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Abstract
According to N. Goodman, the Carnapian notion of similarity is useless in science 
and without interest for philosophy. In our paper we suggest that, given the current 
role that the notion of similarity has in managing biomedical big data, this drastic 
position should be revised, and similarity should be provided a scientifically useful 
philosophical interpretation. With the advent of the new sequencing technologies, 
imaging technologies and with the improvements of health records, the number of 
genomics, post-genomics and clinical data has exponentially increased. The deluge 
of data has urged, among others, to devise a new way of stratifying patients. A solu-
tion has been found and it is based exactly on the notion of similarity. By discussing 
two examples focusing on similarity among breast cancer patients, in the paper we 
illustrate such a use, and analyze it from a philosophical standpoint by resorting to 
A. Tversky’s features matching approach. We believe that the latter can foster some 
better understanding of the meaning and current use of similarity in the context of 
biomedical big data, and that, therefore, be the focus of further reflections in the phi-
losophy of science, in particular in the philosophy of biomedicine.

 *	 Massimiliano Carrara 
	 massimiliano.carrara@unipd.it

	 Giovanni Boniolo 
	 giovanni.boniolo@unife.it

	 Raffaella Campaner 
	 raffaella.campaner@unibo.it

1	 Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 
64a, 44121 Ferrara, Italy

2	 Departments of Philosophy and Communication Studies, University of Bologna, Via Zamboni, 
38, 40126 Bologna, Italy

3	 FISPPA Department, University of Padua, P. zza Capitaniato 3, 35139 Padova, Italy

http://orcid.org/0000-0003-1968-4249
http://orcid.org/0000-0003-4642-0337
http://orcid.org/0000-0002-3509-1585
http://crossmark.crossref.org/dialog/?doi=10.1007/s10670-021-00483-w&domain=pdf


2912	 G. Boniolo et al.

1 3

1  Introduction

According to Goodman (1972), the Carnapian notion of similarity is useless in 
science and without interest for philosophy. We believe that, after fifty years, this 
position needs to be reconsidered in the light of personalized medicine, where big 
data have a central role.

Over the centuries, biomedical research has devised conceptual ways of group-
ing people with the same set of pathological features, to treat them in the same 
way. The advent of precision medicine has significantly affected the scenario, 
introducing an unprecedented amount of data in medical research and clinical 
practice, and thus forcing experts to rethink also classificatory practices. This 
biomedical novelty has been accompanied by new computational tools able to 
manage statistical models of vast sets of data. In particular, patients’ molecular 
and clinical uniqueness, and the overwhelming abundance of information on their 
lifestyles and on the environments in which they live, can now be dealt with com-
putational and statistical tools, such as the cluster theory. The notion of similar-
ity has proved to be central for this approach allowing for rethinking classifica-
tory practices: instead of grouping individuals on the basis of either having or 
not having certain features, it is possible to group them on the basis of molecular 
and clinical characteristics that render them mutually similar to some extent. This 
procedure has hence at its core the choices, respects and degrees of similarity/dis-
similarity on which patients’ grouping is grounded.

We believe that similarity among breast cancer patients can be taken as an 
illustrative case study for how to approach patient similarity in medicine and in 
biomedicine more generally. The relevant aspects of similarity will then differ 
for each area of biomedicine. But what do we exactly mean by similarity in this 
specific context? Actually, this question is twofold, and will be tackled by exam-
ining the possible use of some philosophical tools to deal with new approaches 
to patienthood. First of all (Sect. 2), we will present some crucial moments in the 
philosophical discussion on similarity which we believe can provide some rel-
evant insights on the topic, starting from some brief recall of Goodman’s and 
Carnap’s positions (Sect.  2.1). We will then introduce the Feature Matching 
Approach (hereafter, FMA) proposed by A. Tversky in the late Seventies (1977), 
since it allows a proper philosophical framework of the idea of similarity at stake 
(Sect.  2.2). In Sect.  3, we will illustrate the Integrative Cluster approach and 
the Patient Similarity approach, stressing what has motivated their introduction 
in the medical context. It will then be argued that the use of similarity in cur-
rent biomedicine can have, as just mentioned, Tversky’s view as its philosophi-
cal counterpart (Sect. 4). After analyzing also some examples, we conclude that 
FMA offers adequate conceptual tools to better understand similarity and its use 
in biomedicine.

Here, we do not want to enter the wider philosophical debate on family resem-
blance terms, cluster concepts, and/or natural kind, which has touched upon a 
number of disciplines and cases. With respect to natural kinds, for the purpose 
of the paper let us just mention here that the sort of classificatory practices 
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investigated in the paper are not employed in biomedicine with the aim of grasp-
ing some hidden structure, providing some metaphysical carving of nature at its 
joint, or fixing some taxonomies reflecting ontological divisions in nature, but 
with the aim of finding clinically interesting statistical correlations. The specific 
scope of this paper is, rather, to show the actual relevance in contemporary bio-
medical practice of the notion of similarity, and to highlight, through Tversky’s 
approach, that it is worthy of deeper investigation by means of philosophical 
tools.

2 � Similarity and Distance from a Philosophical Perspective

Let us start recalling the main philosophical views on the notion of similarity, to 
introduce some theoretical tools and sketch the overall framework in which the 
paper’s proposal is set.

2.1 � The Geometrical Model

According to the original “geometrical model” (see, e.g., Carnap, 1928/1967) the 
notion of similarity is obtained via that of similarity space.1 What is needed to 
define a similarity space is a set of points—the space—and a metric on this set of 
points; the metric is simply a set-theoretic function that for every pair of points in 
the space taken as arguments gives a real number as value. A metric space is an 
ordered pair < X, d > where X is a space and d a metric such that it has the three fol-
lowing properties (where a and b are two points in the space):

•	 Minimality: d(a, b) ≥ 0 and d(a, a) = 0.
•	 Symmetry: d(a, b) = d(b, a).
•	 Triangle Inequality: d(a, b) + d(b, c) ≥ d(a, c).

The metric d represents the similarity relation (but it can be read also a dissimilarity 
relation); d(a, b) could then be taken as the real number representing the similar-
ity between a and b (or the dissimilarity between a and b). Intuitively, taking d as 
expressing dissimilarity instead of similarity, Minimality just claims that an object is 
not dissimilar to itself (the real number associated by d to the pair formed by a and 
itself is 0) and that everything in the defined space is comparable. In other terms, 
that means that for an arbitrary pair of distinct points in the space, the degree of 
similarity or dissimilarity between them is always defined.

1  It is worth recalling that the similarity notion based on the metric came out in geometry around 1906, 
thanks to the work of the French mathematicians René Fréchet (even if the name is due to Felix Haus-
dorff) when he discussed the notion of distance between two points of a topological space. Carnap’s 
work was very close to the dawn of the mathematical birth of that notion.
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Symmetry corresponds to the widely popular idea that similarity relations are 
symmetric, and the meaning of the axiom is that the degree of similarity between 
a and b is the same as that between b and a.

Finally, Triangle inequality corresponds to the idea that if b is similar/dissimi-
lar to a certain degree to both a and c, then the degree of similarity/dissimilarity 
between a and c should be smaller than or even equal to the sum of the degree of 
dissimilarity between a and b and b and c. The intuitive idea is that the similarity 
of a to b and that of b to c constraints the similarity of a to c, namely that if a is 
quite similar to b and b is quite similar to c, then a and c cannot be very dissimilar 
from each other. Triangle inequality therefore corresponds to the idea that simi-
larity relations are somewhat transitive relations or at least transitive with respect 
to a certain lower bound.

It is usually observed (see Decock & Douven, 2011 for a survey) that the geo-
metrical model allows for a simple way of representing the similarity and/or dis-
similarity between objects as a metric distance between the respective points in 
some uniform space, and therefore is able to offer a method to constructing spa-
tial representations of similarity and dissimilarity relations, a similarity space. 
Another recognized advantage of the geometrical model is that it gives a straight-
forward methodology to compare similarity relations. Suppose you aim to model 
the claim that objects a and b are more similar to each other than objects c and d. 
To obtain it, it is sufficient to prove that d(a, b) ≥ d(c, d).

If the geometrical model works, we have a powerful tool to describe similarity 
space and similarity relations. It works in physics, where all the discussions con-
cerning distance (both in classical physics, in relativity and quantum mechanics) 
adopt that geometric model. Nevertheless, physics is not the only field where dis-
tance and similarity can be used. Concerning this point, we should recall the strong 
criticism advanced by Goodman (1972) of the adoption of the geometrical inter-
pretation in these different fields. He observed that one of the main difficulties of 
adopting a similarity relation is that it is highly contextual: “Comparative judgments 
of similarity often require not merely selection of relevant properties but a weighting 
of their relative importance, and variation in both relevance and importance can be 
rapid and enormous. Consider baggage at an airport checking station. The spectator 
may notice shape, size, color, material, and even make of luggage; the pilot is more 
concerned with weight, and the passenger with destination and ownership. Which 
pieces are more alike than others depends not only upon what properties they share, 
but upon what makes the comparison, and when [...] circumstances alter similari-
ties” (Goodman, 1972, 445). That is a big issue for the geometrical model of simi-
larity: it cannot represent the contextual dependence of similarity relations out of 
physics. The reason is that one of its fundamental assumptions, given in terms of the 
Minimality requirement, is that similarity measures are done within a unique, acon-
textual, space of comparison (for a hint on the debate, see Decock & Douven, 2011; 
Carrara & Morato, 2011). But, as Goodman rightly observed, what is similar in a 
certain context might be completely dissimilar given another context. And this is 
extremely important for grouping patients since their being patients of a certain kind 
strongly depends on the molecular and clinical features designing their pathological 
context.
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There is a second problem for the geometrical model. Contrary to popular opin-
ion, similarity relations are not in general taken as symmetric ones. This fact has 
been shown also by a series of psychological data. Tversky (1977) has shown that 
similarity judgements are often asymmetric: for example, people tend systematically 
to judge Tel Aviv as being more similar to New York than New York similar to Tel 
Aviv. Or, again, take three individuals you, your brother and another individual, call 
him “Sam”. Sam, from a morphological point of view, is a sort of blend of you and 
your brother. Assume further that Sam is the person most similar to you (within a 
certain class of comparison). But suppose also that the degree of similarity between 
your brother and Sam is greater than the degree of similarity between you and Sam. 
Therefore, Sam is the person most similar to you, but you are not the most similar 
person (within the same comparison class) to Sam. And the same goes for patients. 
Let it be that the patient A is the most similar to patient B, and that the similar-
ity between the patient B and a patient C is greater than the similarity between the 
patient A and the patient B. Therefore, the patient A is the individual most similar to 
the patient B, but the patient B is not the most similar to A, being most similar to C.

Finally, consider triangle inequality. Again, one can easily find a counterexample 
to the above-mentioned property of the geometrical model. Consider the following 
example. Cuba is similar to Jamaica for a certain degree (they are both Caribbean 
islands) and Cuba is similar to China (for their political affinity), but Jamaica is defi-
nitely not similar to China: the degree of dissimilarity between China and Jamaica 
is surely greater than the sum of the degrees of dissimilarity between Jamaica and 
Cuba and that between Cuba and China. So, also triangle inequality fails, at least in 
some cases, in particular when patients are at stake. If the patient A is similar to the 
patient B with respect to a certain set of molecular and clinical features, and if the 
patient B is similar to the patient C with respect to a different set of molecular and 
clinical features, the patient A is not similar to the patient C neither with respect to 
the first set nor with respect to the second set of features.

2.2 � The Feature Matching Approach

There are two main different ways of bypassing such problems. The first one is the 
Tversky’s FMA (Feature Matching Approach) (1977), the second one is the Con-
ceptual Space approach proposed by Gärdenfors (2004). Let us focus on Tversky’s 
account, since—as it will be shown—is more useful to our aims, and leave aside 
Gärdenfors’ conceptual spaces theory, usually conceived as a refinement of the old 
Carnapian geometrical model. Gärdenfors’ proposal is much more semantically and 
cognitively oriented than Tversky’s and therefore less proper to our analysis, where 
the idea of grouping collection of features is central for our purpose. Indeed, simi-
larity relations hold in the FMA for objects characterized as collections of features, 
whereas in the geometrical approach the class of objects over which the similarity 
relation has to be defined are points in a geometrical space. This is precisely the 
point we start from when grouping patients: a set of individuals characterized by a 
set of clinical features.
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Given two objects, a and b, belonging to a certain domain D and characterized, 
respectively, by the set of features A and B, d(a,b) is a measure of the similarity 
of a to b. This means that anytime we have d(a,b) > d(a,c) we have that a is more 
similar to b than to c. In the FMA (Tversky, 1977), similarity has to satisfy three 
conditions:

•	 The Matching condition, according to which the degree of similarity between 
two objects a and b is a function F of three sets: i) the set of their common 
features (A ∩ B); ii) the set of the distinctive features possessed by a and not 
by b (A–B); iii) the set of the distinctive features possessed by b and not by a 
(B–A). That is, d(a, b) = F(A ∩ B, A–B, B–A)

•	 The Monotonicity condition, which constraints similarity comparisons among 
objects, given a certain domain. Informally, the idea behind is that an object a 
is more similar to an object b than it is to an object c iff the common features 
of a and c are a subset of the common features of a and b and the distinctive 
features of a and c are subsets of the distinctive features of those of a and b. 
It follows that similarity increases with the addition of common features or 
deletion of distinctive features. That is, d(a, b) ≥ d(a, c) whenever (A ∩ B) is 
subset of (A ∩ C), (A–C) is subset of (A–B), (C–A) is subset of (B–A).

•	 The Independence condition, according to which the degree of similarity due 
to the joint effect of two features is independent of the degree of similarity 
that depends on the third feature. In other terms the Independence condition 
states the following: assume that the pairs of objects (a, b) and (c, d) as well 
as the pairs (a′, b′) and (c′, d′) agree on the same two features, while the pairs 
(a, b) and (a′, b′) as well the pairs (c, d) and (c′, d′) agree on a third feature. If 
this is the case, Independence predicts that a is more similar to b than a′ to b′ 
if and only if c is more similar to d than c′ is to d′; formally: d(a, b) ≥ d(a′, b′) 
↔ d(c, d) ≥ d(c′, d′)

For Tversky any similarity relation that satisfies the Monotonicity, Matching and 
Independence conditions is a matching function. Matching functions F are used to 
measure degree of similarity, that is, they are analogues to distances in the geo-
metrical model. There is an important characteristic of the functions that satisfy 
Monotonicity, Matching and Independence; for any similarity relation that satis-
fies the three conditions above, there are two interval measurement scales S and f 
such that:

1.	 S(a,b) ≥ S(c,d) ↔ d(a,b) ≥ d(b,c).
2.	 S(a,b) = αf(A ∩ B) − βf(A − B) − γf(A − B).

 this result is what Tversky called the Representation theorem.
Condition 1 claims that similarity comparisons between pairs of objects could be 

represented by an interval scale. The classical interval measurement scales are such 
that one unit on them represents the same magnitude on the trait or characteristic 
being measured across the whole range of the scale. A classic example of it is the 
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Fahrenheit scale for temperature. Condition 2 claims that similarity between a and 
b could be represented as a linear combination of the scales (i.e., the measures) of 
the common features and the distinctive features of a and b; α, β, and γ are three 
numbers by which the relevance of the common or the distinctive features could 
be weighted. If, for example, α is 1 and β, and γ are 0, then the similarity between 
a and b is the measure of their common features. If, on the other hand, α is 0 and β 
and γ are equal to 1, then the similarity between a and b is a measure of their respec-
tive distinctive features (also called “symmetric difference”). The gist of condition 
2 is therefore that similarity is expressed as a “contrast” between the measures of 
the common and distinctive features; it is for this reason that the feature matching 
approach is sometimes called the contrast model.

As observed (see on this Decock & Douven, 2011, 65) the FMA overcomes many 
(if not all) of the shortcomings of the geometrical model.

Symmetry of similarity relation would hold in the FMA only by requiring, in 
condition 2 of the Representation Theorem, that β, and γ be equal. Cases where sim-
ilarity is non-symmetrical are cases where the distinctive features of the first object 
are weighted more heavily than the distinctive features of the second one (see Tver-
sky, 1977, 334).

The FMA also deals with the contextual dependence of similarity relations. The 
basic idea of the FMA is that similarity relations are determined in terms of com-
mon and distinctive features. The weight of such features is not absolute: they are 
doubly relativized to α, β, and γ and to the salience scale f. By means of such a 
scale, the salience of features may change from context to context.

Contextual dependence is managed in the FMA also by a certain elasticity in 
the choice of the domain of objects to consider when assessing certain similarity 
relations. Similarity relations tend to vary when the object set is changed (Tversky, 
1977, 343).

As it will be shown below, contextual elements play an important part in group-
ing patients. In the following section we will present issues on grouping patients 
stemming from current biomedicine, and a solution presented therein, to then return 
to Tversky’s account in Sect. 4.

3 � Clusters via Similarity

The present work is novel insofar as it extracts relevant points of similarity from 
biomedical research and applies them. In this section, we will draw upon existing 
empirical research in biomedicine to discover relevant properties which can ground 
similarity. judgments of the sort Tversky’s approach requires. As well-known, over 
the centuries, biomedical research has devised ways of grouping people with the 
same set of features, for diagnostic, prognostic and therapeutic purposes. In recent 
decades, clinical trials and evidence-based medicine have embraced this taxo-
nomic approach, producing indications for drugs and clinical practice guidelines, 
each adapted to a distinct group of patients identified as homogeneous on the 
basis of a specific set of biomarkers (be them at tissue level, at cellular level or at 
molecular level). Guidelines are collectively produced documents defining a set of 
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recommendations, together with eligibility criteria restricting their applicability to 
a specific class of patients. Each new patient is allocated to one of the guideline-
defined subgroups on the basis of certain biomarkers, and treatment is planned 
accordingly. This way of identifying classes of patients and placing individuals in 
the proper groups has continued to be implemented even with the advent of molecu-
lar medicine (see e.g. Boniolo and Nathan 2017; Barilan et al. 2021), where these 
groups were based on genes, proteins, metabolites, etc. However, with the progress 
of molecular medicine, new sequencing technologies, molecular imaging technolo-
gies and, above all, the major impact of computational and informational technolo-
gies—that is with the advent of precision medicine—new issues have been raised.2 
Soon the promises of this approach, designed to provide highly personalized and 
highly effective care, faced a substantial challenge, due to the fact that each patient 
is unique both from the molecular and the biographical point of view, and that an 
increasing amount of data is available on him/her. The more data (concerning the 
molecular profile and the biography) are collected, the more the set of the collected 
features of the patient is unique. How can then medicine provide a diagnostic or 
therapeutic account that works for many people if it is acknowledged that every sin-
gle patient is molecularly (and clinically) unique? This conundrum is drastically evi-
dent with tumor heterogeneity, which shows not only that each cancer is individual-
ized in a specific patient, but, more importantly, that each cancer affecting a given 
individual is actually composed of a set of different cancer subpopulations with het-
erogeneous features (see Boniolo, 2017).

An enormous number of individualizing features is potentially disruptive for the 
usual clinical trial process and evidence-based medicine paradigm, that rely on the 
possibility to group a statistically significant number of diseased individuals on the 
basis of their being carriers of a precise set of biomarkers. The uniqueness of condi-
tions is recognized as a distinctive feature of some diseases, as kinds of tumors, but 
only by means of some sort of proper grouping would an adequate testing of medi-
cal hypotheses be possible, and findings of research conducted on a sample of the 
patient population be generalized to the whole population.

As recalled, classically we have an approach according to which we group people 
on the basis of being or not being carriers of given biomarkers. That is, something 
(an individual) either belongs or does not belong to a given set (group, stratum, clus-
ter, class, cohort, reference class, etc.), depending on whether s/he exhibits or not 

2  We do not discuss here the limits and the potentialities of precision medicine, in particular if preci-
sion medicine is really precise or if it is always ethically praiseworthy (both at individual and global 
level). We do not even face the question whether a more proper definition of precision medicine exists, 
or which its historical roots are. This is not the right place to face these issues. For our sake, however, we 
pragmatically accept the well-known definition offered by the US National Research Council, according 
to which “precision medicine is ‘an emerging approach for disease treatment and prevention that takes 
into account individual variability in genes, environment, and lifestyle for each person’, [meant] […] to 
predict more accurately which treatment and prevention strategies for a particular disease will work in 
which groups of people”: https://​ghr.​nlm.​nih.​gov/ Precision Medicine; on the relations between precision 
and personalized medicine, https://​ghr.​nlm.​nih.​gov/​primer/​preci​sionm​edici​ne/​preci​sionv​spers​onali​zed. 
See also https://​www.​nih.​gov/​resea​rch-​train​ing/​allof​us-​resea​rch-​progr​am (Accessed 30 April 2017). See 
Barilan, Brusa and Ciechanover 2021.

https://ghr.nlm.nih.gov/
https://ghr.nlm.nih.gov/primer/precisionmedicine/precisionvspersonalized
https://www.nih.gov/research-training/allofus-research-program
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a previously established set of biomarkers, at whatever level they could be. Nev-
ertheless, given the complexity of many molecular diseases, the enormous amount 
of molecular and clinical information we have (see, for example, Leonelli, 2016, 
Strasser, 2019), and the myriad of unique features every single individual presents, 
this way of grouping has quickly become unconvincing, since, if driven to the limit, 
classes should ultimately be composed of only one member: a single individual 
patient. At the same time, it cannot be denied that medicine still needs, and will 
need, to group patients and strive to find drugs which would benefit many individu-
als, not only a single one. It seems currently unfeasible not to produce indications 
on how to treat groups of patients, and to deliberately limit the efficacy of research 
outcomes to just one patient. Furthermore, were we even willing to do so, we would 
be very unlikely to reach such a goal without starting from some sort of grouping 
of patients and analysis of some shared pathological features. This situation could, 
hence, create a dangerous impasse both in the search for new drugs and in the search 
for treatment protocols—as recognized even in the recent philosophical literature 
concerning the reference class problem, the narrowness of reference classes and the 
aim for precision (see, e.g., Fuller & Flores, 2015; Wallmann, 2017; Wallmann & 
Williamson, 2017).

Given their ultimate goal, i.e. to treat and cure, the biomedical sciences need to 
group patients. But how to do this, once the uniqueness of the molecular and clini-
cal features of any individual is assessed? One solution that has encountered success 
in the scientific arena has been given in terms of computational technologies which 
utilize algorithms grouping patients on the basis of similarity relationships. That is, 
rather than grouping patients on the basis of them carrying certain markers, the idea 
is to group them on the basis of them being more or less similar.

To illustrate this epistemological shift, we wish to recall some works by Caldas 
and his team, who have opted for cluster analysis based on the notion of similar-
ity. Their contribution constitutes a landmark in classification within cancer research 
(Ali et al., 2014; Bruna et al., 2016; Curtis et al., 2012; Pereira et al., 2016; Russnes 
et  al., 2017). They had access to 997 samples from breast cancer patients stored 
in two biobanks (one in the UK and one in Canada) who were homogeneous for 
treatment and who were followed-up for about ten years. Utilizing new sequenc-
ing technologies, they undertook genomic and transcriptomic investigations, con-
sidering also the follow-ups. At the end of the computation process, they obtained 
ten different clusters of patients, which they called Integrative Clusters (iCluster, or 
IntClusters) and were also predictive. To be sure that the clusterisations properly 
did their job from a diagnostic and prognostic point of view, they applied the same 
grouping technique to a second cohort of about 1,000 breast cancer samples, and 
a third cohort of about 7500 samples. As illustrated below (Fig. 1), this technique 
allowed them to compare the clusterisations both with other molecular characteriza-
tions (e.g., PAM503) and with the clinical outcomes. They successfully showed that 

3  PAM50 Prosigna® is a tumour-profiling test that helps determine the benefit of using chemotherapy in 
addition to hormone therapy for some estrogen receptor-positive (ER-positive) and HER2-negative breast 
cancers.
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their integrative classification reflected differences in chemotherapy. This might be 
seen as an unprecedented way to link molecular classification to clinical treatment, 
and to treatment outcomes. To achieve this result, Caldas et al. used a collection of 
breast cancer studies on patients who received chemotherapy adjuvants and whose 
data concerning the pathological complete response (pCR) were available.4

At the end, they were able to gather patients together, grouping them in clusters, 
on the basis of having features which are similar to features possessed by the other 
patients of the same cluster. This idea of grouping diseased individuals on the basis 
of similarity is gaining importance at research and clinical level, as witnessed by the 
fact that it has been increasingly used in the last few years to classify many kinds of 
cancer (Ross-Adams et al., 2015; Weddell et al., 2015; Guinney et al., 2015; Rob-
ertson et al., 2017; Cancer Genome Atlas Network, 2015), and to cope with tumor 
heterogeneity (Morganella et al., 2016; Nik-Zainal et al., 2012, 2016).

The same idea has led to a new approach called Patient Similarity (Brown, 2016; 
Pai & Bader, 2018; Parimbelli et al., 2018; Sánchez-Valle et al., 2020; for a review of 
the state of the art, see Dai et al. 2020). Whether or not this approach succeeds in the 
long run, it is an interesting case-study for re-discussing the different ways of group-
ing individuals in the light of shift in medical paradigms. It jointly addresses three 
aspects we have already recalled: (1) the vast amount of available data, thanks to the 
new sequencing and imaging technologies, from the “omics” levels of up to thou-
sands of healthy and diseased individuals; (2) the bulk of clinical data (diagnoses, 

Fig. 1   Overview of the integrative cluster subtypes and the dominating properties. From Curtis et  al. 
(2012)

4  A tumour is said to have had a pCR if, after surgery, no residual cancer cells remain.
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laboratory results, prescriptions, therapies, response to treatment, disease progres-
sion, follow-up information, etc.) that electronic health records have allowed us to 
store and retrieve; iii) data concerning lifestyles and environments.

For example, Fig.  2 (from Pai & Bader, 2018) shows how similar patients (at 
the nodes) are linked together by edges (representing similarities) at different levels 
(clinical, genomic and metabolomic) and with other individuals serving as the con-
trol group. Whenever a new patient is considered, his/her data are inserted to find 
clinical, genomic and metabolomic similarities, and hence to decide in which group 
to include the patient, in order to propose a treatment and establish a prognosis.

Our concern here is with the notion of similarity: what do we exactly mean when 
we talk of similarity in this context? We remarked that an individual belongs to 
a group not because s/he possesses certain features per se, but because s/he pos-
sesses certain features which make him/her more or less similar to a certain group 
of patients already considered mutually similar. Here the notion of similarity has to 
be intended in term of distance. Thus, being more or less similar to a given patient 
means being more or less distant from him/her. Of course, if we use a different way 

Fig. 2   How patients (nodes) are 
grouped by similarity (edges) 
considering three kinds of data 
(clinical, genomic and metabo-
lomic data)

Fig. 3   Three different ways of clustering the same set of points (From Tan et al., 2017, 529)
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of implementing the distance, then patients will be grouped in different ways, as 
intuitively illustrated in the figure below (Fig. 3).

To illustrate how cluster analysis works, and to exemplify what a distance is, let 
us consider an example taken from Brown (2016),5which can help us grasp in which 
sense two patients (i.e., the two sets of data representing their “omics” and/or clini-
cal features) are similar. In this formalization, a patient is represented by a vector 
defined in a multidimensional metric space, where each dimension represents a par-
ticular “omic” or item of clinical information. Thus, given two patients, represented 
by two vectors, their degree of similarity—and therefore the ground to establish if 
they belong to the same cluster—can be given, for example, by the so-called cosine 
similarity:

where a and b are the two vectors (representing the two patients), a ∙ b is their sca-
lar product, ‖a‖ the module of the vector a and a

i
 its i-component (representing a 

molecular or clinical data). Hence the distance, that is, the similarity, is given in 
terms of the cosine of the angle between the two vectors (the two patients). That is 
to say, if the two patients are completely dissimilar, their vectors are opposite, thus 
the angle is 180° and the cos180◦ = −1 . Instead, if the two patients are totally simi-
lar, they are represented by two equal vectors, thus the angle between them is 0° and 
cos 0◦ = 1 . It follows that, given a benchmark patient a , this approach enables us to 
grasp the similarity between him/her and any other patient b , by calculating s(a, b) . 
If we fix the degree of similarity, for example, between 0 (not included) and 1 (and 
therefore of the dissimilarity between 0 and − 1), for any new patient we can evalu-
ate how similar (dissimilar) s/he is to the benchmark patient, and hence act accord-
ingly in terms of treatment.

Both this example and the cases above show how this kind of similarity does not 
work in an abstract space (as we have seen above, the geometrical similarity dis-
cussed by Carnap and criticized by Goodman works), but in a well-defined statisti-
cal space whose points are given by the molecular and clinical information.6

At this point, to make even clearer the process leading to the grouping of the 
patients via similarity, it could be useful to show the flowchart of a standard patient 
similarity analysis (see Fig. 4; from Dai et al., 2020). It is relevant to note that the 
outcome depends also on the integration strategies chosen (graphically illustrated 
in Fig. 5; from Dai et al., 2020). For example, we could choose either the early data 
integration strategy (different data types are converted and standardized into the 
same format before calculating similarities) or the late data integration strategy (first 

d(a, b) =
a ⋅ b

‖a‖‖b‖
=

∑n

i=1
a
i
b
i

�∑n

i=1
a
2
i

�∑n

i=1
b
2
i

6  This is also the reason why here the distance can be negative, while one of the conditions in the origi-
nal metric space introduced in geometry and discussed by Carnap was that it has to be positive: a statisti-
cal space realized with biomedical data is different from an abstract topological space endowed with a 
metric.

5  For a more technical approach, see Zhu et al. (2016).
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the similarity network is built for each data type, then networks are merged into a 
single one).

Before getting back to Tversky’s view, let us also recall that other works on kinds 
might provide some interesting hints to enhance our understanding of similarity in 
medicine. In particular, Slater’s work on stable property clusters intends to account 
for the joint presence of range of properties (see e.g. Slater, 2015). However, while 

Fig. 4   Flowchart of a similarity analysis showing two different integration strategies
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Fig. 5   a Early data integration strategy. b Late data integration strategy
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relevant in terms of its aim as a contribution to the philosophy of biology, Slater’s 
general view (see Slater, 2013) does not match the overall spirit of our analysis of 
similarity, insofar as it is meant as a contribution to the metaphysics of biology, 
rather than as an investigation on the actual role of similarity in scientific practice.

Summing up, what we have considered above illustrates the reasons why similar-
ity has a role in contemporary biomedicine. More specifically, we have shown how 
degrees of similarity can provide the bases of classificatory procedures, and related 
uses, in personalized medicine. In the following section, we move back to philoso-
phy in order to show how FMA can be applied to conceptually grasp what similarity 
is. We will argue that there is a role for Tversky’s account in current biomedical con-
texts, insofar as it can foster some better conceptual understanding of a biomedical 
notion of similarity.

4 � Tversky’s Approach and Grouping Patient via Similarity

Let us begin from Tversky’s general claim: “the representation of an object as a col-
lection of features is viewed as a product of a prior process of extraction and compi-
lation” (Tversky, 1977, 329). The main problem, in our case, is to understand what 
kinds of features could be associated with a given group of patients to represent it 
via FMA. In the psychological context, which is the standard context of application 
of the feature matching approach, stimuli associated with the perception of objects 
are the common way to extract features from a specific given domain of objects. Of 
course, we cannot adopt the same strategy for grouping cancer patients: it is a com-
pletely different kind of application. Why, then, should we apply the FMA in our 
context, and how should we do so? The basic idea is to extract, for example, the five 
features adopted in the Integrative Cluster approach to group breast cancer patients 
(Fig. 1), that is,

•	 Copy number driver,
•	 Pathology biomarker class,
•	 DNA architecture,
•	 Dominant PAM50,
•	 Clinical Characteristics (survival).
	   adding a sixth feature, i.e.:
•	 TNBC (±) (Triple negative breast cancer).

The sixth feature is not part of the integrative cluster subtypes and the dominating 
properties listed in Table 1. It is just mentioned at the bottom of the table. We insert 
it to obtain a more perspicuous example of how our approach works.

Thus, for example, the 10 integrative clusters there indicated will be represented 
by a feature set like:

•	 Group (1) = {Having Chromosome 17/chromosome 20, ER+ (HER2+), Simplex/
firestorm, Luminal B, intermediate, TNBC−};
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•	 Group (2) = {Having Chromosome 11/chromosome 20, ER+, Firestorm, Lumi-
nal B, intermediate, TNBC+}.

•	 Group (3) = {Very few, ER+, Simplex/flat, Luminal A, Good, TNBC−}.
•	 Group (4) = {Very few, ER+/ER−, Sawtooth/flat, Luminal A, Good, TNBC+}.
•	 Group (5) = {Having Chromosome 17, ER-, Firestorm, Luminal B and HER2, 

extremely poor, TNBC+}.
•	 Group 6 = {8p deletion, ER+, Simplex/firestorm, Luminal B, intermediate, 

TNBC}.
•	 Group 7 = {Having Chromosome 16, ER+, Simplex, Luminal A, good, 

TNBC−}.
•	 Group 8 = {Having Chromosome 1/Chromosome 16, ER+, Simplex, Luminal A, 

good, TNBC+}.
•	 Group 9 = {Having Chromosome 8/Chromosome 20, ER+, Simplex/firestorm, 

Luminal B, intermediate, TNBC+}.
•	 Group 10 = {Having Chromosome 5/Chromosome 8/Chromosome 10/Chromo-

some 12, TNBC, complex, Basal like, poor 5 year, TNBC+}.

Consider, now, the conditions that Tversky’s similarity should satisfy: (1) the 
Matching condition, the (2) the Monotonicity condition, and (3) the Independence 
condition.

According to the matching condition the degree of similarity (d) between two 
objects a and b has to be thought of as a function of three sets: (1) the set of their 
common features, and (2) the two sets of their distinctive features. Formally:

Let “a” be Group (1) and “b” be Group (2). Just remember that the feature set 
of Group (1) is {Having Chromosome 17/chromosome 20, ER+ (HER2+), Sim-
plex/firestorm, Luminal B, intermediate, TNBC−} and the feature set of Group 
(2) is {Having Chromosome 11/chromosome 20, ER+ , Firestorm, Luminal B, 
intermediate, TNBC+}. The function F is given by the set of their common fea-
tures i.e. {Luminal B, intermediate} as first element; the set of the features that are 
in Group (1) and are not in Group (2): {Having Chromosome 17/chromosome 20, 
ER+ (HER2+), Simplex/firestorm} and the set of features that are in Group (2) and 
are not in Group (1): {Having Chromosome 11/chromosome 20, ER+, Firestorm}. 
To resume, the similarity of Group (1), i.e. ‘a’ and Group (2), i.e. ‘b’ is given by the 
following function F:

What does this very simple case show? It shows that in order to capture simi-
larity of features in patient groups you should count common and distinctive fea-
tures of the two groups. Moreover, it is easy to obtain a metric of similarity and 
dissimilarity among different patient groups, simply ordering the obtained results. 
Repeating the same operation with much more data for many patient groups, 

d(a, b) = F(AB, A−B, B−A)

d(a, b) = F({Luminal B, intermediate}, {Having Chromosome 17/chromosome

20, ER + (HER2+), Simplex∕firestorm}, {Having Chromosome 11/chromosome

20, ER+, Firestorm})
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one can get a very rich series of similarity results helping researchers to group 
patients in a more appropriate way.

According to the monotonicity condition monotonicity constraints similarity 
comparisons among objects, given a certain domain, as follows: an object a is 
more similar to an object b than it is to an object c iff the common features of a 
and c are a subset of the common features of a and b and the distinctive features 
of a and c are subsets of the distinctive features of those of a and b. Formally:

By the Monotonicity condition, in order to determine whether Group (1) = a is 
more similar to Group (2) = b than to a Group (3) = c, it is sufficient to check if 
the common and distinctive features of the pair (Group (1) & Group (3)) are sub-
sets of the common and distinctive features of the pair (Group (1) & Group (2)).

The common and distinctive features of the former pair (Group (1) & Group 
(2)) are:

•	 Common: {Luminal B, intermediate, TNBC+}.
•	 Distinctive: {Having Chromosome 17/chromosome 20, ER+ (HER2+), Sim-

plex/firestorm, Having Chromosome 11/chromosome 20, ER+ , Firestorm};
	   whereas the common and distinctive features of the latter pair (Group (1) & 

Group (3)) are:
•	 Common: {TNBC−}.
•	 Distinctive: {Having Chromosome 17/chromosome 20, ER+ (HER2+), Sim-

plex/firestorm, Luminal B, intermediate, very few, ER+ , Simplex/flat, Lumi-
nal A, Good}.

We could see that while the common features of the pair (Group (1) & Group 
(3)) are not a subset of the common features of the (Group (1) & Group (2)), the 
distinctive features of the former pair are a subset of the distinctive features of the 
latter pair. It follows that the pair (Group (1) & Group (2)) is more similar than 
the pair (Group (1) & Group (3)).

The above sketched second condition strengthens the idea that the FMA, 
applied to our topic, help us to obtain a more refined metric for patient groups. 
Specifically, the monotonicity condition is a sharp way to introduce, step by step 
a metric in the different groups comparing them two by two. To summarize: 
adopting FMA we have a way to conceptualize the biostatistical similarity among 
patient groups, in particular we have seen that the latter satisfies the condition of 
matching and monotonicity.

Finally, as said before, the Independence condition states the following. 
Assume that the pairs of objects (a, b) and (c, d) as well as the pairs (a′, b′) and 
(c′, d′) agree on the same two features, while the pairs (a, b) and (a′, b′) as well 
the pairs (c, d) and (c′, d′) agree on a third feature. If this is the case, Independ-
ence predicts that a is more similar to b than a′ to b′ if and only if c is more simi-
lar to d than c′ is to d′. Consider, again, our example in the independence case.

d(a, b) ≥ d(a, c) whenever (A ∩ B) is subset of (A ∩ C),

(A−C) is subset of (A−B), (C−A) is subset of (B−A)
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By independence we obtain that:

If and only if

Following Tversky we obtain that the ordering of the joint effect of any two com-
ponents (X,Y vs X’, Y’) is independent of the fixed level of the third factor (Z or Z’) 
(Tversky, 1977, 331).

Let us now wonder whether the cosine similarity (as any other particularization 
similarity used in cluster theory) satisfies the matching and the monotonicity condi-
tion in the FMA.7

Firstly, let us consider the matching condition. As remarked above, it is formu-
lated in terms of the degree of similarity between two objects a and b and it is a 
function of three sets: the set of their common features, and the two sets of their 
distinctive features. In terms of the cosine similarity, as mentioned above, to say that 
two patients are totally similar is represented by two equal vectors and is equivalent 
to say, in terms of the FMA, that there is no difference among the features represent-
ing the set of features of a and those representing the set of features of b. Secondly, 
let us consider the monotonicity condition in the FMA. It implies that an object a is 
more similar to an object b than it is to an object c iff the common features of a and 
c are a subset of the common features of a and b and the distinctive features of a and 

Group 1 ∩ Group 2 = Group 5 ∩ Group 5 = Luminal B = X

Group 7 ∩ Group 9 = group 8 = Group 3 = Simplex = X�

Group 1−Group 2 = Group 5−Group 6 = Having Chromosome 17 = Y

Group 7−Group 9 = Group 8−Group 3 = Having Chromosome 16 = Y�

Group 2−Group 1 = Group 9−Group 7 = TBNC+ = Z

Group 6−Group 5 = Group 3−Group 8 = TNBC− = Z�

d(Group 1, Group 2) = F (Group 1 ∩ Group 2, Group 1−Group 2,

Group 2−Group 1)

= F(X, Y, Z) ≥ F
(
X�, Y�, Z�

)

= F(Group 7 ∩ Group 9, Group 7−Group 9,

Group 9−Group 7)

= d(Group 7, Group 9)

d(Group 5, Group 6) = F (Group 5 ∩ Group 6, Group 5−Group 6,

Group 6−Group 7)

= F(X, Y, Z) ≥ F
(
X�, Y�, Z�

)

= F(Group 8 ∩ Group 3, Group 8−Group 3,

Group 3−Group 8)

= d(Group 8, Group 3)

7  Due to space limits, we do not show here that also the independence conditions is satisfied.
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c are subsets of the distinctive features of those of a and b. In terms of the cosine 
similarity the condition is satisfied if and only if given three patients a, b, and c, a is 
more similar to b than to c if the difference between the vector angle of a with the 
vector angle of b is minor of that of the vector angle of a with the vector angle of c.

5 � Conclusions

In the paper we have shown how philosophical reflections can provide relevant con-
ceptual and formal tools to address some current issues in medicine more precisely 
and effectively. Specifically, aim of the first sections of this paper was to promote 
a change of attitude in the philosophy of biomedical studies, arguing for similarity 
of features as a way of grouping patients. In the second part of the paper we have 
shown how Tversky’s FMA could be used to offer a philosophically detailed analy-
sis of the notion of similarity.

FMA is a very simple tool, handy and useful. If markers are features, the idea 
to group patients on the basis of their being more or less similar to other groups is 
intuitive and immediately applicable via the model proposed. FMA simplicity and 
adaptability to different contexts of analysis gives us a simple way to measure simi-
larity among patients grouping them. Considering whether and to what extent this 
way of conceiving similarity can be applied in other areas of the philosophy of bio-
medical studies can encourage some rethinking of classificatory practices and stimu-
late further epistemological reflections in new directions.8

Acknowledgements  We wish to thank the referees of Erkenntnis for their comments and suggestions on 
preliminary versions of the paper.

References

Ali, R. H., Rueda, O., Chin, S.-F., et al. (2014). Genome-driven integrated classification of breast cancer 
validated in over 7,500 samples. Genome Biology, 15, 431.

Barilan, M. Y., Brusa, M., & Ciechanover, A. (Eds.). (2021). Can precision medicine be personal: Can 
personalized medicine be precise? Oxford: Oxford University Press.

Boniolo, G. (2017). Patchwork narratives for tumour heterogeneity. In H. Leitgeb, I. Niiniluoto, E. Sober, 
& P. Seppälä (Eds.), Logic, methodology and philosophy of science—Proceedings of the 15th inter-
national congress (pp. 311–24). London: College Publications.

Boniolo, G., & Nathan, M. J. (Eds.). (2017). Philosophy of molecular medicine. London: Routledge.
Brown, S.-A. (2016). Patient similarity: Emerging concepts in systems and precision medicine. Frontiers 

in Physiology, 7, 561. https://​doi.​org/​10.​3389/​fphys.​2016.​00561
Bruna, A., Rueda, O. M., Greenwood, W., et al. (2016). A biobank of breast cancer explants with pre-

served intra-tumor heterogeneity to screen anticancer compounds. Cell, 167, 260–274.
Carnap, R. (1928). Der logische Aufbau der Welt. Berlin: Weltkreisverlag. Repr. Hamburg: Meiner 

[1961] (and later). English translation by Rolf A. George: The Logical Construction of the World, 
London: Routledge and Kegan Paul [1967].

8  For other philosophical applications of the FMA, and, specifically, on using similarity for vagueness 
and identity, see Douven and Decock (2011).

https://doi.org/10.3389/fphys.2016.00561


2931

1 3

Patient Similarity in the Era of Precision Medicine: A…

Carrara, M., & Morato, V. (2011). Toward a Formal Account of Similarity and Family Resemblance for 
Technical Functions. In P. E. Vermaas & V. Dignum (Eds.), Formal ontologies meet industry (pp. 
63–74). Amsterdam: IOS Press.

Curtis, C., Shah, S., Chin, S.-F., et  al. (2012). The genomic and transcriptomic architecture of 2,000 
breast tumours reveals novel subgroups. Nature, 486, 346–52.

Dai, L., Zhu, H., & Liu, D. (2020). Patient similarity: methods and applications. arXiv:2012.01976 [cs.
LG].

Decock, L., & Douven, I. (2011). Similarity after Goodman. Review of Philosophy and Psychology, 2, 
61–75.

Fuller, J., & Flores, L. J. (2015). The risk GP model: The standard model of prediction in medicine. Stud-
ies in History and Philosophy of Biological and Biomedical. Sciences, 54, 49–61.

Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT Press.
Goodman, N. (1972). Seven strictures on similarity. In N. Goodman (Ed.), Problems and projects (pp. 

437–446). Indianapolis/New York: Bobbs-Merrill.
Guinney, J., Dienstmann, R., Wang, X., et  al. (2015). The consensus molecular subtypes of colorectal 

cancer. Nature Medicine, 21, 1350–1416.
Leonelli, S. (2016). Data-centric biology: A philosophical study. Chicago, IL: The University of Chicago 

Press.
Morganella, S., Alexandrov, L. B., Glodzik, D., et al. (2016). The topography of mutational processes in 

breast cancer genomes. Nature Communications, 7, 11383.
Network, C. G. A. (2015). Genomic classification of cutaneous melanoma. Cell, 16, 1681–1696. https://​

doi.​org/​10.​1016/j.​cell.​2015.​05.​044
Nik-Zainal, S., Van Loo, P., Wedge, D. C., et al. (2012). The life history of 21 breast cancers. Cell, 149, 

994–1007.
Nik-Zainal, S., Davies, H., Staaf, J., et al. (2016). Landscape of somatic mutations in 560 Bbreast cancer 

whole-genome sequences. Nature, 534, 47–54.
Pai, S., & Bader, G. D. (2018). Patient similarity networks for precision medicine. Journal of Molecular 

Biology. https://​doi.​org/​10.​1016/j.​jmb.​2018.​05.​037
Parimbelli, E., Marini, S., Sacchi, L., & Bellazzi, R. (2018). Patient similarity for precision medicine: 

A systematic review. Journal of Biomedical Informatics. https://​doi.​org/​10.​1016/j.​jbi.​2018.​06.​001
Pereira, B., Chin, S.-F., Rueda, O. M., et al. (2016). The somatic mutation profiles of 2,433 breast cancers 

refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11479. https://​doi.​
org/​10.​1038/​ncomm​s11479

Robertson, G. A., Kim, J., Al-Ahmadie, H., et al. (2017). Comprehensive molecular characterization of 
muscle-invasive bladder cancer. Cell, 171, 540-556.e25.

Ross-Adams, H., et al. (2015). Integration of copy number and transcriptomics provides risk stratification 
in prostate cancer: A discovery and validation cohort study. eBioMedicine, 2, 1133–1144.

Russnes, H. G., Lingjærde, O. C., Anne-LiseBørresen-Dale, A. L., Caldas, C., et al. (2017). Breast cancer 
molecular stratification: From intrinsic subtypes to integrative clusters. American Journal of Pathol-
ogy, 187, 2152–2162.

Sánchez-Valle, J., et  al. (2020). Interpreting molecular similarity between patients as a determinant of 
disease comorbidity relationships. Nature Communications, 11, 2854. https://​doi.​org/​10.​1038/​
s41467-​020-​16540-x

Slater, M. (2013). Are species real? An essay in the metaphysics of science. Basingstoke: Palgrave 
MacMillan.

Slater, M. (2015). Natural kindness. The British Journal of Philosophy of Science, 66, 375–411.
Strasser, B. (2019). Collecting experiments: Making big data biology. Chicago, IL: The University of 

Chicago Press.
Tan, P.-N., et al. (2017). Introduction to data mining (2nd ed.). Reading: Addison-Wesley.
Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.
Wallmann, C. (2017). A Bayesian solution to the conflict of narrowness and precision in direct inference. 

Journal for General Philosophy of Science, 48, 485–500.
Wallmann, C., & Williamson, J. (2017). Four approaches to the reference class problem. In G. Hofer-

Szabó & L. Wroński (Eds.), Making it formally explicit: probability, causality and indeterminism 
(pp. 61–81). Dordrecht: Springer.

Weddell, N., Pajic, M., Patch, A.-M., et al. (2015). Whole genomes redefine the mutational landscape of 
pancreatic cancer. Nature, 518(26), 495–501.

https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1016/j.cell.2015.05.044
https://doi.org/10.1016/j.jmb.2018.05.037
https://doi.org/10.1016/j.jbi.2018.06.001
https://doi.org/10.1038/ncomms11479
https://doi.org/10.1038/ncomms11479
https://doi.org/10.1038/s41467-020-16540-x
https://doi.org/10.1038/s41467-020-16540-x


2932	 G. Boniolo et al.

1 3

Zhu, Z., et al. (2016). Measuring patient similarities via a deep architecture with medical concept embed-
ding. In 2016 IEEE 16th international conference on data mining. https://​doi.​org/​10.​1109/​ICDM.​
2016.​0086.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/ICDM.2016.0086
https://doi.org/10.1109/ICDM.2016.0086

	Patient Similarity in the Era of Precision Medicine: A Philosophical Analysis
	Abstract
	1 Introduction
	2 Similarity and Distance from a Philosophical Perspective
	2.1 The Geometrical Model
	2.2 The Feature Matching Approach

	3 Clusters via Similarity
	4 Tversky’s Approach and Grouping Patient via Similarity
	5 Conclusions
	Acknowledgements 
	References




