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Abstract: Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease.
In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as
increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the
surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation
of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct
activation of autoreactive immune cells and production of TNF can activate neutrophils to release
pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the
most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota
that triggers the immune system. This inflammatory pathological state can affect the periodontal
ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines
produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells
and inflammatory–immune cells, including mast cells (MCs), produce cytokines and chemokines,
mediating local inflammation of the gingival, along with destruction of the periodontal ligament and
alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines,
such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33
are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and
contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates
several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired
immunological diseases. The classic therapies for periodontitis include non-surgical periodontal
treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially
effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b,
has received considerable attention for the treatment of inflammatory diseases. In this article, we
report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal
inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and
IL-37 inhibition in acute and chronic inflamed gingival tissue.

Keywords: mast cell; inflammation; autoimmunity; cytokine; periodontal disease; periodontitis;
gingivitis; ST2 receptor

Int. J. Mol. Sci. 2022, 23, 13242. https://doi.org/10.3390/ijms232113242 https://www.mdpi.com/journal/ijms



Int. J. Mol. Sci. 2022, 23, 13242 2 of 17

1. Introduction
The immune system includes molecular and cellular elements that defend our organ-

ism which do not react against self-proteins (immune tolerance) [1]. It is well-known that
loss of tolerance leads to autoimmune disease. More than 50 years ago, Brandtzaeg and
Kraus described the autoimmune basis in the pathogenesis of periodontal disease, where
microorganisms can establish or influence the process of autoimmunity [2].

Microbiota are microorganisms that live in symbiosis in the body and are found in
the gastric and mouth apparatus [3]. The modified microbiome may play an important
role in oral flora, in periodontal and intestinal disease, and in the pathogenesis of autoim-
mune diseases [4]. Therefore, there is a symbiotic relationship between the host and its
microorganisms. In fact, commensal bacteria protect against inflammatory diseases and
allergies [5]. Chronic inflammatory disease has a multifactorial etiology and can affect
the oral and gastrointestinal systems, leading to dysbiosis, an alteration of the balance of
the bacterial flora with consequent disturbances and change of the microbiota and innate
immune system [6]. It has recently been reported in the literature that periodontitis is
a chronic immune and inflammatory disease, with its primary etiology being bacterial
plaque [7]. The interaction between the microbiome and the innate immune system can
occur in many different diseases. The microbiota is important for tissue health, and its
alteration can lead to chronic and autoimmune diseases, as microbial products can continu-
ously stimulate innate immune responses and lead to chronic inflammation [8]. Therefore,
continued self-inflammation due to altered host–microbiota and the innate immunity axis
can lead to autoimmune disease.

Much evidence leads to autoimmunity in the etiopathogenesis of periodontal disease,
with the production of antibodies against collagen, DNA, and IgG; increased IgA expression;
dysfunction of T-helper or T-suppressor cells; activation of NK cells, pro-inflammatory
cytokine secretion; and increased expression of class II MHC molecules on the surface of
gingival epithelial cells in inflamed tissues [9]. In addition, in periodontitis, antibodies
against the azurophil granules of polymorphonuclear leukocytes can be detected [10].
Direct activation of T-cell-mediated autoreactive B cells and the production of TNF by mast
cells (MCs) can activate neutrophils to release pro-inflammatory enzymes with cell damage
in the gingival tissue [11]. Gingivitis is the mildest form of plaque-induced periodontal
disease (PD), while periodontitis is a more severe, chronic immune and inflammatory
disease, with the primary etiology being bacterial plaque. Infectious inflammatory diseases
of the gum are characterized by local redness, edema, and bleeding of the periodontal
tissues following the accumulation of bacterial plaque [12]. If the disease is left untreated,
destruction of the periodontal attachment apparatus may occur, which can lead to the loss
of connective tissue, tooth mobility, and tooth loss [13,14].

Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to
the dysbiosis of the commensal oral microbiota that triggers the immune system [15]. This
inflammatory pathological state can affect the periodontal ligament, bone, and the entire
gingival tissue. MCs are a potential source of cytokines and chemokines, as seen in mouse
and human cell experiments performed in vitro [16]. In periodontal disease, pathogens
trigger the immune response mediated by various inflammatory compounds, including
cytokines and chemokines, causing bleeding, swelling, bad breath, destruction of gingival
tissue, and tooth loss [17].

Gingival inflammation can lead to periodontal disease, where cytokines activate and
stimulate MCs to secrete pro-inflammatory molecules that participate in the pathological
state of the tissue and, therefore, play a critical role in the induction of inflammation [18].
Elevated levels of pro-inflammatory cytokines, such as IL-1, TNF, and IL-6, are secreted by
various immune cells, including MCs. The role of MCs in periodontal disease is not yet
clear; however, in this pathology, MCs increase in number, as well as the production of
inflammatory cytokines, thus demonstrating their involvement in the resorption of alveolar
bone. In the oral tissue, MCs producing cytokines and proteases (tryptase and chymase)
promote the infiltration of leukocytes, causing the degradation of the extracellular matrix



Int. J. Mol. Sci. 2022, 23, 13242 3 of 17

and leading to gingivitis and periodontitis [19]. In acute inflammation, MCs release various
pro-inflammatory molecules, such as histamine, proteoglycans, metabolites of arachidonic
acid, TNF, and tryptase, a serine proteinase that promotes inflammation. Histamine, acting
on the endothelium, mediates vascular permeability and promotes adhesion of platelets
through the adhesion molecule P-selectin.

MCs participate in the acute inflammatory type-1 hypersensitivity reaction, which can
occur within minutes. This reaction is mediated by IgE, which binds to the Fc"RI receptor
of MCs and leads to the release of newly synthesized mediators with tissue alterations and
leukocyte activations [16].

In gingival tissue, repeated persistent stimuli on tissue MCs can lead to a chronic
inflammatory reaction or late-phase reaction, mediated by innate immune cells with conse-
quent tissue alteration [20]. Cytokine secretion through the Fc"RI receptor activates MCs in
mice, which can be redundant with other cell types and can cause chronic tissue damage.
Activation of the Fc"RI and Fc�Rs receptors of MCs can cause the release of various pro-
inflammatory compounds, including IL-1, which contributes to chronic inflammation (as,
for example, occurs in rheumatoid arthritis) [16].

Periodontal cells and inflammatory–immune cells, including MCs, produce cytokines
and chemokines, mediating local inflammation of the gingival tissue, along with destruction
of the periodontal ligament and alveolar bone [15]. Immune-cell activation and recruitment
can be induced by inflammatory cytokines, such as IL-1, TNF, and IL-33; and bacterial
products, including lipopolysaccharides (LPS). IL-1 and IL-33 are pleiotropic cytokines
from members of the IL-1 family that mediate the inflammation of the MCs and contribute
to many key features of periodontitis and other inflammatory disorders [19].

Different ligands activate the respective MC receptors, causing activation, migration,
or inhibition. In chronic inflammation, MCs intervene by contributing to tissue repair and
remodeling; however, by producing pro-inflammatory cytokines, they damage the tissue,
as occurs in periodontal disease [18].

The production of cytokines induces molecules that attract the migration of immune
cells. Among these are the chemokines, which are responsible for the selective recruitment
of leukocytes and play an important role in periodontal inflammation [20].

CXCL8 is a chemokine produced by PMNs and fibroblasts that increases in inflamed
periodontal tissue, recruits inflammatory cells, and cooperates with the CCL2/MCP-1
chemokine, which mainly attracts monocytes/macrophages [20]. Cytokine IL-33 activates
several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and
acquired immunological diseases [21]. The classic therapies for periodontitis include
antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective.
It is general knowledge that a natural cytokine, IL-37, a member of the IL-1 family and a
suppressor of IL-1, has received considerable attention for the treatment of inflammatory
diseases [21].

Dental bacterial biofilms induce inflammation and are the primary etiological factors
of periodontal diseases. Several microbiological studies have shown that the pathogenesis
of periodontal disease is mediated by an overgrowth of specific Gram-negative anaero-
bic bacteria in the gingival tissues. More specifically, Porphyromonas gingivalis, Treponema
denticola, and Tannerella forsythia, known as the red complex, and their virulence factors
can induce severe inflammation and the destruction of periodontal tissues [22]. Although
bacteria are the triggering agents, host defense mechanisms within the periodontal tis-
sues seem to be responsible for most of the tissue damage and for the progression of
periodontal diseases.

The innate immune system mounts non-specific responses to the bacterial challenge,
including secretion of vasoactive substances, such as histamine and vascular endothelial
growth factor (VEGF), which are synthesized by mast cells and other immune cells in the
periodontium. In response to a microbial challenge, the periodontal tissues are infiltrated by
many phagocytic cells that amplify a cascade of cellular and biochemical events by secreting
different inflammatory mediators, including cytokines, chemokines, and arachidonic acid
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metabolites [19]. Once in the gingival tissues, the polymorphonuclear leukocytes (PMNs)
either phagocytose the bacteria that is present or die by apoptosis. In both cases, they
release their lysosomal contents, such as elastases and collagenases, into the gingival tissues
that contribute to the local destruction of connective tissues. Th1 cells are involved in the
first phase of periodontitis; they release pro-inflammatory cytokines, such as IL-1, TNF,
and IL-6. Meanwhile, in the late second phase, Th2 cells produce IL-4, which helps the
production of antibodies and IL-10, which attempts to inhibit the inflammatory cytokines
produced by Th1 cells.

A critical pathway in the initiation of the immune response in the periodontium is the
recognition of lipopolysaccharides (LPS), derived from Gram-negative bacteria, by Toll-like
receptors (TLRs). TLR activation stimulates an intracellular signaling cascade, leading to
the synthesis of pro-inflammatory mediators, including TNF and IL-1, leukocyte migra-
tion, and osteoclastogenesis [20], inducing bone loss and progression into periodontitis.
Pro-inflammatory mediators stimulate the Langerhans cells, which function as antigen-
presenting cells (APCs), to migrate to regional lymph nodes and initiate antigen-specific
T-cell proliferation, activating the adaptive immune system.

Several environmental risk factors, including smoking, diabetes mellitus, and psycho-
logical stress, may modify the host response and, hence, disease progression, severity, and
outcome of periodontal treatment [21].

2. IL-1Beta (IL-1�)
IL-1 plays an important role in immunity and inflammation [23]. The IL-1 family

includes pro-inflammatory cytokines (IL-1 alpha; IL-1 beta; IL-18; IL-33; and IL-36 alpha,
beta, and gamma), receptor antagonist cytokines (IL-1RA, IL- 36-RA, and IL-38), and a
cytokine with anti-inflammatory power (IL-37). IL-1 has been localized in the cytoplasm,
is proteolytically activated by caspase-1, and is secreted by macrophage-type cells [21].
IL-1, regulated by several proteins, including inflammasomes, is a major pro-inflammatory
cytokine in the pathogenesis of periodontal disease.

Caspase-1 is a cytoplasmatic protease that is activated by the inflammasome complex
(Nod-like receptor pyrin domain containing protein 3 (NLRP3) and apoptosis-associated
speck-like protein containing CARD (ASC)) [24,25]. Therefore, cytoplasmic pro-IL-1 is
the inactive precursor of IL-1 beta, which is proteolytically activated through cleavage by
caspase-1, resulting from NLRP3-activated pro-caspase inflammasome [23,24]. The genera-
tion of NLRP3 occurs through the pathogen-associated molecular patterns (PAMPs) that
induce the transcription factor NF-B, which activates the inflammasome and IL-1beta pre-
cursor genes (Figure 1). NLRP3 inflammasome contributes to the inflammatory state, and
its inhibition is considered a potential therapy; however, in several inflammatory diseases,
the inhibitory effect has been disappointing [25]. NLRP3 is not only pro-inflammatory
but may also mediate beneficial protective signaling (although most of the literature is
devoted to its harmful effects). NLRP3 deficiency can lead to a lack of tissue protection by
facilitating the activation of TLR2 [25].

IL-1� is known to be involved in the regulation of the innate immune response [13]
and is mandatory for auto-inflammatory diseases [26–29]. We focused on the study of
IL-1 beta, because this cytokine promotes inflammatory osteolysis as occurs in chronic
periodontitis and other systemic diseases [30]. IL-1� could also be important in diseases
involving mast cells and SP [31,32]. IL-1� may also be involved in multiple other diseases
that involve MCs, including asthma [33], rheumatoid arthritis [34], multiple sclerosis [35],
and psoriasis [36–38]. In fact, gene expression and activity of caspase-1 were reported to be
increased in lesional psoriatic epidermis [39].
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Figure 1. IL-1b binds IL-1R1 and IL-1R3 with the generation of MyD88, starting the biochemical
pathways that produces the pro-inflammatory and anti-inflammatory IL-1 family member cytokines
that mediate the periodontal disease. Activation of IL-1 precursors leads to periodontal disease, while
TLR2 and 4 can lead to both periodontal disease and tissue protection.

Another activation system may be due to reactive oxygen species (ROS), to the efflux
of potassium ions, or to the influx of calcium ions, involving the ROS [33,34]. These effects
begin with the recruitment of the Speck-like protein adapter associated with apoptosis
containing a CARD (ASC), which, together with the inflammasome and pro-caspase,
participate in the active reaction of pro-caspase-1 in caspase-1. At this point, activated
caspase-1 can intracellularly cleave pro-IL-1 beta into mature IL-1 beta [35,38] (Figure 1).
MCs contain beta pro-IL-1 and caspase-1 and therefore are able to respond to external
insults [34] by producing IL-1.

MCs are known to be activated by non-allergic triggers, such as cytokines, but they
can also release pro-inflammatory cytokines, such as IL-1 and IL-6, without degranulating
[39,40]. In periodontitis, in spite of classical (non-surgical) therapies that include antibiotics
and anti-inflammatory drugs, which are often not effective, it is pertinent to think that
different anti-IL-1�s, such as soluble IL-1R, IL -1RA, and IL-37, could be used in the clinical
therapy for these inflammatory diseases [41–43].

3. Interleukin-33 (IL-33)
Periodontitis is an inflammatory disease that mainly has bacterial etiology, where

immune cells secreting pro-inflammatory cytokines such as IL-1, TNF, and IL-33, which
contribute to tissue damage, are invoked [21,44]. The destruction of tissue occurs through
stimulation of enzyme production, an effect that may be associated with autoimmune
diseases. Therefore, periodontitis and autoimmune diseases share many pathological
aspects, including IL-1 and IL-33 production.

IL-33, also called “alarmin”, is part of the IL-1 family and is an instant warning
signal of cell damage. [44] In autoimmune or inflammatory processes [25,26,43], IL-33
is secreted by fibroblasts and endothelial cells [45]. IL-33 augments the effect of IgE on
secretion of histamine from mast cells and basophils [44,46] by “priming” them [47]. We
recently showed that stimulation of human MCs by SP, given together with IL-33, markedly
increases secretion and gene expression of the pro-inflammatory cytokines, TNF and IL-
1b [48,49].

IL-33 is a new member of the IL-1 family, which regulates innate and adaptive immune
systems, promoting inflammatory responses [6]. IL-33 is mainly expressed by keratinocytes,
epithelial and endothelial cells [50], and human monocytes [51] and mouse astrocytes [52].
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IL-33 acts as an alarmin against injury-induced stress, pathogens, or cell death by activating
local immune cells [53,54].

As previously mentioned, both IL-1 alpha and IL-1 beta are found in proform, and
therefore, to be mature, they need proteolytic cleavage and NLRP3 [27–30].

IL-33 proform measures approximately 30 KDa and is processed without the inter-
vention of the inflammasome, while the processing of caspase-1 causes the inactivation
of IL-33, rather than providing mature forms of IL33 [55]. IL-1 proform is not active [56]
and can be cleaved by a protease such as cathepsin G and elastase, generating the active
biological form of IL-1 [57–59].

Th2 immune cells are activated by IL-33 to produce cytokines, and this activation may
also be accompanied by the activation of CD8+ cells [60]. Clinical studies have shown that
IL-33 induces the activation of lymphoid cells (ILCs) through mTOR activation [61]. ILCs
are involved in IgE-mediated allergic and asthmatic processes, they increase in the blood
of patients during seasonal pollination, and they are correlated with disease status. ILCs
reside in the tissues of the mucosa and gingiva, where they increase significantly during the
chronic inflammatory state. IL-33 regulates human �-defensin 2 (hBD2) in keratinocytes
facilitating Staphylococcus aureus infection in tissues [62], a process in which immune cells,
including MCs, are activated [63].

3.1. IL-33 Expression
IL-33 and its ST2 receptor are expressed in various cell types, including MCs. IL-33 is a

cellular sensor that mediates the pathogenesis of allergic and autoimmune diseases such as
rheumatoid arthritis, psoriasis, inflammatory bowel diseases, etc. This cytokine stimulates
TNF by activating MCs and is overexpressed in gingival tissues, with periodontitis and bone
loss mediated by the increase of the nuclear factor receptor kappa-� ligand (RANKL) [64].
Elevated IL-33 in saliva could cause autoimmunity-related microbial dysbiosis.

Environmental factors, as well as PAMPs, which are molecular patterns associated with
pathogens [64], are able to express the cytokine IL-33, activating the inflammatory system.
IL-33 can also be induced by bacteria and viruses, as well as through the TLRs present on
primary inflammatory cells, including MCs. Furthermore, MC activating antigens can be
allergens of which extracellular ATP is the sensor [65,66]. All of these stimulating effects
lead to the generation of proinflammatory cytokines in the periodontal tissue [67]. IL-33 and
its surface ST2 receptor were upregulated by IFN� in keratinocytes derived from patients
with AD [68]. TNF, but not IL-17, stimulates secretion of IL-33, which induces expression of
IL-6, MCP-1, and VEGF [69]. However, it appears that the type of cytokines/chemokines
produced by IL-33 may depend on particular tissues, since the extent of and the type of
such mediators vary between sensitized skin and asthmatic airways [70].

IL-33 was discovered as a main ligand to the ST2 (IL-1R4) receptor, which is mostly ex-
pressed on the surface of epithelial cells, fibroblasts, and MCs [71]. ST2 is the IL-33 receptor,
which is found on the cytoplasmic membrane, and it crosses it and enters the cytoplasm.
The exposed part on the membrane is the most abundant, while the cytoplasmic part is the
soluble form, which acts as a decoy by binding IL-33 [72]. The receptor complex comprises
the ST2 and IL-1 receptor accessory protein [73]. The ST2 receptor is generated by various
cell types, including MCs. ST2 receptor IL-33 binds to the IL1RAcP co-receptor, which is
shared with IL-1 and initiates the MyD88, IRAK, IRAK4, TRAF6, and IKKabg cascade, and
this leads to the activation of NF-kB, a process similar to that of IL-1 [74] (Figure 1).

ST2 activation leads to stimulation of the mitogen-activated protein kinase (MAPK) via
TNF receptor-associated factor 6 (TRAF6), which can signal the activator protein-1 (AP-1)
via c-Jun N-terminal kinases (JNKs). Therefore, TRAF6 can also activate nuclear factor-B
(NF-B), resulting in its nuclear translocation and pro-inflammatory gene transcription [74].
For example, ST2 activation of the chronic myeloid leukemia cell line (KU812) results
in the release of multiple cytokines through the stimulation of NF-B, JNK, and p38
MAPK, but not ERK1/2; however, IL-13 generation appears not to require JNK or ERK1-2
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signals [75]. In in vitro experiments, it has been reported that IL-33 may also be a DNA-
binding cytokine [74].

3.2. IL-33 in Allergy and Inflammation
Several authors have reported that IL-33 mediates inflammation of the upper and

lower airways [76], confirming that this is a crucial cytokine in allergic and inflammatory
responses in the entry districts of microorganisms [77]. The IL-33-mediated inflamma-
tory response in the airways is performed with Th-17 and MC activation [78]. IL-33 is
therefore implicated in the crosstalk between MCs and smooth muscle cells in human
airways [79]. IL-33 levels are significantly increased in asthmatic subjects compared to
healthy subjects [80–83]. IL-33 also increases in bronchial epithelial cells and periodon-
tal disease upon stimulation with microorganisms or other compounds that can cause
inflammation [84,85]. Therefore, in most allergic phenomena and in anaphylaxis, there is
an increase in IL-33 [86,87].

Many in vivo experiments on mice, in which lung disease has been induced, have
shown high levels of IL-33, confirming the importance of this cytokine in lung inflam-
mation [84,88]. IL-33 is a dangerous signal mediator of epithelial cells and is associated
with the response of TH2 lymphocytes in allergic diseases, promoting the activation of
innate lymphoid cells 2 (ILC2) and involving innate inflammation [89]. IL-33 participates
in the enhancement of ILC2 receptor expression and ILC2 activation, with a mechanism
yet to be elucidated. Furthermore, when IL-33 is administered intranasally, it provokes
an allergic–inflammatory response, probably involving MC activation [85]. This effect
is not present in IL-33-deficient mice [90]. Activation of eosinophils and basophils with
pollen also leads to an increase in IL-33, an effect that does not occur with the lack of
these cells in inflammatory processes [86]. In addition, in the absence of the ST2 receptor
of IL-33 in asthmatic-type pulmonary allergy, inflammation is significantly reduced, and
Th2-type cytokines are activated [70]. Moreover, also in atopic dermatitis, an inflammatory
allergic disease, there is an increase in IL-33 compared to healthy subjects [91–93]. This phe-
nomenon is mediated by IL-33, which also stimulates innate lymphoid cells [94]. In some
autoimmune diseases such as psoriasis, elevated levels of IL-33 produced by MCs can occur
in the psoriatic scabs of the skin with mediation of the inflammatory process [92,94,95]. In
fact, the ST2 receptor of IL-33 is expressed on MCs, which, after activation, can produce
substances that increase chemotaxis and amplify inflammation [54,96]. Therefore, the MCs
are considered real sensors of cell damage that produce the “alarmin” IL-33 [97]. More
recently, cultured MCs derived from bone marrow, stimulated by specific ovalbumin and
IgE, induced the expression and release of IL-33, which has an autocrine action on the
expression of IL-6 and IL-13 [98], cytokines also important in autoimmunity. In rheumatoid
arthritis, an autoimmune disease, MCs participate in the production and activation of the
cytokines TNF and IL-6. TNF induces the expression of IL-33, which participates in the
pathogenesis of the disease. Inhibition of IL-33 leads to a marked improvement in inflam-
matory pathology, demonstrating the importance of this cytokine in autoimmune diseases.
MCs are hemopoietically derived cells, located close to blood vessels and nerves, where
they proliferate primarily in response to stem-cell factors (SCF) [99], but also nerve-growth
factors (NGF) [100]. MCs are important for allergic reactions, as well as for mastocyto-
sis, mast-cell-activation disorders, and other inflammatory diseases [101]. IL-33 has also
been reported to be involved in the maturation of human MCs [102] and promote MC
survival [103]. IL-33 promoted the proliferation of mouse MCs independent of c-kit [104].
Nevertheless, IL-33 was reported to cross-activate the SCF c-kit receptor on MCs [105].
Evidently, IL-1RAcP interacts with c-kit constitutively, and IL-33R binds upon stimulation
with SCF, leading to cytokine release [106]. Apparently, inhibition of c-kit signaling also
blocked human MC release of IL-16 [107], which had been shown to occur selectively
without degranulation [108].

IL-33 augmented the effect of IgE and SCF on activation MCs and basophils [46]. IL-33
induced the release of pro-inflammatory cytokines, especially IL-6, without degranulation
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from bone-marrow-derived MCs (BMCMCs) [44], and enhanced IL-8 production from
human cord blood mast cells (hCBMCs) stimulated by IgE/anti-IgE, but without histamine
release [103]. IL-33 augmented human MC release of VEGF in response to SP, but not
on its own [109]. Moreover, IL-33 production of IL-13, independent of Fc"RI stimula-
tion [110], stimulated PGD2 but not tryptase release from activated human MCs [111]. IL-33
was also able to prime murine MCs for enhanced activation by IgG immune complexes
[104,112] and stimulated MC-dependent neutrophil influx [113,114]. It has long been
known that MCs are activated by various substances, including IgE, which crosslinks the
FceRI receptor; however, a variety of biological molecules cannot stimulate MCs to produce
inflammatory substances [115]. Upon activation with various triggers [116–118], MCs
immediately release proinflammatory mediators, such as tryptase and histamine. These
compounds are released (in seconds), while subsequently (after several hours) MCs release
proinflammatory cytokines (IL-1, IL-6, and IL-33), chemokines (CCL2, IL-8, and CXCL8),
prostaglandin (PGD2), and leukotrienes (LTC4, LTD4, and LTE4) [119–121]. All of these
substances participate in chronic autoimmune inflammation. The release of TNF, both from
granules and by synthesis via mRNA, leads to the activation of T lymphocytes [122,123];
meanwhile, the generation of IL-6 and TGF-b is fundamental for the synthesis of Th-17
cells [124–126]. All of this, together with the synthesis of IL-33, is part of an immuno-
inflammatory framework in which MCs play an important role [127,128], contributing to
the autoimmune phenomenon [129–132].

3.3. IL-33 in Inflammatory Autoimmune Disease
MCs are capable of processing microbial antigens by intervening in acquired immunity

and play a key role in inflamed periodontal tissue by producing IL-33 and other pro-
inflammatory cytokines. MCs play a crucial role in allergic pathogenesis and systemic
diseases [133,134], producing pro-inflammatory cytokines of the IL-1 family, effects that
can be suppressed by IL-37 by forming a complex with extracellular IL-18R↵ and IL1R8. In
periodontitis, there is a greater expression of pro-inflammatory cytokines, such as the IL-33
produced by MCs, associated with the pathogenesis of periodontal disease.

IL-33 activation mediates inflammation in autoimmune diseases [129]. The ST2 re-
ceptor is often found in the serum of patients with inflammatory and allergic diseases,
and it is related to the severity of the disease. It has been reported that, in many autoim-
mune diseases, such as rheumatoid arthritis (RA) [134], systemic lupus erythematosus
(SLE) [135], Sjogren’s syndrome [136], Grave’s disease [137], and Inflammatory Bowel
Disease (IBD) [138–140], where inflammation plays an important role, the number of MCs
and blood levels of IL-33 are increased [26]. Therefore, MCs, in addition to being important
in periodontal inflammation, both in the acute phase by producing chemical mediators and
in the chronic phase by secreting IL-33 and other pro-inflammatory cytokines [141,142], are
also relevant in innate and acquired immunity [143–145]. In fact, in atopic dermatitis [144]
and psoriasis [109], rheumatoid arthritis [134,146], multiple sclerosis [147], and autism [148],
MCs can intervene and selectively release pro-inflammatory cytokines [149]. Moreover, in
Alzheimer’s disease [150], MCs can be involved in releasing IL-33 into amyloid plaques,
favoring inflammatory and degenerative processes [151]. Moreover, incubation of mouse
astrocytes with amyloid-�1-42 increased IL-33 expression [149]. In fact, increasing evi-
dence implicates brain inflammation and cytokines in the pathogenesis of Alzheimer’s
disease [152,153]. Brain inflammation may be evident in the earlier stages of the disease
and may constitute a more reasonable target for drug development [154,155]. Interestingly,
IL-33 was also upregulated in astrocytes and peripheral leukocytes of multiple sclerosis
(MS) patients [156]. Moreover, the expression of IL-33 protein and IL-33 genes was in-
creased in patients with remitting–relapsing MS [157]. In non-allergic brain inflammation
induced in mice, in which MCs play a crucial role, it has been reported that, by using related
W/Wv mice lacking in MCs, inflammation is markedly inhibited [158]. This suggests the
importance of CDs in inflammatory pathogenesis [159]. These results are interesting in view
of the fact that ANK2 was strongly associated with autism [160,161]. Many children with
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autism are characterized by allergic symptoms [148,162], and the risk of autism is much
more common in children with mastocytosis [163]. In fact, autism involves brain inflamma-
tion [164,165] and microglia activation [166,167]. Moreover, there is evidence of crosstalk
between microglia and MCs [168]. It is interesting that the diseases discussed above worsen
with stress [147,169–171], and MCs are activated by the corticotropin-releasing hormone
(CRH) secreted under stress [172,173].

4. Interleukin-37 (IL-37)
Since IL-37 is a strong blocker of IL-1 and a pro-inflammatory cytokine in periodon-

tal disease, in this review, we speculate that IL-37 treatment of the disease could be a
further therapeutic adjunct to traditional medications. IL-37 is a member of the IL-1
family, whose precursor is produced by immune and non-immune cells after an inflam-
matory process. IL-37 is generated through the activation of a caspase-1, translocates
to the nucleus, and inhibits genes involved in inflammation by suppressing the NF-kB
and MAPK pathways [58,174–177] (Figure 2). Monocytic cells and macrophages activated
through the TLR produce pro-IL-37, an immature cytokine that is cleaved by caspase-1 and
transforms into active mature IL-37, which, in a small amount (20%), enters the nucleus,
while the remainder is expelled out of the cell together with the immature form, pro-IL-37,
which is also active [178]. MCs that produce extracellular proteases can act on pro-IL-37,
transforming it into a more biologically active form, as occurs with IL-37b, which is the
most used form in in vitro and rodent experiments [179]. Although no specific receptor
for IL-37 has been identified, a number of studies showed that extracellular IL-37 binds
to the alpha chain of the IL-18R↵ [171,172], but with less affinity than IL-18 [180–182].
Binding of IL-37 to the IL-18 receptor and to the decoy receptor 8 (IL-R8) [183,184] causes
a strong inhibition of innate immunity [48,179,185], which mediates acute inflammation
and autoimmunity [186–188], including the pathogenesis of periodontal disease. IL-37 is
a protective cytokine against acute and chronic inflammatory diseases; in fact, in autoim-
mune diseases, the levels of IL-37 are abnormal compared to those of healthy patients.
Experimental animals treated with IL-37 show a reduction in inflammatory proteins pro-
duced by human monocytic M1 cells, both in vivo and in vitro [185]. It has been reported,
in human activated monocytes, that suppression of IL-1-b and IL-6 generation increases
the expression of the anti-inflammatory IL-37 cytokine [189–191]. Most of the inhibitory
effects exerted by IL-37 are currently unknown, so new experiments are awaited to fully
clarify this enigma.
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Figure 2. Synthesis, processing, and release of IL-37. Pro-inflammatory stimuli that are TLR agonists,
including IL-1, trigger the synthesis of the precursor form of IL-37 (pro-IL-37). Inside the cytoplasm,
the precursor (pro-IL-37) is processed by caspase-1 into mature IL-37, and part of it translocates to
the nucleus and suppresses inflammatory pathways. At an extracellular level, the proteases may act
on pro-IL-37 by transforming it into mature IL-37. Both the immature and mature forms have been
reported to be biologically active and may suppress inflammation in periodontal disease [172].
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5. Conclusions
Today, it is known that IL-37 inhibits innate and acquired immunity and, consequently,

inflammation [192,193], an effect that could complement the treatment of acute and chronic
gingival inflammation, including periodontal disease [194]. The data suggesting that IL-37
acts on the inhibition of mTOR [195], a molecule involved in the stimulation of neurotensin
(NT) on human microglia and on the suppression of the inflammasome in mice [196,197],
are yet to be confirmed.

Since IL-1 induces IL-33, it is pertinent to think that, by blocking IL-1 with IL-37, there
would be an inhibition of inflammation in periodontal diseases; however, these data will
need to be confirmed in the future.

In this work, therefore, we hypothesize that IL-37, being a blocker of IL-1, one of the
main inflammatory cytokines in the pathogenesis of periodontitis, may be of help in the
therapy of this common disease.
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