〈 1
Pr

(
∂�v

∂t
+ �v · ∇�v

)
− Ra

b
sin ϕ�er − Raτ �e3 , �ϕ 〉 = 0

〈∇τ,∇φ〉 + 〈∂τ

∂t
+ �v · ∇τ − 1

b

vr

r
, φ 〉 = 0

for all �ϕ ∈ L2(0, T ;W1,2
0 (Ω)) and φ ∈ L2(0, T ;W 1,2

0 (Ω)).

The existence and regularity result in [1] are the following.

Theorem 2.2. By prescribing initial conditions (�v0, τ0) ∈ H(Ω) × L2(Ω), for any Ra, A and Pr system
(1.2) has got a unique weak solution ∀T > 0; if moreover (�v0, τ0) ∈ W1,2

0 (Ω)×W 1,2
0 (Ω), then the solution

is even more regular, i.e.,

(�v, τ) ∈ [L∞(0, T ;W1,2
0 (Ω)) ∩ L2(0, T ;W2,2

0 (Ω))] × [L∞(0, T ;W 1,2
0 (Ω)) ∩ L2(0, T ;W 2,2

0 (Ω))].

Let us write the solution of the unsteady problem as the sum of a steady solution plus an unknown
time-dependent couple of fields:

�v = �vs +
1
b
�u τ = τs +

θ√
b3Ra

.

Then, by substituting these equations in (1.2), by taking into account that (�vs, τs) actually verifies (1.2),
by multiplying the second equation by b and the third by

√
b3 Ra, the perturbation (�u, θ) verifies the

homogeneous system:

∇ · �u = 0

1
Pr

(
∂�u

∂t
+ �u · ∇�vs + �vs · ∇�u +

1
b
�u · ∇�u

)
− Δ�u + ∇P =

√
Ra
b

θ �e3

∂θ

∂t
+

√
b Ra �u · ∇τs + �vs · ∇θ +

1
b
�u · ∇θ − Δθ =

√
Ra
b

ur

r
. (2.2)

Remark 2.1. Notice that system (1.2) has got a constant in time body force term leading to the finiteness
of the existence interval (0, T ). This can be seen in the derivation of the estimates involved in the quoted
Theorem 2.2. However, once the existence of steady solutions, obviously global in time, is proved then
one is left with system (2.2). Since this system is homogeneous, it can easily be seen that now T can go
to ∞.

Let us examine estimates (2.1): They suggest to assume that �vs is of order Ra · b−1 and τs of order
Ra · b− 3

2 . These assumptions are reasonable, not simply in the L2-norm but also pointwise. As a matter
of fact, they could be proved through a standard regularization procedure, which is allowed because the
boundary is regular.
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Under such hypotheses, we get

�u · ∇�vs =O

(
Ra
b

)
�vs · ∇�u=O

(
Ra
b

)
�u · ∇τs =O

(
Ra√
b3

)
�vs · ∇θ=O

(
Ra
b

)
. (2.3)

Then, as usually done to get Stokes problem as limit for Navier–Stokes, we set ε := 1√
b

and neglect
the terms of order ε2. By inserting estimates (2.3) in system (2.2), we see that all such terms are of order
ε2. Next, one should not forget that Ω itself depends on 1

b through A. By the definition

A =
1

eb − 1
⇒ A ≤ 2

b
,

so if we neglect terms of order 1
b , then A has to be extremely small. Finally, in the limit as A → 0 one

obtains the system:

∇ · �u = 0

1
Pr

∂�u

∂t
− Δ�u + ∇P =

√
Ra
b

θ �e3

∂θ

∂t
− Δθ =

√
Ra
b

ur

r
, (2.4)

in the circle

Ω0 =
{
(r, ϕ) ∈ R

2 : 0 < r < 1
}

,

with homogeneous boundary conditions.
Nevertheless, instead of simply studying the limit problem, one could study the approximation problem

obtained by neglecting the small terms in the equations and keep a domain Ω different from Ω0, though
very close to it as close as required by the value of ε which identifies the approximation.

As a matter of fact, an analogous of system (2.4) is also studied in [2] for arbitrary domains Ω(A). By
implicitly defining Rac(A) as √

b

Rac
:= sup

W1,2
0 (Ω)×W 1,2

0 (Ω)

〈�u · ∇S|θ〉
‖∇�u‖2

2 + ‖∇θ‖2
2

, (2.5)

where

S = ln r + r sinϕ → ∇S =
�er

r
+ �e3 , (2.6)

the result in [2] can be rewritten as follows.

Theorem 2.3. Let Ra, A and Pr be arbitrary. Then for any (�u0, θ0) ∈ H(Ω)×L2(Ω) there exists a unique
weak solution

(�u, θ) ∈ [L∞(0,∞;H(Ω)) ∩ L2(0,∞;W1,2
0 (Ω))] × [L∞(0,∞;L2(Ω)) ∩ L2(0,∞;W 1,2

0 (Ω))]

of (2.4). If Ra < Rac(A), such a solution is globally exponentially stable; i.e., there exists α > 0 such that
for almost every t ∈ (0,∞)

d1(‖�u(t)‖2
2 + ‖θ(t)‖2

2) ≤ d2(‖�u0‖2
2 + ‖θ0‖2

2)e
−αt (2.7)

where d1 = min
{

1
Pr , 1

}
and d2 = max

{
1
Pr , 1

}
.

Proof. We just recall the energy method as sufficient condition for stability and thus define

E(�u, θ) :=
1
2

(
1
Pr

‖�u‖2
2 + ‖θ‖2

2

)
.



ZAMP About the onset of the Hopf bifurcation Page 7 of 15 63

Next, we perform the L2-inner product of the second equation in (2.4) by �u and of the third one with θ
to find

1
2Pr

d‖�u‖2
2

dt
+ ‖∇�u‖2

2 =

√
Ra
b

〈θe3|�w〉
1

2Pr
d‖θ‖2

2

dt
+ ‖∇θ‖2

2 =

√
Ra
b

〈ur

r
|θ

〉
.

By summing the two equations, one gets

dE

dt
= −‖∇�u‖2

2 − ‖∇θ‖2
2 +

√
Ra
b

〈�u · ∇S|θ〉.

By uniqueness, which is still proved in [2]), we know that the sum of the norms of the gradients never
vanishes for initial conditions different from zero. So, by (2.5) we can write

dE

dt
= −(‖∇�u‖2

2 + ‖∇θ‖2
2) +

√
Ra
b

〈�u · ∇S|θ〉
‖∇�u‖2

2 + ‖∇θ‖2
2

(‖∇�u‖2
2 + ‖∇θ‖2

2) ≤

≤ −
√

Ra
b

(‖∇�u‖2
2 + ‖∇θ‖2

2)
(√

b

Ra
−

√
b

Rac

)
. (2.8)

Then, the sufficient condition for stability is
√

Rac >
√

Ra.
Finally, the Poincaré inequality ensures that the stability is asymptotic, since E is equivalent to the

L2-norm in the Cartesian product space,1 we can write

−(‖∇�u‖2
2 + ‖∇θ‖2

2) ≤ − 1
c2
p

(
‖�u‖2

2 + ‖θ‖2
2

)
≤ −min{Pr; 1}

c2
p

(‖�u‖2
2

Pr
+ ‖θ‖2

2

)
= − 2

d2c2
p

E

and insert this inequality in (2.8), so getting exponential decay for Ra < Rac. �

For the full system (1.2), it is easily shown that steady solutions are stable for sufficiently small Ra,
with arbitrary A and Pr. However, in [2] a more relevant achievement is obtained: for sufficiently small A,
then Ra does not need to be extremely small for steady solutions to be stable (and unique). As a matter
of fact, with the present scaling of the perturbation, one still gets that Rac is bounded from below (as in
[2]), at least for A < 2. The choice of the number 2 is only related to the regions of the parameter space
which are usually identified in the literature [3,11,12]. By the same techniques as in [2], one shows:

Lemma 2.1. The critical value Rac(A) defined in (2.5) is bounded from below for A < 2, i.e., Rac > c(A)
with c(A) bounded from below.

This follows by the boundedness of the functional at the right-hand side of (2.5): Due to the Poincaré
and Hölder inequalities, it is in fact bounded from above by a continuous function of A, and the inverse
of such function is bounded from below (see Lemma 4.2 in [2]) also in the present case.

Then, the stability result in [2], which can be found in Theorem 4.4, states

1

If 1 > Pr then

(
Pr

‖�u‖22
Pr

+ ‖θ‖22
)

> Pr 2E, if Pr ≥ 1 then

(
Pr

‖�u‖22
Pr

+ ‖θ‖22
)

≥ 2E

⇒ ‖�u‖22 + ‖θ‖22 ≥ min{Pr; 1} 2E =
1

max{ 1
Pr

; 1}2E

analogously ‖�u‖22 + ‖θ‖22 ≤ 1

min{ 1
Pr

; 1}2E
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Theorem 2.4. For all Pr and μ ∈ (0, 1), one can find A∗(Pr, μ) such that ∀A ∈ (0,A∗) one has asymptotic
stability of the steady solution (�vs, τs) provided Ra < (1 − μ)Rac(A).

Proof. A sketch of the proof consists in writing an energy inequality for system (2.2):

dE

dt
+‖∇�u‖2

2 +‖∇θ‖2
2 ≤

√
Ra
b

(
〈θ �e3|�u〉+〈ur

r
|θ〉

)
+

1
Pr

|〈�u·∇�vs|�u〉|+
√

bRa|〈�u·∇τs|θ〉|.
Next, we use (see, for instance, [14]) Hölder, Ladyzhenskaya and Poincaré inequalities, together with
estimates (2.3), to bound the trilinear terms at the right-hand side

|〈�u·∇�vs|�u〉| ≤ ‖�u‖2
4‖∇�vs‖2 ≤ Ra

c

b
‖�u‖2‖∇�u‖2 ≤ Ra kp

c

b
‖∇�u‖2

2

|〈�u·∇τs|θ〉| ≤ ‖�u‖4‖θ‖4‖∇τs‖2 ≤ Ra
c

b
3
2

√
‖�u‖2‖∇�u‖2

√
‖θ‖2‖∇θ‖2 ≤

≤ Ra kp
c

b
3
2
‖∇θ‖2‖∇�u‖2 ≤ Ra kp

c

2b
3
2
(‖∇θ‖2

2 + ‖∇�u‖2
2) ,

and we immediately see they are higher order small as A tends to zero, so that inequality (2.8) can be
obtained, but the coefficient of the gradients at the left-hand side, which is slightly smaller than 1. �

For these reasons, in the next section of the present paper we study system (2.4) in Ω(A) for small A,
as a linear approximation of system (2.2) in the same domain, so facing the onset of linear instability.

3. Solutions of the linear problem at the criticality point

In the present section, we look for solutions to the linear approximation system (2.4) by means of a special
orthonormal basis for the Hilbert space of the weak steady solutions. We start considering what happens
in flat geometry: For Bénard’s problem, the solutions of the Euler–Lagrange equations obtained from
looking for the optimal nonlinear stability Ra are precisely the same basis functions used for finding the
growth of instability in the linear system. They were used by Rayleigh more than one century ago, simply
because their use splits the linear system in normal modes, without any insight that such functions were
solutions of the E–L equations. Thus, also in the present case we try to solve the linear system by means
of a basis of solutions to the E–L equations, with the hope to get particular geometric features possibly
simplifying the calculus. The first part of this section is devoted to prove that among the E–L solutions
there is in fact a complete basis.

In [15], studying the flows and the heat transfer in the vertical annulus, the Euler–Lagrange equations
whose solution maximizes the functional in (2.5) were formally written by means of a usual procedure in
calculus of variations: It is assumed that a maximum (or a minimum) exists at the point (�w, σ), and then,
one writes the functional about this point by adding to the argument an arbitrary variation, belonging
to the same Hilbert space. The variation is multiplied by a real parameter, say ε. Finally, the derivative
with respect to ε is calculated and forced to vanish in ε = 0 for arbitrary variations.

In this way, the equations can be written without proving neither that their solutions are actually
a complete basis, nor that the maximum exists. Nevertheless, even the orthogonality properties have
already been derived, so that we can recall the results in [15]. In order to find where the functional has
possibly an unknown maximum λ ∈ R, the E–L equations are⎧⎪⎨

⎪⎩
∇ · �w = 0
σ∇S + 2λΔ�w = ∇f

�w · ∇S + 2λΔσ = 0
(3.1)

with (�w, σ) ∈ W1,2
0 (Ω) × W 1,2

0 (Ω) and S the function defined in (2.6). Then, if a maximum positive λ,

allowing (3.1) to be solvable, existed it would be by definition equal to
√

b
Rac

.
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Since (�w, σ) vanishes on the boundary, the linear operator in system (3.1) is symmetric: In order to
see this, it is sufficient to write the system in the weak form and integrate by parts. Therefore, in [15]
one can find the derivation of the orthogonality relations for the (possibly existing) eigenfunctions: Given
any λj ∈ R, for which (3.1) can be solved by a couple (�wj , σj) one gets{

〈�wj · ∇S|σk〉 − 2λj〈∇σk|∇σj〉 = 0 ,

〈σk∇S|�wj〉 − 2λk〈∇�wk|∇�wj〉 = 0 .

Thus, by subtracting the above equations one obtains

(λk − λj)(〈∇σk|∇σj〉 + 〈∇�wk|∇�wj〉) = 0 ,

and for λj �= λk,

〈∇σj |∇σk〉 + 〈∇�wj |∇�wk〉 = 0 , (3.2)

so that now by summing the same equations, one gets

〈σk∇S|�wj〉 = 〈�wj · ∇S|σk〉 = 0 . (3.3)

Further, for j = k, a normalization can be chosen

‖∇�wj‖ = ‖∇σj‖ = 1 λj =
1
2
〈σj∇S|�wj〉. (3.4)

As a matter of fact, showing the existence of the maximum for the functional is not as hard, since
it is at least bounded, as remarked in Lemma 2.1. Thus, by using that in definition (2.5) the supremum
can be taken over ‖∇�u‖ + ‖∇θ‖ = 2 and, moreover, since by Rellich’s theorem W1,2

0 (Ω) is compactly
embedded in H(Ω) as well as W 1,2

0 (Ω) is compactly embedded in L2(Ω), then what we are looking for is
the supremum in a compact subset of H(Ω) × L2(Ω), and this means that the supremum is actually a
maximum.

Now, we prove that the solutions of (3.1) exist and are a numerable set and a complete basis in
H(Ω)×L2(Ω) for fields in W1,2

0 (Ω)×W 1,2
0 (Ω). In particular, use will be made of the spectral decomposition

theorem, saying that if, in an Hilbert space, a self-adjoint (symmetric) linear operator is compact and
invertible, then there exists a set of numerable eigenfunctions of the operator which is a complete basis.
Moreover, the eigenvalues μj are infinitely many and

lim
j→∞

μj = 0 . (3.5)

Thus, let us notice that E–L equations can be thought as the eigenvalue problem for the operator A

defined as follows:

A : H(Ω)×L2(Ω) →H

H := {�u∈ [C∞
0 (Ω)]2 : ∇·�u = 0}‖∇·‖2 ×C∞

0 (Ω)
‖∇·‖2

and the image of (�w, σ) through A

A(�w, σ) = (�u, θ)

is implicitly defined as the solution of the following system⎧⎪⎨
⎪⎩

∇ · �u = 0
Δ�u = −σ∇S + ∇f

Δθ = −�w · ∇S .

(3.6)

Thus, by replacing (�u, θ) = (2λ�w, 2λσ) in (3.6) one obtains system (3.1) and verifies that its solution
would be also eigenfunction of A related to the eigenvalue μ = 2λ:

A(�w, σ) = 2λ(�w, σ) .
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Let us prove first that A is invertible.

Lemma 3.1. System (3.1) does not allow for nontrivial solutions (�w, σ) if λ = 0.

Proof. Write the second equation in (3.1) for λ = 0, then

σ∇S = ∇f .

More, by taking the curl of this equation one obtains

∇σ × ∇S = 0.

So, the two gradients must be parallel, that is to say g(r, ϕ) should exist such that

∇σ = g ∇S .

In polar coordinates:

∂σ

∂r
= g(r, ϕ)

(
1
r

+ sin ϕ

)

∂σ

∂ϕ
= r g(r, ϕ)

(
1
r

+ sin ϕ

)
.

By asking

∂2σ

∂ϕ∂r
=

∂2σ

∂r∂ϕ
,

after a little calculation one derives also the necessary condition ∇g × ∇S = 0 .
Hence, since the gradients are parallel we deduce that for all η ∈ R the possible nonzero σ must be

constant on the curves

ln r + r sin ϕ = η .

Such curves are the leaves of a foliation in the plane, they intersect the boundaries of Ω, and σ can be
thought as defined on the quotient. Then, σ explicitly depends on ϕ. However, no σ of this kind can verify
Dirichlet boundary conditions: σ = 0 on the two circles would imply that its derivative with respect to ϕ
vanishes pointwise there, which is impossible. �

Now, in order to show the existence of a complete basis of eigenfunctions, we are going to proof
that A is self-adjoint and compact. The symmetry of A is obvious, because the weak form of (3.6) is
symmetric, as one can immediately see by performing the inner product with test functions in the dual
space, integrating by parts and using the homogeneous boundary conditions.

Concerning the prove of the compactness, let us describe the action of A on the couple (�w, σ): It takes
�w makes the inner product with −∇S and applies the inverse of the Laplacian to the result; then, it
takes σ multiplies by −∇S and applies the inverse of the Stokes operator. At this point, we notice that
both such inverse operators are compact. This is well known, since in bounded regular domains and with
homogeneous boundary conditions, the solutions of both the corresponding direct problems are bounded
in W 1,2 by the norm of the data in L2. Thus, still by Rellich’s theorem, from a bounded sequence of
data one can extract a subsequence of the corresponding solutions which is strongly convergent in the
L2-norm. By remarking that the composition of a compact operator with a bounded one is still compact,
the compactness of A follows from the boundedness of the operator E so defined:

E : (�w, σ) → (−σ ∇S,−�w · ∇S) .

On the other hand, E is bounded because of the two inequalities:

‖σ∇S‖2 ≤ ‖∇S‖∞‖σ‖2 ‖�w · ∇S‖2 ≤ ‖∇S‖∞‖�w‖2 .
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A further feature of (3.1) is that if λ is an eigenvalue then −λ is an eigenvalue too. To show this, let
us assume that {

σ∇S + 2λΔ�w = ∇f

�w · ∇S + 2λΔσ = 0.

Then, if we rewrite �w as −(−�w) we get:{
σ∇S − 2λΔ(−�w) = ∇f

−(−�w) · ∇S + 2λΔσ = 0 .

By multiplying the second equation by −1, we finally obtain{
σ∇S − 2λΔ(−�w) = ∇f

(−�w) · ∇S − 2λΔσ = 0 ,

which is the E–L equation solved for −λ by (−�w, σ). This new solution is independent from the solution
for λ, i.e., (�w, σ).

All the above results are summarized by the following theorem.

Theorem 3.1. System (3.1) admits a numerable set of solutions (�wj , σj) ∈ W1,2
0 (Ω) × W 1,2

0 (Ω) whose
gradients are orthogonal by the Hilbert space inner product. Such solutions are a complete basis in H(Ω)×
L2(Ω) for arbitrary elements in W1,2

0 (Ω) × W 1,2
0 (Ω). The corresponding λj’s are pairs of real numbers of

opposite sign, different from zero and enjoying the last property in (3.4):

λj =
1
2
〈σj∇S|�wj〉

Moreover, {|λj |}j∈N is a decreasing sequence and tends to zero as j → ∞. On the opposite, the largest
|λj | is

λ1 =
1
2

√
b

Rac

where b is defined in (1.3) and Rac in (2.5), as the largest Rayleigh number under which the rest state
solution of (2.4) is certainly stable.

Now, let us rewrite system (2.4) and look for particular solutions different from the rest state⎧⎪⎪⎨
⎪⎪⎩

∇ · �u = 0
1
Pr

∂�u
∂t − Δ�u + ∇p =

√
Ra
b θ�e3

∂θ
∂t − Δθ =

√
Ra
b

ur

r .

The onset of an Hopf bifurcation is characterized by a solution of the kind

�u(t, r, ϕ) = eiγt�u(r, ϕ) θ(t, r, ϕ) = eiγtθ(r, ϕ).

We can rename λ−j = −λj and write series with j ∈ Z. Then, we can try to see whether an oscillating
solution exists by writing it in the form (

�u
θ

)
= eiγt

∑
j∈Z

cj

(
�wj

σj

)
(3.7)

with cj ∈ C. We can replace (3.7) in the system and perform the inner product (in the sense of the
Cartesian product) with ( �wk, σk). Since by (3.2) the gradients of the eigenfunctions are orthogonal, we
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obtain for any k ∈ Z

iγ
∑
j∈Z

cj

(
1
Pr

〈�wj |�wk〉 + 〈σj |σk〉
)

+ 2ck =

√
Ra
b

∑
j∈Z

cj

(
〈σj �e3|�wk〉 +

〈
wr

j

r
|σk

〉)
. (3.8)

In Eq. (3.8), the basis properties, (3.4) in particular, allow us to simplify the products at the right-hand
side. From

〈σj �e3|�wk〉 =
〈(

∇S − �er

r

)
σj | �wk

〉
= 〈σj∇S|�wk〉 −

〈
σj

�er

r
| �wk

〉
,

it follows that if λj �= λk, then the first product on the right-hand side vanish; otherwise, the result is λk

for j = k:

iγ
∑
j∈Z

cj

(
1
Pr

〈�wj |�wk〉+〈σj |σk〉
)

+2ck =

√
Ra
b

∑
j∈Z

cj

(
2λjδjk+

〈
wr

j

r
|σk

〉
−

〈
wr

k

r
|σj

〉)
. (3.9)

Let us define some operator to simplify the notation. First, we denote the metric tensor in complex �2,
whose entries are real and which is positive defined since it corresponds to the metric of H(Ω) × L2(Ω)

Gjk :=
1
Pr

〈�wj |�wk〉 + 〈σj |σk〉. (3.10)

Next, at the right-hand side of Eq. (3.9) there is a skew-symmetric operator with entries

Ωjk :=
〈

σk | wr
j

r

〉
−

〈
σj | wr

k

r

〉
. (3.11)

Finally, it is convenient define also the diagonal matrix

Λjk := 2

(
1 − λk

√
Ra
b

)
δjk . (3.12)

In terms of these operators, Eq. (3.9) becomes

∑
j∈Z

cj(iγGjk + Λjk) =

√
Ra
b

∑
j∈Z

cjΩjk. (3.13)

Here, although the coefficients are real, the unknowns are complex. Since cj ∈ C, the complex conjugate
of Eq. (3.13) is independent:

∑
j∈Z

c̄j(−iγGjk + Λjk) =

√
Ra
b

∑
j∈Z

c̄jΩjk. (3.14)

In order to bring back the problem to real unknowns, we have to extract the real and imaginary part of
the equations. Thus, we sum equations (3.13) and (3.14) and divide by 2 the result; then, we subtract
them and divide by 2i:

∑
j∈Z

(−γIm(cj)Gjk + Re(cj)Λjk) =

√
Ra
b

∑
j∈Z

Re(cj)Ωjk (3.15)

∑
j∈Z

(γRe(cj)Gjk + Im(cj)Λjk) =

√
Ra
b

∑
j∈Z

Im(cj)Ωjk. (3.16)
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Just for simplicity, we set aj := Re(cj) ∈ R and bj := Im(cj) ∈ R, as they were entries of vectors. So, we
reversed the complexification of the space, by writing in place of (3.15) and (3.16)

− γ
∑
j∈Z

bjGjk + 2

(
1 − λk

√
Ra
b

)
ak =

√
Ra
b

∑
j∈Z

ajΩjk (3.17)

γ
∑
j∈Z

ajGjk + 2

(
1 − λk

√
Ra
b

)
bk =

√
Ra
b

∑
j∈Z

bjΩjk . (3.18)

As a matter of fact, in (3.17) and (3.18) the unknown is the kernel of a linear operator in �2 × �2.
For Ra < Rac, the results in Theorem 2.3 holds true: The null solution is asymptotically stable and

we have not to expect the onset of an oscillating solution, which corresponds to a nontrivial kernel. On
the other hand, by showing that there is no kernel also for Ra = Rac we would prove that there is no
Hopf bifurcation, since the existence of an oscillatory solution at the criticality is necessary condition for
it, see [16].

Theorem 3.2. Let us define in �2 × �2 the linear operator

LRa

(
�a
�b

)
:=

⎛
⎝Λ −

√
Ra
b Ω −γG

γG Λ −
√

Ra
b Ω

⎞
⎠

(
�a
�b

)
, (3.19)

where G, Λ and Ω are the operators, acting on �2, defined in (3.10), (3.11) and (3.12) while γ ∈ R. Then,
for Ra ≤ Rac

LRa(�a,�b) = (�0,�0) ⇒ (�a,�b) = (�0,�0) ,

i.e., the kernel of the operator is trivial.

Proof. Since Ω is skew-symmetric,

< �a|Ω�b >�2= − <�b|Ω�a >�2 ,

while G is symmetric, as well as the diagonal matrix Λ, so that

< �a|G�b >�2=<�b|G�a >�2 ,

< �a|Λ�b >�2=<�b|Λ�a >�2 .

It is important to notice that if the strict inequality Ra < Rac holds true, not only the metric tensor
G but also Λ is positive defined, as one can see by the definition (3.12). Indeed, on the one hand the
negative λj ’s induce positive values on the diagonal, while the smallest value corresponds to the largest
positive λ which, by Theorem3.1, can be replaced in (3.12) getting

Λ11 = 2

(
1 −

√
Ra
Rac

)
> 0 .

Conversely, for Ra = Rac, one has Λ11 = 0 .
With this in mind, from definition (3.19) we can derive some necessary conditions for the pair (�a,�b) to
verify LRa(�a,�b) = (�0,�0). If so, then for arbitrary (�x, �y) it must hold < (�x, �y)|LRa(�a,�b) >= 0. Thus, we try
with the pairs (�x, �y) = (�a,�b) and (�x, �y) = (�b,−�a) and impose

0 =< (�a,�b)|LRa(�a,�b) >�2×�2= (3.20)

=< �a|Λ�a >�2 −γ < �a|G�b >�2 +γ <�b|G�a >�2 + <�b|Λ�b >�2=

=< �a|Λ�a >�2 + <�b|Λ�b >�2 .
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Also the next condition has to hold true:

0 =< (�b,−�a)|LRa(�a,�b) >�2×�2= (3.21)

= −
√

Ra
b

<�b|Ω�a >�2 −γ <�b|G�b >�2 +

√
Ra
b

< �a|Ω�b >�2 −γ < �a|G�a >�2=

= −γ(< �a|G�a >�2 + <�b|G�b >�2) + 2

√
Ra
b

< �a|Ω�b >�2 .

By varying Ra ∈ (0,Rac), condition (3.20) is sufficient to obtain the implication in the thesis. It is verified
if and only if �a = �b = 0, because Λ is positive defined.

However, for Ra = Rac the element Λ11 vanishes and (3.20) could be verified without any change in
the calculus for �a and �b so defined

aj = a1δ1j bj = b1δ1j ,

with arbitrary real a1 and b1. Nevertheless, this possible new choice should verify also condition (3.21).
Here, the last term in the last line disappears, because �a and �b are parallel and Ω is skew-symmetric, but,
since G is positive defined, the other two terms cannot vanish, unless a1 = b1 = 0. �

Remark 3.1. The result holds true also for steady solutions as a particular case of the oscillating ones
for Ra < Rac. But for Ra = Rac, since steady solutions have got γ = 0, the second part of the previous
proof does not work because the implication a1 = b1 = 0 falls.
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