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Abstract. District Heating Networks (DHNs), which dispatch thermal energy from a heat source 

to end-users by means of a heat carrier, are composed of pipes that can be affected by faults that 

endanger system reliability. Thus, reliable diagnostic approaches have to be employed to 

evaluate the health state of the DHN.  

In the framework of the ENERGYNIUS research project, the authors of this paper developed a 

diagnostic approach aimed at detecting and identifying the most frequent faults that affect DHN 

pipes, i.e., water leakages, heat losses and pressure losses. The diagnostic approach detects and 

identifies pipe faults by coupling a DHN model with an optimization algorithm. As a result, the 

health indices of each pipe of the DHN, the fault position, its type and magnitude are provided. 

This study investigates the capability of the diagnostic approach by using two datasets, in which 

challenging faults were hypothetically implanted in the DHN of the campus of the University of 

Parma.  

The diagnostic approach successfully detected and identified both faults, by also accurately 

assessing fault magnitude. In addition, the relative error with which each DHN variable is 

predicted is lower than 0.06 %.  

1.  Introduction 

Energy systems are experiencing a transition towards new design and management concepts in which 

energy networks (e.g., heat, electricity, gas, transport) will be integrated with each other to create the 

so-called smart energy systems.  

This goal can be addressed by increasing the exploitation of renewable energy sources, optimizing 

national grids and pushing self-consumption strategies (e.g., energy districts). As a result, 

environmental, economic and social benefits are expected. 

Due to the relevance of the topic, the authors developed several studies (e.g., [1-6]) and took part in 

research projects to promote the development of efficient smart energy systems. Among them, the 

current paper deals with the ENERGYNIUS project [7], (namely, ENERGY Networks Integration for 

Urban Systems) that was focused on the development of (i) strategies for integrating prosumers within 

energy districts that contribute to the regional and national energy networks, (ii) mathematical models 

for the real-time simulation of integrated energy networks, and (iii) methodologies for the optimized 

management, control and diagnosis of energy systems.  

In a smart energy system, District Heating Networks (DHNs) clearly represent a key component 

employed to dispatch thermal energy from a heat source to end-users.  
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As outlined in [8] and [9], the efficiency of DHNs depends on pipe health state, which can be 

compromised by three fault types, i.e., leakages, anomalous heat and pressure losses. Water leakages 

are caused by pipe corrosion [10] and failures in welded joints. Anomalous heat losses usually occur 

because of damages to the insulation and pipe casing ([10] and [11]). Finally, anomalous pressure losses 

are usually caused by the variation of pipe characteristics (e.g., roughness and diameter).  

Thus, efficient diagnostic approaches are required to evaluate the comprehensive health state of the 

DHN, by detecting and identifying the faulty pipes. The detection task consists of localizing the faulty 

pipe, while the fault identification consists of identifying the fault type and estimating its magnitude.  

In the literature, only a few diagnostic methodologies tackled this goal, by simultaneously detecting 

water leakages along pipes, and anomalous heat and pressure losses. This purpose has been recently 

pursued by Manservigi et al. [8] and Bahlawan et al. [9], who developed a novel diagnostic approach 

for detecting and identifying faults affecting DHN pipes. In [8] and [9], the DHN diagnosis was 

performed by coupling a DHN simulation model with an optimization algorithm. The DHN simulation 

model calculated the DHN variables, i.e., mass flow rate, temperature and pressure at each pipe and 

node of the DHN, while the optimization algorithm identified pipe health indices in such a manner that 

the error between measurement and simulated variables was minimized.  

In addition, Manservigi et al. [8] investigated the effect of different fault magnitudes on the DHN 

variables. Subsequently, the diagnostic methodology was challenged at detecting and identifying faults 

affecting the DHN of the campus of the University of Parma. To this purpose, twenty-three datasets 

were generated by a digital twin of the DHN under analysis, in which different fault causes and 

magnitudes were implanted. As discussed in [9], the diagnostic approach correctly detected all datasets. 

In particular, Bahlawan et al. [9] focused on the diagnosis of eight out of twenty-three datasets, i.e., one 

healthy dataset and seven faulty datasets. In [9], the diagnostic approach detected and identified all 

faults, by also evaluating the correct health index of each pipe of the DHN. In addition, the DHN 

diagnosis was always physically sound, by always detecting and identifying the faulty zone.  

These positive results were also strengthened by the fact that the relative error of each predicted DHN 

variable was in the range from - 0.06 % to 0.03 %. 

In the current paper, the diagnostic approach developed and validated in [8] and [9] is further tested 

by means of two additional case studies simulated by means of the digital twin [9]. In the first dataset 

considered in this paper, one pipe is affected by anomalous pressure losses due to two simultaneous 

fault causes, i.e., increase in pipe roughness and decrease in pipe internal diameter. Instead, in the second 

dataset, two pipes are faulty due to the increase in the insulation thermal conductivity. The analyses 

reported in the current study are aimed at thoroughly evaluating the capability of the diagnostic 

approach, even in the most challenging scenarios.  

The paper is structured as follows. First, the basics of the diagnostic approach are briefly reported. 

Second, the case study is described, by focusing on the DHN of the campus of the University of Parma, 

the simulation of the faulty datasets and their features. Then, the diagnostic approach is tested in the 

Results Section and finally conclusions are drawn.  

2.  Diagnostic approach 

The diagnostic approach is aimed at detecting and identifying three fault types that affect the health state 

of DHNs, i.e., water leakages along pipes, anomalous pressure losses and thermal energy dissipations.  

To evaluate the health state of the DHN, each pipe of the DHN is labelled by means of the three 

health indices, namely xQ, xRp and xRth, which evaluate the occurrence of water leakages, anomalous 

pressure losses and anomalous heat losses, respectively. The health indices are equal to one under 

healthy conditions, while they are lower than one when a fault occurs; the lower the health index, the 

higher the magnitude of the fault.  

To perform the diagnosis of the system, the diagnostic approach (see figure 1) exploits a DHN model 

that calculates the DHN variables, i.e., mass flow rate, temperature and pressure, of the DHN, by using 

balance equations under steady-state conditions.  
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Figure 1. Scheme of the diagnostic approach. 
 

The DHN health state is evaluated by using an optimization algorithm that adjusts the health indices 

of each pipe until the error function converges to a minimum. Further details about the diagnostic 

approach are reported in [8] and [9]. 

2.1.  DHN model 

The DHN model calculates the flow rate (Q) of each pipe, and the temperature (T) and pressure (p) at 

each node.  

The mass flow rate Q that flows through each pipe is calculated by solving the mass flow rate balance 

at each node of the DHN, as in equation (1), 
 

∑ xQQ
in

- ∑ Q
EU

 - ∑ Q
out

 = 0 (1) 

 

where xQ·Qin is the mass flow rate that enters a node, QEU is the mass flow rate that leaves the node and 

flows towards an end-user, while Qout is the mass flow rate that leaves the node and flows towards a 

split or a mixer.  

The temperature of each node of the DHN is calculated by means of thermal power balances solved 

under steady-state conditions and by assuming that the specific heat c is constant. For each pipe of the 

DHN, the thermal power balance expressed in equation (2) includes three contributions: (i) the thermal 

power that enters a pipe, (ii) the thermal power that leaves the pipe, (iii) the thermal power losses due 

to water leakages and thermal dissipations through pipe walls. 
 

 cQTup- cxQQTdown - c(1 - xQ)Q (
Tup + Tdown

2
)  - 

1

Rth

(
Tup + Tdown

2
 - Tg) =0 (2) 

 

The thermal dissipations depend on the thermal resistance Rth (equation (3)), which accounts for 

internal convection and conduction of each pipe layer, i.e., steel pipe, insulation and external casing. 
 

 Rth= xRth [
1

πLDint,pkconv,int

+
1

2πLλp

ln (
Dext

Dint

) +
1

2πLλins

ln (
Dins

Dext

) +
1

2πLλc

ln (
Dc

Dins

)] (3) 

 

The pressure of each node of the DHN is calculated by solving a set of equations as the one reported 

in equation (4), where pup and pdown are the pressure of the upstream and downstream nodes, respectively, 

of each considered pipe.  
 

- p
up

 + p
down

 + ∆p =0 (4) 

 

Pressure loss through a pipe, i.e., ∆p, is calculated as in equation (5): 
 

∆p= RpQ2 (5) 
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, where the coefficient Rp includes both concentrated and distributed pressure losses (see equation (6)): 
 

Rp = 
1

xRp

[
8

ρ(T̅)π2Dint
4

(f(T̅)
L

Dint

+ β)] (6) 

2.2.  Inputs, outputs and objective function 

The diagnostic approach is fed by two types of input variables, i.e., independent and dependent variables.  

The independent variables comprise the ground temperature, pipe characteristics, e.g., L, some 

measured end-user and power plant variables (see table 1).  
 

Table 1. Inputs of the diagnostic approach. 

 Variables 

Independent variables 

Ground temperature Tg  

Pipe characteristics 
Li, Dint,P,i, Dext,P,i, Dins,i, Dc,i, 

βi, λP,i, λins,i, λc,i, εi 
i = 1, …, NP 

End-user measurements Q
EU,i
meas, ∆TEU,i i = 1, …, NEU 

Power plant measurements TPP,i,s
meas , p

PP,i,s
meas , p

PP,i,r
meas  i = 1, …, NPP 

Dependent variables 
End-user measurements TEU,i,s

meas , TEU,i,r
meas , p

EU,i,s
meas , p

EU,i,r
meas  i = 1, …, NEU 

Power plant measurements Q
PP,i,s
meas , Q

PP,i,r
meas , TPP,i,r

meas  i = 1, …, NPP 

 

Additional end-user and power plant measured variables (see once again table 1) are used as 

dependent variables, since they feed the objective function Fob reported in equation (7), which compares 

the measured and predicted, i.e., calculated by the DHN model, variables. 

The outputs of the diagnostic approach are the predicted health indices and the predicted DHN 

variables (figure 1 and table 2). For each pipe of the DHN, the diagnostic approach provides six health 

indices, i.e., xQ,s, xRth,s, xRp,s, xQ,r, xRth,r, xRp,r, which comprehensively assess the health state of both the 

supply and return pipelines. The predicted DHN variables are the mass flow rate Q that flows through 

each pipe, and pressure p and temperature T at each node of the DHN.  

An optimization algorithm is used for minimizing the difference between the measured and predicted 

DHN variables of the objective function Fob (equation (7)). To this purpose, the optimization algorithm 

adjusts the health indices until Fob converges to a minimum, thus allowing the identification of the 

outputs of the diagnostic approach. 
 

Fob = A + B + C  

 

 A = (
Q

PP
meas-Q

PP

Q
PP
meas )

s

2

+ (
Q

PP
meas-Q

PP

Q
PP
meas )

r

2

  

 B = (
TPP

meas-TPP

TPP
meas )

r

2

+ ∑ (
TEU,i

meas-TEU,i

TEU,i
meas )

s

2

+ (
TEU,i

meas-TEU,i

TEU,i
meas )

r

2NEU

i

 

 C = ∑ (
p

EU,i
meas-p

EU,i

p
EU,i
meas

)

s

2

+ (
p

EU,i
meas-p

EU,i

p
EU,i
meas

)

r

2NEU

i

 

(7) 
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Table 2. Outputs of the diagnostic approach. 

 Variables  

Predicted health indices xQ,s,i, xQ,r,i, xRp,s,i, xRp,r,i, xRth,s,i, xRth,r,i i = 1, …, NP 

Predicted DHN variables 
Qs,i, Qr,i i = 1, …, NP 

Ts,i, Tr,i, ps,i, pr,i i = 1, …, Nn 

3.  Case study 

3.1.  District heating network 

In this paper, the diagnostic approach is challenged at detecting and identifying faults that hypothetically 

affect the DHN of the campus of the University of Parma (figure 2), in Italy. 

 

 

Figure 2. Scheme of the considered portion of the DHN of the campus of the University of Parma. 

 

In the considered DHN, a thermal power plant heats the supply water, which is distributed by means 

of the supply pipeline towards twelve connected end-users i.e., departments, laboratories, classrooms 

and cafeterias [12]. The water mass flow rate enters the heat exchanger of each end-user and the return 

water goes back to the thermal power station.  

The DHN includes both a supply and return pipeline, each one composed of twenty-three pipes and 

twenty-four nodes. As depicted in figure 2, each pipeline comprises one thermal power plant, twelve 

end-user nodes and eleven splitting and junction nodes.  

In the case of the DHN of the campus of the University of Parma, the diagnostic model is required 

to predict one hundred thirty-eight health indices, since (i) each pipe is characterized by three health 

indices, (ii) each pipeline comprises twenty-three pipes and (iii) both the supply and the return pipelines 

are considered.  

3.2.  Digital twin of the DHN 

In this paper, the DHN variables (Q, T and p) were generated by means of the simulation model 

developed in [13], which mimics the dynamic behaviour of the DHN investigated in this paper. Thus, 
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such model is used as a digital twin of the real DHN. Further details about model structure and equations 

are reported in [9] and [13]. 

3.3.  Implanted faults 

The pipelines of the DHN of the campus of the University of Parma are made of steel and are 

thermally insulated by means of a rock-wool layer and an external casing. Thus, under healthy 

conditions, the thermal conductivity values used in equation (3) are λ*
P = 57 W∙m-1∙K-1,  

λ*
ins = 0.04 W∙m-1∙K-1 and λ*

c = 1 W∙m-1∙K-1. Pipe roughness ε* is assumed equal to 0.1 mm.  

The digital twin was used to generate the faulty datasets by modifying pipe characteristics, i.e., ε and 

λins, Dint, as described in Bahlawan et al. [9].  

The results presented in this paper focus on two faulty datasets, namely Fault #1 and #2 (see table 

3), which are two challenging scenarios, since they comprise two simultaneous fault causes.  

In this paper, each pipe of the DHN is labelled by using the upstream and downstream nodes.  

 

Table 3. Implanted faults analyzed in this paper. 

Fault 

no. 

Effect of the 

fault 

Faulty 

pipe 

Fault 

location 
Faulty parameter Healthy parameter 

#1 
Anomalous 

pressure losses 
19-20 

Entire pipe ε = 1.0 mm ε* = 0.1 mm 

10 % of pipe 

length 
Dint = 37 mm D*

int = 100 mm 

#2 
Anomalous  

heat losses 

12-14 Entire pipe λins = 0.40 W·m-1·K-1 
λ*

ins = 0.04 W·m-1·K-1 
19-20 Entire pipe λins = 2.00 W·m-1·K-1 

 

In Fault #1, pipe 19-20 is affected by anomalous pressure losses due to both the increase in pipe 

roughness and decrease in the pipe internal diameter (table 3). In the faulty dataset, the pipe roughness 

is one order of magnitude higher than the corresponding value considered in the healthy scenario along 

the entire pipe length, while the pipe internal diameter is 63 % lower than in the healthy scenario.  

In Fault #2, two pipes are faulty, i.e., pipes 12-14 and 19-20, and anomalous heat losses are caused 

by an increase in λins up to 2 W·m-1·K-1 along the entire length of the pipe.  

4.  Results 

In this paper, the diagnosis of the DHN of the campus of the University of Parma was performed as 

follows: 

 one steady-state time point was identified, since the diagnostic approach can only be 

employed under steady-state conditions. To this purpose, the ratio between the mean value 

and standard deviation of each DHN variable was calculated over sixty minutes. Such a ratio 

identifies a steady-state time point if its value is lower than 10-6 for each DHN variable;  

 a gradient-based method (in this paper, the tool available in Matlab® environment [14] was 

employed), was used to obtain the health indices of each pipe. The starting values of the 

optimization were set equal to 1.0, while the search space was in the range from 10-3 (i.e., 

lower bound) and 1.0 (i.e., upper bound); such values correspond to 99.9 % decrease of 

health indices and the healthy condition, respectively. The optimization procedure stopped 

when the variation of the objective function was lower than 10-9. 

The diagnosis of the faulty datasets Fault #1 and #2 was conveyed by analyzing: 

 the relative variation of each DHN variable, by comparing the faulty scenario, i.e., Y, to the 

healthy condition, i.e., Y*, as in equation (8).  
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δY= 
Y - Y*

Y*
   , Y = Q, T, p (8) 

 

 the expected and predicted xRp and xRth, which are calculated by comparing Rth (calculated as 

in equation (3)) and Rp (calculated as in equation 6) of the faulty scenarios simulated by the 

digital twin to the same values under healthy condition [9]; 

 the expected and predicted Rth and Rp of the faulty pipe. In addition, the difference between 

the temperature and pressure under healthy condition (i.e., T*, p*) and the faulty scenario 

(i.e., T, p) are also provided; 

 the absolute and relative error with which each DHN variable is evaluated [9]; 

 the heatmap charts, of which the colors highlight the predicted health indices. As discussed 

in [8], xRth,s and xRth,r predicted by the diagnostic approach are shown in a logarithmic scale. 

The actual faulty pipe and type are marked by means of the “X” symbol.  

In this paper, the diagnostic approach is tested by means of simulated data that are fully reliable, 

since both feature and label noise do not occur. Instead, experimental data would have required the 

exploitation of data-cleaning approaches, as the ones documented in [15-18], in order to preliminarily 

assess data reliability. 

4.1.  Fault #1 

As reported in table 3, the anomalous pressure losses affecting pipe 19-20 are caused by both an increase 

in the pipe roughness and decrease in the pipe internal diameter. As a result, both the mass flow rate and 

pressure at node 20 are lower than that of the healthy scenario (table 4). Such a fault mainly affects node 

20 (see figure 3), since it is the downstream the node of the faulty pipe. Due to the fault, the health index 

xRp,s is expected to be equal to 0.336 (table 4).  

As can be grasped from table 4 and figure 4, the diagnostic approach correctly detects and identifies 

the faulty pipe and fault type, by also accurately predicting the health index magnitude. In fact, all health 

indices are found equal to 1, with the exception of the predicted xRp,s of pipe 19-20, which is equal to 

0.338. Based on this extremely positive result, the relative error of the predicted DHN variables is lower 

than 0.06 %. 
 

Table 4. Fault #1: expected vs. predicted values. 

 Expected value Predicted value 

Health index xRp,s = 0.336 xRp,s = 0.338 

Rp [kg-1∙m-1] 645.51 643.53 

Effect on the downstream node p20
* - p20 = 9211.599 Pa p20

* - p20 = 9211.602 Pa 

 

 

Figure 3. Comparison between Fault #1 and the healthy scenario. 

[%]

- 4.90 %
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Figure 4. Predicted health indices for Fault #1. 

4.2.  Fault #2 

Fault #2 affects two pipes, i.e., pipes 12-14 and 19-20, in which the thermal conductivity of the insulation 

material increases, as reported in table 3. Due to the fault, the temperature decrease in node 14 is as high 

as 1.94 °C with respect to the healthy scenario, while it is equal to 1.64 °C in node 20 (table 5).  
 

Table 5. Fault #2: expected vs. predicted values. 

 Pipe Expected value Predicted value 

Health index 
12 - 14 xRth,s = 0.0205 xRth,s = 0.0213 

19 - 20 xRth,s = 0.1005 xRth,s = 0.1021 

Rth, [K∙W-1] 12 - 14 0.000194 0.001934 

Rth, [K∙W-1] 19 - 20 0.00186 0.00184 

Effect on the downstream node 
12 - 14 T*

14 - T14 = 1.9385 °C 

T*
20 - T20 = 1.6421 °C 

T* - T = 1.9371 °C 

T* - T = 1.6421 °C 19 - 20 

 

As can be grasped from figure 5, all nodes are affected by fault occurrence (though in a different 

degree), by exhibiting negative δT values, i.e., in the faulty scenario the temperature of each node is 

lower than that under healthy conditions. As expected, the temperature of the downstream nodes of the 

faulty pipes, i.e., nodes 14 through 18 and node 20, are mainly affected by the fault, since they exhibit 

the lowest δT values, i.e., -2.73 % and -2.31 %, respectively, while it is equal to -0.33 % in the remaining 

nodes at maximum.  

Due to the fault magnitudes, the expected health index xRth,s is equal to 0.02 and 0.100 in pipe 12-14 

and 19-20, respectively, as shown in table 5. The diagnosis of the faulty dataset is reported in figure 6.  

 

Figure 5. Comparison between Fault #2 and the healthy scenario. 
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Figure 6. Predicted health indices for Fault #2. 

 

Once again, the capability of the diagnostic approach is fully proved, since the faults are correctly 

detected, identified and evaluated. In fact, the lowest health indices are found in pipes 12-14 and 19-20, 

where the predicted xRth,s values are equal to 0.0213 (pipe 12-14) and 0.1021 (pipe 19-20). In addition, 

no leakages and anomalous pressure losses are detected, since the predicted xQ and xRp values are higher 

than 0.96 (figure 6).  

Finally, the relative error with which the DHN variables are estimated is lower than 0.06 %.  

5.  Conclusions 

In recent years, the concept of smart energy system has gained attention to move towards 100 % 

renewable energy systems, by pushing new design and management strategies for integrating multiple 

energy networks.  

This goal has been recently investigated by the ENERGYNIUS (i.e., ENERGY Networks Integration 

for Urban Systems) research project, which focused on the role of prosumers and energy districts and 

developed mathematical models for real-time simulation of integrated multi-energy networks and their 

diagnosis. 

In smart energy systems, District Heating Networks (DHNs) represent a key component employed 

to dispatch thermal energy from a heat source to end-users, by using a network composed of pipes. The 

reliability of a DHN clearly depends on the pipe health state, which can be compromised by three faults, 

i.e., water leakages, anomalous heat and pressure losses.  

For this reason, reliable diagnostic approaches are required for detecting and identifying faults 

affecting the DHN pipes. To this purpose, the authors of this paper developed a novel diagnostic 

approach that is able to detect and identify the most common pipe failures under steady-state conditions. 

The diagnostic approach coupled a DHN model that calculated the DHN variables, i.e., mass flow rate, 

temperature and pressure, with an optimization algorithm. The outputs of diagnostic approach are the 

health indices of all pipes of the DHN.  

In this paper, the diagnostic approach was applied to two challenging datasets in which different 

faults were implanted in the DHN of the campus of the University of Parma, whose variables were 

generated by means of a digital twin of the DHN.  

In the first dataset, one pipe was faulty due to the simultaneous increase in pipe roughness and 

decrease in the pipe internal diameter. As a result, anomalous pressure losses occurred. In the second 

dataset, two faulty pipes were simulated, in which anomalous heat losses were caused by an increase in 

the insulation thermal conductivity.  

The diagnostic approach successfully detected and identified the faults of both datasets, since the 

faulty pipe and fault type were found, by also accurately estimating the fault magnitude. The extremely 

positive result was also conveyed by the fact that the relative error with which the diagnostic approach 

calculated the DHN variable was always lower than 0.06 %.  
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