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Abstract

We introduce a new family of high order accurate semi-implicit schemes for the solution of nonlinear time-dependent systems
f partial differential equations (PDE) on unstructured polygonal meshes. The time discretization is based on a splitting between
xplicit and implicit terms that may arise either from the multi-scale nature of the governing equations, which involve both
low and fast scales, or in the context of projection methods, where the numerical solution is projected onto the physically
eaningful solution manifold. We propose to use a high order finite volume (FV) scheme for the explicit terms, hence ensuring

onservation property and robustness across shock waves, while the virtual element method (VEM) is employed to deal with
he discretization of the implicit terms, which typically requires an elliptic problem to be solved. The numerical solution
s then transferred via suitable L2 projection operators from the FV to the VEM solution space and vice-versa. High order
ime accuracy is then achieved using the semi-implicit IMEX Runge–Kutta schemes, and the novel schemes are proven to be
symptotic preserving (AP) and well-balanced (WB). As representative models, we choose the shallow water equations (SWE),
hus handling multiple time scales characterized by a different Froude number, and the incompressible Navier–Stokes equations
INS), which are solved at the aid of a projection method to satisfy the solenoidal constraint of the velocity field. Furthermore,
n implicit discretization for the viscous terms is also devised for the INS model, which is based on the VEM technique.
onsequently, the CFL-type stability condition on the maximum admissible time step is based only on the fluid velocity and
ot on the celerity nor on the viscous eigenvalues. A large suite of test cases demonstrates the accuracy and the capabilities
f the new family of schemes to solve relevant benchmarks in the field of incompressible fluids.
2023 Elsevier B.V. All rights reserved.

eywords: Semi-implicit schemes; Finite volume; Virtual Element Method; High order in space and time; Asymptotic preserving; Incompressible
ows

1. Introduction

Incompressible flows are mathematically described by non-linear systems of hyperbolic conservation laws, and
hey cover a wide range of physical phenomena such as environmental, geophysical and meteorological flows, as
ell as the dynamics of mechanical processes like turbo-machinery. In this article, we consider two different models:
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(i) the shallow water equations (SWE), which are commonly used to simulate storm surges, inundations, dam breaks
and river floods; (ii) the incompressible Navier–Stokes (INS) equations, which model atmospheric flows, flows
around wings and even pressurized pipe flows. Due to the relevant physical applications, there is a great interest in
the numerical solution of these models, which however gives rise to some complexities. In particular, the shallow
water equations are concerned with slow and fast time scales, which are linked to the non-linear convective and
pressure terms, respectively. Moreover, the energy equation in the incompressible Navier–Stokes model reduces to
a constraint on the velocity field that must satisfy a divergence-free condition. The use of unstructured grids is very
convenient for real-world applications that deal, for example, with ocean bathymetry, wing and turbine shapes, and
river morphology, which should be approximated with high accuracy. Moreover, obtaining high order of accuracy
also in time represents an important goal in order to achieve accurate results for unsteady problems.

From the numerical viewpoint, the multi-scale nature of the system poses severe restrictions on the maximum
dmissible time step in order to make the numerical scheme capable of capturing the fast waves. For explicit time
iscretization, this stability condition can lead to extremely small time steps that ultimately prevent the method to
e effectively adopted for real applications. Furthermore, the amount of numerical dissipation introduced by the
cheme dramatically augments, spoiling the accuracy of the solution. An effective strategy is based on flux splitting
echniques, which separate the slow and fast scales. An explicit time discretization is employed for the slow scales
hat typically correspond to the non-linear convective terms and are, therefore, related to the fluid velocity, while
n implicit time stepping is retained for the fast scales which involve the acoustic waves like the sound speed
r the celerity. On the other hand, the divergence-free constraint is rather complicated to be respected on general
nstructured meshes with high order of accuracy, therefore pressure-correction methods are typically used, which
rst compute an intermediate velocity field that is not solenoidal, and then a correction is performed in order to
roject the velocity onto the divergence-free manifold. Furthermore, the viscous terms in the INS model are endowed
ith a parabolic time step restriction, which is also responsible of very small time steps in viscous dominated flows,
hich might be conveniently treated implicitly, although this is not trivial on unstructured meshes.
By all means, this class of numerical methods belongs to the category of implicit–explicit (IMEX) [1–4] or semi-

mplicit time schemes [5–7], which imply the solution of an algebraic system for the unknown physical quantity
hat is discretized implicitly (for example the pressure or the velocity field). This system does normally involve an
lliptic equation to be solved on the entire computational domain. The effectiveness of IMEX schemes have been
emonstrated in several contexts, including low Mach compressible flows [8–10], magnetized plasma flows [11],
ipe flows [12,13], as well as free surface [14,15] and atmospheric [16,17] applications. If Cartesian meshes are
dopted for the spatial discretization [9,18], finite difference schemes are likely to be employed for the implicit
erms, and the high order extension is straightforward by enlarging the stencil of the finite difference operators.
esides, finite differences can also be used on orthogonal unstructured meshes like Voronoi tessellations [19–21]
p to second order of accuracy. In this case, the solution of the implicit algebraic system can be carried out quite
asily. However, when general unstructured meshes pave the computational domain, the solution of the algebraic
ystem becomes more difficult, since the spatial discretization might be rather complicated. If finite volume methods
re used, the inversion of the reconstruction operator should be embedded in the system solver, leading to additional
ifficulties. Discontinuous Galerkin methods [22–24] represent a clever option, because they simultaneously provide
igh accuracy and compactness of the stencil. Nevertheless, finite volume methods can deal with very general
ontrol volumes and they exhibit, by construction, conservation and shock capturing properties, which makes such
chemes suitable for the discretization of the explicit slow scale terms, like the non-linear convective terms. In
ddition, since the implicit system is typically concerned with an elliptic equation on the fast scale quantity, like
he pressure, finite element schemes could also be used on both quadrilateral and triangular cells in two space
imensions (2D) or cubic and tetrahedral control volumes in three-dimension (3D). This is the reasoning behind
he recent emergence of a new class of hybrid finite volume/finite element methods [25–28], which combine the
obustness of the explicit finite volume solver with the versatility of the finite element method. Due to the classical
nite element solver, these numerical methods are restricted to simplex meshes in 2D/3D – i.e. meshes that are

opologically dual of triangulations. A first attempt of using a hybrid scheme on general polygonal meshes has been
orwarded in [29], where the implicit pressure system is solved at the aid of a discontinuous Galerkin approach that
cts on a sub-triangulation of the polygonal tessellation.

The goal of this paper is to design a genuinely hybrid finite volume/finite element scheme on arbitrary shaped

rids in 2D. The originality of the proposed scheme lies in the usage of the Virtual Element Method (VEM) to
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handle the solution of the implicit elliptic equation. The Virtual Element Method (VEM), originally developed
in [30–33], is a stabilized Galerkin formulation, originating from mimetic finite difference schemes [34], to solve
partial differential equations on very general polygonal and polyhedral meshes that overcomes the many difficulties
and challenges that are associated with polygonal finite element formulations. The VEM represents a generalization
of the finite element method in which the explicit knowledge of the basis functions is not needed. Instead,
the VEM provides projection operators of the basis functions onto polynomial spaces of arbitrary degree that
allow to discretize and to suitably approximate the bilinear form and the continuous linear functional deriving
from the variational formulation. The discretized bilinear form is conveniently decomposed as the sum of a
consistent term, which ensures polynomial consistency, and a correction term, which guarantees stability. The VEM
has been extensively proposed for the solution of elliptic problems in many fields of mechanics, such as two-
and three-dimensional linear elasticity [35–38], nearly incompressible elasticity [39], linear elastodynamics [40],
elastic problems with singularities and discontinuities [41,42], fracture mechanics [43,44], flow problems in porous
media [45,46]. Recently, there has been an interest in addressing also steady state partial differential equations
(PDE), as for instance the steady Navier–Stokes equations [47–52]. Noticeably, in this application, the divergence-
free constraint is directly imposed in the definition of the virtual basis, avoiding any projection (or correction)
operator. Nevertheless, unsteady problems have still to be faced recurring to the VEM.

In this paper, we introduce an innovative hybrid finite volume/virtual element solver for hyperbolic PDE on
eneral unstructured polygonal meshes in the context of incompressible flows, solving both the SWE and the INS
odel. The FV solver is used to treat the explicit terms, while the VEM strategy enters the scheme to solve the

mplicit algebraic system for the pressure. Furthermore, in the incompressible Navier–Stokes equations, the VEM
pproach is actually used twice: firstly to implicitly discretize the viscous terms [53,54], and secondly to perform
he projection step ensuring a divergence-free velocity field. Remarkably, the entire scheme works on genuinely
olygonal tessellations. Finally, high order in time is ensured by applying a semi-implicit IMEX time stepping
echnique, which has been also employed in the context of compressible fluids [10].

The rest of the paper is organized as follows. In Section 2 the governing equations are presented, studying the
ulti-scale character of the mathematical models which leads to the flux splitting for SWE or the projection strategy

or INS. Section 3 is devoted to the presentation of the numerical scheme, with details on the explicit FV solver
nd the implicit VEM. The asymptotic and the well-balance property of the scheme are also studied in this section.

large suite of test problems is proposed in Section 4, showing the accuracy and the robustness of the new family
f schemes while solving academic benchmarks for SWE and INS systems. Finally, we provide some concluding
emarks and an outlook on possible future works in Section 5.

. Mathematical model

Incompressible flows are mathematically described by by nonlinear time-dependent systems of PDE, which can
e cast into the following formulation:

∂Q
∂t

+ ∇ · F(Q, ∇Q) + B · ∇Q = 0 , x ∈ Ω ⊂ Rd , t ∈ R+

0 , Q ∈ ΩQ ⊂ Rγ , (1)

ith d = 2 representing the number of space dimensions. The vector x = (x, y) identifies the spatial coordinates
n the physical domain Ω and t is the time. The vector of evolutionary variables Q = (q1, q2, . . . , qγ ) is defined
n the space of the admissible states ΩQ ⊂ Rγ , and F(Q, ∇Q) = (f(Q, ∇Q), g(Q, ∇Q)) denotes the conservative
on-linear flux tensor (f in x−direction, g in y−direction), while B =

(
Bx , By

)
contains the purely non-conservative

art of the system written in block-matrix notation.
A widespread model is given by the Incompressible Navier–Stokes (INS) equations, which can be cast into form

1) with absence of non-conservative terms by defining

Q = (0, v) , F(Q, ∇Q) = (v, v ⊗ v − ν∇v + pI) , B · ∇Q = 0, (2)

ntroducing the identity matrix I. The velocity field is v(x, t) = (u, v), with the components along x− and
y−direction, and p(x, t) = P(x, t)/ρ denotes the normalized fluid pressure, where P(x, t) is the physical pressure
nd ρ is the constant fluid density. The kinematic viscosity coefficient is given by ν = µ/ρ with µ being the
ynamic viscosity of the fluid. The first equation of the INS model (2) is the divergence-free constraint on the
elocity field, which corresponds to the energy equation in the low Mach limit of compressible flows [9].
3
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For situations in which the vertical velocity field is negligible with respect to the horizontal one, incompressible
ows are governed by the Shallow Water Equations (SWE). By neglecting friction forces, the SWE fits the general
ormalism (1) by setting

Q = (η, q, b) , F(Q) = (q, v ⊗ q, 0) , B · ∇Q = (0, gH∇η, 0) . (3)

ere, η(x, t) ≥ 0 is the free surface elevation of the fluid and b(x) defines the bottom bathymetry, measured with
espect to a reference plane, thus the total water depth is given by H (x, t) = η(x, t)−b(x) ≥ 0. The flow discharge is
(x, t) = H (x, t)v(x, t), while g is the gravity acceleration. The SWE model (3) is written in terms of conservative
ariables and it can reduce to a conservation law (B · ∇Q = 0) in the case of flat bottom topography, hence η = H
nd F(Q) =

(
q, v ⊗ q + gH 2/2, 0

)
.

These mathematical models can describe phenomena characterized by different time scales (i.e., multi-scale
egimes), leading to the resolution of problems that are notoriously complicated to approximate numerically due to
he associated stiffness. For example, low Froude number Fr = |v|/

√
gH flows in the SWE are characterized by a

rather low convective speed |v| compared to the acoustic-gravity celerity
√

gH . For the INS equations, the viscous
dominated flows induce a stiffness, which is then responsible of a severe CFL-type stability restriction on the time
step for explicit time discretizations. To identify the terms responsible for the stiffness, it is convenient to write the
governing equations in dimensionless form [9,29]. Let the variables of (2) and (3) be rescaled as

x̃ =
x
L0

, t̃ =
t

T0
, ṽ =

v
U0

, η̃ =
η

H0
, H̃ =

H
H0

, b̃ =
b

H0
, q̃ =

q
U0 H0

, p̃ =
pL0

νU0
, (4)

where L0, T0, U0 = L0/T0, H0 are the characteristic length, time, velocity and depth, respectively, of the
problem under consideration. By omitting the tilde symbol for ease of reading, the dimensionless form of the
INS equations (2) writes

Q = (0, v) , F(Q, ∇Q) =

(
v, v ⊗ v −

1
Re

(∇v − pI)
)

, (5)

where the Reynolds number Re = U0L0/ν appears in front of the viscosity and pressure terms of the momentum
equation.

Analogously, we can derive the dimensionless form of the SWE system (3) that is given by

Q = (η, q, b) , F(Q) = (q, v ⊗ q, 0) , B · ∇Q =

(
0,

H
Fr2 ∇η, 0

)
, (6)

here it can be observed the presence of the Froude number Fr = U0/
√

gH0 in the pressure gradient term.
In both cases, the dimensionless systems can be characterized by a stiffness parameter ε, which is the reference

Reynolds number ε = Re in (5) or the reference Froude number ε = Fr in (6). The asymptotic limit of the models
can consequently be studied using the asymptotic parameter ε, as it will be carried out in Section 3.8.

2.1. Flux splitting

In order to develop an efficient and accurate numerical method to solve multi-scale problems as those discussed
in the previous section, it is convenient to treat the governing equations with a flux splitting approach, which is
based on the separation of the different time scales, fast and slow, in terms of the flux terms (either conservative
or non-conservative). In the literature, this strategy has already been followed to treat incompressible flow
models [5,29,54–56] but also compressible fluids [9,57,58]. The idea behind this technique consists in dividing
the system of governing equations into two sub-systems, where one contains the fluxes dependent on the scaling
parameter ε and the other one does not. This procedure basically allows to highlight the terms that will be discretized
explicitly in time with respect to those that, due to the ε−dependence, will encounter an implicit discretization.

The flux splitting applied to a generic system of the type (1) reads
∂Q
∂t

+ ∇ · FE (Q) + ∇ · FI (Q, ∇Q) + BE · ∇Q + BI · ∇Q = 0, (7)

being F = FE +FI , B = BE +BI . The subscripts “E” and “I ” distinguish the explicit terms related to convective-
ype phenomena, from the implicit contribution concerned with the fluid pressure and viscosity. As a consequence,
e obtain a partitioned system [59] consisting in the following sub-systems.
4
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• Convective sub-system:
∂Q
∂t

+ ∇ · FE (Q) + BE · ∇Q = 0; (8)

• Pressure–viscosity sub-system:
∂Q
∂t

+ ∇ · FI (Q, ∇Q) + BI · ∇Q = 0. (9)

In the case of the INS equations (5), the scaling parameter is represented by the Reynolds number, ε = Re,
implying that all terms related to the Reynolds number should be treated implicitly. Therefore, we may opt for the
following splitting:

FE (Q) = (0, v ⊗ v) , FI (Q, ∇Q) =

(
v, −

1
ε

(ν∇v − pI)
)

, (10)

hich simultaneously allows the time step stability condition to be independent from the parabolic viscous terms
nd also to respect the divergence-free constraint on the velocity field. The eigenvalues of the explicit sub-system
n normal direction n = (nx , ny) are simply given by

λ1 = 0, λ2,3,4 = 2v · n, (11)

thus the time step is limited by the fluid velocity and not by the viscosity coefficient with parabolic cell size.
For the specific case of the SWE (6), we adopt the classical flux splitting originally proposed in [5], hence

btaining

FE (Q) = (0, v ⊗ q, 0) , FI (Q) = (q, 0, 0) , BI · ∇Q =

(
0,

H
ε2 ∇η, 0

)
. (12)

ven in this case, the eigenvalues of the explicit sub-system only involve the convective fluid velocity:

λ1,2 = 0, λ3 = v · n, λ4 = 2v · n. (13)

ndeed, we recall that the scaling parameter coincides with the Froude number, hence ε = Fr, and all the related
erms are taken implicitly.

For both the models, on a computational mesh with characteristic mesh size h, the time step is limited by a
classical CFL stability condition that is only based on the maximum convective eigenvalue, reading

∆t ≤ CFL min
Ω

h
max |λ|

. (14)

he above condition yields a milder stability restriction, especially in the asymptotic regime when ε → 0. In
particular, the time step becomes independent of the stiffness parameter, which means that simulations of flows
defined by any Reynolds and Froude number can be run with the same computational efficiency. Moreover, since
the terms related to the stiffness are treated implicitly, the numerical dissipation is solely proportional to the fluid
speed, yielding a numerical scheme that is particularly suited for applications in the asymptotic (zero-relaxation)
limit, i.e., when ε → 0. We remark here that this type of problems could not be simulated adopting a purely explicit
scheme in time [60–62].

3. Numerical scheme

We start by presenting the discretization of the computational domain in space and time. Next, we define the
polynomial spaces adopted for the discretization of the numerical solution, and we present the first order semi-
discrete scheme in time, analysing the asymptotic and well-balance properties. Finally, the high order extension in
space and time of the new schemes are introduced.

3.1. Discretization of the time computational domain

The time coordinate is defined in the time interval t ∈ [0, t f ], where t f ∈ R+

0 represents the final time. A
sequence of discrete points tn approximate the temporal computational domain such that t ∈ [tn

; tn+1], hence

tn+1
= tn

+ ∆t, (15)

where the time step ∆t = tn+1
− tn is determined at each time iteration according to the stability condition (14).
5
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3.2. Discretization of the space computational domain

The space computational domain Ω ⊆ R2 is discretized by a set of non-overlapping polygonal control volumes
Pi with boundary ∂ Pi , surface area |Pi | and characteristic mesh size hi =

√
|Pi |. The total number of cells is NP ,

thus i = 1, . . . , NP , and the union of all elements is called the tessellation TΩ of the domain

TΩ =

NP⋃
i=1

Pi . (16)

To make the notation easier, we drop the subscript i , bearing in mind that all the geometric quantities are specific
to each polygon Pi . The barycentre x P := (xP , yP ) of each cell is computed as

x P =
1

|P|

∫
P

x dx. (17)

he number of vertices of element P is denoted by NE . The boundary of P is formed by straight edges, and the
olygon P has NE edges. The vertices of the polygonal element P are oriented in counter-clockwise order and
heir coordinates are denoted by xk := (xk, yk), k = 1, 2, . . . , NE . For convenience, we also use xk as a label for
he kth vertex. We denote the unit normal vector to edge e ∈ ∂ P by nP,e. Each vector nP,e points out of P . We

assume that the orientation of all edges is fixed once and for all, so that we can unambiguously introduce ne, the
unit normal vector to edge e, which is independent of the elements P that share the common edge e. Moreover,
he following assumptions on the regularity of the mesh are adopted.

All the integrals appearing in the numerical scheme are evaluated relying on quadrature formulae of suitable
ccuracy. For boundary integrals we use Gaussian quadrature rules [63], while for volume integrals we adopt the
fficient numerical integration proposed in [64,65].

esh regularity assumptions. There exists a positive constant ϱ such that for every polygonal element P ∈ Th it
olds that

i) P is star-shaped with respect to a disk with radius greater than ϱ maxTh h P ;

i i) for every edge e ∈ ∂ P it holds that |e| ≥ ϱh P , with |e| being the edge length.

The restriction of P being star-shaped in (i) implies that all the elements are simply connected subsets of R2

nd that they have a finite number of vertices and edges. The scaling assumption in (i i) implies that the number
f edges on the boundary of any element is uniformly bounded over the whole mesh Th , thus avoiding collapsing
ertexes that would give rise to degenerate edges.

.3. Conforming virtual element space

On every polygonal element P with boundary ∂ P , we define the standard local virtual element space of order
, V h

k (P), as

V h
k (P) =

{
3h ∈ H 1(P) : ∆3h ∈ Pk−2(P), 3h |∂ P ∈ C0(∂ P), 3h |e ∈ Pk(e) ∀e ∈ ∂ P

}
, (18)

herePk(P) denotes the space of polynomials of degree less than or equal to k on P . A straightforward consequence
f definition (18) is that Pk(P) is a subspace of V h(P). We define

nk := dimV h
k (P) =

(k + 1)(k + 2)
2

. (19)

et us introduce the multi-index κ = (κ1, κ2), with the usual notation |κ | = κ1 + κ2. Moreover, if x = (x1, x2), then
xκ

= (xκ1
1 , xκ2

2 ). We define the scaled monomials mκ of degree equal to |κ | as

mκ =

( x − x P

h P

)κ

. (20)

ence, we define the set Mk(P) of scaled monomials of degree less than or equal to k,
Mk(P) := {mκ : 0 ≤ |κ | ≤ k}, (21)

6
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Fig. 1. Degrees of freedom for k = 3. The internal ones are indicated by a square symbol in blue. The boundary degrees of freedom are
ocated on the vertexes (◦ in black) and along the edges (+ in red).

and recognize that Mk(P) is a basis for Pk(P). We also use the α subscript to denote the α-th scaled monomial
mα of Mk(P).

As shown in [30], each function 3h in V h
k (P) is uniquely determined by the following degrees of freedom:

• the NE values of 3h at the vertices of P;
• the NE (k − 1) values of 3h on the (k + 1) Gauss–Lobatto quadrature points on each edge e;
• the moments up to degree k − 2 of 3h in P , defined as

1
|P|

∫
P
3hmα dx, α = 1, . . . , nk−2, (22)

where nk−2 is computed from (19) as the dimension of Pk−2(P).

sketch of the internal and boundary degrees of freedom for k = 3 is shown in Fig. 1. The internal nk−2 degrees
f freedom have actually no pointwise location, since they are given by moments according to (22), thus they are
imply plotted at the interior of the cell to be interpreted as an integral definition. It follows that the dimension of

V h
k (P) is

dimV h
k (P) = NE k +

(k − 1)k
2

, (23)

hus we denote by N dof
P = dimV h

k (P) the number of degrees of freedoms of each 3h ∈ V h
k (P). We also denote by

ofi (3h) the value of the i th degree of freedom of 3h . Denoting {ϕ}
Ndof

P
i=1 as the canonical basis for V h

k (P), we can
epresent each 3h ∈ V h

k (P) in terms of its degrees of freedom by means of a Lagrange interpolation:

3h =

Ndof
P∑

i=1

dofi (3h)ϕi , (24)

here the usual interpolation property holds true:

dofi (ϕ j ) = δi j , i, j = 1, . . . , N dof
P . (25)

iven the mesh TΩ , the global conforming virtual element space V h
k ∈ H 1(Ω ) is obtained by gluing together all

he elemental spaces V h
k (P), i.e.:

V h
k =

{
3h ∈ H 1(P) : 3h |P ∈ V h

k (P) ∀P ∈ TΩ
}
. (26)
7
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3.4. Elliptic projection operator

Since functions in the virtual element space V h
k (P) are not explicitly known, we need to resort to a projection

perator Π ∇

P,k : V h
k (P) → Pk(P) that maps functions from the virtual element space to the polynomial space of

degree k, which is indeed known. Such projector will play a fundamental role in what follows and it is defined up
to a constant by the orthogonality condition∫

P
∇ pk · ∇(Π ∇

P,k3h − 3h) dx = 0, ∀pk ∈ Pk(P). (27)

In order to fix the projection on constants as well, we need to separately define the projector operator P0 : V h
k (P) →

P0(P) requiring that

P0(Π ∇

P,k3h − 3h) = 0. (28)

Among the many possible options for P0, as forwarded in [30] we choose to define

P03h :=
1

NE

NE∑
i=1

3h(xi ) for k = 1, (29)

P03h :=
1

|P|

∫
P
3h dx for k ≥ 2. (30)

t turns out that the projection Π ∇

P,k3h is computable using only the degrees of freedom of 3h . Indeed, since Mk(P)
s a basis for Pk(P), from (27) we can write∫

P
∇mα · ∇(Π ∇

P,k3h − 3h) dx = 0, α = 1, . . . , nk, (31)

nd since Π ∇

P,k3h is an element of Pk(P), it can be represented in the basis Mk(P) as well:

Π ∇

P,k3h =

nk∑
β=1

sβmβ . (32)

onsequently, Eq. (31) becomes:
nk∑

β=1

sβ

∫
P

∇mα · ∇mβ dx =

∫
P

∇mα · ∇3h dx, α = 1, . . . , nk, (33)

hich constitutes a linear system of nk equations in the nk unknowns sβ . The system is still indeterminate though,
nd such indeterminacy is overcome by adding conditions (29):

nk∑
β=1

sβ P0mβ = P03h . (34)

ow, the linear system arising from (33) and (34) is solvable. In fact, the left-hand side of (33) entails the integration
f known polynomials over P . As for the left-hand side, applying integration by parts we get∫

P
∇mα · ∇3h dx = −

∫
P
∆mα3h dx +

∫
∂ P

∂mα

∂n
3h d S. (35)

The first term is explicitly computed from the internal degrees of freedom of 3h , while the second term contains a
polynomial integrand which can be exactly integrated by evaluating it at the Gauss–Lobatto quadrature points along

each edge e, where the edge degrees of freedom are located. Indeed, we recall that the basis functions {ϕ}
Ndof

P
i=1 , which

span 3h , are of Lagrangian type according to (24).
A projection Π ∇

P,k3h can be easily obtained by computing the projections Π ∇

P,kϕi of each of the virtual basis
functions of V h

k (P). In fact, we have

Π ∇

P,kϕi =

nk∑
sα

i mα, i = 1, . . . , N dof
P ,
α=1

8
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where sα
i are the components of the solution vector of the system (33) with the additional condition (34), in which

e choose 3h = ϕi . In matrix form, this system writes

G
⋆

Π∇

k = B, (36)

where G and B are respectively nk × nk and nk × N dof
P matrices such that:

(G)αβ = P0mβ, for α = 1, (37)

(G)αβ =

∫
P

∇mα · ∇mβ dx, for α ≥ 2, (38)

(B)αi = P0ϕi , for α = 1, i = 1, . . . , N dof
P (39)

(B)αi =

∫
P

∇mα · ∇ϕi dx, for α ≥ 2, i = 1, . . . , N dof
P , (40)

nd
⋆

Π∇

k is the nk × N dof
P matrix representation of operator Π ∇

P,k in the basis Mk(P), so that (
⋆

Π∇

k )αi = sα
i .

It is also possible to provide a matrix representation Π∇

k of operator Π ∇

P,k in the canonical basis of V h
k (P), by

ntroducing the N dof
P × nk matrix D that performs a change of basis:

(D)iα = dofi (mα), i = 1, . . . , N dof
P , α = 1, . . . , nk . (41)

hus, Π∇

k is the N dof
P × N dof

P matrix computed as

Π∇

k = D
⋆

Π∇

k = DG−1B. (42)

.5. L2 projection operator

We also need to resort to the L2 projection operator Π 0
P,k : V h

k (P) → Pk(P) that maps functions from the virtual
lement space to the polynomial space of degree k. Such projector is defined by the orthogonality condition∫

P
pk(Π 0

P,k3h − 3h) dx = 0, ∀pk ∈ Pk(P). (43)

he projection Π 0
P,k3h can be evaluated using only the degrees of freedom of 3h . Indeed, since Π 0

P,k3h is an element
f Pk(P), it can be represented in the basis Mk(P):

Π 0
P,k3h =

nk∑
β=1

rβmβ . (44)

rom this, it follows that condition (43) becomes
nk∑

β=1

rβ

∫
P

mαmβ dx =

∫
P

mα3h dx, α = 1, . . . , nk, (45)

hich is a linear system of nk equations in the nk unknowns rβ . While the left-hand side of (45) is readily
omputable, involving the integration of known polynomials over P , the right-hand side clearly is not. In fact,
or a general k we know moments as degrees of freedom only for mα ∈ Pk−2(P). The idea here is to replace 3h in
he right-hand side with its elliptic projection Π ∇

P,k3h only for monomials of degree k and k − 1. Such system can
e written in matrix form to give the nk × N dof

P matrix representation
⋆

Π0
k of Π 0

P,k as follows:

H
⋆

Π0
k = C. (46)

he matrices H and C are of dimensions nk × nk and nk × N dof
P , respectively, and they are explicitly defined as

(H)αβ =

∫
P

mαmβ dx, α, β = 1, . . . , nk, (47a)

(C)αi =

{∫
P mαϕi dx, α = 1, . . . , nk−2, i = 1, . . . , N dof

P ,∫
P mαΠ

∇

P,kϕi dx, nk−2 + 1 ≤ α ≤ nk, i = 1, . . . , N dof
P .

(47b)
9
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It is also possible to provide the matrix representation Π0
k of operator Π 0

P,k in the canonical basis of V h
k (P), by

sing the change of basis matrix D (41), which is

Π 0
k = D

⋆

Π0
k = DH−1C. (48)

In a similar fashion, we can also compute the matrix representations Π0
k−1 and

⋆

Π0
k−1 of the L2 projection onto

Pk−1(P). To this end, we solve the linear system

H′
⋆

Π0
k−1 = C′, (49)

where the nk−1 × nk−1 matrix H′ is obtained by taking the first nk−1 rows and columns of matrix H, defined in
(47a), and the nk−1 × N dof

P matrix C′ is obtained by taking the first nk−1 rows of matrix C, defined in (47b).
Finally, we obtain

Π0
k−1 = D′

⋆

Π0
k−1, (50)

where the N dof
P × nk−1 matrix D′ is computed by taking the first nk−1 columns of matrix D, defined in (41).

3.6. Finite volume space

In this work, the leading numerical scheme relies on the finite volume paradigm, which is used to discretize
the explicit terms in (7) and to store the numerical solution within each control volume Pi for every time level tn .
Finite volume schemes represent the vector of conserved variables Q as cell averages refereed to each polygonal
element P:

Qn
i :=

1
|Pi |

∫
Pi

Q(x, tn) dx, (51)

which obviously belong to the space of polynomials of degree zero (k = 0), since they are constant states within
each cell. To make notation easier, we omit the subscript i referring to the cell Pi and the superscript n pointing to
he current time level.

To achieve higher order of accuracy, a non-linear reconstruction of the finite volume solution (51) is carried out,
ence obtaining an approximation of the solution of degree k > 0 which is addressed with high order polynomials
(x) while avoiding spurious oscillations in the proximity of eventual discontinuities (further details on the high
rder reconstruction in the FV space will be given in Section 3.9). Consequently, the reconstructed solution lies in
he space of polynomials Pk and it is written in terms of an expansion of a set of modal basis functions βℓ with
orresponding nk degrees of freedom ŵℓ:

w(x) =

nk∑
ℓ=1

βℓ(x) ŵℓ. (52)

he basis functions βl are given by a set of conservative Taylor functions that can be directly retrieved from the
onomials (20):

βℓ(x)|P = mκ −
c

|P|

∫
P

mκ dx. (53)

The coefficient c ensures the conservation property of the basis functions, thus we have c = 0 for |κ | = 0, and
c = 1 for |κ | > 0. We remark that the conservation property of the basis functions (53) means that

1
|P|

∫
P

nk∑
l=1

βℓ(x) dx = 1, (54)

thus, the first degree of freedom of each element P (i.e. the one identified by ℓ = 1) represents the cell average

value, in the finite volume sense.

10



W. Boscheri, A. Chiozzi, M.G. Carlino et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116140

s

I
t

N
g
p
i

T
p

T
t

T
s

T
c

t

3.7. Semi-discrete semi-implicit IMEX scheme in time

Concerning the temporal discretization of the equations, let us start by presenting the first order in time
emi-discrete scheme according to the splitting (7), which reads:

Qn+1
− Qn

∆t
+ ∇ · FE (Qn) + ∇ · FI (Qn+1, ∇Qn+1) + BE (Qn) · ∇Qn

+ BI (Qn) · ∇Qn+1
= 0. (55)

ncompressible Navier–Stokes model. For the INS equations (2), the semi-discrete scheme expressed in (55) leads
o

∇ · vn+1
= 0, (56a)

vn+1
− vn

∆t
+ ∇ · (vn

⊗ vn) − ν∆vn+1
+ ∇ pn+1

= 0, (56b)

which is solved as follows. From the momentum equation we obtain a provisional velocity field v∗, which already
contains the computation of both explicit convection and implicit viscous contribution, that is given by

v∗
− ∆t ν∆v∗

= Fn
v − ∆t ∇ pn, Fn

v = vn
− ∆t ∇ ·

(
vn

⊗ vn) . (57)

otice that the discretization of the convection terms is simply referred to with Fn
v and that we use the pressure

radient at time tn to supplement the provisional velocity with physical information about the pressure field, as
roposed in [66]. Once the velocity field v∗ is determined upon the solution of (57), the momentum equation (56b)
s given by

vn+1
− v∗

∆t
+ ∇ pn+1

− ∇ pn
= 0. (58)

he above equation can be inserted into the continuity Eq. (56a) yielding an elliptic equation for the unknown
ressure pn+1:

∆t ∆pn+1
= ∇ · v∗

+ ∆t ∆pn. (59)

he pressure system (59) is solved at the aid of the GMRES method [67], where we prescribe a tolerance δ0 = 10−12

o stop the iterative procedure. Once the new pressure is known, the velocity field is updated according to (58).

heorem 1 (Divergence-free Constraint). Assuming periodic boundary conditions on ∂Ω ∈ R, the semi-discrete
cheme (57)–(59) satisfies the divergence-free constraint on the velocity field:

∇ · vn+1
= 0. (60)

Proof. We can solve the system by substitution, hence inserting (57) into (59) leads to

vn+1
= vn

− ∆t ∇ · (vn
⊗ vn) + ∆t ν∆v∗

− ∆t ∇ pn
+ ∆t ∇ pn

− ∆t ∇ pn+1. (61)

Taking the divergence of the above equation yields

∇ · vn+1
= ∇ ·

(
vn

− ∆t ∇ · (vn
⊗ vn) + ∆t ν∆v∗

− ∆t ∇ pn)
+ ∆t ∆pn

− ∆t ∆pn+1,

= ∇ · v∗
+ ∆t ∆pn

− ∆t ∆pn+1. (62)

he right hand side of (62) is indeed the elliptic equation (59), thus it vanishes, and the sought divergence-free
onstraint is preserved (60). □

We point out that the semi-discrete scheme (57)–(59) is equivalent to a splitting method in which we consider
he following set of equations:

∇ · vn+1
= 0, (63a)

v∗
− vn

∆t
+ ∇ · (vn

⊗ vn) − ν∆v∗
+ ∇ pn

= 0. (63b)

vn+1
− v∗

∆t
− ∇ pn

+ ∇ pn+1
= 0. (63c)
11
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Shallow water equations. For the SWE model (3), the first order semi-discrete scheme in time (55) reads:

ηn+1
− ηn

∆t
+ ∇ · qn+1

= 0 , (64a)

qn+1
− qn

∆t
+ ∇ ·

(
vn

⊗ qn)
+ gH n

∇ηn+1
= 0 . (64b)

otice that the last equation for the bottom bathymetry is neglected since b(x) is not time dependent. Following [5],
he above system is solved by substitution, inserting (64b) into (64a), which leads to a wave equation for the
nknown ηn+1:

ηn+1
+ ∆t2 g ∇ ·

(
H n

∇ηn+1)
= ηn

− ∆t∇ · Fn
q , Fn

q = qn
− ∆t ∇ ·

(
vn

⊗ qn) , (65)

here Fn
q denotes again the contribution of the non-linear explicit terms. As for the INS equations, the above linear

ystem is solved with the GMRES method up to the prescribed tolerance δ0. Once ηn+1 is computed, it can be used
o straightforwardly obtain qn+1 through (64b).

heorem 2 (Well-balance Property). Assuming periodic boundary conditions on ∂Ω ∈ R and assuming the
ollowing initial condition

η(x, 0) = η0, v(x, 0) = 0, b(x) ̸= 0, (66)

he semi-discrete scheme (64) is well-balanced in the sense of [68].

roof. The initial condition implies that ηn
= η0 and vn

= 0, hence qn
= 0. Consequently, in the absence of

iscontinuities in the numerical solution, we get a vanishing non-linear convective contribution, i.e. Fn
q = 0. More

recisely, the numerical dissipation associated to the numerical flux of the convective term ∇ · (vn
⊗ qn) is exactly

ero for any constant state, included qn
= 0. Thus, the wave equation (65) reduces to

ηn+1
− ∆t2 g ∇ ·

(
H n

∇ηn+1)
= ηn, Fn

q = 0, (67)

for which ηn+1
= ηn

= η0 is an admissible solution. From this it follows that ∇ηn+1
= 0. The discharge equation

s then updated according to (64b), meaning that

qn+1
= 0 − ∆tgH n

· 0 = 0. (68)

t is therefore evident that the semi-discrete scheme (64) can preserve stationary solutions of the shallow water
ystem of the form given by (66) with arbitrary bathymetry. □

igh order semi-implicit IMEX schemes. The class of semi-implicit Implicit–Explicit (IMEX) Runge–Kutta
ethods is used to attain higher order accuracy in time [4]. An IMEX Runge–Kutta scheme is a multi-step method

haracterized by two s × s triangular matrices, the explicit one, Ã = (ãk j ), with ãk j = 0 for j ≥ k, and the implicit
ne, A = (ak j ), with ak j = 0 for j > k, and by the weights vectors b̃ = (b̃1, . . . , b̃s)T , b = (b1, . . . , bs)T , where
identifies the number of implicit Runge–Kutta stages. They are usually defined by the following explicit (on the

eft) and implicit (on the right) Butcher tableau:

c̃ Ã
b̃

c A
b

whose characterization provides the time accuracy of the scheme. According to [4], the governing equations (1) are
written under the form of an autonomous system, that is

∂Q
∂t

= H (QE (t), QI (t)) , ∀t > t0, with Q(t0) = Q0, (69)

here Q0 defines the initial condition at time t0. The semi-implicit IMEX technique is a method-of-lines (MOL)
trategy, hence the function H represents the spatial approximation of the conservative fluxes as well as the non-
onservative products in (1). The arguments of H undergo an explicit or implicit discretization in accordance to the
12
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flux splitting (7). Consequently, a partitioned system with Q = (QE , QI ) is obtained:⎧⎪⎨⎪⎩
∂QE

∂t
= H (QE , QI )

∂QI

∂t
= H (QE , QI )

, (70)

here the number of unknowns has been doubled. However, for specific choices of the IMEX scheme and for
utonomous systems this duplication is only apparent [4]. We can easily assume that the governing equations (2)
nd (3) are autonomous, since no explicit time dependency is present in the function H. Therefore, only one set of
tage fluxes needs to be computed, which, at each stage i = 1, . . . , s can be evaluated as

ki = H
(

Qn
E + ∆t

s∑
i=1

ãi j k j , Qn
I + ∆t

s∑
i=1

ai j k j

)
, 1 ≤ i ≤ s. (71)

semi-implicit IMEX Runge–Kutta method is then obtained as follows. Let us first set Qn
E = Qn

I = Qn , then the
tage fluxes for i = 1, . . . , s are calculated as

Qi
E = Qn

E + ∆t
i−1∑
j=1

ãi j k j , 2 ≤ i ≤ s, (72a)

Q̃i
I = Qn

E + ∆t
i−1∑
j=1

ai j k j , 2 ≤ i ≤ s, (72b)

ki = H
(

Qi
E , Q̃i

I + ∆t ai i ki

)
, 1 ≤ i ≤ s. (72c)

inally, the numerical solution is updated with

Qn+1
= Qn

+ ∆t
s∑

i=1

bi ki . (73)

We remark that Eq. (72c) gives rise to a formally implicit step with the solution of a system for ki , that
orresponds to the elliptic equations (59) and (65). The final update of the solution (73) is done using the implicit
eights b⊤ that are assumed to be equal to the explicit ones b̃⊤. Furthermore, the stage fluxes ki in (71) are the

ame for both explicit and implicit conserved vectors QE and QI , therefore the system is actually not doubled,
ince there is indeed only one set of numerical solution. The Butcher tableaux for the IMEX schemes chosen to
each first, second and third order of accuracy in time are given in Appendix.

.8. Asymptotic-Preserving property

Numerical schemes satisfy the Asymptotic-Preserving (AP) property if they provide a consistent discretization
f the asymptotic limit model of the governing equations. To prove the fulfilment of this property, we first derive
he asymptotic limit of the PDE systems (2) and (3), and then we study the AP property at the semi-discrete level
or the schemes (56) and (64). The high order version of the schemes will also be compliant with the AP property,
hanks to the semi-implicit IMEX strategy, as fully detailed in [4]. For this reason, in this framework we limit
urselves to consider only the first order semi-discrete schemes presented in the previous section.

Let us assume the computational domain Ω (x) to be assigned with periodic boundary conditions on ∂Ω and let us
ntroduce the kth order Chapman–Enskog expansion of a generic variable φ(x, t) in powers of the non-dimensional
tiffness parameter ε, that reads

φ(x, t) = φ(0)(x, t) + εφ(1)(x, t) + ε2φ(2)(x, t) + · · · + O(εk). (74)

s previously introduced in Section 2, the Reynolds number Re is the stiffness parameter for the incompressible
avier–Stokes equations (5), while the Froude number Fr is used to characterize the scaling of the shallow water
quations (6).

13
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Incompressible Navier–Stokes equations. Application of the expansion (74) to the rescaled governing PDE (5) and
collection of the like powers of ε yields the following kth leading order equations for k ∈ {0, −1}.

• O(ε0):

∇ · v(0) = 0, (75a)

∂t v(0) + ∇ ·
(
v(0) ⊗ v(0)

)
+ ∇ p(1) − ν∆v(1) = 0. (75b)

• O(ε−1):

∇ p(0) − ν∆v(0) = 0. (76)

Notice that at the first order asymptotic expansion we retrieve the diffusive Stokes equation [69].

Theorem 3 (Asymptotic-Preserving Property). Assuming periodic boundary conditions on ∂Ω ∈ R, the semi-
discrete scheme (56)–(57) is a consistent approximation of the Stokes system (76) at the first order asymptotic
expansion in the asymptotic limit (ε → 0).

Proof. We assume that the following expansions hold true for the discrete variables at any generic time tn:

vn(x) = vn
(0)(x) + εvn

(1)(x), pn(x) = pn
(0)(x) + εpn

(1)(x). (77)

e recall that the semi-discrete scheme (56)–(57) can be explicitly written as a splitting method for the viscous
erms according to (63), and its rescaled version with the dimensionless variables (4) writes

∇ · vn+1
= 0, (78a)

v∗
− vn

∆t
+ ∇ · (vn

⊗ vn) −
ν

ε
∆v∗

+
1
ε
∇ pn

= 0. (78b)

vn+1
− v∗

∆t
−

1
ε
∇ pn

+
1
ε
∇ pn+1

= 0. (78c)

nserting (77) into the semi-discrete scheme (78) and retaining only first order terms of the expansions leads to

−ν∆v∗

(0) + ∇ pn
(0) = 0. (79a)

−∇ pn
(0) + ∇ pn+1

(0) = 0. (79b)

his obviously yields the discrete Stokes model

∇ pn+1
(0) = ν∆v∗

(0), (80)

hich is a consistent discretization of the limit model (76). Indeed, at the first order asymptotic expansion the
ivergence-free constraint disappears, and we have that v∗

= vn+1. □

hallow water equations. Following the same reasoning, we can identify the limit model of the shallow water
ystem by using the expansion (77) in the rescaled model (6) and by collecting like powers of ε for k ∈ {0, −1, −2}.

• O(ε0):

∂tη(0) + ∇ · ((η0 − b) v0) = 0, (81a)

∂t q(0) + ∇ ·
(
v(0) ⊗ q(0)

)
+ η(2)∇η(0) + η(1)∇η(1) +

(
η(0) − b

)
∇η(2) = 0. (81b)

• O(ε−1):

η(1)∇η(0) +
(
η(0) − b

)
∇η(1) = 0. (82)

• O(ε−2):(
η(0) − b

)
∇η(0) = 0. (83)

rom (83) it directly follows that η(0) = η(0)(t), which can be used in (82) to obtain η(1) = η(1)(t) under the

ssumption of H (x, t) > 0. Since we have assumed periodic boundaries, integration of the mass equation over the

14
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computational domain and application of Gauss theorem leads to vanishing fluxes, hence determining that the free
surface elevation η(0) is constant in space as well. This means that the total water depth also becomes constant in
both space and time, that is H (x, t) = const . Then, the low Froude shallow water system writes

∇ · ((η0 − b) v0) = 0, (84a)

∂t q(0) + ∇ ·
(
v(0) ⊗ q(0)

)
+
(
η(0) − b

)
∇η(2) = 0. (84b)

The reader is referred to [29] for further details on the derivation of the limit model for the SWE system.

Theorem 4 (Asymptotic Preserving Property). Assuming periodic boundary conditions on ∂Ω ∈ R, the semi-
discrete scheme (64) is a consistent approximation of the low Froude shallow water system (84) at the leading
order asymptotic expansion in the asymptotic limit (ε → 0).

Proof. We assume that the following expansions hold true for the discrete variables at any generic time tn:

ηn(x) = ηn
(0)(x) + ε2ηn

(2)(x), vn(x) = vn
(0)(x) + εvn

(1)(x). (85)

We remark that ηn
(0)(x) = η(0) is constant in space and time and that ε2ηn

(2)(x) is a perturbation of the free surface
evel, thus the constant total water depth at zeroth order is given by H n

(0)(x) = η(0)(x) − b(x). Inserting (85) into the
emi-discrete scheme (64) and retaining only zeroth order terms of the expansions yields

∇ ·
(
H(0)v(0)

)n+1
= 0, (86a)(

H(0)v(0)
)n+1

−
(
H(0)v(0)

)n

∆t
+ ∇ ·

(
vn

(0) ⊗ (H(0)v(0))n)
+ H n

(0)∇ηn+1
(2) = 0, (86b)

that is a consistent discretization of the low Froude shallow water system (84). Furthermore, if we formally substitute
the discharge equation (86b) into the mass equation (86a), we obtain the corresponding rescaled version of the
elliptic equation (65) in the asymptotic limit, namely

∆t H(0) ∇ · ∇ηn+1
(2) = ∇ ·

(
H(0)v(0)

)n
− ∆t ∇ ·

(
∇ ·

(
vn

(0) ⊗ (H(0)v(0))n)) . (87)

It is interesting to notice that the above Eq. (87), divided by the constant water depth H(0), is the classical Poisson
equation for the pressure correction of the projection stage for the incompressible Navier–Stokes model, which we
solve in (59). The only difference is that in (59) we use a splitting for the viscous terms, hence yielding the additional
term related to the pressure gradient at the current time tn . We can therefore conclude that the semi-discrete scheme
(64) is a consistent discretization of the limit model (84). □

3.9. Spatial finite volume discretization of the explicit terms

The explicit terms are only concerned with the conservative fluxes FE (Q) in (7), and they are discretized using
a classical finite volume scheme tailored for general polygonal meshes. They are constructed upon integration of
the governing PDE over the control volume Pi and application of Gauss theorem, hence leading to

∂t

∫
Pi

Qi dx = −

∫
∂ Pi

FE (Q) · n d S, (88)

which indeed gives the explicit fluxes H(QE ) in (69). The contribution of the explicit fluxes is then collected in the
term Fn

Q,i , which can be either Fn
v in (57) or Fn

q in (65):

Fn
Q,i = Qn

i −
∆t
|Pi |

NE∑
e=1

∫
∂ P,e

F(w−,n
e , w+,n

e , nP,e) d S. (89)

he Rusanov-type numerical flux F is a function of three arguments, namely the left and the right state w−,n
e , w+,n

e ,
ith respect to the edge e, and the associated outward pointing unit normal vector nP,e. The numerical flux is thus
efined by

F(w−,n, w+,n, nP,e) =
1 (

FE (w−,n) + FE (w+,n)
)
· nP,e −

1
|smax|

(
w+,n

− w−,n) . (90)
e e 2 e e 2 e e
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Notice that the numerical dissipation smax is given by the maximum eigenvalue of the convective sub-systems,
amely (11) or (13), related to the right and left states. Consequently, the numerical diffusion of the scheme is
roportional to the flow velocity only, which is a remarkable property in the context of low Froude number flows
or the SWE model, since the acoustic-gravity wave speed does not play any role and the numerical dissipation
utomatically tends to zero for ε → 0. The left and right states can be simply given by the finite volume solution
tored as cell averages (51) within each cell, being

w−,n
e = Qn

i , w+,n
e = Qn

j , (91)

here j is the index of the polygon which shares edge e with the cell Pi . Of course, the above choice yields only a
first order in space accurate scheme. To improve the spatial order of accuracy, we perform a reconstruction technique
that can effectively be used to fed the left and right state in the computation of the numerical flux function (90).

CWENO reconstruction on polygonal meshes. The aim of the reconstruction operator is to determine the expansion
coefficient of the reconstruction polynomial (52), that will be subsequently employed for the computation of the high
order numerical fluxes in the finite volume scheme (90). We choose to use the class of Central WENO (CWENO)
schemes, which has been originally proposed in [70,71], and subsequently extended to deal with general polygonal
meshes in [29,72,73]. The interested reader is referred to the aforementioned references for all the details about
the CWENO procedure, in particular we point out Appendix B in [29]. Eventually, we obtain a reconstruction
polynomial within each cell of arbitrary degree k, that is expressed according to (52). This polynomial is then used
to evaluate the high order extrapolated states w−,n

e and w+,n
e in the finite volume scheme (89), hence improving the

spatial accuracy of the scheme up to order k + 1.

3.10. Spatial virtual element discretization of the implicit terms

The implicit discretization is based on higher-order conforming virtual element approximations on the polygonal
tessellation. Hereafter, we detail the virtual element formulation for both the INS and the SWE models.

Incompressible Navier–Stokes model. We consider the implicit contributions in the semi-discrete scheme (56)
on domain Ω and derive the weak form for both Eqs. (57) and (59), where pure Dirichlet boundary conditions
v∗

= [gx (x), gy(x)]T and pn+1
= h(x) are applied on ∂Ω . We explicit the components of v∗ on Ω by writing

v∗
= [v∗

x , v
∗
y]T . Let us denote by H 1

0 (Ω ) the affine subspace of functions in the Sobolev space H 1(Ω ) whose trace
s zero on ∂Ω . Moreover, we denote by H 1

gx
(Ω ), H 1

gy
(Ω ) and H 1

h (Ω ) respectively the affine subspaces of functions
n the Sobolev space H 1(Ω ) whose trace is equal to gx (x), gy(x) and h(x) on ∂Ω . Multiplying component-wise the

omentum equation (57) and the pressure equation (59) by a test function 4 ∈ H 1
0 (Ω ), integrating over the domain

and applying the divergence theorem we get the following weak formulation for the INS model:

find v∗

x ∈ H 1
gx

(Ω ), v∗

y ∈ H 1
gy

(Ω ), pn+1
∈ H 1

h (Ω ) s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω

v∗

x4dΩ + ∆t
∫
Ω

∇v∗

x · ∇4dΩ =

∫
Ω

(Fn
v,x − ∆t

∂pn

∂x
)4dΩ ∀4 ∈ H 1

0 (Ω ), (a)∫
Ω

v∗

y4dΩ + ∆t
∫
Ω

∇v∗

y · ∇4dΩ =

∫
Ω

(Fn
v,y − ∆t

∂pn

∂y
)4dΩ ∀4 ∈ H 1

0 (Ω ), (b)

∆t
∫
Ω

∇ pn+1
· ∇4dΩ = −

∫
Ω

(∇ · v∗
+ ∆t∆pn)4dΩ ∀4 ∈ H 1

0 (Ω ). (c)

(92)

iven the polygonal tessellation of the space domain TΩ (16), the local virtual element approximations
∗

x,h, v
∗

y,h ∈ V h
k (P) of the velocity field components v∗

x , v
∗
y and the local virtual element approximation pn+1

h ∈ V h
k (P)

f the pressure field pn+1 can be respectively represented, on each control volume P ∈ TΩ , in terms of the canonical

asis {ϕi }
N dof

P
i=1 of the local virtual element space V h

k (P), introduced in Section 3.3. Hence, we write

v∗

x,h(x)|x∈P =

N dof
P∑

dofi (v∗

x,h)ϕi (x), (93a)

i=1

16
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v∗

y,h(x)|x∈P =

N dof
P∑

i=1

dofi (v∗

y,h)ϕi (x), (93b)

pn+1
h (x)|x∈P =

Ndof
P∑

i=1

dofi (pn+1
h )ϕi (x). (93c)

Choosing 4 = ϕ j in Eqs. (92) and plugging (93) into (92), we obtain the discrete version of the weak form on the
cell P:

MP v̂∗

x,P + ∆tKP v̂∗

x,P = Fn
mx ,P , (94a)

MP v̂∗

y,P + ∆tKP v̂∗

y,P = Fn
my ,P , (94b)

∆tKP p̂n+1
P = Fn

c,P , (94c)

where vectors v̂∗

x,P and v̂∗

y,P are the degrees of freedom of the velocity field components v∗

x,h and v∗

y,h on P and
vector p̂n+1

P collects the degrees of freedom of the pressure field pn+1
h on P . In (94), we also introduce the definition

of the local mass and stiffness matrices MP and KP , respectively:

(MP )i, j =

∫
P

ϕiϕ j dx, (95)

(KP )i, j =

∫
P

∇ϕi · ∇ϕ j dx. (96)

Furthermore, the local load terms Fn
mx ,P , Fn

my ,P and Fn
c,P on the right-hand sides, which are known from the n−th

time step, are given by

(Fn
mx ,P )i =

∫
P

(Fn
v,x − ∆t

∂pn

∂x
)ϕi dx, (97)

(Fn
my ,P )i =

∫
P

(Fn
v,y − ∆t

∂pn

∂y
)ϕi dx, (98)

(Fn
c,P )i = −

∫
P

(∇ · v∗
+ ∆t∆pn)ϕi dx. (99)

Matrices MP and KP , as well as the load terms Fn
mx ,P , Fn

my ,P and Fn
c,P , are not readily computable since they

nvolve functions that are unknown within the element interior. To approximate MP , we observe that for each virtual
asis function ϕi (x) on P we can write the expansion

ϕi = Π 0
P,kϕi + (I − Π 0

P,k)ϕi ,

where I is the identity operator, and plugging it into (95) we obtain

(MP )i, j =

∫
P

ϕiϕ j dx =

∫
P
Π 0

P,kϕiΠ
0
P,kϕ j dx +

∫
P

(I − Π 0
P,k)ϕi (I − Π 0

P,k)ϕ j dx

+

∫
P
Π 0

P,kϕi (I − Π 0
P,k)ϕ j dx +

∫
P

(I − Π 0
P,k)ϕiΠ

0
P,kϕ j dx. (100)

e note that the last two terms in (100) vanish due to the orthogonality condition (43), yielding

(MP )i, j =

∫
P
Π 0

P,kϕiΠ
0
P,kϕ j dx +

∫
P

(I − Π 0
P,k)ϕi (I − Π 0

P,k)ϕ j dx. (101)

he first term in (101) guarantees consistency and can be computed exactly, whereas the second one ensures stability
nd although it cannot be exactly computed, it can be approximated as follows:∫

P
(I − Π 0

P,k)ϕi (I − Π 0
P,k)ϕ j dx ≃ |P|

N dof
P∑

r=1

dofr ((I − Π 0
P,k)ϕi )dofr ((I − Π 0

P,k)ϕ j ). (102)

ere, we adopted the so-called dofi − dofi stabilization [30], although other choices are possible [74,75]. From
h
imple algebraic manipulations, recalling (48), the sought approximation MP of matrix MP can be evaluated as the

17
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sum of a consistency term and a stability term, reading

Mh
P = CT H−1C + |P|(I − Π0

k)T (I − Π0
k). (103)

Analogously, the integral in the definition of the stiffness matrix in (96) needs to be approximated, since its integrand
is unknown in the element interior. Plugging the expansion

ϕi = Π ∇

P,kϕi + (I − Π ∇

P,k)ϕi ,

into (96), we obtain

(KP )i, j =

∫
P

∇ϕi · ∇ϕ j dx =

∫
P

∇Π ∇

P,kϕi · ∇Π ∇

P,kϕ j dx +

∫
P

∇(I − Π ∇

P,k)ϕi · ∇(I − Π ∇

P,k)ϕ j dx

+

∫
P

∇(I − Π ∇

P,k)ϕi · ∇Π ∇

P,kϕ j dx +

∫
P

∇Π ∇

P,kϕi · ∇(I − Π ∇

P,k)ϕ j dx. (104)

gain, the last two terms in (104) vanish due to orthogonality conditions (27), leading to

(KP )i, j =

∫
P

∇Π ∇

P,kϕi · ∇Π ∇

P,kϕ j dx +

∫
P

∇(I − Π ∇

P,k)ϕi · ∇(I − Π ∇

P,k)ϕ j dx. (105)

ere, the first term ensures polynomial consistency and the second term is responsible for stability. In particular,
he consistency term is exactly computable since it entails the integration of known polynomials, whilst the stability
erm must be approximated. For such approximation we adopt an expression analogue to (102), thus∫

P
∇(I − Π ∇

P,k)ϕi · ∇(I − Π ∇

P,k)ϕ j dx ≃ |P|

N dof
P∑

r=1

dofr ((I − Π ∇

P,k)ϕi )dofr ((I − Π ∇

P,k)ϕ j ). (106)

fter some algebraic manipulations, recalling (42), the approximation Kh
P of matrix KP can be evaluated as the

um of a consistency term and a stability term as follows:

Kh
P = (

⋆

Π∇

k )T G
⋆

Π∇

k + |P|(I − Π∇

k )T (I − Π∇

k ). (107)

inally, to compute the approximations Fn,h
mx ,P , Fn,h

my ,P and Fn,h
c,P of the load terms Fn

mx ,P , Fn
my ,P and Fn

c,P , respectively,
e resort to the L2 projector Π 0

P,k−1 introduced in Section 3.5 and we write

(Fn,h
mx ,P )i =

∫
P

(Fn
v,x − ∆t

∂pn

∂x
)Π 0

P,kϕi dx, (108)

(Fn,h
my ,P )i =

∫
P

(Fn
v,y − ∆t

∂pn

∂y
)Π 0

P,kϕi dx, (109)

(Fn,h
c,P )i = −

∫
P

(∇ · v∗
+ ∆t∆pn)Π 0

P,kϕi dx. (110)

he implicit terms are then computed by solving the following virtual element linear system:

Mh
P v̂∗

x,P + ∆tKh
P v̂∗

x,P = Fn,h
mx ,P , (111a)

Mh
P v̂∗

y,P + ∆tKh
P v̂∗

y,P = Fn,h
my ,P , (111b)

∆tKh
P p̂n+1

P = Fn,h
c,P . (111c)

hallow water equations. For the SWE model, we consider the implicit contributions in the semi-discrete scheme
64). The weak form for Eq. (65), where pure Dirichlet boundary conditions ηn+1

= η̄(x) are applied on ∂Ω , is
ow derived. We denote by H 1

η̄ (Ω ) the affine subspace of functions in H 1(Ω ) whose trace is equal to η̄(x) on ∂Ω .
ultiplying (65) by a test function 4 ∈ H 1

0 (Ω ), integrating over the domain Ω and applying the divergence theorem,
he weak formulation reads:

find ηn+1
∈ H 1

η̄ (Ω ) s.t.

∫
ηn+1
4dΩ − ∆t2 g

∫
H n

∇ηn+1
· ∇4dΩ =

∫
(ηn

− ∆t∇ · Fn
q )4dΩ ∀4 ∈ H 1

0 (Ω ). (112)

Ω Ω Ω
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Given the polygonal tessellation of the space domain TΩ , the virtual element approximations of the free surface
elevation ηh and the total water depth Hh can be represented, on each control volume P ∈ TΩ , in terms of the

canonical basis functions {ϕi }
N dof

P
i=1 of the virtual element space V h

k (P) introduced in Section 3.3:

ηh(x)|x∈P =

Ndof
P∑

i=1

dofi (ηh)ϕi (x), (113)

Hh(x)|x∈P =

Ndof
P∑

i=1

dofi (Hh)ϕi (x). (114)

Choosing 4 = ϕ j , and plugging (113) into (112) we obtain the discrete version of the weak form on the cell P ,
that is

MP η̂n+1
P − ∆tKn

P η̂n+1
P = Fn

s,P , (115)

where η̂n+1
P is the vector of degrees of freedom of ηn+1

h on P , while matrices MP and Kn
P are defined as

(MP )i, j =

∫
P

ϕiϕ j dx, (116)

(Kn
P )i, j =

∫
P

H n
∇ϕi · ∇ϕ j dx, (117)

and the load term Fn
s,P reads

(Fn
s,P )i =

∫
P

(ηn
− ∆t∇ · Fn

q )ϕi dx. (118)

Matrices MP and Kn
P , as well as the load term Fn

s,P , are not readily computable since the respective integrands
are unknown within the element interior. For the mass matrix MP we provide the approximation Mh

P already defined
in (107) for the INS equations. On the other hand, matrix Kn

P in (117) differs from matrix KP derived in (96) for
the INS model, because it contains the non-constant diffusion coefficient H n , which is obviously space dependent.
As shown in [33], in such a case, using the elliptic projector Π ∇

P,k to approximate ∇3h , 3h ∈ V h
k (P), would entail

the loss of optimal convergence rates. Instead, as suggested in [33], we employ the L2 projector operator Π 0
P,k−1

on polynomials of degree k −1 to approximate ∇3h within the consistency term of the corresponding approximated
bilinear form. The computation of Π 0

P,k−1∇3h in terms of the degrees of freedom is carried out by constructing the
matrix representation of the operator Π 0

P,k−1∇. Such representation can be expressed in terms of the two matrices
⋆

Π0,x
k−1 and

⋆

Π
0,y
k−1 given by

⋆

Π0,x
k−1 = Ĥ−1Ex ,

⋆

Π
0,y
k−1 = Ĥ−1Ey,

where matrix Ĥ is obtained by taking the first nk−1 rows and columns of matrix H defined in (47a). Matrices Ex

and Ey are defined as follows:

(Ex )iα =

∫
P

ϕi,x mα dx, (Ey)iα =

∫
P

ϕi,ymα dx, α = 1, . . . , nk−1.

Hence, matrix Kn
P can be approximated with the matrix Kn,h

P which is computed as

(Kn,h
P )i, j = (Kn,h

c,P )i, j + (Kn,h
s,P )i, j

=

∫
P

H nΠ 0
P,k−1∇ϕi · Π 0

P,k−1∇ϕ j dx + H̄ n
h SP

(
(I − Π ∇

P,k)ϕi , (I − Π ∇

P,k)ϕ j
)
, (119)

where the first integral represents the consistency term Kn,h
c,P and the second term is the stability term Kn,h

s,P . Moreover,
H̄ n

h is the mean value of H n
h over P and SP is a suitable stabilizing bilinear form. After a few algebraic passages,

it can be shown that in (119) the consistency term can be computed from the degrees of freedom in the following
manner:

n,h ⋆ 0,x T H ⋆ 0,x ⋆ 0,y T H ⋆ 0,y
Kc,P = (Πk−1) H Πk−1 + (Πk−1) H Πk−1, (120)
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where matrix HH is defined as:

(HH )α,β :=

∫
P

H nmαmβdx, 1 ≤ α, β ≤ nk−1. (121)

In the stability term Kn,h
s,P , we choose to adopt the dofi −dofi stabilization for the bilinear form SP . Therefore, Kn,h

s,P
atrix is eventually determined as

Kn,h
s,P = H̄ (I − Π∇

k )T (I − Π∇

k ). (122)

he implicit terms are then computed by solving the following virtual element linear system:

Mh
P η̂n+1

P − ∆tKn,h
P η̂n+1

P = Fn,h
s,P . (123)

.11. Projection operators between finite volume and virtual element space

Let us define the L2−projection operators used to transfer data from one approximation space to the other and
iceversa. In particular, at the beginning of the implicit step of the numerical scheme, data are available in the finite
olume space as cell averages (51), thus they need to be projected onto the virtual element space to solve the elliptic
quation, either (59) or (65). To that aim, we first perform a CWENO reconstruction step [29,73] to obtain a high
rder representation of the numerical solution given by (52), that is in terms of the Taylor modal basis functions
53). This is then mapped onto the VEM space by the N dof

P × nk operator 𝔙P , which is defined for each element
s

𝔙P =
(
Mh

P

)−1
∫

P
Π 0

∗
ϕi mβ dx, i = 1, . . . , N dof

P , α = 1, . . . , nk, (124)

here the VEM mass matrix is computed according to (103). Analogously, the inverse nk × N dof
P operator ℭP ,

hich transfers data from the virtual element to the finite volume space at the end of the implicit step, writes

ℭP =

(∫
P

mαmβ dx
)−1 ∫

P
mα Π

0
∗
ϕi dx, i = 1, . . . , N dof

P , α = 1, . . . , nk . (125)

t is clear that these operators verify the consistency relations

ℭP 𝔙P = I[nk×nk ], 𝔙P ℭP = I[N dof
P ×N dof

P ]. (126)

. Numerical results

The novel numerical methods are applied to several test cases in order to thoroughly assess their convergence,
tability and accuracy properties. Whenever possible, a comparison against the reference solution is proposed. The
uantitative analysis is carried out by measuring the errors between the numerical and the exact solution, denoted
y qh and qex , respectively, for a generic variable q(x) : Ω → R2. The L2 and L∞ norms are defined as

L2(q) =

√∫
Ω

(qh − qex )2 dx and L∞(q) = max
Ω

|qh − qex |.

The novel hybrid semi-implicit finite volume/virtual element methods are labelled with SI-FVVEM. The CFL
number is assumed to be CFL = 0.9 in (14). We remark that the time step is independent from the fast scales
of the problem under consideration, which are discretized implicitly. We also highlight that if the velocity field is
initialized with zero, the first time step is determined according to the CFL condition of fully explicit schemes,
hence including the eigenvalues of the full system of governing equations. The first six applications refer to the
SWE, while the remaining seven test problems deal with the INS equations. Different Froude numbers and viscosity
coefficients are considered for shallow water and viscous flows, respectively, to numerically show that they do not
affect neither the accuracy nor the efficiency of the proposed SI-FVVEM schemes. If not stated otherwise, the
default configuration is the third order SI-FVVEM scheme in space and time.
20
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Table 1
Numerical convergence results of the SI-FVVEM scheme with second and third order of accuracy in space and time using the steady
shallow water vortex problem on Voronoi meshes. The errors are measured in L2 norm and refer to the free surface elevation η and velocity
component u at time t f = 0.1. The asymptotic preserving (AP) property of the schemes is studied by considering different Froude numbers
Fr = {10−1, 10−2, 10−4, 10−6

}.

h(Ω ) SI-FVVEM O(2) SI-FVVEM O(3)

L2(η) O(η) L2(u) O(u) L2(η) O(η) L2(u) O(u)

Fr = 10−1 (double precision)

5.0184E−01 6.5520E−04 – 4.3967E−02 – 5.5807E−04 – 4.1527E−02 –
2.4761E−01 1.2273E−04 2.37 9.5032E−03 2.17 8.0381E−05 2.74 5.9083E−03 2.76
1.6167E−01 5.3189E−05 1.96 4.3203E−03 1.85 2.7156E−05 2.55 1.9278E−03 2.63
1.2464E−01 2.9092E−05 2.32 2.4833E−03 2.13 1.0751E−05 3.56 8.4473E−04 3.17

Fr = 10−2 (quadruple precision)

5.0184E−01 6.7318E−06 – 4.4214E−02 – 5.7630E−06 – 4.1836E−02 –
2.4761E−01 1.6369E−06 2.00 9.6380E−03 2.16 8.0877E−07 2.78 5.9892E−03 2.77
1.6167E−01 7.4398E−07 1.85 4.5656E−03 1.75 2.4626E−07 2.79 1.8936E−03 2.70
1.2464E−01 4.0295E−07 2.36 2.5566E−03 2.23 9.7144E−08 3.58 8.5621E−04 3.05

Fr = 10−4 (quadruple precision)

5.0184E−01 6.7348E−10 – 4.4216E−02 – 5.7672E−10 – 4.1839E−02 –
2.4761E−01 1.7694E−10 1.89 9.6401E−03 2.16 8.1477E−11 2.77 5.9903E−03 2.75
1.6167E−01 7.7779E−11 1.93 4.5693E−03 1.75 2.4780E−11 2.79 1.8942E−03 2.70
1.2464E−01 4.0266E−11 2.53 2.5578E−03 2.23 9.7662E−12 3.58 8.5635E−04 3.05

Fr = 10−6 (quadruple precision)

5.0184E−01 6.7386E−14 – 4.4281E−02 – 5.7694E−14 – 4.1908E−02 –
2.4761E−01 1.7780E−14 1.89 9.7891E−03 2.14 8.5738E−15 2.78 7.0563E−03 2.52
1.6167E−01 7.7780E−15 1.94 4.5707E−03 1.79 2.5189E−15 2.79 2.3166E−03 2.61
1.2464E−01 4.0491E−15 2.51 2.5657E−03 2.22 9.9750E−16 3.58 1.0207E−04 3.15

4.1. Convergence rates study (SWE)

This subsection examines the numerical convergence of the SI-FVVEM schemes on the steady shallow water
ortex initially proposed in [19]. The computational domain is the square Ω = [−5; 5]2 with a flat bottom (b = 0),
onsidering periodic boundary conditions. For this test case, the exact solution in polar coordinates is defined by
he following free surface elevation and velocity field

η(x) = H0 −
1

2g
e−(r2

−1), v(x) =

[
u(x)
v(x)

]
=

[
−uα sin(α)

uα cos(α)

]
, (127)

where the radius r and the polar angle α are given by the inverse polar map

r =

√
x2 + y2 and α = atan2 (y, x) .

n (127), the water depth for infinite radius is identified by H0 and the angular velocity uα = re−(r2
−1)/2 allows

he centrifugal forces (uα/gr ) to balance the pressure forces (∂η/∂r ). In this simulation, the initial conditions are
given by the exact solution in (127). The Froude number can be varied by adjusting the value of the constant H0. In

articular, a gravitational constant g = 10 is used in order to ease this computation. For polynomial space dimension
M = 2, 3 the convergence is performed on four refined computational meshes, each with four different Froude
umbers Fr ∈ {0.32, 10−2, 10−4, 10−6

} (corresponding to an asymptotic free surface H0 ∈ {100, 103, 107, 1011
},

espectively). Each mesh is identified by the characteristic length h(Ω ), taken as the maximum element size in
he computational grid. The analysis takes into account the L2-norm for the free surface η and the velocity u in

x−direction at final time t f = 0.1, with quadruple precision finite arithmetic [28]. Table 1 sums up the results
nd reports the convergence rates. We can see that the formal order of accuracy is correctly achieved, and that the
cheme is both asymptotic preserving and accurate, with the order of accuracy being independent of the Froude

umber.
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Table 2
Well-balance test with double and quadruple finite arithmetic precision. Errors measured in L2
and L∞ norms for the free surface elevation η and momentum component Hu at the final time
t f = 0.1.

Precision L2(η) L∞(η) L2(Hu) L∞(Hu)

Double 1.5221E−15 3.5527E−15 2.010E−18 9.7600E−17
Quadruple 9.3593E−34 4.5259E−33 4.833E−22 1.3078E−20

Fig. 2. Well-balance test with small perturbation of the free surface (δ = 10−2). 50 equidistant contour lines in the interval η = [0.995; 1.008]
re shown at output times t = 0.12, t = 0.24, t = 0.36 and t = 0.48 (from top left to bottom right panel).

.2. Well-balance test (SWE)

To test the well-balance property of the scheme (also known as the C-property) proven in Theorem 2, we use a
enchmark proposed in [68]. This test case assesses whether a numerical scheme can maintain stationary equilibrium
olutions of the governing equations up to machine precision. The particular water-at-rest equilibrium solution of the
WE is characterized by a constant free surface elevation η(x, t) = η0 and zero fluid velocity, i.e., v(x, t) = 0, with
n arbitrary bottom topography different from the trivial profile b(x) = 0. Following [68], we use a computational
omain Ω = [−2; 1] × [−0.5; 0.5] with Dirichlet boundary conditions in the x−direction and periodic boundaries
long the y−direction. The domain is paved with NP = 8633 Voronoi cells of mesh size h = 1/50. The bathymetry
nd the initial free surface elevation are defined as follows:

b(x) = 0.5 · e−5 (x+0.1)2
−50y2

, η(x, 0) =

{
1 + δ if − 0.95 ≤ x ≤ −0.85
1 elsewhere . (128)

ere, the fluid is initially at rest, and we first set the perturbation amplitude δ = 0, thus η0 = 1. The simulation is
un until the final time t f = 0.1, using double and quadruple finite arithmetic. The errors with respect to the initial
ondition are reported in Table 2. The results show that the scheme is well-balanced up to machine accuracy.

In accordance with [68], a slight perturbation is introduced in the free surface elevation by setting δ = 10−2 in
128). To properly track the wave propagation, a constant time step of ∆t = 0.01 is employed. Fig. 2 displays the
esults at various output times, demonstrating that the presence of the bottom bump does not generate any spurious

scillations. Moreover, the flow structure agrees well with the outcomes found in the literature [22,28,76].
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Table 3
Initialization of Riemann problems. Initial left (L) and right (R) states are reported as well as the final time of the simulation t f , the
omputational domain [xL ; xR], the position of the initial discontinuity xd and the characteristic mesh size h.

Test ηL uL bL ηR u R bR xL xR xd h t f

RP1 [78] 1 0 0 2 0 0 −0.5 0.5 0 1/200 0.075
RP2 103 0 0 1 0 0 −15 15 0 1/400 0.09
RP3 [79] 1 0 0.2 0.5 0 0 −5 5 0 1/200 1
RP4 [79] 1.46184 0 0 0.30873 0 0.2 −5.0 5.0 0 1/200 1

4.3. Circular dambreak (SWE)

To simulate shock waves, we will use the circular dam break problem over a bottom step presented in [7,22].
he computational domain is a circle with radius r = |x| ≤ 2, denoted by Ω = {x ∈ R2

: r = |x| ≤ 2}, with
irichlet boundary conditions everywhere. The computational grid has a total number of NP = 34477 cells, with
characteristic mesh size h = 1/50. The initial condition for the problem reads

η(x, 0) =

{
1.0 if r ≤ 1
0.5 if r > 1 , b(x) =

{
0.2 if r ≤ 1
0.0 if r > 1 , v(x, 0) = 0. (129)

he simulation is carried out until the final time t f = 0.2, at which the solution exhibits a contact wave travelling
owards the centre of the domain, as well as a shock wave heading towards the outer boundary. Additionally, due
o the presence of the bottom step, there is a discontinuity in the flow at r = 1. Fig. 3 depicts the results of
he simulation along with a comparison against a reference solution. The reference solution has been computed
y solving the one-dimensional (1D) SWE in the radial direction with geometric reaction source terms, using a
lassical shock capturing MUSCL-TVD finite volume scheme with 10 000 cells [77]. The figure shows that there
s a very good agreement between the numerical and reference solutions, with no spurious oscillations occurring in
he plateau between the different discontinuities. Note that numerical dissipation is only present in the finite volume
olver for the convective terms and not in the pressure solver [29], as required in [28].

.4. Riemann problems (SWE)

To verify shock-capturing and conservation properties, a set of Riemann problems is considered, which include
oth flat and variable bottom topography. The exact solution is obtained using the Riemann solver proposed
n [78,79] for flat and variable bottom, respectively. The initial condition is given in terms of two states QL =

ηL , uL , bL ) and QR = (ηR, u R, bR) separated by a discontinuity located at position x = xd :

Q(x, 0) =

{
QL if x ≤ xd

QR if x > xd
. (130)

ata of the computational domain and the initial condition for the chosen four Riemann problems are summarized
n Table 3. The computational domain in these test cases is Ω = [xL , xR] × [xL/10, xR/10], and it is discretized

using an unstructured Voronoi mesh of size h. This makes the computation multidimensional, despite the 1D setup
of the test problems.

Fig. 4 shows the comparison between the numerical and the reference solution through a 1D cut of 200 equidistant
points along the x-axis of the computational domain at y = 0. The first two Riemann problems (RP1 and RP2)
assume a constant flat bathymetry and involve shock and rarefaction waves. The remaining Riemann problems
(RP3 and RP4) are concerned with a jump in the bottom elevation of height ∆b = 0.2, which generates contact
discontinuities. The SI-FVVEM scheme exhibits an excellent agreement and can handle supercritical flows with
Froude numbers greater than one. For RP2, the maximum Froude number is Fr = 5.73. The FV strategy used
to discretize the non-linear convective terms makes the scheme robust. The implicit treatment of the free surface
elevation still ensures a stable scheme for all four Riemann problems, without any need of additional numerical
dissipation. We also remark that the proposed approach is conservative by construction, correctly capturing moving
shocks and the values of the plateau between two discontinuities. The 1D symmetry of the problem is preserved
even in the context of arbitrary shaped polygonal cells, as depicted in the 3D views of the free surface elevation in

Fig. 4.
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Fig. 3. Circular dam break problem. Top: 3D view of the free surface elevation at time t = 0.1 (left) and t = 0.2 (right). Bottom: 1D cut
long the line y = 0 of the numerical solution compared with the reference solution at time t f = 0.2 for the free surface and bottom profile
left) as well as for the horizontal velocity component (right).

.5. Smooth surface wave propagation (SWE)

In this study, the propagation of a wave on the free surface is examined, following the configuration outlined
n [7]. The computational domain is the square Ω = [−1; 1]2, with Dirichlet boundary conditions enforced on all
ides. The domain is discretized into NP = 15717 Voronoi cells, with a characteristic mesh size h = 1/50. The
nitial condition is defined by

η(x, 0) = 1 + e−
r2

2σ2 , v(x, 0) = 0, b(x) = 0, (131)

here σ = 0.1. The time step is set to ∆t = 0.001, and the simulation is run until the time t f = 0.15, at which
he wave profile becomes stiff and a shock wave appears. Fig. 5 shows a 3D view of the free surface elevation at
ifferent output times, illustrating the ability of the SI-FVVEM scheme to well preserve the symmetry of the solution
ven when the computational grid is not symmetric. The reference solution is computed using a 1D MUSCL-TVD
cheme on a very fine mesh, as done for the circular dam break problem. In Fig. 6 we plot a comparison between
he numerical solution and the reference solution for the free surface elevation and horizontal velocity component.
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Fig. 4. Riemann problems RP1, RP2, RP3 and RP4 (from top to bottom row). 3D view of the free surface elevation with the Voronoi
computational mesh (left) and comparison against the reference solution for the variables η (middle) and u (right).

very good agreement can be appreciated, particularly up to time t = 0.1, when the flow is still smooth. At time

= 0.15, the shock is smoothed by the explicit finite volume convective solver, and the SI-FVVEM scheme remains

table, without any spurious oscillations.
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a

Fig. 5. Smooth surface wave propagation problem. 3D view of the free surface elevation and Voronoi computational mesh at output times
t = 0, t = 0.05, t = 0.1 and t = 0.15 (from top left to bottom right panel).

Fig. 6. Smooth surface wave propagation problem. Comparison between numerical and reference solution at output times t = 0.05, t = 0.1
nd t = 0.15 for the free surface elevation η (left) and the horizontal velocity component u (right).
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Fig. 7. Flow around a circular cylinder at time t f = 10. Top: zoom around the cylinder of the contour plot of the free surface elevation
ith the Voronoi computational mesh (left) and of the magnitude of the velocity field with stream-traces (right). Bottom: comparison of the
umerical and exact solutions for the free surface (left) and velocity components (right) at radius r = 1.01.

.6. Low Froude number flow around a circular cylinder (SWE)

As last test case for the SWE, we propose to simulate a low Froude (Fr = 3.19 · 10−3) flow that passes around
circular cylinder of radius rc = 1, as studied in [28,80]. The computational domain is Ω = [−16; 16]2, where the

ircular cylinder is defined as x ∈ R2 such that r ≤ rc, where r =
√

x2 + y2 is the radial coordinate, and the bottom
s assumed to be flat (b = 0). The mesh consists of Voronoi cells with a characteristic mesh size h = 1/20 near the
ylinder, increasing regularly in diameter until h = 1/2 at the domain boundaries (see Fig. 7). This choice results
ecessary in order to properly approximate the internal boundary without relying on an isoparametric description
f the physical geometry, as proposed in [22]. The mesh contains a total of NP = 15516 cells.

The exact velocity field and free surface elevation of the test problem can be expressed using polar coordinates
r, θ) as follows:

vr = vm

(
1 −

r2
c

r2

)
cos(θ ), vθ = −vm

(
1 +

r2
c

r2

)
sin(θ ), η = η0+

1
2
v2

m g
(

2r2
c

r2 cos(2θ ) −
r4

c

r2

)
, (132)

where η0 = 1 and vm = 10−2. The initial condition for the simulation is a flat free surface, η(x, 0) = η0, while the
xact solution is imposed at all boundaries except for the rightmost side of the domain (x = 16), where an outflow
27
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Table 4
Errors in L2 and L∞ norms for the horizontal velocity u for the stationary Poiseuille
flow. The errors refer to the polynomial space dimension M at final time t f = 5.

M L2(u) L∞(u)

1 3.0966E−02 8.5265E−2
2 4.1826E−13 1.6733E−13
3 4.2756E−13 3.0695E−13

condition is set. The simulation is run until the final time t f = 10 to reach the stationary state. In order to exploit
the high order of accuracy of the SI-FVVEM methods, we use the fourth order version in space, with a first order
time discretization. The velocity field with associated streamlines at the final time are shown in Fig. 7 (top). The
comparison against the reference solution is presented in Fig. 7 (bottom) along the circumference of radius r = 1.01
entred at the origin, where we observe that the fourth order in space SI-FVVEM method properly retrieves the
xact profile of both the free surface elevation and velocity components.

.7. Stationary Poiseuille flow (INS)

This first test case for the INS model concerns an incompressible viscous flow between two parallel plates. It
s a particular solution of the Stokes system, i.e., the convective fluxes are neglected. The computational domain is
he channel Ω = [xL; xR] × [yB; yT ] = [0; 3] × [0; 1] discretized with NP = 1949 cells, and the stationary solution
rites

∂p
∂x

=
pR − pL

xR − xL
, v =

(
u
v

)
=

( (pR−pL )
2Lν

y(y − yT )
0

)
, ν = 10−2, (133)

where pL = −1 and pR = −5.8 are the constant pressures applied along xL and xR , respectively. Wall boundary
conditions are imposed in y−direction, while the Dirichlet boundaries are set along the x−direction. The initial
condition is given by the exact solution in (133). Table 4 collects the errors in L2 and L∞-norms between the
recovered and exact horizontal velocity u with respect to the polynomial space dimension M at final time t f = 5.
As expected, when M ≥ 2, i.e. the polynomial space contains parabolic functions, the numerical errors are up to

achine accuracy.

.8. 2D Taylor–Green vortex (INS)

The Taylor–Green vortex describes the flow of an incompressible viscous fluid in a 2D square domain Ω =

0; 2π ]2 with periodic boundary conditions. The exact solution for this problem is

p = −
e−4νt

4
(cos(2x) + cos(2y)) , v =

(
u
v

)
=

(
sin(x) cos(y)

− cos(x) sin(y)

)
e−2νt , ν = 10−2. (134)

The initial condition is defined by the exact solution (134) at time t = 0. A second order SI-FVVEM method is run
n a mesh composed of NP = 5705 polygonal cells with characteristic size h = 1/20. Fig. 8 depicts the numerical
olution obtained at the final time of the simulation, t f = 0.2. The velocity magnitude and the pressure distribution
ith the stream-traces are shown and a comparison of 1D cuts along the x− and the y-axis of the numerical solution

gainst the exact one is proposed for both pressure and velocity, retrieving an excellent matching.
This test case is also used to assess the convergence property of the proposed SI-FVVEM scheme. We consider

sequence of successively refined meshes, and we compute the errors in L2 norm with respect to the analytical
olution (134). The convergence rates are reported in Table 5 for different values of the Reynolds number, in order
o evaluate the asymptotic behaviour of the scheme. As demonstrated by Theorem 3, the schemes satisfy the AP
roperty and the errors are independent of the stiffness parameter Re, achieving the formal second order of accuracy
n space and time.
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T

Fig. 8. Taylor–Green vortex at time t = 0.2 with viscosity ν = 10−2. Top: velocity magnitude (left) and pressure with the stream-traces
(right). Bottom: 1D cuts with 200 equidistant points along the x-axis (left) and the y-axis (right) of the numerical solution against the exact
solution.

4.9. First problem of Stokes (INS)

In this test case, we consider a problem only dominated by viscous effects, known as the first problem of
Stokes, for which an exact solution of the unsteady Navier–Stokes equations has been derived [69]. An infinite
incompressible shear layer is modelled starting from the following velocity field:

u = 0, v = v0 erf
(

1
2

x
√

νt

)
, v0 = 0.1. (135)

he initial condition then writes

p = 1, u = 0, v =

{
−v0, x ≤ 0

(136)

v0, x > 0.
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Table 5
Numerical convergence results of the SI-FVVEM scheme with second order of accuracy in space and time using the Taylor–Green vortex
on general polygonal meshes. The errors are measured in L2 norm and refer to the pressure p and velocity component u at time t f = 0.2.

he asymptotic preserving (AP) property of the scheme is studied by considering different Reynolds numbers Re = {102, 103, 104, 105
}.

h(Ω ) L2(p) O(p) L2(u) O(u)

Re = 102

3.1483E−01 1.8321E−02 – 4.6596E−02 –
1.7729E−01 6.2191E−03 1.88 9.2174E−03 2.82
1.2069E−01 1.7224E−03 3.34 3.7950E−03 2.31
8.9945E−02 9.2102E−04 2.13 2.1919E−03 1.87

Re = 103

3.1483E−01 1.8501E−02 – 4.6894E−02 –
1.7729E−01 6.0593E−03 1.94 9.3017E−03 2.82
1.2069E−01 1.7371E−03 3.25 3.8958E−03 2.26
8.9945E−02 9.2967E−04 2.13 2.2858E−03 1.81

Re = 104

3.1483E−01 1.8520E−02 – 4.6924E−02 –
1.7729E−01 6.0464E−03 1.95 9.3105E−03 2.82
1.2069E−01 1.7387E−03 3.24 3.9069E−03 2.26
8.9945E−02 9.3060E−04 2.13 2.2964E−03 1.81

Re = 105

3.1483E−01 1.8522E−02 – 4.6927E−02 –
1.7729E−01 6.0451E−03 1.95 9.3114E−03 2.82
1.2069E−01 1.7389E−03 3.24 3.9080E−03 2.26
8.9945E−02 9.3069E−04 2.13 2.2975E−03 1.81

Fig. 9. First problem of Stokes at time t f = 1. Comparison against the analytical solution with viscosity ν = 10−2 (left), ν = 10−3 (middle)
and ν = 10−4 (right). The numerical solution is interpolated with 200 equidistant points at y = 0.

The computational domain is Ω = [−0.5; 0.5] × [−0.1; 0.1] and it is paved with a grid of characteristic mesh size
h = 1/100 along the x−direction, while h = 1/10 is used along the y−direction. At the boundaries, the initial
ondition (136) is imposed along the y-direction while periodic conditions close the problem on the remaining sides.
he first problem of Stokes is solved using three values of viscosity, namely ν = 10−3, ν = 10−4 and ν = 10−5.
ig. 9 depicts the recovered solutions for the vertical velocity v at y = 0 over the exact solution at the final time
f = 1. The figures show a perfect overlapping between numerical and analytical solutions. We remark that the
ime step is independent of the value of the viscosity coefficient, thanks to the implicit discretization of the viscous
erms. Therefore, the three simulations ran for the same amount of computational time.

.10. Oscillatory viscous flow between two flat plates (INS)

Here, we consider a viscous incompressible flow between two flat plates. The solution solves the Stokes equations
nd was derived by Womersley in [81]. The computational domain is the square Ω = [x ; x ]2

= [−0.5; 0.5]2

L R
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Fig. 10. Womersley flow with ν = 2 · 10−2. Left: 3D view of the horizontal velocity u over the entire computational domain at different
output times. Right: numerical solution interpolated along 200 equidistant spatial points at y = 0 compared with the exact solution at output
times t = 0.2, t = 0.4, t = 1.0, t = 0.6, t = 0.8 (from the bottom to the top).

with wall boundaries in the y−direction and periodic sides elsewhere. The employed mesh has a total number of
NP = 14368 polygons with a characteristic size h = 1/80. The non-linear convective terms are neglected according
to [82], hence obtaining the analytical solution for the fluid velocity and pressure gradient as a function of time and
the distance from the plate:

u =
A

i ω

⎡⎣1 −

cosh
(
αW

√
i y/R

)
cosh

(
αW

√
i
)

⎤⎦ eiωt ,
∂p
∂x

=
p(xR) − p(xL )

L
= A eiωt . (137)

ere, αW = R
√

ω/ν is the Womersley number, with R being the half distance between the two plates and ω = 2π

denoting the frequency of the oscillations. Moreover, the amplitude of the sinusoidal pressure gradient is set to
A = 1, the imaginary unit is addressed as usual with i =

√
−1, and L = xR − xL is the total length of the

omputational domain along the x−direction. The pressure gradient is imposed at the aid of a source term that is
iscretized explicitly in time as already done in [53]. The viscosity coefficient is ν = 2 · 10−2 and the final time of
he simulation is t f = 1. To properly follow the oscillatory dynamics, a time step ∆t = 0.01 is imposed. Fig. 10
hows a 3D view of the obtained numerical horizontal velocity u for time instances t ∈ {0.2, 0.4, 0.6, 0.8}. We also
ompare the numerical horizontal velocity profile along the cut at x = 0 against the exact solution (137), achieving
nd excellent agreement for all output times.

.11. Double shear layer (INS)

This test, originally introduced in [83], is concerned with the incompressible flow of a double shear layer solving
he Navier–Stokes equations. The physical dynamics consists in a horizontal flow jet of a fluid given by a small
ertical pressure gradient balancing the convective forces. As a consequence, several vortexes develop during the
imulation. The computational domain is the square Ω = [0; 1]2 with periodic boundaries. At the initial time the
ollowing pressure and velocity field are prescribed:

p = 1, u =

{
tanh(θ (y − 1/4)), y ≤ 1/2
tanh(θ (3/4 − y)), y > 1/2

, v = δ sin(2πx), (138)

ith parameters θ = 30 and δ = 0.05. A Reynolds number Re = 5000 is chosen, and the final time of the simulation
s fixed at t = 1.8. The computational grid counts N = 15684 polygonal cells with h = 1/100. Fig. 11 depicts
f P
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Fig. 11. Double shear layer. Vorticity magnitude at output times t = 0.4 (top left), t = 0.8 (top right), t = 1.2 (bottom left) and t = 1.8
bottom right). The results are plotted with 41 contours in the interval [0; 26].

he vorticity magnitude at different time instances. Even in this case, numerical results are qualitatively in very good
greement with reference solutions available in the literature [53,84,85].

.12. Lid-driven cavity flow (INS)

We further test the novel SI-FVVEM scheme on the classical benchmark of the lid driven cavity flow in the
omputational domain Ω = [−0.5, 0.5]2. In this case, the target is to find the steady hydrodynamics state for a fluid
nitially at rest, i.e., p = 0 and v = 0. Wall boundary conditions are defined on the vertical sides (x = ±0.5) and
t the bottom (y = −0.5) of the domain, while on the top side (y = 0.5) the velocity field v = (1, 0) is imposed.
he characteristic mesh size is h = 1/80, which is rather coarse for this test case and yields a total number of

NP = 10093 polygonal cells. The final time of the simulation is t f = 25. Two different values of the Reynolds
umber are considered, namely Re = 100 and Re = 400. All the simulations are run using the third order version
f the scheme in space, while relying on a cheaper first order time discretization, because the goal is to catch the
teady state. Fig. 12 shows the distribution of the horizontal velocity at the final time as well as the stream-traces
f the velocity field, which permit to notice the generation of small vortical flows with a counter orientation with
espect to the main vortex led by the cavity. We also show the numerical velocity components u and v along the

uts x = 0 and y = 0, respectively, comparing them with the results found in [86]. From the plots, it is possible

32



W. Boscheri, A. Chiozzi, M.G. Carlino et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116140
Fig. 12. Lid-driven cavity flow at time t = 25 with a Reynolds number Re = 100 (top row) and Re = 400 (bottom row). Left: horizontal
velocity contours and streamlines. Right: comparison with the reference solution of [86] for the velocity components u and v along the lines
y = 0 and x = 0.

to appreciate a good matching between our numerical results and data available in the literature for both Reynolds
numbers.

4.13. Laminar flow over a cylinder (INS)

We finally solve the problem related to a laminar flow over a circular cylinder [87], which generates a von
Karman vortex that is shed behind the obstacle. The computational domain is defined as Ω = [−10; 40] × [−7; 7],
in which a cylinder of radius rc = 1 is located with centre at xc = (0, 0). The computational mesh is made of
NP = 25390 Voronoi cells with characteristic mesh size h = 0.25. On the left side of the domain we prescribe an
inflow velocity of v = (0.5, 0), while the remaining sides are assigned with transmissive boundary conditions. On
the obstacle, no-slip conditions are used. A constant pressure p = 1 is imposed at the initial time, and the flow is
characterized by a Reynolds number of Re = 100. A plot of the resulting stream-traces is reported in Fig. 13 at
different output times, showing the generation of vortical flow patterns past the cylinder. Fig. 14 depicts the vorticity
and the horizontal velocity distribution at the final time t f = 300, clearly identifying two main vortexes departing

from the obstacle that further generates the Von Karman street.
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Fig. 13. Laminar flow over a cylinder. Stream-traces along the circular cylinder at times, t = 25, t = 50, t = 100 and t = 200 (from top
left to bottom right). Colour map of the horizontal velocity u with 21 contour levels in the range [−0.05; 0.65]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

To give a quantitative interpretation, the same test case is also run using an inflow velocity of v = (1, 0), while
keeping the same Reynolds number. The time evolution of the pressure is measured at the point x = (15, 0), from
which we extract the associated frequency spectrum f . The results are depicted in Fig. 15, showing that we obtain
a Strouhal number St = f rc/u of St = 0.1401 for u = 0.5 and St = 0.1680 for u = 1 which is in reasonable good
greement with the value of St = 0.1649 reported in [88].

. Conclusions

The purpose of this work was to devise a new family of semi-implicit schemes on general polygonal meshes for
he solution of multi-scale PDE. To this aim, the fast and the slow scales of the mathematical models are separated, so
hat a conservative shock capturing finite volume scheme is used to deal with the non-linear explicit convective terms,
hile the virtual element method is employed for discretizing the implicit sub-system. Ad hoc projector operators
ave been designed to transfer the numerical solution from one approximation space to another. A high order
umerical solution in space and time is obtained by a CWENO spatial reconstruction and an IMEX Runge–Kutta
ime integrator. Moreover, high order of accuracy is granted in the implicit solver by the VEM paradigm. Well-

alancing and asymptotic-preservation properties of the first order semi-discrete scheme have been demonstrated.
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Fig. 14. Laminar flow over a cylinder at time t f = 300. Map of the vorticity (top) and the horizontal velocity (bottom).

Fig. 15. Laminar flow over a cylinder at time t f = 300. Pressure and related frequency modes measured at x = (15, 0) for a flow with
Re = 100 and inflow velocity of u = 0.5 (left) and u = 1 (right).

As prototype examples, we have considered two non-linear systems of hyperbolic PDE that govern the motion of
incompressible fluids, namely the shallow water equations and the incompressible Navier–Stokes model. The novel
numerical scheme has been thoroughly tested against a wide range of academic benchmarks, showing accuracy
and robustness capabilities. The VEM approach naturally allows to achieve high order space discretizations on
arbitrary shaped meshes, that is here combined with a robust finite volume solver for treating shock waves and
strong discontinuities. The resulting numerical method is stable, accurate and robust, being suitable for the treatment

of complex geometries as well.
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In the future we plan to extend the approach presented in this work to compressible flows, along the lines of [10].
iscontinuous Galerkin schemes in the framework of the virtual element space will also be investigated in order to
evise a novel class of nonconforming virtual element methods. Finally, the development of purely VEM schemes
n the context of semi-implicit time marching techniques is also foreseen, where even the convective sub-system is
olved at the aid of the VEM paradigm, supplemented with suitable limiters to ensure stability and conservation at
he same time.
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Appendix. IMEX Runge–Kutta schemes

The Butcher tableau for the IMEX Runge–Kutta schemes used in this work are reported hereafter. They have
been derived in [3,89,90] and each IMEX scheme is described with a triplet (s, s̃, p) which characterizes the number

of stages of the implicit method, the number s̃ of stages of the explicit method and the order p of the resulting
scheme. The acronym SA stands for Stiffly Accurate, LS implies L-Stability, while DIRK refers to Diagonally
Implicit Runge–Kutta schemes.

• SP(1,1,1)

0 0
1

1 1
1

(A.1)

• LSDIRK2(2,2,2) γ = 1 − 1/
√

2, β = 1/(2γ )

0 0 0
β β 0

1 − γ γ

γ γ 0
1 1 − γ γ

1 − γ γ

(A.2)

• SA DIRK (3,4,3) γ = 0.435866

0 0 0 0 0
γ γ 0 0 0

0.717933 1.437745 −0.719812 0 0
1 0.916993 1/2 −0.416993 0

0 1.208496 −0.644363 γ

γ γ 0 0 0
γ 0 γ 0 0

0.717933 0 0.282066 γ 0
1 0 1.208496 −0.644363 γ

0 1.208496 −0.644363 γ

(A.3)

Notice that the first order scheme (A.1) corresponds to the implicit Euler method.
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