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Abstract: Nowadays, coronary computed tomography angiography (CCTA) has a role of paramount
importance in the diagnostic algorithm of ischemic heart disease (IHD), both in stable coronary artery
disease (CAD) and acute chest pain. Alongside the quantification of obstructive coronary artery
disease, the recent technologic developments in CCTA provide additional relevant information that
can be considered as “novel markers” for risk stratification in different settings, including ischemic
heart disease, atrial fibrillation, and myocardial inflammation. These markers include: (i) epicardial
adipose tissue (EAT), associated with plaque development and the occurrence of arrhythmias; (ii) late
iodine enhancement (LIE), which allows the identification of myocardial fibrosis; and (iii) plaque
characterization, which provides data about plaque vulnerability. In the precision medicine era, these
emerging markers should be integrated into CCTA evaluation to allow for the bespoke interventional
and pharmacological management of each patient.
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1. Introduction

Coronary computed tomography angiography (CCTA) is of paramount importance
with regard to ischemic heart disease (IHD). CCTA is considered one of the best non-
invasive imaging techniques for giving answers about coronary artery disease (CAD).
The current guidelines about chronic coronary syndrome recommend CCTA as a first-line
anatomical test for patients with a low and intermediate risk of CAD [1]. This technique
plays a key role also in the treatment of acute chest pain with the aim of a better rule-in and
rule-out of patients in the emergency department [2]. Additionally, CCTA is able to give
other relevant information that can be considered “novel” markers for risk stratification
in primary and secondary prevention. Data about epicardial adipose tissue (EAT) can
help identify patients at higher risk of plaque development. The assessment of late iodine
enhancement (LIE) can help identify scarred myocardium, for example, in patients with
unknown previous myocardial damage. Finally, plaque characterization represents a new
frontier in atherosclerosis evaluation and the identification of high-risk plaques without
significant stenosis. Table 1 shows the technical aspects and the clinical meaning of these
markers. The present review aims to summarize the main evidence about these three CCTA
markers in order to highlight the importance of CCTA in the precision medicine era.
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Table 1. Technical aspects and clinical meaning of each CT marker.

Parameters Technical Aspects Clinical Meaning

EAT

No need of contrast media
Slice thickness 2.5–3 mm

Ad hoc software for
volume calculation

Help in identification of
patients at risk of vulnerable

plaque development

LIE
CCTA standard protocol

Acquisition of images at 6–8 min
after contrast injection

Help in diagnosis of HF
etiology, rule-in and rule-out

in myocarditis

High-risk plaque
CCTA standard protocol

Availability of plaque
reconstruction software

Help in identification of
patients with a high risk of

adverse events

2. Materials and Methods

Thanks to new technological developments, CCTA gives additional information in
addition to the estimation of coronary stenosis. Three markers recently emerged as novel
parameters in terms of diagnostic and prognostic CCTA performance: EAT quantification,
LIE, and plaque characterization assessment. Each marker was demonstrated to predict
adverse events and its identification by CCTA allowed a better risk stratification and
management of patients [3–5].

A Medline search of full-text articles published in English until February 2020 was performed.
Overall, 679 records for EAT, 117 records for LIE, 903 records for plaque characteri-

zation were identified. For each parameter, the search terms were as follows: ((coronary
CTA) OR (cardiac computed tomography) OR (CTA) OR (coronary CT)) AND ((epicardial
fat) OR (EAT) OR (epicardial adipose tissue)); ((coronary CTA) OR (cardiac computed
tomography) OR (CTA) OR (coronary CT)) AND ((LIE) OR (late iodine enhancement));
((coronary CTA) OR (cardiac computed tomography) OR (CTA) OR (coronary CT)) AND
((plaque composition) OR (plaque characterization)). Only papers published in English
and in peer reviewed journals were selected.

The quality of the selected papers was tested using MINORS criteria [6]. Unblinded re-
viewers quality assessment. Discrepancies between reviewers were resolved by consensus.
The maximum score obtained was 14 and the minimum 8. In the present review, we only
included the studies obtaining a score of 10. Therefore, a total of 86 papers were considered
for this overview (EAT = 26; LIE = 22; plaque characterization = 32).

EPICARDIAL FAT
What is it?
EAT represents the fat layer around the heart, between the myocardium and the

visceral layer of the pericardium. It is of particular interest because of its unique anatomic
and physiologic relationship to the heart [3].

The EAT has several known physiological functions, including the following: protect-
ing the coronary arteries from the mechanical stress of arterial pulse and cardiac contraction;
controlling vascular tension; stimulating nitric oxide production; reducing oxidative stress;
and managing thermogenic function against hypothermia. It is also metabolically active
(secreting mediators and pro- and anti-inflammatory cytokines), functioning as a paracrine
and endocrine organ in lipid and glucose homeostasis. Thanks to its ability to use free
fatty acid (FFA), EAT can protect the myocardium from their cardiotoxic effect. Addi-
tionally, it produces adiponectin that protects coronary circulation, improves endothelial
function, reduces oxidative stress, and indirectly decreases the level of interleukin-6 (IL-6)
and C-reactive protein (CRP) [7,8].

CCTA is the best technique for EAT assessment because of its high spatial resolution
(Figure 1). EAT in non-contrast CCTA is visualized as a tissue with attenuation ranging
from −190 to −30 Hounsfield Units around the heart. Volumetric assessment of EAT can be
performed semi-automatically or by automated algorithms (quantifying both attenuation
and volume of EAT) [9–11].
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Figure 1. Epicardial fat assessment: purple contours show EAT volume with cardiac CT.

One of the main advantages of CCTA is the ability to assess the coronary tree and EAT
simultaneously, providing information about the relationship between coronary atheroscle-
rosis and fat adjacent to the vessel. Antonopoulos et al. assessed EAT attenuation devel-
oping the fat attenuation index (FAI), which was defined as the average EAT attenuation
within a radial distance from the outer wall of the coronary artery equal to the mean diame-
ter of the vessel. This parameter allows for the assessment of the size and lipid content of
adipocytes in the proximity of the coronary arteries [12].

In recent years, researchers have established a relationship between EAT and heart
diseases, including CAD, heart failure with preserved ejection fraction (HFrEF), and atrial
fibrillation (AF) [13,14].

When and why to use it?

• Coronary Artery Disease

Inflammation can be involved in all stages of CAD, from initial atherogenesis to the
progression of atherosclerotic lesions, and finally to plaque rupture and atherothrombosis.
In this context, an EAT dysfunction seems to play a key role through the increased produc-
tion of proinflammatory adipokines, failure of triglyceride storage, increased lipolysis, and
release of free fatty acids [15].

Alexopoulos et al. demonstrated that the EAT volume was greater in the presence
of CAD-obstructive noncalcified plaques, showing the association between EAT and the
vulnerable plaques [16]. In a study combining a CT scan and intravascular ultrasound
imaging (IVUS), Yamashita et al. demonstrated that EAT was associated with total coronary
plaque burden and an increased vulnerability of the plaque (particularly in the right
coronary artery and left anterior descending artery) [17]. These results confirmed that the
amount of EAT and/or EAT proinflammatory state correlate with the severity of CAD and
plaque vulnerability.

In view of its link to atherosclerotic plaque, several studies demonstrated that EAT
was an independent predictor of major cardiovascular events (MACE). In particular,
Mancio et al. conducted a metanalysis demonstrating the independent association be-
tween EAT volume and coronary artery stenosis, myocardial ischemia, and MACE [18].
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Mahabadi et al. pointed out that EAT was associated with fatal and nonfatal coronary
events in the general population and added information from cardiac CT above the Cal-
cium score [19]. Goeller M et al. analyzed 456 asymptomatic subjects and showed that EAT
density was significantly related to MACE (p = 0.029) [20]. Another study by Mahabadi et al.
about secondary prevention found that patients with myocardial infarction have high EAT
volume and attenuation [21].

In the CRISP-CT (Cardiovascular RISk Prediction using Computed Tomography)
study, perivascular fat attenuation was assessed by developing the Fat Attenuation Index
(FAI). The study demonstrated that FAI predicted all-cause and cardiac mortality over
clinical risk factors [22]. Recently, a post hoc analysis of the CRISP-CT study reported
that FAI provides incremental prognostic value over and above the presence of high-risk
plaques on CCTA. Furthermore, fat attenuation could be useful for clinical risk assessment
and also guide the deployment of targeted anti-inflammatory therapies in patients with
stable CAD and residual inflammatory risk [23]. Table 2 offers a possible management
algorithm for patients with a large amount of EAT.

Table 2. Possible clinical implication algorithm based on CT markers.

Clinical Scenario Possible Clinical Implication

Large EAT volume in dysmetabolic patient Optimization of lipid-lowering therapy, closer cardiovascular risk
factors monitoring

Large EAT volume in CAD patient Optimization of lipid-lowering therapy

Large EAT volume in AF patient Pharmacological rate/rhythm control if possible

Large EAT volume in HF Consider EAT with other validated parameters for CRT response

LIE related to unknown previous myocardial infarction CMR for estimation of viability, coronary angiography *

LIE related to acute myocarditis Medical therapy and CMR follow up at 3–6 months *

LIE related to HCM Closer follow up for arrhythmogenic risk *

High-risk plaque features with significant stenosis Coronary angiography

High risk plaque features without stenosis Optimization of lipid-lowering therapy

High-risk plaque features with intermediate stenosis Optimization of lipid-lowering therapy, antiplatelet therapy, stress test

* Further data are needed.

• Atrial Fibrillation

EAT has emerged as a risk factor and independent predictor of AF development and
recurrence after ablation [24]. The literature indicates several potential mechanisms linking
EAT with AF, including the following: proinflammatory status of EAT; reactive oxygen
species (ROS) released by EAT; fatty infiltration of the atrium; dysfunction of the autonomic
nervous system. It has been postulated that the EAT can change electrophysiological char-
acteristics and ionic currents via cytokines, adipokines, and adipocyte infiltration, causing
the formation of the electrical substrate for AF. Other less understood potential mecha-
nisms may explain the involvement of EAT in the pathogenesis of AF, such as the positive
correlation between the total aromatase content of EAT and the occurrence/duration of
triggered atrial arrhythmias [25,26].

In the Framingham Heart Study cohort, fat volume was an independent predictor of
AF even after adjusting for other risk factors. In two recent meta-analyses, the association
between AF and EAT was confirmed, and it was stronger with persistent AF than paroxys-
mal AF [27]. Other studies compared some well-established structural heart abnormalities
linked to AF, such as left atrial size, with peri-atrial inflammation, as measured by adipose
tissue attenuation on the CCTA. They found that the latter is strongly associated with AF
regardless of the LA size. From a clinical point of view, it was shown that patients with a
higher EAT volume had a worse outcome and earlier AF recurrences after transcatheter
ablation [20–30].
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The recent interest in therapies capable of reducing the volume of EAT and its link to
the development of AF and AF recurrence after transcatheter ablation may open the way to
new approaches for the treatment and prevention of this arrhythmia (Table 2).

• Heart Failure

EAT has been suggested to have a role in heart failure, particularly in patients with
HFpEF. When fat cells become dysfunctional, they begin to produce proinflammatory fac-
tors that lead to chronic systemic inflammation. On one hand, through these inflammatory
mechanisms mediated primarily by adipokines, “epicardial” obesity could cause adverse
myocardial remodeling in HF, particularly in those with left ventricular ejection fraction
>40%. On the other hand, epicardial fat may also negatively impact cardiac performance
due to a direct mechanical effect caused by an increased pericardial restraint and enhanced
ventricular interdependence [31,32].

The association between EAT thickness or volume and heart failure with reduced
ejection fraction (HFrEF) is controversial. EAT parameters appeared either increased or,
more frequently, decreased in HFrEF patients compared with healthy individuals. This
variability may be explained by the presence of comorbidities, such as CAD, obesity, and
diabetes, which may influence EAT volume in HFrEF. In addition, changes in metabolic
and hemodynamic status that characterize HFrEF may modulate EAT volume. Critically
ill patients with HFrEF may present a widespread systematic fat loss and, as a result, a
reduced EAT volume [33,34].

Recent studies evaluated the response to CRT in patients with HFrEF. EAT thickness
of the left atrioventricular groove was associated with total perfusion deficit of the left
ventricle and left ventricular systolic dyssynchrony in patients with non-ischemic systolic
HF. The EAT thickness of the AV groove had a predictive value for CRT response in patients
with non-ischemic systolic HF [35].

LATE IODINE ENHANCEMENT
What is it?
In terms of tissue characterization, CCTA shares similar properties with cardiac mag-

netic resonance (CMR) in terms of tissue characterization. The iodine-based contrast media
used in CCTA share some characteristics with gadolinium, which is used in CMR. In
fact, the former show a delayed washout in scarred myocardium compared to the normal
one, generating areas of late iodine enhancement (LIE) with a 5–15 min delayed CCTA
scan [36,37]. The acquisition protocol for LIE-CT is currently based on two pillars. First, the
administration of larger amounts of iodinated contrast medium (at least 1.5 mL/kg) when
compared to the dose needed for coronary anatomy evaluation. Second, the acquisition of
CT images with ECG gating after 8–10 min postcontrast administration. The continuous
advancement in CT technology, in terms of increased spatial and temporal resolution,
has led to a broader clinical application. This, combined with improvements in recon-
struction algorithm and detector technology, has allowed for significant noise reduction
in images acquired at low energy, expanding the application of CT to myocardial scar
characterization [36].

In contrast to CMR, besides its suitability for coronary artery imaging, CCTA is
widely used because of its shorter acquisition times, its accessibility, and its desirability
in patients wearing a cardiac implantable device or undergoing dialysis. Moreover, LIE-
CT, through a combined evaluation of myocardial scar and coronary arteries patency,
potentially allows for the simultaneous detection of the culprit lesion and its related
myocardial viability [36,37].

One of the most promising advances in this field is the use of dual-energy CT, which
enables tissue characterization with extracellular volume (ECV) estimation and is con-
sidered a myocardial fibrosis equivalent when evaluated with CMR. Moreover, a strong
correlation was seen between CMR-ECV and CT-ECV in assessing myocardial tissue in
heart failure patients [4].

However, the routine application of cardiac CT and LIE is currently limited, mainly
due to the lack of data confirming its diagnostic value. According to small studies, the
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inter-observer agreement between LIE-CT and LGE-CMR is dependent on the reader’s
experience, with a per-patient overall accuracy of 95% and 88% for the most and the
least experienced operator, respectively. In both per-segment and per-patient analyses,
the specificity and the positive predictive value were excellent, regardless of the reader’s
experience [38,39].

The aim of the current section of this paper is to review the emerging application of
cardiac CT, with specific reference to the LIE-CT role in detecting cardiac diseases and its
implications in patient management (Table 2) (Figure 2).
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When and why to use it?

• Coronary artery disease and heart failure

Aside from myocardial function evaluation, myocardial fibrosis detection has a signifi-
cant prognostic value in ischemic heart disease.

Among the first reports of myocardial fibrosis by CT, there is a small autoptic study in
17 animals in which an accurate myocardial tissue characterization was demonstrated [40].
In 2005, the first-in-human study, comprising 28 patients with a history of myocardial
infarction, showed an excellent agreement between CMR and CT in assessing fibrosis [41]

Three years later, an overall good agreement between CCTA and CMR plus invasive
coronary angiography was demonstrated in the assessment of myocardial fibrosis and
coronary anatomy in 71 patients with new onset ventricular disfunction [42].

Heart failure (HF) also provides a basis for the wide use of cardiac imaging. According
to the current European Society of Cardiology (ESC) guidelines, CT plays a role in ruling
out coronary artery stenosis in patients with a low-to-intermediate pre-test probability of
CAD, and those with equivocal non-invasive stress tests (class of recommendation IIa) [43].
CAD is recognized as the main cause of HF in about 50% of the cases; thus, the appropriate
evaluation of both coronary arteries and myocardial fibrosis is necessary in this category
of patients [44]. Small studies have shown that cardiac CT is a feasible, safe, and effective
imaging tool in determining the underlying etiology of newly diagnosed HFrEF, as it allows
coronary arteries and myocardial fibrosis to be examined simultaneously [40].

As with LGE-CMR, the infarcted area can be detected by LIE-CT via hyper-enhancement.
Previous studies highlighted that the presence of both hyper-enhancement and hypo-
enhancement showed a better correlation with microvascular obstruction, wall thinning,
cardiac remodeling, and ejection fraction compared to the presence of hyperenhancement
alone and was predictive of future major adverse cardiovascular events (MACE) [45,46].

Moreover, in patients with heart failure, LIE-CT imaging has shown a good agreement
with CMR in the localization and pattern recognition of myocardial fibrosis [47,48].
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• Cardiomyopathies and myocarditis

Previous studies investigated LIE-CT in different clinical scenarios, such as hyper-
trophic cardiomyopathy (HCM) and cardiac sarcoidosis, showing a good sensitivity in
detecting myocardial scars [49,50].

It is worth noting that the AHA/ACC 2020 guidelines on the diagnosis and treat-
ment of HCM included cardiac CT as an alternative technique to CMR for myocardial
tissue characterization and scar detection when considering ICD implantation for primary
prevention [51]. At the same time, it is of paramount importance to recognize that even
CCTA images acquired for coronary anatomy evaluation can give information about the
myocardial thickness and the myocardial fat infiltration, and it is mandatory to observe
and report these non-coronary but cardiac findings [52–54].

Among the possible clinical applications of CCTA, one of the most promising ones is
the evaluation of anatomical substrate in patients with ventricular arrhythmias scheduled
for transcatheter ablation. CCTA with LIE enables concomitant myocardial tissue character-
ization and coronary anatomy evaluation; moreover, it can allow accurate pre-procedural
planning in case of an epicardial approach [55].

Few emerging data showed the usefulness of LIE in myocarditis. Bouleti C et al.
performed a proof-of-concept study demonstrating that spectral CT was a valid alternative
to CMR for the detection and assessment of myocardial inflammation in acute myocarditis.
Considering that myocarditis can be misclassified as ACS, CT could play a key role in
ruling out ACS and highlighting inflammation by LIE. This concept gained paramount
importance during the SARS-CoV-2 pandemic. By using dedicated LIE, CCTA was useful in
the diagnosis of COVID-19-related myocarditis [56]. For the aforementioned reasons, CCT
with LIE may be considered when CMR is contraindicated or unfeasible as it is proving to
be an excellent alternative tool in different clinical scenarios.

PLAQUE CHARACTERIZATION
What is it?
CCTA can inform us about these high-risk characteristics and allows us to identify the

“vulnerable” plaque. Histopathological studies first investigated the characteristics of a
vulnerable plaque, which included the following: necrotic core, thin fibrous cap, spotty
calcification, positive remodeling, and inflammation involving plaque and perivascular
tissues [57,58].

CT vascular tissue radiodensity has a good correlation with histological composition,
with calcified plaques corresponding to higher attenuation values (e.g., >465 Hounsfield
Units HU), compared with fibrotic (e.g., 65–260 HU) and low-attenuation lesions with a
necrotic core (e.g., −1 to 64 HU) [59]. So, with CCTA, we can also obtain qualitative infor-
mation (i.e., low-attenuation plaque, napkin-ring sign, and spotty calcification) and not just
quantitative information (i.e., total/calcified/noncalcified plaque burden, diameter steno-
sis, remodeling index) [60]. High-risk plaque features were described as follows [3,61–64]
(Figure 3):

• Low attenuation plaque (LAP) is traditionally defined as a plaque area with a mean
attenuation of <30 HU and reflects a lipid-rich necrotic core, an extracellular con-
glomerate within the intima induced by the necrosis and apoptosis of lipid-laden
macrophage foam cells.

• A napkin-ring sign is defined as a low attenuation core, with a thin hyper-attenuated
ring around a necrotic core.

• Positive remodeling is a relative increase in the cross-sectional diameter of a lesion
compared with a proximal, reference segment of 1.1 or higher. Positive remodeling
is related to compensatory mechanisms of coronary autoregulation, which maintain
a stable vessel area even when the plaques extend more than 40% of the total lumen.
Vascular remodeling can then be detected on CCTA as a relative increase in vascular
diameter around the plaque.

• Spotty calcification is defined as a small (<3 mm), dense (>130 HU) plaque component
surrounded by noncalcified plaque tissue.
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When and why to use it?
Although the obstructive/non-obstructive dichotomy still guides main clinical deci-

sions today, CCTA can give us more information about plaques [65].
As a matter of fact, a patient with CAD is referred to invasive coronary angiography

(ICA) depending on the percentage of stenosis, as it is the most clinically validated element
to guide revascularization [66].

Despite this, it is widely demonstrated that the majority of culprit lesions in ACS
arise from non-obstructive plaques with high-risk characteristics—in the ICONIC trial,
31% of culprit lesions in ACS had high-risk characteristics, and 52% of non-ACS patients
with high-risk plaque features experienced an ACS during the follow-up. For this reason,
improving cardiovascular risk prediction requires a more comprehensive, individualized
assessment of coronary atherosclerosis and patient-specific vascular biology [67]. So, a
plaque characterization should be performed in all patients undergoing CCTA in order to
achieve the best treatment strategy (Table 2).

Narula et al. defined the fibrous cap thickness as the best predictor of vulnerable
plaques [68]. CT lacks the spatial resolution to detect thin cap fibroatheroma, but CT-derived
high-risk plaque features can discriminate thin cap fibroatheroma lesions from non-thin
cap fibroatheroma lesions [69]. In this context, Otsuka K et al. analyzed 895 patients who
underwent CCTA and who were followed for more than one year. The study demonstrated
that both LAP (p = 0.007) and napkin ring sign (p > 0.001), especially the latter, were
independent predictors of future ACS [70].

Several studies focused on the relationship between positive remodeling and LAP
and prognosis.

In the NXT study (Analysis of Coronary Blood Flow Using CT Angiography: Next
Steps), this plaque-level high-risk feature was associated with an increased presence of
ischemia, regardless of the severity of stenoses [71]. Despite a low degree of stenosis,
the reason why low LAPs are more frequently associated with ischemia is due to the
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inflammation they are associated with; in fact, inflammation causes an imbalance between
vasoconstricting and vasodilating substances [72].

In a large longitudinal study, Motoyama et al. reported that high-risk plaques with
positive remodeling and/or LAP were associated with an increased risk of future ACS [73].

In a sub-analysis of the PROMISE trial, the presence of spotty calcification (i.e., as well
as the presence of LAP, napkin ring sign, and positive remodeling) was associated with
higher rates of major adverse cardiac events (death, MI, or hospitalization for unstable
angina) at 25 months in 4415 patients with stable symptoms (HR: 2.73). Furthermore, in
this trial, it was shown that the presence of vulnerable plaque features is associated with
adverse events, even in the absence of obstructive coronary disease [74]. The presence
of spotty calcifications has been shown to be more frequent in patients with ACS than in
patients with stable CAD; on the contrary, large calcifications are more frequently associated
with conditions of stability [75].

Additionally, in the SCOT-HEART study, which included patients with stable chest
pain, the presence of at least one of the high-risk characteristics was shown to be associated
with a higher risk of myocardial infarction and cardiovascular death at 5 years [76].

Given the large amount of strong evidence, the Coronary Artery Disease Reporting
and Data System (CAD-RADS) guidelines recommend medical professionals to report the
presence of plaque vulnerability if at least two of the aforementioned high-risk features are
present in the CCTA study [77].

Furthermore, with the advent of increasingly sophisticated plaque characterization
software, it is possible to precisely quantify the plaque volume and assess the burden of
different plaque types, including calcific, non-calcific, and low attenuation plaque. It has
recently been shown that the use of 256-slice CTA to quantify the plaque volume has an
excellent correlation with IVUS [78].

The total atheroma volume in the non-obstructive lesions is a factor that is associated
with plaque progression to obstructive lesions [79]. In the CAPIRE (Coronary Atherosclero-
sis in Outlier Subjects: Protective and Individual Risk Factor Evaluation) study, the plaque
volume and, in particular, the non-calcified plaque volume was an important predictor of
cardiovascular events. In fact, it was a stronger predictor of adverse events when compared
to lumen stenosis and clinical risk [80].

Finally, in the SCOT-HEART study, the factor most associated with the risk of my-
ocardial infarction was the low attenuation plaque burden. This was a better predictor
than coronary stenosis severity, coronary Calcium Score, cardiovascular risk score, and also
atheroma volume [81].

Conte et al., in a huge prospective study with a follow-up of 98 months, evaluated
plaque burden and other plaque features related to ACS and cardiovascular mortality in
patients without obstructive coronary disease. This study showed that positive remodeling,
LAP, a plaque burden of more than 0.7, or napkin ring sign are the most important predictors
of death or ACS [82].

The presence of high-risk characteristics has a different prognostic implication accord-
ing to FFR value. The 3V FFR-FRIENDS study highlighted that the presence of more than
three high-risk plaque characteristics is associated with adverse cardiac events, particularly
in deferred lesions with a FFR greater than 0.8 [83].

Recently, several authors have tried to make up a risk score in order to use all CT
information to improve the risk stratification of each patient. Two risk scores were created.
The first, the Leaman CT score (CT-LeSc), combines the type of plaque (calcified or non-
calcified), the degree of stenosis, and the coronary plaque location. In the validation
study of this score, it was shown that patients with a CT-LeSc greater than five with non-
obstructive CAD had an adverse event-free survival comparable to patients with obstructive
CAD [84,85]. This score was also validated in the CONFIRM study, wherein 2402 patients
without prior CAD history who underwent CCTA that showed non-obstructive CAD were
enrolled. A complete analysis of plaque composition was performed. CT-LeSc was an
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independent predictor of MACE, improving the prognostic stratification of patients with
non-obstructive CAD [86].

The second risk score is the LEIDEN CT risk score, which assessed the degree of
coronary artery stenosis (>50% or <50%), the type of plaque (calcified, non-calcified, or
mixed), and the plaque location. A higher Leiden CTA score was associated with a 5-year
all-cause mortality or MI [87].

Finally, in the setting of plaque analysis, CCTA is also used to evaluate changes in
atherosclerotic plaque following pharmacological and non-pharmacological therapies. In
the PARADIGM (Progression of atherosclerotic plaque determined by Computed Tomo-
graphic Angiography Imaging) study, statin therapy reduced the high-risk characteristics
of plaque. In particular, this therapy converted vulnerable plaques into calcified plaques,
reduced the progression of calcified plaques into high-risk plaques, and reduced plaque
burden [88].

In the EVAPORATE (Effect of Vascepa on Improving Coronary Atherosclerosis in
People With High Triglycerides Taking Statin Therapy) trial, therapy with statins and
icosapent ethyl resulted in a reduction in LAP volume, compared to therapy with statin
alone [89].

The role of lifestyle intervention was also recently evaluated. In a study of 92 patients,
a healthy lifestyle (healthy diet and physical activity) associated with optimized medical
therapy (OMT) was shown to reduce high-risk plaque and calcified plaque progression
compared to OMT alone [90].

3. Future Perspectives

In recent years, new technologies improved the performance of CCTA. New generation
CTs are characterized by the option of a whole heart coverage, higher spatial and temporal
resolution, and faster scan mode than prior-generation scan [3]. These features improved
the quality of images. Recent advances in technology focused on a reduction in contrast
media dose and radiation exposure. On one hand, the latest CT scanners allow a short
acquisition time, requiring a reduced contrast media volume for coronary opacification.
On the other hand, in order to achieve a reduction in radiation exposure, some tools
are now emerging, such as true cardiac-capable photon counting detectors with greater
spatial resolution [91]. These advances also have the ability to perform an in-deep plaque
analysis [74].

Future perspectives have to take into account machine learning and deep learning,
which represent promising tools in CCTA analysis. The CLARIFY study analyzed artificial
intelligence in coronary artery segmentation in 232 patients undergoing CCTA, demonstrat-
ing that the performance of artificial intelligence was excellent for the accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value [92]. These tools could
significantly overcome the limitations related to human interpretation.

4. Conclusions

Today, CCTA represents a front-line approach for the assessment of CAD. Furthermore,
CCTA allows for the early identification of atherosclerosis and high-risk plaque features,
recognition of EAT abnormalities, and diagnosis of unknown ischemic and non-ischemic
heart disease thanks to LIE. As reported in the present review, all these data play a key role
in the prognostic assessment of patients undergoing CCTA. Emerging CCTA risk scores
have been provided in order to reinforce the link between imaging characteristics and
clinical aspects. Future perspectives should move in this direction. The aim of CCTA
analysis should be to help the management strategy of each patient beyond the mere
quantification of coronary stenosis. Imaging data should be integrated with laboratory and
clinical information in order to choose the best-tailored therapeutic option for each patient.
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7. Konwerski, M.; Gąsecka, A.; Opolski, G.; Grabowski, M.; Mazurek, T. Role of Epicardial Adipose Tissue in Cardiovascular
Diseases: A Review. Biology 2022, 11, 355. [CrossRef]

8. Ansaldo, A.M.; Montecucco, F.; Sahebkar, A.; Dallegri, F.; Carbone, F. Epicardial adipose tissue and cardiovascular diseases. Int. J.
Cardiol. 2019, 278, 254–260. [CrossRef]

9. Marwan, M.; Koenig, S.; Schreiber, K.; Ammon, F.; Goeller, M.; Bittner, D.; Achenbach, S.; Hell, M.M. Quantification of epicardial
adipose tissue by cardiac CT: Influence of acquisition parameters and contrast enhancement. Eur. J. Radiol. 2019, 121, 108732.
[CrossRef]

10. Hell, M.M.; Achenbach, S.; Schuhbaeck, A.; Klinghammer, L.; May, M.S.; Marwan, M. CT-Based analysis of pericoronary adipose
tissue density: Relation to cardiovascular risk factors and epicardial adipose tissue volume. J. Cardiovasc. Comput. Tomogr. 2015,
10, 52–60. [CrossRef]

11. Dey, D.; Slomka, P.J.; Leeson, P.; Comaniciu, D.; Shrestha, S.; Sengupta, P.P.; Marwick, T.H. Artificial Intelligence in Cardiovascular
Imaging: JACC State-of-the-Art Review. J. Am. Coll Cardiol. 2019, 73, 1317–1335. [CrossRef]

12. Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.;
Kampoli, A.M.; Akoumianakis, I.; et al. Detecting human coronary inflam-mation by imaging perivascular fat. Sci. Transl. Med.
2017, 9, eaal2658. [CrossRef]

13. Le Jemtel, T.H.; Samson, R.; Ayinapudi, K.; Singh, T.; Oparil, S. Epicardial Adipose Tissue and Cardiovascular Disease. Curr.
Hypertens Rep. 2019, 21, 36. [CrossRef]

14. Mahabadi, A.A.; Lehmann, N.; Kälsch, H.; Bauer, M.; Dykun, I.; Kara, K.; Moebus, S.; Jöckel, K.-H.; Erbel, R.; Möhlenkamp, S.
Association of epicardial adipose tissue and left atrial size on non-contrast CT with atrial fibrillation: The Heinz Nixdorf Recall
Study. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 863–869. [CrossRef]

15. Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. [CrossRef]
16. Alexopoulos, N.; McLean, D.S.; Janik, M.; Arepalli, C.D.; Stillman, A.E.; Raggi, P. Epicardial adipose tissue and coronary artery

plaque characteristics. Atherosclerosis 2010, 210, 150–154. [CrossRef]
17. Yamashita, K.; Yamamoto, M.H.; Igawa, W.; Ono, M.; Kido, T.; Ebara, S.; Okabe, T.; Saito, S.; Amemiya, K.; Isomura, N.; et al.

Association of Epicardial Adipose Tissue Volume and Total Coronary Plaque Burden in Patients with Coronary Artery Disease.
Int. Heart J. 2018, 59, 1219–1226. [CrossRef]

https://doi.org/10.1093/eurheartj/ehz425
https://www.ncbi.nlm.nih.gov/pubmed/31504439
https://doi.org/10.1093/eurheartj/ehaa575
https://doi.org/10.3390/jcm9123925
https://www.ncbi.nlm.nih.gov/pubmed/33287329
https://doi.org/10.14797/mdcj-13-1-20
https://www.ncbi.nlm.nih.gov/pubmed/28413578
https://doi.org/10.1016/j.jcmg.2018.08.013
https://doi.org/10.1046/j.1445-2197.2003.02748.x
https://doi.org/10.3390/biology11030355
https://doi.org/10.1016/j.ijcard.2018.09.089
https://doi.org/10.1016/j.ejrad.2019.108732
https://doi.org/10.1016/j.jcct.2015.07.011
https://doi.org/10.1016/j.jacc.2018.12.054
https://doi.org/10.1126/scitranslmed.aal2658
https://doi.org/10.1007/s11906-019-0939-6
https://doi.org/10.1093/ehjci/jeu006
https://doi.org/10.1161/hc0902.104353
https://doi.org/10.1016/j.atherosclerosis.2009.11.020
https://doi.org/10.1536/ihj.17-709


Life 2023, 13, 1086 12 of 15

18. Mancio, J.; Azevedo, D.; Saraiva, F.; Azevedo, A.I.; Pires-Morais, G.; Leite-Moreira, A.; Falcão-Pires, I.; Lunet, N.; Bettencourt, N.
Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: A systematic review and
meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2017, 19, 490–497. [CrossRef]

19. Mahabadi, A.A.; Berg, M.H.; Lehmann, N.; Kälsch, H.; Bauer, M.; Kara, K.; Dragano, N.; Moebus, S.; Jöckel, K.H.; Erbel, R.; et al.
Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The
Heinz Nixdorf Recall Study. J. Am. Coll Cardiol. 2013, 61, 1388–1395. [CrossRef]

20. Goeller, M.; Achenbach, S.; Marwan, M.; Doris, M.K.; Cadet, S.; Commandeur, F.; Chen, X.; Slomka, P.J.; Gransar, H.; Cao, J.J.; et al.
Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac
events in asymptomatic subjects. J. Cardiovasc. Comput. Tomogr. 2018, 12, 67–73. [CrossRef]

21. Mahabadi, A.A.; Balcer, B.; Dykun, I.; Forsting, M.; Schlosser, T.; Heusch, G.; Rassaf, T. Cardiac computed tomography-derived
epicardial fat volume and attenuation independently distinguish patients with and without myocardial infarction. PLoS ONE
2017, 12, e0183514. [CrossRef] [PubMed]

22. Oikonomou, E.K.; Desai, M.Y.; Marwan, M.; Kotanidis, C.P.; Antonopoulos, A.S.; Schottlander, D.; Channon, K.M.; Neubauer, S.;
Achenbach, S.; Antoniades, C. Perivascular Fat Attenuation Index Stratifies Cardiac Risk Associated With High-Risk Plaques in
the CRISP-CT Study. J. Am. Coll. Cardiol. 2020, 76, 755–757. [CrossRef] [PubMed]

23. Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt Centeno, E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.;
Thomas, K.E.; et al. Non-Invasive detection of coronary in-flammation using computed tomography and prediction of residual
cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [CrossRef]
[PubMed]

24. Wong, C.X.; Sun, M.T.; Odutayo, A.; Emdin, C.A.; Mahajan, R.; Lau, D.H.; Pathak, R.K.; Wong, D.T.; Selvanayagam, J.B.; Sanders,
P.; et al. Associations of Epicardial, Abdominal, and Overall Adiposity With Atrial Fibrillation. Circ. Arrhythmia Electrophysiol.
2016, 9, e004378. [CrossRef] [PubMed]

25. Bernasochi, G.B.; Boon, W.C.; Curl, C.L.; Varma, U.; Pepe, S.; Tare, M.; Parry, L.J.; Dimitriadis, E.; Harrap, S.B.; Nalliah, C.J.; et al.
Pericardial adipose and aromatase: A new translational target for aging, obesity and arrhythmogenesis? J. Mol. Cell. Cardiol. 2017,
111, 96–101. [CrossRef]

26. Tse, G.; Yan, B.P.; Chan, Y.W.; Tian, X.Y.; Huang, Y. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial
Dysfunction: The Link with Cardiac Arrhythmogenesis. Front Physiol. 2016, 7, 313. [CrossRef]

27. Friedman, D.J.; Wang, N.; Meigs, J.B.; Hoffmann, U.; Massaro, J.M.; Fox, C.S.; Magnani, J.W. Pericardial Fat is Associated With
Atrial Conduction: The Framingham Heart Study. J. Am. Heart Assoc. 2014, 3, e000477. [CrossRef]

28. Gaibazzi, N.; Martini, C.; Benatti, G.; Palumbo, A.A.; Cacciola, G.; Tuttolomondo, D. Atrial Fibrillation and Peri-Atrial In-
flammation Measured through Adipose Tissue Attenuation on Cardiac Computed Tomography. Diagnostics 2021, 11, 2087.
[CrossRef]

29. Beyer, C.; Tokarska, L.; Stühlinger, M.; Feuchtner, G.; Hintringer, F.; Honold, S.; Fiedler, L.; Schönbauer, M.S.; Schönbauer, R.;
Plank, F. Structural Cardiac Remodeling in Atri-al Fibrillation. JACC Cardiovasc. Imaging. 2021, 14, 2199–2208. [CrossRef]

30. Gaeta, M.; Bandera, F.; Tassinari, F.; Capasso, L.; Cargnelutti, M.; Pelissero, G.; Malavazos, A.E.; Ricci, C. Is epicardial fat depot
associated with atrial fi-brillation? A systematic review and meta-analysis. Europace 2017, 19, 747–752. [CrossRef]

31. van Woerden, G.; Gorter, T.M.; Westenbrink, B.D.; Willems, T.P.; van Veldhuisen, D.J.; Rienstra, M. Epicardial fat in heart failure
pa-tients with mid-range and preserved ejection fraction. Eur. J. Heart Fail 2018, 20, 1559–1566. [CrossRef]

32. Obokata, M.; Reddy, Y.; Pislaru, S.; Melenovsky, V.; Borlaug, B.A. Evidence Supporting the Existence of a Distinct Obese Phenotype
of Heart Failure With Preserved Ejection Fraction. Circulation 2017, 136, 6–19. [CrossRef]

33. Khawaja, T.; Greer, C.; Chokshi, A.; Chavarria, N.; Thadani, S.; Jones, M.; Schaefle, K.; Bhatia, K.; Collado, J.E.; Shimbo, D.; et al.
Epicardial Fat Volume in Patients With Left Ventricular Systolic Dysfunction. Am. J. Cardiol. 2011, 108, 397–401. [CrossRef]

34. Doesch, C.; Haghi, D.; Flüchter, S.; Suselbeck, T.; Schoenberg, S.O.; Michaely, H.; Borggrefe, M.; Papavassiliu, T. Epicardial adipose
tissue in patients with heart failure. J. Cardiovasc. Magn. Reson. 2010, 12, 40. [CrossRef]

35. Qin, H.-Y.; Wang, C.; Qian, D.-D.; Cui, C.; Chen, M.-L. Epicardial Adipose Tissue Measured From Computed Tomography
Predicts Cardiac Resynchronization Therapy Response in Patients With Non-ischemic Systolic Heart Failure. Front. Cardiovasc.
Med. 2021, 8, 678467. [CrossRef]

36. Gerber, B.L.; Belge, B.; Legros, G.J.; Lim, P.; Poncelet, A.; Pasquet, A.; Gisellu, G.; Coche, E.; Vanoverschelde, J.L. Characterization
of acute and chronic myocardial infarcts by multidetector computed tomography: Comparison with contrast-enhanced magnetic
resonance. Circulation 2006, 113, 823–833. [CrossRef]

37. Schuleri, K.H.; George, R.T.; Lardo, A.C. Applications of cardiac multidetector CT beyond coronary angiography. Nat. Rev.
Cardiol. 2009, 6, 699–710. [CrossRef]

38. Ohta, Y.; Kishimoto, J.; Kitao, S.; Yunaga, H.; Mukai-Yatagai, N.; Fujii, S.; Yamamoto, K.; Fukuda, T.; Ogawa, T. Investigation of
myocardial extracellular volume fraction in heart failure patients using iodine map with rapid-kV switching dual-energy CT:
Segmental comparison with MRI T1 mapping. J. Cardiovasc. Comput. Tomogr. 2020, 14, 349–355. [CrossRef]

39. Lardo, A.C.; Cordeiro, M.A.; Silva, C.; Amado, L.C.; George, R.T.; Saliaris, A.P.; Schuleri, K.H.; Fernandes, V.R.; Zviman, M.;
Nazarian, S.; et al. Contrast-Enhanced multidetector computed to-mography viability imaging after myocardial infarction:
Characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006, 113, 394–404. [CrossRef]

https://doi.org/10.1093/ehjci/jex314
https://doi.org/10.1016/j.jacc.2012.11.062
https://doi.org/10.1016/j.jcct.2017.11.007
https://doi.org/10.1371/journal.pone.0183514
https://www.ncbi.nlm.nih.gov/pubmed/28837682
https://doi.org/10.1016/j.jacc.2020.05.078
https://www.ncbi.nlm.nih.gov/pubmed/32762910
https://doi.org/10.1016/S0140-6736(18)31114-0
https://www.ncbi.nlm.nih.gov/pubmed/30170852
https://doi.org/10.1161/CIRCEP.116.004378
https://www.ncbi.nlm.nih.gov/pubmed/27923804
https://doi.org/10.1016/j.yjmcc.2017.08.006
https://doi.org/10.3389/fphys.2016.00313
https://doi.org/10.1161/JAHA.113.000477
https://doi.org/10.3390/diagnostics11112087
https://doi.org/10.1016/j.jcmg.2021.04.027
https://doi.org/10.1093/europace/euw398
https://doi.org/10.1002/ejhf.1283
https://doi.org/10.1161/CIRCULATIONAHA.116.026807
https://doi.org/10.1016/j.amjcard.2011.03.058
https://doi.org/10.1186/1532-429X-12-40
https://doi.org/10.3389/fcvm.2021.678467
https://doi.org/10.1161/CIRCULATIONAHA.104.529511
https://doi.org/10.1038/nrcardio.2009.172
https://doi.org/10.1016/j.jcct.2019.12.032
https://doi.org/10.1161/CIRCULATIONAHA.105.521450


Life 2023, 13, 1086 13 of 15

40. Im, D.J.; Youn, J.-C.; Lee, H.-J.; Nam, K.; Suh, Y.J.; Hong, Y.J.; Hur, J.; Kim, Y.J.; Choi, B.W.; Kang, S.-M. Role of Cardiac Computed
Tomography for Etiology Evaluation of Newly Diagnosed Heart Failure with Reduced Ejection Fraction. J. Clin. Med. 2020,
9, 2270. [CrossRef]

41. Mahnken, A.H.; Koos, R.; Katoh, M.; Wildberger, J.E.; Spuentrup, E.; Buecker, A.; Günther, R.W.; Kühl, H.P. Assessment of
Myocardial Viability in Reperfused Acute Myocardial Infarction Using 16-Slice Computed Tomography in Comparison to
Magnetic Resonance Imaging. J. Am. Coll. Cardiol. 2005, 45, 2042–2047. [CrossRef] [PubMed]

42. le Polain de Waroux, J.B.; Pouleur, A.C.; Goffinet, C.; Pasquet, A.; Vanoverschelde, J.L.; Gerber, B.L. Combined coronary and
late-enhanced multidetector-computed tomography for delineation of the etiology of left ventricular dysfunction: Comparison
with coronary angiography and contrast-enhanced cardiac magnetic resonance imaging. Eur. Heart J. 2008, 29, 2544–2551.
[CrossRef]

43. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.;
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