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Résumé 

Lorsque l’on souhaite dérouler une approche disruptive de conception, l’objectif premier est de 

sortir du cadre des solutions connues. Différentes méthodes, comme le brainstorming, facilitent ce 

travail. Néanmoins elles se heurtent à différents obstacles : 

• Le biais cognitif, qui conduit le concepteur à explorer des voies erronées et, plus grave encore, à en 

écarter d’autres au motif qu’elles semblent, dès le départ, vouées à l’échec. 

• Le champ de connaissance, qui doit idéalement être le plus large et diversifié que possible.  

• L’accessibilité à la connaissance. Dans un monde ou tout évolue très vite dans tous les domaines il 

est de plus en plus difficile de suivre l’ensemble des évolutions d’un domaine large.  

• L’approche d’optimisation qui est vue comme une façon d’innover au moins de façon incrémentale, 

mais qui a un potentiel disruptive limité car elle est conditionnée par un espace de conception de 

dimension finie. 

Face à un besoin nouveau, le cerveau y associe des principes, des concepts, pour générer des similitudes. 

Cette phase est très rapide et quasi inconsciente. Si son auteur la juge intéressante (si l’idée survie au 

biais cognitif) alors on cherche d’abords à la formuler avec des mots qui décrivent en général une 

architecture, des principes physiques ou des propriétés matériaux, avant d’être traduits par des modèles 

plus ou moins détaillés. 

Ce processus d’utilisation de mots pour expliquer, partager, confronter, se reproduit par la suite pour 

faire avancer la réflexion. L’intérêt majeur résidant dans la capacité à expliquer à la fois des éléments 

très globaux et basics et des concepts très complexes et détaillés, en passant d’un domaine à l’autre 

instantanément. 

L’objectif de cette thèse est de s’inspirer de la façon dont un cerveau fonctionne au moment où il génère 

une idée et ou son propriétaire va la formuler et de créer un premier démonstrateur logiciel basé sur des 

outils IA. Elle se base sur les travaux menés au sein du groupe CES WORKS qui est spécialisé en 

conception disruptive. 

 

Mots clés : démonstrateur, conception disruptive, conceptual design, machine learning, langage naturel. 
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Abstract 

The development of a breakthrough design approach firstly requires getting out from the space of 

known solutions. Different methods can facilitate this work, as brainstorming. Nonetheless, they are 

often subjected to different obstacles:  

• The cognitive biases, not only leading designers to explore erroneous solution paths, but also to 

exclude other apparently unsuccessful paths since the beginning.  

• The knowledge space, which must ideally be as large and varied as possible.  

• The accessibility to knowledge. In a world where everything changes and develops very quickly, it 

is increasingly difficult to follow all the developments in all fields.  

• The optimization approach, which is seen as a way to innovate at least incrementally, but which has 

a limited breakthrough potential, since it is conditioned by a design space of finite dimension.  

When we face with a new need, our brain is able to associate it principles and concepts, generating 

similarities and thus new ideas. This phase is generally very rapid, and it is almost unconscious. If these 

ideas are considered interesting (i.e. if they survive cognitive biases), we will first try to formulate them 

with words, which generally describe an architecture, physical principles or material properties, before 

translate them into more or less detailed models.  

This process of using words to explain, share and compare will be repeated again and again to move 

forward. The major interest lies in its ability of explaining very general and basic concepts as well as 

very detailed and complex ones, and of instantly moving from one field to another different one. 

The objective of this thesis is to be inspired by the way a brain works when it generates an idea and 

when its owner formulates it, in order to create a first software demonstrator based on different machine 

learning tools (artificial intelligence). The current thesis is based on the work carried out within the 

group CES WORKS, which is specialized in breakthrough design. 

 

Keywords : demonstrator, breakthrough design, conceptual design, machine learning, natural language 
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Introduction 

Our world is constantly changing. New products and processes are under continuous development 

by companies, which continually try to be a step ahead competitors. Most of the developed products 

early fail, as well as their associated business models, whereas only a very few part of them reach 

prominent market positions [1]. The extraordinary technologic development of the recent decades has 

further accelerated this process, and the crucial role of design, as an activity aimed to conceive and 

develop new product and process concepts, has more and more emerged. The great challenges of our 

days, as the climate changes or the recent generalised crisis due to the COVID-19 pandemic, which is 

heavily impacting the social and economic framework, more than ever highlight the need for 

breakthrough design solutions, able to produce great advantages in terms of technology, sustainability 

and social changes. The development of a breakthrough design approach firstly requires getting out from 

the space of known solutions [2]. Nonetheless, this is often subjected to different obstacles: 

• The cognitive biases. Designers often tend to project following their own preferences, leading to 

consider a limited set of design options and to explore erroneous solution paths, thus excluding other 

apparently unsuccessful paths since the beginning. The design solutions which can be quickly and 

easily realized usually tend to be immediately chosen, even if they involve a poor outcome [3]. The 

reasons of this tendency are mainly two. From one side, the design practices which allow to enlarge 

the solution space and to improve the research of more interesting design options are often unknown 

or ignored. From the other side, the behaviour of the same designers, as of all humans, is affected 

by subconscious mental mechanisms, which are indeed heavily responsible for some dangerous “bad 

design habitudes”. The influence of these mechanisms, called cognitive biases, can be easily 

observed when, for example, we refuse to do something by answering “no, it’s too challenging”, 

“no, I don’t like it” or “no, I’m not used to do this”. These statements seem perfectly normal, but 

they are very dangerous for our design thinking, since they preclude us the possibility to imagine 

and explore different and potentially more interesting things. Everybody is subjected to cognitive 

biases, even more open and smarter people [3–7]. 

• The knowledge space. A breakthrough design approach requires having a knowledge space as wide 

as possible and as various as possible since the beginning of the project, and the ability to generate 

analogies between different fields and disciplines, different physical principles, etc. [2]. 

Optimization, representing the most widespread design approach, is sometimes seen as a way to 

innovate, at least incrementally, but it cannot lead to disruptive solutions because it is conditioned 

by a fixed design space of finite dimension from the beginning [8]. Knowledge variety can be 

favoured by the multiplication of contributors with different specializations. However, their thinking 

and experiences are not always easy to be exploited and combined. Indeed, the ability to generate 

analogies depends on the openness of the same contributors, which is strongly linked to outer 

factors, as personality, cultural background and previous projects [1].  

• The accessibility to knowledge. In a world where everything changes and develops very quickly, it 

is increasingly difficult to follow all the developments in all fields. We must therefore specialize, 

which however amplifies the previous obstacles. For the same reason, our brains are saturated with 

information, and we sometimes tend to “reinvent the wheel” even after having apparently explored 

the whole state of the art.  

In order to overcome these obstacles, we tried to imagine the way our brain works when it is faced 

with a new need. When we are faced with a design need, our brain is able to associate it principles and 
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concepts, generating analogies and thus new ideas. This phase is generally very rapid and almost 

unconscious. If these ideas are considered interesting (i.e. if they survive cognitive biases), we will try 

to formulate them by words (i.e. natural language), generally describing an architecture, physical 

principles, material properties, etc. These elements will be first set in the brain as words, before being 

translated into more or less detailed models. This original hypothesis is the base of this thesis work. The 

process of using natural language to explain, share and compare will be repeated again to move forward 

in the reflection. The major interest of natural language lies in its ability of explaining very general and 

basic concepts as well as very detailed and complex ones, of emphasizing changes and of instantly 

moving from one field to another different one [9]. The objective of this thesis is to be inspired by this 

process, using machine learning (artificial intelligence) to create a first original software demonstrator. 

This ambitious idea is based on the work carried out within the group CES WORKS, funder of the 

current thesis and specialized in breakthrough design. 

The thesis is organized in three chapter. In chapter 1, we clarify our perspective on design, which 

represents our focus, and we present the purpose and the approach adopted in this work. In chapter 2, 

we discuss the reasons for adopting machine learning, and we then present the implemented machine 

learning methods. In chapter 3, we present our original natural language processing (NLP) methodology 

based on machine learning, and we then adapt this methodology to the design field to create our original 

demonstrator. The latter will be described in detail and finally tested with an original example.
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1. Focus, Purpose and Approach 

The current chapter is organized in three main sections which respectively introduce the focus (i.e. 

design), the purpose and the approach pursued in this thesis. The conceptual map in Fig. 1 presents the 

structure of the chapter, highlighting the fundamental topics on which the discussion is developed. 

 
Fig. 1: Conceptual map of the chapter developed to explain the original path leading to the purpose and to approach of the 

thesis. 
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Since design represents the focus of the thesis work, we believe our perspective of this concept 

should be immediately clarified. Section 1.1 (“focus”, cf. Fig. 1) reports some important definitions 

about the roles of design as discipline and a well-established model of design process. The latter enables 

to highlight the crucial importance of the conceptual design phase. As argued in [10], design is very 

frequently linked to innovation by scholars, and this trend has particularly developed over the more 

recent decades. Notably, innovation is popularly intended as newness and associated to the technological 

progress, and it thus seems to more and more represent a fundamental component, or even the ultimate 

target, of the design activity [6,10]. We believe that a preliminary analysis of the innovation concept 

will help to better introduce our purpose. According to Fig. 1, a study of how innovation has been defined 

and perceived over the modern history (from 1960s to the recent decades) by industrials and 

entrepreneurs is firstly conducted in section 1.2 (“purpose”). This enables to outline our perspective of 

innovation in the current work and to focus on breakthrough innovation, popularly considered as the 

most valuable form of innovation. Notably, after identifying the distinctive element of breakthrough 

innovations, i.e. the concept originality, we introduce the fundamental design practices which can favour 

the birth of breakthrough innovations, denoted as BDPs (“Breakthrough” Design Practices, cf. Fig. 1). 

BDPs do not involve only technical aspects, but they also involve some important cognitive abilities 

which represent the source of the human creativity [2]. The study of some literature contributions (cf. 

[3–7]) allows to identify the greatest obstacle against BDPs: the cognitive biases (cf. Fig. 1), which are 

heavily responsible for “bad design habitudes”, denoted BDHs. The purpose of the thesis, expressed by 

the three fundamental principles reported in Fig. 1, is finally pointed out. But which design approach 

can be more suitable to reach our purpose? Section 1.3 (“approach”, cf. Fig. 1) starts by analysing the 

most widespread design approach, i.e. the optimization. The presence of many aspects of this approach 

colliding with our purposes reveals that optimization is not suitable to our needs. Notably, we 

demonstrate how optimization does not emphasize the BDP, and how the use of an aided design 

procedure based on this approach is strongly affected by designer’s cognitive biases. An alternative 

design approach is required. We thus proceed by studying the well-established conceptual design 

approach proposed by the Theory of Inventive Problem Solving (TIPS) [8,11]. Based on some important 

features of TIPS, we finally define the fundamental principles of the adopted design approach (cf. Fig. 

1). 
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1.1. Focus 
In this section, we want to briefly clarify our perspective of design, by outlining its roles as 

discipline, and by introducing a well-established model of design process. These aspects will be our 

reference for the concept of design during the rest of the thesis. 

1.1.1. The roles of design 
The word “design” is typically used to mainly indicate the general shaping of an object and the 

CAD tools used by engineers. However, identifying design with aesthetics or defining design as the 

process of collaborating with clients are two common practices [12,13]. The presence of all these 

meanings can result in a significant vagueness, which makes difficult to conceptualize the role of design 

as discipline [14]. Some efforts in this direction have however been made. In [15], Herbert famously 

defined design as “the process of changing existing states into preferred ones” A more recent and “less 

abstract” conceptualization is proposed by Hernandez in [10], who pointed out three main roles of design 

as discipline. These roles are reported in Table 1: 

Table 1: The three main roles of design as discipline (cf. [10]). 

The three main roles of design 

Design as … 

Creative and generative thinking 

Research 

Differentiator 

Contrary to the popularly diffused vision, these aspects, and especially the first role (cf. Table 1), 

highlight the centrality of the human mind in the design activity [10,15].  

1.1.2. A well-established model of design process 
Based on these ideas, Pahl et al. formulated in [16] a model of mechanical design process, which is 

schematically reported in Fig. 2according to [11,16]. This well-established model provides a sequential 

guideline consisting of four fundamental steps to support designers’ activities during product 

development (cf. Fig. 2). Fig. 2 clearly outlines the extremely iterative nature of the design process, in 

which any decision can determine a progress to the next phases or lead to reconsider the decisions made 

in each one of the previous steps. The first phase, i.e. task clarification, mainly concerns the collection 

of input data, the formulation of initial ideas and proposals to solve the given problem and the 

elaboration of the design specifications to satisfy.   
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Fig. 2: Model of mechanical design process (cf. [11,16]). 

1.1.2.1. Conceptual design 
The phase of conceptual design (second step, cf. Fig. 2) concerns the identification of the solution 

principles, i.e. the general strategies, to satisfy the required specifications. Solution principles are thus 

applied and combined to the initial idea, obtaining the concept, which represents an “evolution” of the 

initial idea towards the required specifications [11,16]. According to Fig. 2, the concept is further 

developed to obtain different concept variants. The example proposed in Fig. 3 helps to clarify the given 

definitions of solution principle, concept and variant (cf. Fig. 2). Notably, the purpose of this example 

is to schematically illustrate the conceptual design, without dwelling on the methods whereby solution 

principles are identified and applied to the initial idea. 
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Fig. 3: Schematic example of conceptual design. 

As shown in Fig. 3, the initial idea “cantilever structure” and the specification “reduce the mass…”, 

arbitrarily chosen, constitute the input of conceptual design (cf. Fig. 2). First, the solution principle 

“lattice frame” is identified: the employment of a lattice frame represents a possible strategy to satisfy 

the required specification. Hence, the application of this principle to the initial idea leads to the concept 

“lattice cantilever beam”, which can take shape into different concept variants. According to Fig. 3, the 

concept expresses the essential and constant characteristics of all variants (i.e. “being a lattice cantilever 

structure”), while each variant expresses a different declination of the concept (i.e. a different 

configuration of the lattice). The more solution principles are multiple and different, the more they can 

be combined into multiple and different concept variants. Theoretically, according to [11,16], there is 

no limit on how solution principles can be combined. At the end of conceptual design (cf. Fig. 2 and 

Fig. 3), concept variants are generally evaluated against economic criteria, and the most promising ones 

are selected. Some examples of real product concepts follow: 

• Concept of Sony Walkman: portable device to bring along your own music. This concept involves 

the combination of one main principle, i.e. the portability of the music [2]. 

• Concept of joystick: ergonomic device to control your alter ego in a video game This concept 

involves the combination of two main principles, i.e. the criterion of ergonomicity and the control 

of an alter ego in a video game [17]. 

As argued in [11,16,18], the conceptual design has a considerable effect on important variables, as the 

cost, and it is thus known as the most crucial phase of the engineering design process.



22 

 

1.1.2.2. Embodiment design and detail design 
The phase of embodiment design (third step, cf. Fig. 2) concerns the development of preliminary 

technical layouts from the selected concept variants. After an optimization process according to the 

required specifications, the most promising definitive layouts are selected. The example proposed in 

Fig. 4 represents the development of the technical layouts starting from the concept variants of Fig. 3. 

As done in Fig. 3, the purpose of this example is to schematically illustrate the embodiment design, 

without dwelling on the methods whereby technical layouts are developed, optimized and selected. 

Regarding the parametric annotation used in Fig. 4, the superscripts “1” and “2” indicate the number of 

variant and of the corresponding layout, while the subscripts “p” and “d” stand for “preliminary” and 

“definitive”, respectively. 

 
Fig. 4: Schematic example of embodiment design. 

As shown in Fig. 4, the development from the conceptual dimension of variant to the technical 

dimension of layout requires the definition of some preliminary numerical values, regarding for 

example: 

• Geometry, as lengths (H), angles (α) or the number of internal trusses (N). 

• Material properties, as the density (ρ) 

• Work conditions, as loads (F) and constraints. 

In general, this means that the further development of the studied layouts is constrained to the variation 

of the chosen parameters. Hence, the optimization enables to obtain their definitive (best, optimal) 

numerical according to the required specifications. As reported in Fig. 1, the optimization process will 

be further deepened in section 1.3. Finally, the most promising definitive layouts pass to the phase of 
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detail design (fourth step, cf. Fig. 2), which concerns the completion of the design documentation, as 

the production drawings. According to [16], even if the high-level decisions are normally taken during 

conceptual and embodiment design, designers should not relax too early, since any lack of attention in 

the design documentation could ruin even the best concepts. 

1.1.2.3. Final considerations 
The three design roles reported in Table 1 and the model proposed in Fig. 2 constitute our reference 

for the design process in this work. Thanks to Fig. 3 and Fig. 4, we can also highlight the fundamental 

difference between the conceptual dimension, where everything is potentially possible, and the technical 

dimension, where everything is constrained to the chosen preliminary conditions. 
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1.2. Purpose 
The current section presents the purpose of the thesis and is organized as follows (cf. Fig. 1). The 

concept of innovation is analysed in section 1.2.1. In order to formulate the BDPs, section 1.2.2 focuses 

on breakthrough innovations (cf. Fig. 1). Afterwards, section 1.2.3 concerns the cognitive biases. 

Finally, section 1.2.4 introduces the purpose and the motivation of the thesis.  

1.2.1. The concept of innovation 
Over the twentieth century, the concept of innovation has become very popular in the industrial and 

entrepreneurial world, especially when linked to technological development [13]. Notably, the term 

“innovation” has been used in different contexts over history and it has assumed diverse meanings. Since 

its Latin origins (innovare) until the twelfth century, it denoted a change (novus), something new and 

young. During the sixteenth century, the sense of innovation moved to what is original, unexpected and 

involves creativity. This aspect is still present nowadays.  

1.2.1.1. The contribution of Schumpeter before 1960 

Before 1960, scholarly publications on innovation were few and far between [19]. The main 

exception is represented by the social scientist Schumpeter, in the first half of the twentieth century. 

Notably, he studied the role of innovation and entrepreneurship in economic growth, with an original 

approach based on economics, sociology and history insights. In his early works, Schumpeter firstly 

theorised invention as a process of recombinant research. To him, an invention is a “new combination” 

(an untried possibility) of existing ideas, processes or technologies [20], and it can be “an idea, a sketch 

or a model for a new improved device, product, process or system” [21]. Consequently, Schumpeter 

defined the entrepreneur as a pioneer who carries out new combinations and exploits them to reform the 

pattern of production and introduce a revolutionary social, economic or technological change, i.e. an 

innovation [19,20]. According to his definition, innovations can concern new commodities, new 

methods, new forms or organizations, new sources of supply and new markets [13]. Schumpeter further 

focused on the economic and technological aspects. He argued that, in the economic sense, an innovation 

is accomplished "only with the first commercial transaction involving the new product, process, system 

or device" [21]. On the technological side, he implemented different models to describe the 

technological change. The following model is the most basic and influential: invention ➔ innovation 

➔ diffusion [13,22]. According to his vision, among all the implemented inventions, very few of them 

lead to innovations. These latter ones, which represent successful new technologies, are thus diffused 

until their use is widespread [22]. In his later works, Schumpeter extended his approach to also take into 

account organized R&D (Research and Development) activities in large firms [19,20]. 

1.2.1.2. Freeman’s revolution after 1960: innovation as 

commercialization 
Since the early 1960s, the number of innovation studies has started to grow significantly, due to an 

increasing interest in Schumpeter’s ideas, as well as in technological innovation and R&D activity. Fig. 

5, adapted from [19], shows the growth of the social science articles which contain the word 

“innovation” in the title, from 1955 to 2006. The vertical axis (left side of Fig. 5) reports their ratio (in 

per cent) to the total number of social science articles, while the legend (right side of Fig. 5) reports the 

respective authors’ disciplinary backgrounds in per cent.  
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Fig. 5: Growth of the social science articles containing ‘innovation’ in the title (in per cent) and authors’ disciplinary 

background (cf. [19]). 

As illustrated in Fig. 5, the number of these articles is continually increasing since 1960, and a more 

accentuated slope growth can also be remarked since the late 1990s. Moreover, the legend clearly 

indicates the predominance of the economic background among the social science authors, followed by 

engineering and geography. This highly skewed background distribution is probably due to the original 

contribution of Freeman, who was one of the most influential scientists in the field of innovation [13,19]. 

The core aspects of Freeman’s work are the representation of innovation as commercialization and the 

definition of technological innovation as product commercialization [13]. A first important break point 

with the past, and in particular with respect to Schumpeter, is the strong meaning of commercialization 

which the innovation concept assumes in Freeman’s analysis. As anticipated, for Schumpeter innovation 

firstly consists in combining and introducing a change (“any doing things differently”) [13], even if he 

was aware that an innovation can become such only after commercialization [21]. However, he did not 

discuss his ideas in terms of commercialization, except for innovations regarding new commodities [13]. 

A second important break point concerns the difference between the traditional view and Freeman’s 

view of technological innovation. The tradition on technological change had already emerged in the 

1930s. Technologies were seen as a source of unemployment by sociologists, as in the previous century, 

but as a source of productivity by firms and economists. With such a focus on productivity, technological 

innovation was concerned with the use of technological inventions in industrial production. For instance, 

Schumpeter formalized his idea of technological innovation in the sense of combining factors of 

production in a new way [13]. Between the 1960s and the early 1970s [21,23], Freeman initiated a new 

tradition, moving the focus from productivity to market: to him, the technological innovation is the 

commercialization of technological inventions, for either customers (as products) or firms (as processes) 

[13,19]. According to this view, the inventor becomes a businessman who commercializes a new 

product. On the other hand, the central role and economic importance of the commercialization aspect 

affect the meaning of innovation, which is usually understood as technological innovation according to 

this new tradition.  

1.2.1.3. Freeman’s analysis of R&D: the introduction of the national 

policy component 
The R&D, intended as an activity aimed at technological innovation, is another relevant subject of 

Freeman’s contribution. The introduction of the national policy component in his analysis represents a 

discontinuity with the past. Till then, technological innovation had been discussed in disciplinary terms, 

mainly sociological (unemployment) and economic (productivity). Freeman focuses on market and 
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policy failures in relation to the technological innovation of consumer goods and services. Notably, he 

remarks how the vast majority of public R&D is devoted to national security and prestige R&D (military, 

nuclear, space), especially in his epoch, characterised by the Cold War. Moreover, he highlights how 

“the present R&D selection project techniques are biased overwhelmingly towards technical and short-

term competitive economic criteria” [21]. To Freeman, the reallocation of R&D resources must be the 

main concern of national policies, which should support science and technology based on their 

contribution to social welfare. To this purpose, he proposes several strategies to involve criteria of user-

oriented innovations (satisfaction, environment, aesthetics, social benefits) in the R&D processes: 

standards, regulations, public representation on committees and technology assessments [13,21].  

1.2.1.4. The intergovernmental standpoint of the OECD and its 

principal international reports 
Since the early 1960s, intergovernmental organizations have been the principal diffuser of 

Freeman’s ideas. A discussion on national coordination of science had already started in England in the 

first century half, and then spread all over Europe in the 1950s. Since its foundation in 1961, the OECD 

(Organization for Economic Cooperation and Development) encourages international policies to 

establish the role of science and technology in economic development. The early OECD reports also 

focus on lags and gaps in science and technology between European countries and the US (United 

States), which became a model of economic growth, technology development, productivity and market 

share [13]. The Frascati manual [24], one of the most important OECD documents, constitutes a world 

recognised standard for R&D study and it is widely used by several organizations associated to the 

United Nations and the EU (European Union). It contains some fundamental definitions (as of base 

research, applied research, experimental development) and it concerns the measurement of R&D 

resources (costs and staff). The first edition (1963) was based on a document presented by Freeman, 

who acted as consultant to the OECD [13]. The OECD is also responsible for a deeply developed 

discussion on innovation that still continues today. Since the early reports in 1966 [25] and 1970 [26], 

the OECD retained a vision of technological innovation as commercialized invention, and further 

implemented this representation in the following decades. The Oslo manual [27], first released in 1992, 

defines and distinguishes the technological innovation of product and process. According to the Oslo 

manual, the product innovation concerns the commercialization of a more performing product that 

provides objectively new or better services to consumers. On the other hand, the process innovation 

concerns the adoption of new or considerably better production or distribution methods. The 

technological innovation of process can involve changes in materials, human resources or work 

methods, contemporarily or separately.  

1.2.1.5. The crystallisation of innovation as product 

commercialization 
Between the 1960s and 1970s, other public reports sharing the same OECD innovation perspective 

were released by other important public organizations, as the US Department of Commerce and the UK 

Central Advisory on Science and Technology. Despite the development of other definitions in sociology, 

management and political science, only the definition of commercialization has been selected and 

standardised by OECD and governments. The reason lies in the relevance of commercialization to policy 

purposes (market shares). However, this contributed to a crystallization of the concept of innovation as 

technological innovation and on a focus on firms and economic growth as ultimate outcome [13]. Few 

studies discuss what innovation is. On the contrary, the majority retains the specific perspective of 

technological innovation and specializes on firms’ organizational features and market to optimize 

product commercialization. Innovation’s social and institutional aspects are studied for their 
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contribution in the innovative performance of firms, while the social issues, as those criticized by 

Freeman (cf. section 1.2.1.3), occupy a marginal position [13].  

1.2.1.6. Final considerations: our perspective of innovation in 

relation to design 
We have investigated the evolution of the innovation concept from the 1960s to the recent decades, 

from an industrial and entrepreneurial standpoint. As argued, a different interpretation has been added 

to this concept according to the historical period. We have seen how innovation has nowadays acquired 

a strong economic and technological meaning, mainly due to the international reports of the OECD. We 

believe this is one of the main reasons why this concept has become so popular even in the design field. 

The principal meaning that innovation has assumed according to the different epochs are reported in 

Fig. 6, with the support of a timeline (left side). The relationship with the concept of “new” has been 

also highlighted (cf. Fig. 6, right side).  

 
Fig. 6: Principal meaning assumed by innovation according to time and relationship with ‘‘new’’. 

Even if the economic interpretation is the most predominant vision, all the other meanings (cf. Fig. 

6) still exist and are currently used in different contexts by innovation scholars [10,13,19]. This could 

explain the great vagueness surrounding this concept. For the purpose of this work, we adopt a general 

definition of innovation based on Schumpeter’s vision: a novel combination with the power to produce 

a change (cf. Fig. 6 and section 1.2.1.1). This definition is reported in Fig. 7, where three key aspects 

are highlighted and explained in relation to our design focus.  

 
Fig. 7: Key aspects of the adopted definition of innovation in relation to our design focus. 

Notably, the diversity of the generated combinations, as underlined in the term “novel” (cf. Fig. 7), 

represents for us a very important point of the given definition. We believe a design approach should 

insist on this aspect, by helping designers admitting different standpoints and by proposing different 

solution options (“combination” cf. Fig. 7). These ideas are embodied in the BDPs, which will be 
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introduced in section 1.2.2. The term “combination” (cf. Fig. 7) identifies a generic design solution and 

highlights the recombinant and iterative nature of the design process (cf. Fig. 2). Finally, as reported 

Fig. 7, we intend the produced “change” in a positive sense, as an improvement of a previous design 

condition.   

1.2.2. The “Breakthrough” Design Practices (BDPs) 
According to the adopted definition (cf. Fig. 7), an innovation is considered such if it produces a 

(positive) change. This change can be more or less significant, predictable or unexpected. Many efforts 

have been aimed to classify innovations by describing and “measuring” the produced change [2]. 

1.2.2.1. A qualitative model to classify innovations 

Over the last decades, scholars have employed different adjectives, often imposing a bimodality to 

innovation: continuous versus discontinuous, evolutionary versus revolutionary, and incremental versus 

(breakthrough). As argued in [2], these adjectives represent an indicative classification method. 

Different models have also been implemented to classify innovations in a more structured way, mostly 

from an economic point of view. The model proposed in Table 2 (cf. [28]) is one of the most used, and 

highlights two principal dimensions of industrial innovation: newness of technology and customer need 

fulfilment. The first one represents a measure of how much a technology involved in a new product is 

different from prior technologies. The second one represents a measure of the benefit given to customers 

by a new product and its capability to create a new market.   

Table 2: Types of product innovations (cf. [28]). 

  Customer Need Fulfilment 

  Low High 

Newness of 

Technology 

Low Incremental Innovation Market Breakthrough 

High Technological Breakthrough Radical Innovation 

According to Table 2, an incremental innovation entails relatively moderate changes in technology 

and customer benefit. Market breakthroughs are based on core technology, similar to existing products, 

but provide higher costumer benefits. Vice versa, a technological breakthrough adopts a substantially 

different technology but does not provide superior customer benefits. Finally, radical innovations 

involve substantially new technologies and provide substantially higher customer benefits [28]. The 

qualitative nature of this model (low and high, cf. Table 2) suggests that there is not a well-defined 

border between incremental and breakthrough (or radical) innovations and, as argued in [2], that 

innovation can be thought as a continuous space [2].  

1.2.2.2. Concept originality: the key to breakthrough innovations 
The use of new technologies and the birth of new markets (cf. Table 2) are of course fundamental 

variables to consider, but they do not constitute the unique term of classification. As observed in [2], a 

large variety of innovations employed existing technologies and concerned already mature markets, as 

the Sony Walkman, for example, which still resulted in an economic boom for the company. This 

product had a great success and a large diffusion, especially among young people. In this case, the 

concept of the product, i.e. the possibility to bring along your own music (cf. section 1.1.2.1), 

represented the real breakthrough innovation. Another similar example is reported in [17]: in 2001, the 

BMW Group decided to conceive a new interface device for controlling a manifold of functions in 

luxury cars. This interface device was based on an already mature technology, the joystick, very 

important for the video game industry, but still resulted in a great success. Notably, the breakthrough 

was determined by transfer of the concept of joystick (cf. section 1.1.2.1) from the video game field to 

the automotive domain. Based on these examples, we can make the following important considerations: 
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• As also argued in [2,29], the breakthrough potential of an innovation is embodied in its concept. 

Notably, the originality of the concept represents the key to breakthrough innovations.  

• Consequently, the phase of conceptual design (cf. Fig. 2), in which concepts are born, is of crucial 

importance for the achievement of breakthrough innovations.  

 

1.2.2.3. Incremental and breakthrough innovation in a design 

process 
We can better outline the concepts of incremental and breakthrough innovation in our design 

context by means of Fig. 8. Remembering that design is an iterative process of combination (cf. Fig. 2 

and Fig. 7), the histogram in Fig. 8, adapted from [1], shows the typical relation between the number of 

carried combinations (vertical axis) and their design outcome (horizontal axis). The latter represents a 

statistical measure based on patent citations, scientific citations, financial returns and number of times 

a novel combination is used by future designers. As argued in [1], every well-sampled of design outcome 

based on these parameters shows an highly skewed profile as in Fig. 8.  

 
Fig. 8: Number of carried combinations vs design outcome (cf. [1]). 

The histogram suggests that the most part of the carried combinations result in a very poor outcome, 

as indicated by the great density on the left. For these combinations, the outcome is so low that they can 

be considered as failures (cf. Fig. 8). Few combinations have a moderate value (incremental cf. Fig. 8), 

while the very outliers on the right represent the true breakthroughs and form the “long tail” of 

innovation [1]. Based on these considerations, a design process could produce a great amount of useless 

or minor new combinations before achieving a breakthrough innovation. The continuous trend in Fig. 8 

indicates that the innovation categories (failures, incremental and breakthrough innovations). cannot 

neatly distinguished. This means there are no defined patterns which guarantee to achieve breakthrough 

innovations. However, their birth can be favoured by observing some principles during the design 

process. We called these principles “Breakthrough” Design Practices (BDPs).
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1.2.2.4. The base of the BDPs 
The BDPs are directly related to the nature of the human subconscious tacit knowledge [2,28]. The 

latter is a highly personal and unique form of knowledge, and it derives from experience, practice, 

perception and learning. Based on these characteristics, a designer can contribute to innovation in 

different ways [29]. In the model of tacit knowledge proposed in Table 3, adapted from [2], the tacit 

skills correlated to the innovative abilities have been distinguished into technical and cognitive skills. 

As shown in Table 3, the experience gained through “learning-by-doing” gives the lowest innovative 

abilities. This type of knowledge, for example, allows an expert workman to be more productive than a 

novice, despite the same tools and a similar training. A combination of formal education and work 

experience (average level, cf. Table 3) awards more significant innovative abilities. This category can 

be represented by a specialist engineer, endowed with problem-solving skills but limited by his 

preference for details [2]. 

Table 3: How the tacit knowledge contribute to innovation (cf. [2]). 

Innovative abilities Correlated tacit skills 

Level Description Technical Cognitive 

Low 
Tangible results 

achieved through 

bodily actions 

Learning-by-doing 

experience 
Pattern recognition 

Average 

Creative solutions to 

specific problems 
 

Innovations in 

techniques, methods 

and processes 

Educational and 
experienced 

specialization 

Problem-solving 
 

Mental models 

High 
Breakthrough 

conceptual solutions 

(cf. section 1.2.2.2) 

Deep and broad 
multidisciplinary 

specialization 

System thinking 
 

Intuition 
 

Insight 

The highest level of innovative ability indicates the skills which more contribute to breakthrough 

conceptual solutions (cf. section 1.2.2.2): 

• On the technical side (cf. Table 3), a deep specialization in more disciplines allows to analyse 

problems under different points of views, and thus to broaden the search range in the solution space.  

• On the cognitive side, breakthrough innovators have an overall view of the solution space (system 

thinking, cf. Table 3): they can see and originally exploit (intuition and insight, cf. Table 3) the 

interrelationships between different technologies, or even different and apparently unrelated 

disciplines, transcending the technical details and visualising the final solution.  

These skills are the base of the BDPs and represent the essence of creativity [2,29]. In order to formulate 

the BDPs, we want to show how these technical and cognitive skills, respectively, can be released and 

exploited.  

1.2.2.5. The BDPs based on the technical skills 

We can better illustrate this aspect by assuming the point of view of a manager, who organizes and 

supervises the design process. Notably, managers are charged to monitor and measure the quality of the 

design process. Based on the breakthrough technical skills reported in Fig. 9, managers can promote a 

multidisciplinary collaboration between more designers with different fields of expertise [1,30]. Fig. 9 

shows the effect of promoting multidisciplinary collaboration on the design outcome, according to the 

typical skewed distribution in Fig. 8. For brevity, the category of incremental innovations (blue 

background, cf. Fig. 8) has been removed.  
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Fig. 9: Effect of promoting multidisciplinary collaboration (cf. [1,30]). 

As shown in Fig. 9, a greater diversity between the specialization fields of collaborators tends to 

reduce the average outcome of the design process and, for this reason, it can be very risky. However, 

the more this diversity is significant, the more the variance of the inventive outcome increases. This 

means that much worse combinations (failures) but also much better ones (breakthroughs) are more 

probable. The behaviour reported in Fig. 9 allows to formulate the two following BDPs:  

BDP a. Consider multiple and different solution paths. Based on Fig. 9, the probability to achieve more 

interesting (breakthrough) solutions increases by carrying out more and different combinations. 

Given a design problem with some design requirements to satisfy, we can admit mechanical, 

physical or chemical solutions (i.e. from different disciplines) [1,30]. We can also consider multiple 

and different solutions within the same discipline [2], as shown in the example of Fig. 10. The 

solutions listed in Fig. 10b allow to reduce the vertical displacement of the cantilever beam in Fig. 

10a. 

 
Fig. 10: Example: (a) cantilever beam and (b) different mechanical solutions to reduce f. 

All the solutions in Fig. 10b are mechanical (same discipline), but they act on the structure in a 

different way. Indeed, solution 1 suggests increasing the material stiffness, while solution 2 involves 
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the addition of a reinforcing element which modifies the configuration of the original system (cf. 

Fig. 10b).  

BDP b. Consider good as well as bad solutions (keep also bad solutions). Bad solutions are those which 

poorly improve the outcome (failure, cf. Fig. 9). According to [1,3,30], they should not be discarded, 

since they could be combined with other solutions in the future and result in breakthroughs. 

 

1.2.2.6. The BDP based on the cognitive skills 
Keeping the managerial perspective, managers’ role cannot be limited to assemble and organize the 

team. As argued in [29], the breakthrough cognitive skills (cf. Table 3) need targeted stimuli to be 

released and expressed in a tangible way: designers’ creativity must be awakened. This represents one 

of the hardest challenges for managers. Of course, we cannot exclude those stimuli could also randomly 

and unexpectedly occur. Nevertheless, managers can observe the following principles in order to achieve 

this objective:  

• Encouraging designers to “think outside the box”, which means pushing them out of their comfort 

zone by inspiring them to explore new and unconventional paths. Designers should be enabled to 

“wander with their minds” without imposing pre-defined structures and to carry out “wild” 

(“foolish”) new combinations (which increase the outcome variability, cf. Fig. 9) by aiming to 

ambitious targets [1,30,31]. Fostering a personal and emotional engagement of designers in the 

design process could facilitate this task [2].  

• Create a stimulating environment: aligning all minds to the same focus and encouraging an 

atmosphere of mutual feedback and learning. The team should operate as a unified entity, ideas 

should constantly flow from everyone, including the manager, to each other. According to [2], this 

task could be facilitated by promoting direct and continuous personal interactions with frequent 

meetings, and by avoiding the indirect communication forms, as e-mails and documents, as much 

as possible.  

These points are summarised in Table 4. 

Table 4: Managerial principles to release the breakthrough cognitive skills. 

Principle Description Personal aspect  

Push designers out of their 

comfort zone 

• Encourage creative 
improvisation: trying 

unconventional solution 

paths without imposing pre-
defined structures 

• Fix ambitious targets 

Favour the emotional 
engagement in the design 

process 

Create a stimulating work 

environment 

• Align all designers to the 
same focus 

• Encourage mutual feedback 

and mutual learning 

Favour direct communication 

forms, increase personal 
interactions 

Based on these principles, we can thus formulate the following BDP: 

BDP c. Creative improvisation. Mostly during conceptual design (cf. Fig. 2), the designer should be 

free to “improvise”, i.e. trying unconventional and instinctive solution paths without following pre-

defined patterns and design methodologies (pre-defined structures, cf. Table 4), as for example those 

proposed in the informatic CAD software. As argued in [32,33], these tools force designer to focus 

on technical details linked to their functioning, “forgetting” their real target. On the other hand, 

improvising enables designer to transcend technical details and to have an expanded overview of 

the solution space (system thinking, cf. Table 3). This also improves his ability in exploiting 

eventual interrelationships between different combinations (insight, intuition, cf. Table 3) to achieve 

breakthrough innovations. 
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1.2.2.7. Final considerations 
The three BDPs formulated in sections 1.2.2.5 and 1.2.2.6 are reported in Table 5, where their 

fundamental concepts are also highlighted. 

Table 5: Breakthrough design practices (BDP). 

BDP Fundamental concepts 

a. Consider multiple and different solution 

paths 

The probability to achieve more interesting 

(breakthrough) solutions increases by carrying 

out more (multiplicity) and different (diversity) 
combinations (cf. Fig. 9) 

b. Consider good as well as bad solutions 

Keep also bad solutions (do not discard them a 

priori). They could be potentially recombined 

with other solutions and generate a breakthrough 

c. Creative improvisation 
Try unconventional solution paths without 
following pre-defined patterns and 

methodologies, transcend technical details 

As anticipated in section 1.2.2.3, these BDPs cannot guarantee the achievement of breakthrough 

design solutions. However, if observed, they enable designer to enormously enlarge the solution space, 

increasing the possibility to include breakthrough solutions. Unfortunately, the indications provided by 

the BDPs are usually unknown or ignored [2]. Instead of BDPs, designers often tend to follow “bad 

design habitudes”, due to some mental mechanisms strongly rooted in the human mind: the cognitive 

biases [3]. We will focus on them in in section 1.2.3.    

1.2.3. Cognitive biases: the greatest obstacle against 

breakthrough innovation 
The cognitive biases are subconscious mental mechanisms which continually influence our 

thoughts and decisions, and prevent us to think with a “completely open mind” [4,5]. We want to study 

them in order to understand how they impact on our design abilities. 

1.2.3.1. The effects of cognitive biases on our behaviour 
By nature, our brain tries to keep us safe and to preserve energy. In a sense, this characteristic makes 

us “lazy”: it subconsciously creates patterns of thinking and behaviours which lead us to assume as 

“dangerous” all that is new and unknown [4,5]. As argued in [4], this aspect allowed us to survive several 

times during our evolution, but it represents one of the greatest obstacles to the application of the BDP. 

Notably, when we are faced to a problem, our brain has already determined which is the best chance of 

success even before we start to reflect. Indeed, the brain operates on autopilot and is used to 

automatically taking well-known shortcuts, rather than consuming energy to explore new paradigms. 

As reported in [34], “we think of ourselves as (being) in the driver’s seat, with ultimate control of the 

decisions we make – but, alas, this perception has more to do with our desires than with reality”. A 

description of the principal cognitive biases is reported in Table 6 according to [4,5,7], in the form of 

relationship between their cause and their effect on our behaviour.  Based on Table 6, not only cognitive 

biases are innately eradicated in the human being, but they are also determined by the received 

education. Notably, the education contributes to form familiar patterns (functional fixedness, cf. Table 

6) and to outline one’s preconceptions (confirmation, cf. Table 6) [3,7].  
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Table 6: Causes and effects of the principal cognitive biases. 

Cognitive bias Cause Effect on behaviour  

Status quo 
The brain hates anxiety and 
uncertainty, and tends to maintain an 

equilibrium state to save energy 

We tend to reject a priori what is 

uncertain, because too challenging, 

too risky and it requires too much 
time 

Functional fixedness 

The brain loves the familiarity of the 

patterns on which we have been 

trained and educated 

We are limited to use objects in a 

traditional way, it is hard to think 

“outside the box” 

Confirmation 

We tend to interpret the reality, 
make assumptions, and remember 

information seeking confirmation 

and support to our preconceptions 

We tend to dismiss, refuse and 
ridicule the alternatives which do 

not fit with our view, also because 

we simply dislike them 

1.2.3.2. Biased design habitudes (BDHs): how cognitive biases affect 

design thinking   
The influence of cognitive biases (cf. Table 6) on design thinking represents an important issue 

regarding the achievement of breakthrough innovations. According to [3], cognitive biases are 

responsible for biased design habitudes, denoted BDHs. Based on [3,5,6,32,33,35] and on Table 6, Table 

7 shows the contraposition between the BDPs (i.e. what designers should do to achieve breakthrough 

innovation, cf. Table 5) and the most common BDHs (i.e. what designers instead tend to do), 

highlighting also the responsible cognitive biases. Due to BDHs, the designer is led to prematurely 

terminate the design process after evaluating a poor set of solutions, impairing the generation of new 

ideas and the testing of different hypotheses. Many aspects of the BHDs derive from the design 

education. As argued in [6,32,33,35], the traditional engineering pedagogy teaches science theory 

focusing on the technical aspects. Notably, design students are trained to eliminate ambiguity, 

minimizing all uncertainties by defining fixed parameters, to quickly find optimal compromise solutions 

(functional fixedness, cf. Table 7). Moreover, they are not used to work in team, and they are thus 

reluctant in considering different points of view which do not fit with their preferences (confirmation, 

cf. Table 7). As visible in Table 7, all cognitive biases simultaneously contribute to prevent the BDP a, 

while the BDP b and c are essentially obstructed by functional fixedness. Due to BDHs, the designer is 

led to prematurely terminate the design process after evaluating a poor set of solutions, impairing the 

generation of new ideas and the testing of different hypotheses. Many aspects of the BHDs derive from 

the design education. As argued in [6,32,33,35], the traditional engineering pedagogy teaches science 

theory focusing on the technical aspects. Notably, design students are trained to eliminate ambiguity, 

minimizing all uncertainties by defining fixed parameters, to quickly find optimal compromise solutions 

(functional fixedness, cf. Table 7). Moreover, they are not used to work in team, and they are thus 

reluctant in considering different points of view which do not fit with their preferences (confirmation, 

cf. Table 7). As visible in Table 7, all cognitive biases simultaneously contribute to prevent the BDP a, 

while the BDP b and c are essentially obstructed by functional fixedness. 
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Table 7: Contraposition between BDP and BDH, and corresponding cognitive biases. 

BDP 

What designers should do 

BDH 

What designers instead do 
Responsible cognitive bias 

a. Consider multiple and 
different solution paths 

Choosing what can be quickly 

imagined and realized  

Status quo: we tend to reject 
seems too challenging and 

requires too much time 
 

Functional fixedness: designers 
are trained to quickly find 

optimal compromise solutions 

Dismissing unliked solution 

paths 
 

Ignoring disconfirming data 

Confirmation: we tend to refuse 
what does not fit with our 

preconceptions (or what we 

simply dislike) 
 

Status quo: disconfirming data 

perturbate our equilibrium and 

cause anxiety 

b. Consider good as well as bad 

solutions 

Excessive focus on good 

(optimal) solutions 

Functional fixedness: designers 

are trained to discard bad 
solutions  

c. Creative improvisation 
Excessive focus on technical 

aspects 

Functional fixedness: designers 

are very familiar with technical 

aspects; they are not trained to 
“think outside the box” 

Based on Table 7 and Table 6, the main effect of cognitive biases on our design thinking is 

schematically illustrated in Fig. 11, where the big circle is the space of the solutions we could potentially 

imagine, while each round tick represents a different solution.  

 
Fig. 11: Restriction of the solution space due to cognitive biases. 
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The cognitive biases, by means of the BDHs, preclude us the possibility to imagine different and 

more interesting things (breakthroughs, cf. Fig. 11), Contrary to the BDPs (cf. Table 5), this results in 

restricting the solution space. Over the recent decades, many efforts have been aimed at creating a new 

design thinking, to mitigate the cognitive biases (and so the BDHs). The analysed literature contributions 

focus on two main points of view: management and education.  

1.2.3.3. The mitigation of cognitive biases from the managerial 

perspective 
According to [2–5,7], managers can mitigate the confirmation bias (cf. Table 6) by promoting the 

open discussion (cf. Table 4) of different points of view, to limit egocentrism phenomena. To this 

purpose, several methods, as brain-storming and 5W1H1 (cf. [36]), can be very useful to foster 

socialisation, but may not give a significant impulse to breakthrough innovation. As suggested in [2,3], 

managers should adopt fast prototyping methods: 

• Fast prototyping. Solution samples are immediately constructed in the early steps of the design 

process (cf. Fig. 2), in which technical requirements are not fully defined yet. This “forces” 

designers improvising to immediately imagine a physical solution proposal without focusing on the 

technical aspects, and thus mitigating the functional fixedness (creative improvisation, cf. Table 7). 

Thanks to fast prototyping, team designers can also openly discuss on visible and tangible 

prototypes, and this helps mitigating the confirmation bias. Moreover, for commercial design, fast-

prototyping easily favours the interaction with costumers, and this offers the possibility to learn 

from failures and to collect complete data sets [6]. For example, at Sony, the early technical samples, 

which will serve as “physical proposals”, are immediately constructed in the first design phases (cf. 

Fig. 2). Starting from the approved samples, project teams carry on by creating commercial 

prototypes, each one conceived to facilitate the communication with consumers and among the same 

design teams at a specific phase of the design process [37].  

The analysed aspects are summarised in Table 8. 

1.2.3.4. The mitigation of cognitive biases from the educational 

perspective 
The Product Design Engineering (PDE) program (cf. [32]), at Swinburne University of Technology 

(Melbourne, Australia), and the Mechanical Engineering 310 (ME310) course (cf. [33]), at Stanford 

University (California, USA), represent two important educational examples of forging creative 

designers with a novel approach oriented towards breakthrough innovation. The effects of the traditional 

engineering pedagogy on the confirmation and functional fixedness biases are reported in Table 7 (cf. 

section 1.2.3.2). Contrary to the traditional programs, these courses are based on a “learning in action” 

approach and consist in designing and producing a prototype from a given need of a client. Students are 

divided into project teams and are expected to search for original solutions, merging their creative efforts 

in combining new materials and technologies. Due to the ill-defined (“wicked”) assignments, all teams 

 

 

 

 

1 5W1H: this method intends to analyse problems systematically, according to the essence of the object (What), 

the essence of the subject (Who, i.e. the manipulator), the problem-existence ways in time and space (When, 

Where), the reason/principle (Why) and the solution of the problem (How) [36]. In a more improved version, 

denoted with 5W2H, the term “How” is divided into “How to” and “How much”, which respectively indicate the 

way and the cost to resolve the problem [36]. 
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struggle in defining and re-defining the appropriate engineering requirements and continually re-scope 

the solution space. Despite the initial anxiety, this enables students to become more flexible and to 

acquire more advanced skills in handling risks, thus mitigating the status quo bias (cf. Table 6 and Table 

7) [32,33]. A particular emphasis is given to hand-sketching and fast prototyping: 

• Hand-sketching. In many courses, design is traditionally taught by means of CAD software. Of 

course, these represent a powerful ally in the advanced design phases. However, in the first phases 

of conceptual design (cf. Fig. 2), they risk stifling creativity by imposing their methodology to users. 

Instead, hand-sketching enables students to quickly shift to new alternatives within the solution 

space, without imposing any technical rule. Therefore, hand-sketching helps to reduce the focus on 

technical aspects, providing more space for creative improvisation (cf. Table 7, functional fixedness) 

[38]. Moreover, hand-sketching provides better possibilities of open discussion: each team member 

can easily participate and “contaminate” the sketch with his ideas. This helps to mitigate the 

confirmation bias (cf. Table 6 and Table 7) [32,33,39].  

• Fast prototyping (cf. section 1.2.3.3). Analogous to hand-sketching, it allows to mitigate functional 

fixedness and confirmation biases by fostering improvisation and open discussion. By means of fast 

prototyping, project teams can also frequently interact with experts and clients to iteratively evaluate 

the engineering and commercial features of their prototypes.  

At the end of these courses, the skills acquired by students allow them not only to excel in the 

resolution of ill-defined problems, but also to overcome other “more technical” students in more 

technical problems [32,33]. All the analysed aspects are summarised in Table 8. 

1.2.3.5. Final considerations 
Based on the analysed perspectives, the fundamental principles to mitigate cognitive biases are 

summarised in Table 8. 

Table 8: Fundamental principles to mitigate cognitive biases. 

Perspective Principle Mitigated cognitive bias 

Management 

Encouraging open discussion (socialization): 

• Brainstorming 

• 5W1H1 

Confirmation: open discussion 

limits egocentrism phenomena; 

different standpoints can be more 
easily considered 

Fast prototyping  
➢ Improvisation to realise early proposals 

➢ Open discussion on tangible prototypes 

Functional fixedness: more 

improvisation and less focus on 

technical aspects (cf. Table 7)  
 

Confirmation (see above) 

Education 

Assigning ill-defined problems 

Status quo: students continually 

“struggle” to achieve the solution, 

they become more confident in 

handling anxiety and risks 

Hand-sketching (instead of CAD software) 
➢ Less technical rules 

➢ Open “contamination” of the sketch 
 

Fast prototyping (see above) 

Functional fixedness (see above) 
 

Confirmation (see above) 

Both perspectives highlight the importance of the fast prototyping to foster the creative 

improvisation and to encourage the open discussion among all the actors of the design process 

(designers, managers, costumers). We also want to highlight the significant role of hand-sketching, 

which enables designers to represent and combine even unconventional and incomplete solutions, 

without following any technical rule. 



38 

 

1.2.4. The purpose of our work 
According to Fig. 1, the three fundamental principles reported in Table 9 express the purposes of 

our work and represent the base of the aided design procedure implemented in this thesis. Table 9 also 

highlights two important targets involved in all the proposed purposes (common targets).  

Table 9: Base principles of the implemented demonstrator, corresponding purposes and common targets. 

Base principles Corresponding purpose Common targets 

Focus on conceptual design  

Favour the birth of original 

concepts and concept variants (cf. 
Fig. 3) Minor focus on optimal 

solutions 

 

Minor focus on technical 
aspects 

Follow the indications provided 

by the BDPs 

Enlarge the solution space as much 

as possible (cf. Table 5) 

Help to overcome cognitive 

biases 

Prevent cognitive biases to affect 

the designer’s choices and to 

restrict the solution space (cf. 
Table 7 and Fig. 11) 

According to our purposes, we want to further comment the chosen principles in view of their 

common targets (cf. Table 9): 

• Focus on conceptual design: The conceptual design constitutes the scope of our procedure. Indeed, 

as argued in section 1.2.2.2, the concept originality is the key to breakthrough [2,17,29]. As said in 

section 1.1.2.3, “everything is possible” in the conceptual dimension: the designer is theoretically 

free from any rule and there is no limit to the creativity of the generated concepts [11,16]. Notably, 

conceptual design involves a minor focus on technical aspects and on optimal solutions (cf. Table 

9), which should be normally considered in the phase of embodiment design (cf. Fig. 2 and Fig. 4).  

• Follow the indications provided by the BDPs: We want to offer designer the possibility to enlarge 

the solution space as much as possible, considering multiple and different solutions, good and bad 

ones (minor focus on optimal solutions, cf. Table 9), classical and unconventional ones (cf. Table 

5). Notably, unconventional solutions can be achieved through the creative improvisation (cf. 

section 1.2.2.6), i.e. by transcending technical details (minor focus on technical aspects, cf. Table 

9) without following pre-defined design methodologies.  

• Help to overcome cognitive biases: We want to prevent cognitive biases to affect designer’s choices 

and to restrict the solution space. Based on Table 8, we will insist on some design techniques which 

allow to mitigate the BDHs (cf. Table 7). Notably, the employed techniques will enable designer to 

divert the attention from technical design aspects and optimal solutions (cf. Table 9), improving the 

diversity and the multiplicity of the carried design combinations.
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1.3. Approach 
According to the BDHs introduced in section 1.2.3.2, designers tend to excessively focus on 

technical aspects, searching for optimal solutions (functional fixedness, cf. Table 7), i.e. following an 

optimization approach. As suggested by the common targets in Table 9, our purposes go in the opposite 

direction, in order to limit these biased tendencies. Moreover, the optimization is generally involved in 

the embodiment design phase (cf. Fig. 2 and Fig. 4), which is out of the scope of our procedure. 

However, optimization represents the most widespread approach used by designers [8]. Notably, we 

believe it is very important to further clarify the reasons why optimization is not suitable to our targets. 

This will also help to better understand our purposes, before presenting the approach followed in our 

work. According to Fig. 1, the optimization approach is described and analysed in section 1.3.1. 

Afterwards, the approach followed in our procedure is presented in section 1.3.2. 

1.3.1. The optimization approach: a poor breakthrough 

potential 
According to [8,33], optimization represents the most widespread design approach in the industrial 

innovation environment. Its use is enormously increased thanks to computer diffusion. As introduced in 

section 1.1.2.2, the optimization generally consists of obtaining a definitive design layout, whose 

parameters are optimized according to the given specifications (cf. Fig. 4). Section 1.3.1.1 provides the 

typical flowchart of an optimization procedure and some general definitions regarding this approach. 

Based on these definitions, an example of optimization is then proposed in sections 1.3.1.2 and 1.3.1.3. 

Finally, the aspects of the optimization approach which collide with our purposes and common targets 

(cf. Table 9) are pointed out and analysed in section 1.3.1.4. 

1.3.1.1. Optimization flowchart and general definitions 
The typical flowchart of an optimization procedure is reported in Fig. 12. Based on Fig. 2 and Fig. 

4, an initial concept variant (an engineering structure, cf. Fig. 4) and some specifications are assumed 

as start points. Regarding the annotations used in Fig. 12: 

• “v” (lowercase) indicates the generic single variable, while “V” (capital) indicates the entire set of 

variables. 

• “p” (lowercase) indicates the generic single performance, while “P” (capital) indicates the entire set 

of performances. 

• The subscripts “n” and “m” respectively represent the total number of variables and the total number 

of performances. 

• The subscript “obj” indicates an objective (target) to achieve. 

• The subscript “i” indicates the ith generic iteration of the optimization process. 
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Fig. 12: Typical flowchart of an optimization procedure (cf. [8]). 

The optimization approach is characterised by three main phases: input, optimization process and output. 

Input. This phase concerns the definition of two main groups of parameters: 

• Objectives of the optimization, i.e. the performances which the optimized (definitive) structure must 

achieve. The performance parameters (p) and the corresponding target values (pobj) are defined 

based on the required specifications. The objectives can generally concern different characteristics 

of the studied structure: mechanical (as mass, cf. Fig. 4, structural stiffness, etc.), economic (as 

material price, production price, etc.), etc. We define the optimization as multi-objective if the 

objectives are more than one [1,8]. 

• Variables, i.e. the design parameters of the studied structure which have to be optimized according 

to the required objectives. Each variable is defined in a limited variation range ([vmin ; vmax], cf. Fig. 

12).  

Optimization process. The iterative process of optimization constitutes the core of the optimization 

approach. The choice of an initial configuration of the design variables (initial Vi, cf. Fig. 12) is required 

to start the process: a preliminary value is assumed for each variable (preliminary layout, cf. Fig. 4). 

Hence, the set of performances Pi is evaluated as function of Vi. Notably, F (cf. Fig. 12) represents the 

ensemble of functions describing the behaviour of the ith design layout. Finally, Pi is compared with Pobj 

to verify if the required objectives have been achieved. If yes, the optimization process is ended; 

otherwise, the optimization process continues with a new iteration, by choosing a new configuration of 

the design variables (new Vi, cf. Fig. 12), different from the previous one. In general, the iterative 

process shown in Fig. 12 is automatically handled with advanced informatic procedures, as gradient and 

genetic algorithms (cf. [40,41]), which also contribute to speed up the optimization process. 

Output. Once the optimization process is ended, the last Vi constitutes the optimal configuration of the 

chosen design variables (i.e. the definitive design layout of the studied structure, cf. Fig. 2 and Fig. 4). 
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1.3.1.2. An example of multi-objective parametric optimization 
We propose an example of multi-objective parametric optimization. Based on Fig. 12, the input 

phase of the proposed example is reported in Fig. 13. The studied concept variant involves a cantilever 

beam with a squared section. The hypothesis of isotropic material is also assumed. As suggested by the 

legend, the design parameters linked to the studied structure can be distinguished between: 

• Potential variables (highlighted in red, cf. Fig. 13), i.e. parameters which can potentially become 

design variables, and thus be optimized. In our example, the section side (h), the Young’s modulus 

(E) and the material density (ρ) belong to this category. 

• Work conditions (highlighted in green, cf. Fig. 13), i.e. the parameters which describes the work 

environment of the concept variant and are therefore priorly fixed due to external exigences. In our 

example, the extremity load (F) and the beam length (L) belong to this category. 

The specifications are finally reported on the right side of Fig. 13. 

 
Fig. 13: Input phase of the proposed example (according to Fig. 12). 

Based on the required specifications, the mass of the beam (m) and the vertical displacement at the 

extremity (fx) represent our two performances. Since no target value is indicated in the specifications, 

mobj and fx,obj, are assumed equal to zero (i.e. m and fx must be minimized as much as possible). We are 

thus in a multi-objective optimization since we have more than one objective. For brevity, the section 

side (h) represents the unique variable assumed, whose value is limited in the variation range [hmin ; 

hmax], while the other potential variables (E and ρ) are considered constant (cf. Fig. 13). The assumed 

values of the design parameters are reported in Table 10. 

Table 10: Assumed values of the design parameters in the example of Fig. 13. 

Parameter Value and measure unit 

h [10; 30] mm 

E 210 000 MPa 

ρ 7800 kg/m3 

F 10 N 

L 1000 mm 

Choosing only one variable enables to simplify the optimization process (cf. Fig. 12): we can 

directly study the dependency of m and fx on h, without using any iterative procedure. Hence, Eqs. (1) 

and (2) describe the behaviour of the performances m and fx as function of the variable h (F, cf. Fig. 12). 

Eq. (2) has been adopted by assuming the hypothesis of linear elasticity, according to [42]. 

 m = ρLh2 (1) 
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 fx =
FL3

3E (h
4

12⁄ )
 (2) 

The relationship m-fx in Fig. 14a has been obtained with Eqs. (1) and (2), by varying h between 10 

and 30 mm (cf. Table 10), and it represents the ensemble of possible solutions. Notably, each point of 

the curve is characterised by different values of h and of the corresponding performances. It can be 

remarked from Fig. 14a that the performances m and fx are in contradiction2: an improvement in the 

mass (decreasing of m, cf. Fig. 13), obtained by decreasing h, leads to a deterioration of the vertical 

stiffness (increasing of fx). This means the optimal solution, i.e. the optimized value of the variable h 

(cf. Fig. 12), will be a compromise between the performances m and fx. 

 
Fig. 14: (a) Relationship m-fx (b) Curves h-Rm and h-Rf. 

The curves h-Rm and h-Rf in Fig. 14b can help to select the “best” compromise solution. Notably, 

according to Eqs. (3) and (4) (cf. [40,41]), Rm and Rf correspond to the performances m and fx (cf. Eqs. 

(1) and (2)) normalized between the objectives mobj and fx,obj (cf. Fig. 13) and the respective maximum 

values mmax and fx, max (cf. Fig. 14a). Therefore, the curves h-Rm and h-Rf represent the trend of the 

normalized performances in the variation range of h ([10; 30] mm, cf. Table 10). 

 Rm =
m −mobj

mmax −mobj
 (3) 

 Rf =
fx − fx,obj

fx,max − fx,obj
 (4) 

Clearly, as shown in Fig. 14b, the minimum mass (Rm ≈ 0.11) is obtained with h = 10 mm, while 

the minimum vertical displacement (Rf ≈ 0.02) is obtained with h = 30 mm. The points A, B and C in 

Fig. 14 represent three different compromise solutions: 

 

 

 

 

2 The term “contradiction” indicates a condition in which a certain performance parameter cannot be improved 

without deteriorating another one [11]. According to the example in Fig. 13, reducing the mass of the beam 

(improvement) by decreasing the section side h makes the vertical displacement increasing (deterioration).  
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A) h = 14.5 mm (m = 1.6 kg, fx = 4.3 mm, cf. Fig. 14a). This solution is given by the intersection of the 

curves h-Rm and h-Rf. According to Fig. 14b, the point A corresponds to Rm ≈ Rf ≈ 0.23 (the 

“distance” m-mobj is equal to the “distance” fx-fx,obj). In this case, m and fx have the same weight. 

B) h = 12 mm (m = 1.1 kg, fx = 9.2 mm, cf. Fig. 14a). According to B’B’’ (cf. Fig. 14b), this solution 

corresponds to Rm ≈ 0.16 and Rf ≈ 0.48. In this case, the minimization of m has the priority over the 

minimization of fx.  

C) h = 20 mm (m = 3.1 kg, fx = 1.2 mm, cf. Fig. 14a). According to C’C’’ (cf. Fig. 14b), this solution 

corresponds to Rm ≈ 0.44 and Rf ≈ 0.06. In this case, the minimization of fx has the priority over the 

minimization of m. 

Depending on the purpose of the optimization, all these compromises can be suitable optimal solutions. 

Since no priority between m and fx was indicated in the required specifications (cf. Fig. 13), the 

compromise A (h = 14.5 mm, cf. Fig. 14a) is assumed as the optimized solution. In general, as shown 

in this example, a multi-objective optimization requires the definition of “priorities” (weights, assumed 

by designer) among the performance parameters in contradiction. This choice determines the nature of 

the compromise between the performances, and thus the form of the optimized solution [8].  

1.3.1.3. Overcoming performance contradictions by means of 

conceptual variations 
As argued in [8], some contradictions between performances can be overcome by means of 

conceptual variations, i.e. qualitative changes of the studied concept variant (cf. Fig. 13). The theoretical 

effect of qualitative changes on the optimization process is illustrated in Fig. 15a, adapted from [8], 

where the interdependency between two generic conflicting performances A and B is schematically 

represented with an hyperbole. 

 
Fig. 15: (a) Parametric optimization vs conceptual variation, theoretical representation (cf. [8]) ; (b) Full squared section (cf. 

Fig. 13) vs hollow squared section with constant thickness. 

As shown in  Fig. 15a, a traditional parametric optimization “moves along the hyperbole” (cf. Fig. 

14a), searching for the best compromise in the contradiction between the performances A and B. Instead, 

the introduction of a conceptual variation enables to achieve further improvements by overcoming the 

contradictions between A and B, i.e. “moving among the hyperboles” [8]. This behaviour can be easily 

remarked by introducing a hollow squared section, i.e. a qualitative change of the beam section shape, 

in the concept variant of Fig. 13, and observing its effect on the relationship between the performances 

m and fx. In Fig. 15b, the blue dashed curve refers to the full squared section (cf. Fig. 14a, Eqs. (1) and 
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(2)), while the red curve refers to a hollow squared section with a constant thickness of 3 mm. Notably, 

the red curve has been obtained with Eq. (5) and (6) (cf. [42]), by varying h between 10 and 30 mm (cf. 

Table 10). According to [42], Eqs. (1) and (2) can be obtained from equation Eq. (5) and (6) respectively, 

by imposing t = h/2 (full squared section, cf. Fig. 13). 

 m = ρL(h2 − (h − 2t)2) (5) 

 f =
FL3

3E (h
4

12⁄ −
(h − 2t)4

12
⁄ )

 (6) 

According to the theoretical representation in Fig. 15a, the qualitative change of the section shape 

shifts the relationship m-fx towards the left side (cf. Fig. 15b). Indeed, this enables to achieve solutions 

which are more optimized (m and fx can be further minimized) than the compromises A, B and C 

previously obtained (cf. Fig. 14). Moreover, the parameter t can be adopted as design variable, allowing 

to test more combinations and thus widening the solution space. On the other hand, the adoption of a 

hollow squared section results in a new contradiction, now represented by the red curve in Fig. 15b. In 

general, this means that further improvements can be obtained by adopting further different qualitative 

changes on the concept variant [8]. However, this example demonstrates how conceptual variations can 

be a very powerful design tool.  

1.3.1.4. The aspects of the optimization approach which collide with 

our purposes and targets 
Based on the example proposed in sections 1.3.1.2 and 1.3.1.3, we report and analyse in this section 

the aspects of the optimization approach which collide with our purposes and common targets (cf. Table 

9), denoted CAs (Colliding Aspects). We identified four main CAs: 

CA 1. The optimization itself is out of our scope. According to Fig. 2, the optimization is typically 

included in the phase of embodiment design, when we are instead focused on conceptual design. In 

general, designers tend to skip the phase of conceptual design, by prematurely adopting the 

optimization approach and focusing on very few concept variants. As a result, the solution space is 

immediately restricted: the solution research is constrained to the assumed concept variants, while 

different and potentially interesting conceptual solutions are excluded a priori [18]. On the contrary, 

we want to enlarge the solution space as much as possible, by generating multiple and different 

concept variants (cf. Table 9).   

CA 2. Too much focus on technical aspects. As seen in section 1.3.1.2, the optimization approach 

requires the definition of specific design parameters (potential variables and work conditions, cf. 

Fig. 13) and behaviour models (cf. Eqs. (1), (2), (5) and (6)), needed to describe the technical 

dimension of the studied concept variant. Notably, the research of the solution is constrained to the 

chosen behaviour models and is localised in the ranges of the chosen variables. This contributes to 

further restrict the solution space [1,8]. On the contrary, as reported in Table 9, we want to be as 

free as possible from technical aspects, to better favour the birth of unconventional conceptual 

solutions (cf. Table 9).  

CA 3. Optimal solutions. Solutions are ranked according to the optimization objectives: all the 

solutions which do not satisfy the required objectives (i.e. the “bad” solutions) are usually discarded, 

contrary to the indications provided by the BDPs (cf. Table 5). Moreover, when multiple objectives 

are involved (cf. Fig. 13), the optimization approach leads to compromise solutions, which prevent 

to achieve further improvements. According to Fig. 15, better compromises, and thus more 

optimized solutions, can be obtained by adopting suitable conceptual variations [8]. 

CA 4. Many choices by designer are required. The required choices mostly regard the preliminary 

numerical values, which must be assumed by designer before starting the optimization process. As 
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seen in section 1.3.1.2, the preliminary values include the limits of the variable ranges and the other 

constant design parameters (cf. Table 10), needed to use the chosen behaviour models (cf. Eqs. (1) 

and (2)). In case of multi-objective optimization, the definition of priorities among the performances 

in contradiction may be also required. The more choices by designer are required, the more cognitive 

biases risk to affect the design process.  

The analysed CAs are summarised in Table 11. Notably, Table 11 helps to better highlight the 

reasons why the optimization approach is not suitable to our purposes (cf. Table 9). It can be remarked 

that many characteristics of the analysed CAs can be reconducted to some of the BDHs reported in Table 

7, as the excessive focus on technical aspects and on optimal solutions. We believe the optimization 

approach could be very useful to reach incremental innovations, based on an experienced knowledge of 

the assumed design variables and performances. However, it may not be suitable to help designer in 

searching for original design concepts and overcoming his cognitive biases [2].  

Table 11: Aspects of the optimization approach colliding with our purposes (cf. Table 9). 

CA What it involves What instead we want to do 

1. Out of scope 

The solution research is 

constrained to one ore few concept 
variants 

Focus on conceptual design to 

generate different concept 
variants 

2. Too much focus on 

technical aspects 

The solution research is 

constrained to the chosen 

behaviour models and is localised 
in the range of the chosen variables 

Free designer from technical 

aspects to: 

• Enlarge the solution space  

• Allow unconventional 

solution paths 

3. Optimal solutions 
All the solutions which do not 
satisfy the required objectives (i.e. 

bad solutions) are discarded 

Insist on the BDPs (cf. Table 

5): search for multiple and 

different solutions by keeping 
also bad solutions 

4. Many choices by designer 

are required 

More risk of influence of the 

cognitive biases 

Prevent cognitive biases to 

affect the designer’s choices 
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1.3.2. A natural language-based approach for conceptual 

design 
In the current section, the approach followed in our work is presented. According to our purposes 

(cf. Table 9), we thus have to focus on conceptual design. Based on Fig. 2 and Fig. 3, the two main steps 

of the conceptual design phase are shown in Fig. 16 [11,16]. 

 
Fig. 16: Main steps of the conceptual design phase. 

The first step concerns the identification of the solutions principles, denoted SPs, as function of the 

initial idea and of the required specifications, while the second step involves the application of the 

identified solution principles to the initial idea, for generating the concept variants, denoted CVs. For 

now, we do not focus on the evaluation and selection of the promising CVs, since our purpose is to be 

able to generate as many different CVs as possible (cf. Table 9). Based on section 1.1.2.1, SPs and CVs 

can be defined as follows:  

• SP: general strategy to satisfy the required design specification (cf. Fig. 3). 

• CV: representation expressing a different declination of the design concept (cf. Fig. 3).  

The functions Fp and Fc generically represent the methods to realize the steps 1 and 2, respectively 

(cf. Fig. 16). The detailed description of the methods implemented in our aided design procedure is 

addressed in the next chapter. Here, instead, we want to introduce the fundamental principles which 

characterise the followed approach, denoted PAAs (Principles of the Adopted Approach), i.e. the way 

we want to face with conceptual design. Notably, the study of a well-established conceptual design 

theory, called TIPS (Theory of Inventive Problem Solving), will enable to better introduce the PAAs. 

The current section is organized as follows. In section 1.3.2.1 we present TIPS, analysing the conceptual 

design procedure provided by this theory. Hence, an example of the application of TIPS, reported in 

literature, is illustrated in section 1.3.2.2. Finally, the PAAs are introduced and discussed in section 

1.3.2.3.
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1.3.2.1. The Theory of Inventive Problem Solving (TIPS) 
As seen in the example proposed in section 1.3.1.2 (cf. Fig. 13), design specifications are typically 

characterised by contradictions2 among the required objectives. In general, this leads to compromise 

solutions (cf. Fig. 14) and prevents to achieve further improvements during an optimization process 

[8,16]. However, the benefit involved by conceptual variations in overcoming the contradiction between 

the objectives has been analytically demonstrated in section 1.3.1.3 (cf. Fig. 15). Based on these ideas, 

the Russian engineer and inventor G. Altshuller formulated and developed the Theory of Inventive 

Problem-Solving (TIPS, also known as TRIZ from the Russian abbreviation, cf. [43,44]), from 1946 to 

1988. Altshuller and his colleagues analysed a large number of patents and observed that most of them 

suggested means for eliminating the specification contradictions in a system. Notably, these means were 

based on recurrent solution (or inventive) principles and used recurrent geometrical, physical and 

chemical effects to realize the system functions. This allowed Altshuller to synthetise 40 general SPs3 

and about 2500 effects, and to finally organize them in a conceptual design theory (i.e. TIPS) [43,44]. 

Based on Fig. 16, the conceptual design procedure provided by TIPS, adapted from [11,16], is 

schematically represented in Fig. 17. For a better comprehension of the procedure, each step has been 

decomposed according to inputs, used methods and outputs.  

 
Fig. 17: Conceptual design procedure provided by TIPS (cf. [11,16,45]). 

 

 

 

 

3 Complete list of the 40 principles (indications and examples): http://www.triz40.com/aff_Principles_TRIZ.php 

http://www.triz40.com/aff_Principles_TRIZ.php
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As indicated in Fig. 17, the initial idea must be defined in terms of sub-functions, whose sequence 

describes the functioning of the studied system. According to Fig. 3, the specification requirements are 

expressed as generalised engineering parameters, denoted GEPs (cf. Fig. 17), to be improved during 

conceptual design. TIPS provides 39 generalised parameters which must be used by designer to express 

the design specifications [43,44]. We can now analyse the two main steps of the procedure. 

Step 1. The SPs are identified by eliminating the contradictions among the GEPs. Notably, the pairs of 

contradicting GEPs are fed into contradiction matrix, which provides the suitable SPs to eliminate the 

contradictions (cf. Fig. 17). A reduced section of the contradiction matrix is reported in Table 12, 

according to [11,43]. The rows and the columns of the matrix contain the 39 generalised parameters4 

made available by TIPS. The numbers in the matrix cells identify the SPs which allow to eliminate a 

contradiction between two given GEPs. The empty cells indicate the pairs of not conflicting GEPs, while 

the grey cells indicate the matrix diagonal. 

 

Table 12: Section of the contradiction matrix (cf. [11,43]). 

   GEPs which deteriorate 

   1 2 … 14 … 

   
Weight of 

stationary object 

Length of 

moving object 
… Strength … 

G
E

P
s 

to
 b

e 
im

p
ro

v
ed

 1 
Weight of 

stationary object 
  … 

2, 10,  

27, 28 
… 

2 
Length of 

moving object 
  … 

8, 29,  

34, 35 
… 

… … … … … … … 

14 Strength 
1, 26,  
27, 40 

1, 8,  
15, 35 

…  … 

… … … … … …  

For example, suppose we need to resolve the contradiction between the GEPs “strength” and “weight of 

stationary object”. Using the contradiction matrix in Table 12, the following SPs are suggested (cf. 

[43,44]): 

• 1: segmentation. 

• 26: copying. 

• 27: cheap short-living objects. 

• 40: composite materials. 

As argued in [11], the 40 SPs3 provided by TIPS do not constitute final solutions, but rather high-level 

general strategies for finding ideas on how to exploit physical phenomena in various contexts. Indeed, 

 

 

 

 

4 Visualize the entire contradiction matrix: 

• Classical contradiction matrix (39 GEPs, cf. [43]): http://www.triz40.com/aff_Matrix_TRIZ.php 

• A more recent version (48 GEPs): https://triz-journal.com/contradiction-matrix/ 

http://www.triz40.com/aff_Matrix_TRIZ.php
https://triz-journal.com/contradiction-matrix/
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they are often supplemented with additional indications and design examples in the operational 

implemented versions of TIPS.  

Step 2. Generating the CVs involves the realization of the system sub-functions (cf. Fig. 17). This can 

be done by building a morphological matrix which allows to combine the found SPs with the effects 

provided by TIPS. Notably, each effect expresses a physical, mechanical or chemical working principle, 

and is associated to a specific design case, i.e. an illustrated example of the involved effect. An example 

of morphological matrix is reported in Table 13 (cf. [18,45]), where “n” indicates the number of 

subfunctions and “m” the number of solutions, and in which we supposed to have 4 SPs found in the 

previous step. 

Table 13: Example of morphological matrix of effects and design cases (cf. [18,45]). 

  Solutions 

  1 2 … m 

S
eq

u
en

ce
 o

f 
th

e 

sy
st

em
 s

u
b

-f
u

n
ct

io
n

s 

se
q

u
en

ce
 

Sub-function 1 
Effect 1.1 

Design case 1.1 
SP 2 

Effect 1.2 
Design case 1.2 

SP 2 + SP 3 
…  

Sub-function 2 
Effect 2.1 

Design case 2.1 
SP 1 

Effect 2.2 
Design case 2.2 

SP 3 
… 

Effect 2.m 
Design case 2.m 

SP 2 

… … … … … 

Sub-function n 
Effect n.1 

Design case n.1 
SP 1 + SP 4 

Effect n.2 
Design case n.2 

SP 4 
…  

Each case contains an effect and a corresponding design case. Effects and design cases are identified 

with two numbers, indicating the sub-function (row) and the solution (column), respectively. As shown 

in Table 13, the effects are used to contemporarily realize a given sub-function of the system and to 

apply one or more of the found SPs. For instance, the sub-function 1 can be realized with the effect 1.1 

(design case 1.1), which involves the application of the SP 2. The CVs can be finally generated with the 

morphological matrix, by realizing all the sub-functions required to the system, in sequence. For 

example, based on Table 13, three different CVs can be generated: 

• CV 1: 1.1 - 2.2 - … - n.1 

• CV 2: 1.2 - 2.1 - … - n.2 

• CV 3: 1.2 - 2.m - … - n.1 

Observing Table 13, it can be easily remarked that all the generated CVs involve the application of all 

the 4 SPs supposed. Depending on the complexity of the studied system, the construction of the 

morphological matrix by designer can be very challenging and time consuming. Indeed, TIPS provides 

a library of 30 basic functions, linked to the corresponding effects and design cases, to help designer 

building the morphological matrix. A schematical representation of the function library is reported in 

Fig. 18 (cf. [11]). A complete list of the 30 basic functions can be found in [11,43]. According to Fig. 

18, some functions can have more associated effects than other functions, and this is the reason why 

some cells in the morphological matrix can be empty.  
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Fig. 18: Schematic representation of the function library provided by TIPS (cf. [11]). 

The practical example proposed in section 1.3.2.2 can help to better understand the conceptual 

design procedure proposed by TIPS (cf. Fig. 17).  

1.3.2.2. An example of the application of TIPS: the conceptual design 

of a paper punch system 
The proposed example, concerning the conceptual design of a paper punch system, is reported in 

[18,45] and follows the procedure presented in section 1.3.2.1. According to Fig. 17, Fig. 19a reports 

the initial idea with the list of the system sub-functions, in sequence, while Fig. 19b shows the design 

requirements to improve, which have been synthetised by costumers’ needs. As done in [45], the 9 

requirements are reduced into 6 GEPs, chosen among the 39 parameters provided by TIPS, where the 

abbreviation “st.” stands for “stationary object” [43]. The contradictions identified among the 

considered GEPs are reported for brevity on the right side of Fig. 19b [18]. 

 
Fig. 19: (a) initial idea and related sub-functions; (b) design requirements to GEPs and identified contradictions (cf. [18,45]). 

Step 1 (cf. Fig. 17). We have 5 contradictions (1-2, 1-3, 1-4, 1-5 and 4-6, cf. Fig. 19b) which must be 

eliminated with the contradiction matrix. Fig. 20 shows the use of the matrix to solve the contradiction 

productivity-force (1-3, cf. Fig. 19b), and the resulting SPs3.  
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Fig. 20: Eliminating the contradiction productivity-force (1-3, cf. Fig. 19b). 

As anticipated in section 1.3.2.1, TIPS provides further additional indications on how applying the SPs 

and some corresponding examples. For example, Table 14 (cf. [18,43,45]) reports the indications and 

the corresponding examples regarding the SP 28 (mechanics substitution3, cf. Fig. 20). 

Table 14: Additional indications and corresponding examples for the SP 28 (mechanics substitution, cf. Fig. 20). 

Indication (how to apply the SP) Corresponding example 

Replace a mechanical means with a sensory 
(optical, acoustic, taste or smell) means. 

• Replace a physical fence to confine a dog or cat 

with an acoustic “fence” (signal audible to the 

animal). 
• Use a bad smelling compound in natural gas to 

alert users to leakage, instead of a mechanical or 

electrical sensor. 

Use electric, magnetic and electromagnetic fields 

to interact with the object. 

• To mix 2 powders, electrostatically charge one 

positive and the other negative. Either use fields 
to direct them, or mix them mechanically and let 

their acquired fields cause the grains of powder 

to pair up. 

Change from static to movable fields, from 
unstructured fields to those having structure. 

• Early communications used omnidirectional 

broadcasting. We now use antennas with very 

detailed structure of the pattern of radiation. 

Use fields in conjunction with field-activated 

(e.g. ferromagnetic) particles. 

• Heat a substance containing ferromagnetic 

material by using varying magnetic field. When 

the temperature exceeds the Curie point, the 
material becomes paramagnetic, and no longer 

absorbs heat. 

According to Table 14, the SP 28 suggests replacing a mechanical means by exploiting different physical 

phenomena, as acoustics, electric and magnetic fields. In general, each SP provided by TIPS can be 

applied in different ways by exploiting phenomena of different nature [43,44]. The other contradictions 

are finally solved in a similar way. Table 15 (cf. [18,45]) resumes all the contradictions and the 

respective SPs identified with the contradiction matrix.        



52 

 

Table 15: Contradictions and respective identified SPs (cf. [18,45]). 

Contradiction  IDs of the 

identified SPs 

Selected SPs 

ID Conflicting GEPs ID Name 

1-2 Productivity-Weight of st. 28, 27, 15, 3 3 Local quality 

1-3 Productivity-Force 28, 15, 10, 36 15 Dynamicity 

1-4 Productivity-Reliability 1, 35, 10, 38 1, 10 Segmentation, Prior action 

1-5 Productivity-Length of st. 30, 7, 14, 26 7, 14 
Nesting, Spheroidality-

curvature 

4-6 Reliability-Device complexity 13, 35, 1 1 Segmentation 

As shown in Table 15, few SPs for each contradiction are selected. According to [18,45], the selected 

SPs are more adequate to the current purpose and they also allow to solve more contradictions at once. 

For example, the SP 1 (segmentation3) can be applied to solve the contradictions 1-4 and 4-6, while the 

SP 15 (dynamicity3) to solve the contradictions 1-2 and 1-3.  

Step 2 (cf. Fig. 17). We have now to build the morphological matrix of effects and design cases to 

realize the system subfunctions reported in Fig. 19a. Based on Table 13, the built morphological matrix 

is shown in Table 16. Each cell of the matrix reports an effect, with a corresponding design case, and 

the applied SPs, among the ones selected in Table 15. We can remark that all the selected SPs (cf. Table 

15) are present in Table 16, at least one time. As seen in Table 13, some effects allow to apply two 

distinct SPs, as for example the “foldable handle”, which can be used to realize the sub-function “4. 

Transmit human force” and to apply the SPs “segmentation” and “local quality”, thus solving two 

contradictions, i.e. 1-4 and 1-2 respectively (cf. Table 15). Moreover, the same SP can be applied by 

means of different effects. For instance, according to Table 16, the SP “prior action” (contradiction 1-4, 

cf. Table 15) can be applied by means of the effects “fixed with spring”, “pre-pressure plate around 

punchers” and “pre-pressure plate between the punchers”, realizing the sub-function “1. Fix pad of 

papers”. The same for the sub-function “3. Secure the system”. We can also have different variants of 

the same effect which realize the same function, as for the sub-function “4. Transmit human force” 

which can be realized by means of two different variants of “Extendable handle”, thus involving two 

different design cases (cf. Fig. 18). Hence, the CVs can be now generated by combining the different 

effects reported in Table 16, to realize all the required sub-functions and to solve all the identified 

contradictions (cf. Table 15). 
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Table 16: Morphological matrix of effects, design cases and selected SPs, built for the paper punch system (cf. [18,45]). 

  Solutions 

  1 2 3 
S

eq
u

en
ce

 o
f 

th
e 

sy
st

em
 s

u
b

-f
u

n
ct

io
n
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1. Fix pad of 

papers 

Fixed with springs 

 
Prior action (10) 

Pre-pressure plate around 

punchers 

 
Prior action (10) 

Pre-pressure plate between 

punchers 

 
Prior action (10) 

2. Centre of 

pad of papers 

Linear moving 

 
Dynamicity (15) 

Angular moving 

 
Spheroidality (14) + 

dynamicity (15) 

 

3. Secure the 

system 

Angular sub plate 

 
Prior action (10) 

Reverse handle 

 
Prior action (10) 

Extendable sub plate 

 
Prior action (10) 

4. Transmit 
human force 

Extendable handle 1 

 
Nesting (7) +  

Local quality (3) 

Extendable handle 2 

 
Nesting (7) +  

Local quality (3) 

Foldable handle 

 
Segmentation (1) +  

Local quality (3) 

5. Punch pad 

of papers 

Rack and pinion 

 
Segmentation (1) 

Screw 

 
Spheroidality (14) 

 

6. Store 

waste papers 

Inclined form 

 
Spheroidality (14) 

  

Two examples of CVs, denoted CV 1 and CV 2, are reported in Fig. 21 and Fig. 22 according to 

[18,45]. Notably, Fig. 21a and Fig. 22a provide a geometry representation of CV 1 and CV 2, 

respectively, in the working states of maximum and minimum capacity. Fig. 21b and Fig. 22b illustrate 

the used effects, while Fig. 21c and Fig. 22c show the solved contradictions. The differences between 

CV 1 and CV 2 are highlighted in red (cf. Fig. 21 and Fig. 22). 
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Fig. 21: CV 1 : (a) geometry representation ; (b) used effects ; (c) solved contradictions (cf. [18,45]). 

 
Fig. 22: CV 2 : (a) geometry representation ; (b) used effects ; (c) solved contradictions (cf. [18,45]). 

Based on Table 16, the SPs applied in CV 1 and CV 2 are resumed in Table 17 with respect to the 

used effects (cf. Fig. 21b and Fig. 22b). As done in Fig. 21 and Fig. 22, the differing effects and the SPs 

are highlighted in red. 
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Table 17: SPs applied in CV 1 and CV 2 with respect to the used effects. 

CV 1 CV 2 

Used effect Applied SP Used effect Applied SP 

1.1 Fixed springs Prior action (10) 1.1 Fixed springs Prior action (10) 

2.1 Linear moving Dynamicity (15) 2.1 Linear moving Dynamicity (15) 

3.1 Angular sub plate Prior action (10) 
3.3 Extendable sub 
plate 

Prior action (10) 

4.1 Extendable handle 

1 

Nesting (7) + Local 

quality (3) 
4.3 Foldable handle 

Segmentation (1) + 

Local quality (3) 

5.1 Rack and pinion Segmentation (1) 5.1 Rack and pinion Segmentation (1) 

6.1 Inclined form Spheroidality (14) 6.1 Inclined form Spheroidality (14) 

By comparing Fig. 21c and Fig. 22c with Table 15, we can see that all the contradictions identified 

for the current system are solved at least one time for both CV 1 and CV 2. This means all the costumers’ 

needs (i.e. the requirements, cf. Fig. 19b) have been fully satisfied. As highlighted in Fig. 21 and Fig. 

22, the two generated CVs differ in the effects used to realize the subfunctions “3. Secure the system” 

and “4. Transmit human force”. Notably, for the sub-function 3, the use of an extendable sub plate (CV 

2, cf. Fig. 22b) instead of an angular sub plate (CV 1, cf. Fig. 21b) does not affect the corresponding 

solved contradiction (i.e. productivity-reliability, cf. Fig. 21c and Fig. 22c). On the other hand, for the 

sub-function 4, using a foldable handle (CV 2, cf. Fig. 22b) instead of an extendable handle (CV 1, cf. 

Fig. 21b) means applying a different SP (segmentation rather than nesting, cf. Table 17), and this 

consequently change the solved contradiction (cf. Fig. 21c and Fig. 22c). 

1.3.2.3. The Principles of the Adopted Approach (PAAs) 
Based on TIPS (cf. sections 1.3.2.1 and 1.3.2.2), the following points constitute the PAAs which 

will characterise the development and the methodology of the demonstrator presented in this thesis: 

• Model of conceptual design procedure. According to Fig. 16 and Fig. 17, our aided design procedure 

will be composed of two main steps: the identification of the solutions principles (SPs) and the 

development of the concept variants (CVs). As anticipated, a minor importance will be given to the 

final evaluation of the CVs, since our main purpose is to be able to generate as many different CVs 

as possible (cf. Table 9).  

• Use of equation-free design methods. As shown, the conceptual design methods proposed in TIPS 

does not employ scientific equations (behaviour models, as Eqs. (1), (2), (5) and (6)). Instead design 

knowledge are made available by means of SPs, effects and design cases and solutions are thus 

provided as CVs (cf. Fig. 21 and Fig. 22), in a non-numerical form. Based on Table 11, we believe 

that including similar methods (i.e. which do not employ scientific equations) in our approach can 

involve a minor focus on technical aspects and on optimal solutions, making unconventional 

solutions more likely, as suggested in the BDPs (cf. Table 5). This will also reduce the influence of 

designer’s cognitive biases, since all the choices linked to equations and design parameters are no 

more required, in accordance with our purposes (cf. Table 9).  

• Use of the natural language (dialectics) to identify and express the SPs and the CVs. In TIPS, the 

SPs are based on recurrent scientific and engineering knowledge and are provided in a dialectic 

form, i.e. by exploiting the natural language (cf. Fig. 20), as well as the effects (cf. Table 16). As 

argued in [9,46], dialectics is immediate, simply accessible and it emphasizes the change (i.e. 

innovation, cf. Fig. 7), and it can thus easily be used to eliminate the contradictions among the 

required specifications. Moreover, the natural language provides the possibility to admit multiple 

and very different solutions which can significantly enlarge the solution space, as indicated in the 

introduced BDPs (cf. Table 5). Based on Table 9, all these aspects are in accordance with our 
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purposes. In a similar way, the methods used in our demonstrator to identify the SPs and the CVs 

will be based on the manipulation of the natural language.  

• Use of illustrated design examples to support the application of the SPs and the development of the 

CVs. As seen for TIPS, the visual representations of the design cases provided with the 

morphological matrix (cf. Table 16) constitute a powerful mean to quickly transmit multiple and 

diverse knowledge to the designer [8,11,43]. Moreover, according to Table 16, same SPs and effects 

can be applied in different ways, thus based on different design cases. This aspect contributes to 

further enlarge the solution space, in accordance with the BDPs, and thus with our purposes (cf. 

Table 9). In a similar way, the implemented demonstrator will provide a catalogue of illustrated 

design examples linked to the SPs, to help designer generating different CVs. 

The introduced PAAs and their corresponding fundamental aspects are reported in Table 18. All points 

in Table 18 have a role in favouring the BDPs and contribute to achieve our purposes.  

Table 18: Principles of the adopted approach (PAAs) and corresponding fundamental aspects. 

PAA Fundamental aspects 

Model of conceptual design procedure (cf. Fig. 16): 

Step 1: Identify solution principles (SPs) 

Step 2: Develop concept variants (CVs) 

Minor importance of CVs’ evaluation ➔ 
Keep also less promising solutions (BDPs) 

Use of equation-free design methods 

• No scientific equations employed 

• Solutions provided in a non-numerical form 

Minor focus on technical aspects and optimal 
solutions ➔ unconventional solutions are 

more likely (BDPs) 
 

Reduce influence of the cognitive biases 

Use of the natural language to express and identify 

the SPs and the CVs  

Immediacy and emphasis on change (i.e. 
innovation, cf. Fig. 7) 
 

More different solutions (BDPs)  

Use of illustrated design examples (visual 

representations of different design cases) to support 

the application of the SPs and the development of the 
CVs  

Quick transmission of multiple and different 
knowledge to the designer 
 

More different solutions (BDPs)  
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2. Machine learning methodology 

In the previous chapter, we presented the purposes pursued in the present work (cf. Table 9) and 

the principles of the adopted approach (PAAs, cf. Table 18). This chapter is devoted to the developed 

machine learning methodology. Machine learning represents an important branch of the computational 

algorithms’ domain, and it involves different techniques to reproduce human intelligence by emulating 

different cognitive abilities [47]. Before illustrating the implemented machine learning methods which 

will be integrated in our demonstrator, it is crucial to us to specify why we adopted machine learning in 

this work. This enables the reader to better understand our standpoint. The conceptual map of the chapter 

is reported in Fig. 23 and highlights the fundamental topics on which the discussion is conducted. As 

shown in Fig. 23, the chapter is organized in two main sections:  

• A preliminary introduction (section 2.1), in which we study the role of the key cognitive abilities 

(KCAs) in conceptual design, and where we present the advantages offered by using machine 

learning by comparing brain and machine.  

• The technical description of the developed machine learning methods (section 2.2).  

In section 2.1 (“preliminary introduction”, cf. Fig. 23), a small overview on brain basic biological 

aspects, regarding neurons and synapse, and on memory is firstly proposed. The objective is to 

understand how information is stored in our brain and retrieved to awareness, also introducing many 

important points which will be recalled in the following sections. Based on the adopted conceptual 

design procedure (cf. Fig. 16 and Table 18), we then focus on the KCAs, i.e. the cognitive abilities 

responsible for our great performances of learning and knowledge manipulation. An original 

representation of the designer mental process is constructed to explain the crucial role of the KCAs 

during conceptual design, in accordance with the thesis purposes and the PAAs (cf. Table 9 and Table 

18, respectively). It emerges that KCAs are potentially very suitable to favour the development of 

breakthrough design solutions (cf. Fig. 23). We finally propose an original comparison between brain 

and machine, highlighting the limits of the brain to conceptual design, including cognitive biases (cf. 

Table 6 and Table 7), which however do not affect machines (cf. Fig. 23). The base idea linked to the 

use of machine learning in our methodology is finally pointed out at the end of section 2.1, and it is also 

reported in Fig. 23: exploiting the power of KCAs without being affected by brain limits. Due to this 

ambitious idea, the machine learning methods developed in this work will mainly focus on the 

identification of the SPs, i.e. on the first step of the adopted conceptual design procedure (cf. Table 18). 
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Fig. 23: Conceptual map of the chapter developed to explain the original path leading to the implemented machine learning 

methods. 

In section 2.2 (“machine learning methodology”, cf. Fig. 23), the three main machine learning models5 

are immediately introduced. Based on two of these models, two different machine learning methods 

were implemented in MATLAB [48], i.e. artificial neural networks (ANNs) and K-means clustering, 

which are thus presented following the order in Fig. 23. Both methods are first theoretically described, 

outlining their base mechanisms and highlighting the influence of the main parameters, and they are 

finally tested and validated with original examples.  

 

 

 

 

5 The learning model identifies the human cognitive ability (or the aspect of the human intelligence, in general) to 

be emulated. The terminology related to machine learning is lately discussed in section 2.2.1.  
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2.1. The brain: an extraordinary but “imperfect” 

machine 
In the current section, we present the base ideas of our methodology, also introducing the reasons 

for adopting machine learning. An overview on brain and memory is firstly provided in section 2.1.1, 

to understand the basic principles of learning and retrieving (i.e. how learnt information is recalled to 

awareness). The powerful cognitive abilities of the brain are then presented and discussed in section 

2.1.2. In the same section, a brain-machine comparison is finally proposed to highlight brain limits 

regarding our purposes (cf. Table 9) and the advantages offered by machines. The latter comparison 

represents a crucial point of our work. 

2.1.1. An overview on brain and on memory 
The brain is a dense network constituted by billions of elementary processing units (or cells), called 

neurons, connected by means of synapses. As reported in [49,50], our brain is characterised by 

approximately 1011 neurons, each one forming 500-1000 synapses. Based on these numbers, the total 

amount of synapses in the brain can be estimated between 1013 and 1015. This enormous connectivity 

potential is the source of our extraordinary cognitive and learning capabilities.  

2.1.1.1. The neuron: the elementary processing cell of the brain 
A neuron can be considered as a sort of switch, which can activate (or not) as function of the 

information received. The neuron anatomy is illustrated in Fig. 24a, adapted from [49,50]. According to 

Fig. 24a, the different input signals from other neurons are collected by the dendrites and accumulated 

into the nucleus as an electrical potential. Input signals can be stimulating or inhibiting, and if the 

accumulated potential exceeds a specific threshold value the cell nucleus activates by emitting an 

electrical impulse. The impulse pass through the axon and is transmitted to other neurons, or cells with 

different functions, by means of synapses at the axon terminals (cf. Fig. 24a). The axon is electrically 

isolated, and it can achieve lengths of 1 m, enabling the neuron to communicate with other systems and 

organs of the body, as the muscles [49,50]. 

 
Fig. 24: (a) anatomy of a neuron and (b) representation of a chemical synapse [49–51]. 
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2.1.1.2. The synapse: the special neuronal connection 
The synapse is a special connection allowing neurons to communicate each other or with other 

different cells, as muscular or sensorial cells. Two main variants of synapse can be distinguished: 

electrical and chemical synapse. In both cases, the transmitting neuron is called presynaptic neuron, 

while the receiving cell is called postsynaptic cell.  

• The electrical synapse enables a direct and quick communication by means of electrical signals, 

which are transmitted through the presynaptic axon terminals to the postsynaptic cell nucleus. The 

electrical synapse occurs when a rapid and synchronic response by a great number of neurons is 

required, as for example in danger situations or in case of quick reflexes [50].  

• The chemical synapse is the more distinctive in humans, and it is represented in Fig. 24b according 

to [50,51]. As illustrated, the electrical impulse transmitted by the presynaptic neuron reaches an 

axon terminal. Here, it is converted into a “chemical signal”, by inducing the release of the 

neurotransmitters, specific molecules incapsulated in the synaptic vesicles. The neurotransmitters 

cross the synaptic cleft towards the postsynaptic dendrite, where they are absorbed by the synaptic 

receptors and converted into an electrical signal for the nucleus (cf. Fig. 24b). The great advantage 

of the chemical synapse resides in the “adjustability” of the connection: a large variety of 

neurotransmitters exists, and they can be released in different quantities, allowing for stronger or 

weaker connections (i.e. “weighted” connections) [50,51].  

The adjustability of the chemical synapses is the base of the brain learning ability. The principal aspects 

of the analysed synaptic variants are resumed in Table 19.  

Table 19: The two synaptic variants and their principal aspects. 

Synapse variant Description Principal aspects 

Electrical synapse 
Direct and quick communication by 

means of electrical signals 

It allows for a rapid and synchronic 

response by a great number of cells 
(reflexes) 

Chemical synapse 

Release of neurotransmitters across 

the synaptic cleft, stimulated by the 

presynaptic electrical impulse (cf. 
Fig. 24b) 

Adjustable (“weighted”) connection: 

variable nature and quantities of the 

released neurotransmitters (this is the 
base of the learning process!) 

2.1.1.3. Introduction to memory: our personal store of knowledge 

As reported in Table 19, the adjustability of the chemical synapses is the base of the learning 

process, which involves the acquisition of knowledge and their synthesis into encoded information. The 

ensemble of all the encoded information constitutes the memory, i.e. our personal archive of past 

experiences. The most popular model of the memory was proposed in [52] by Atkinson and Shiffrin, in 

1968, and it is represented in Fig. 25. Although many improvements in this field have been achieved in 

more recent works, this model remains in regular use nowadays, since it is easily comprehensible and 

widely supported by experimental evidence in literature [53–56]. According to this model, the memory 

is organized in a multi-store structure, consisting of three separate levels (or stores, cf. Fig. 25): sensory 

memory (SM), short-term memory (STM) and long-term memory (LTM). Notably, Fig. 25 describes 

how information is passed and processed through these three memory stores, each one having different 

characteristics in terms of:   

• Duration of the encoded information. 

• Store capacity, concerning how much information can be stored. 

• Type of encoded information (visual, acoustic, semantic, etc.). 

The characteristics of each store have been reported in Table 20, according to [52,56]. 
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Fig. 25: Multi-store memory model of Atkinson and Shiffrin [52,56]. 

Table 20: Characteristics of the memory stores in the model of Atkinson and Shiffrin [52,56]. 

Memory store 
Duration of encoded 

information 
Store capacity 

Type of encoded 

information 

Sensory memory 

(SM) 
0.25 – 0.5 seconds 

Large (all sensory 

experience) 

Visual (sight), auditory 

(sounds), touch, taste, smell 

Short-term 

memory (STM) 

● 0 – 18 seconds 

(normally) 

● Up to 30 seconds, 

with continual 

rehearsal (cf. Fig. 

25). 

3-5 chunks6 Mainly auditory 

Long-term 

memory (LTM) 

Few minutes – lifetime 

(difficult to define) 

Theoretically 

unlimited 

Explicit  

● Mainly Semantic 

● Visual (images) 

● Auditory 

Implicit  

● Skills and habits 

● Emotions, reflexes 

● Objects’ and language 

models 

(cf. Fig. 26, section 2.1.1.6) 

As shown in Fig. 25, each stimulus we perceive through the five senses is initially stored in the SM. 

Notably, information derived from an input stimulus activates an enormous number of synapses 

(synaptic adjustment, cf. Table 20), forming a sort of “neuronal path” which constitutes the trace of the 

information encoded in the SM. Most of the perceived stimuli receives no attention, and it is thus 

retained for a very brief period (cf. Table 20). They are thus forgotten (cf. Fig. 25) by “overwriting” the 

 

 

 

 

6 Based on [57,58], the word “chunk” identifies a group of information pieces connected by a common pattern. 

For instance, let us imagine memorizing the number 9876534: the sequence of 9-8-7-6-5-3-4 (composed of seven 

distinct information elements) would be chunked, for example, into 987-6534 (i.e. into two larger blocks of 

information). The natural chunking ability of our brain enables to compress large information in few blocks, thus 

storing more information at once in the STM.  
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corresponding neuronal path. As reported in Table 20, the SM has a large capacity, and it can encode 

information from all the five senses. Based on [52,53], the passage of information through STM and 

LTM is described in sections 2.1.1.4 and 2.1.1.5. The processes of rehearsal and retrieval (cf. Fig. 25) 

are summarised in Table 21. A deeper analysis of the LTM, regarding the type of encoded information 

(explicit and implicit, cf. Table 20), is provided in section 2.1.1.6. 

2.1.1.4. The passage through the STM and the process of continual 

rehearsal 
Focusing the attention induces the transfer of information to the STM (cf. Fig. 25). Notably, the 

STM constitutes a temporary working space where information incoming from the SM is elaborated and 

prepared for different tasks [59]. As reported in Table 20, the store capacity of the STM is limited to 3-

5 chunks6 (cf. [57,58]), and the duration of the encoded information does not normally overcome the 18 

seconds. This duration can be however extended up to 30 seconds by means of the continual (or 

maintenance) rehearsal, i.e. the process of verbally (or mentally) repeating information (cf. Fig. 25). 

Notably, the information is repeated without thinking about its meaning or connecting it to other 

information [52]. This explains why the type of information encoded in the STM is mainly auditory (cf. 

Table 20) [54]. This type of rehearsal involves the continual adjustment and “regeneration” of the 

synaptic trace (cf. Table 19) corresponding to the repeated information, making it stronger. We typically 

perform continual rehearsal when we memorize information to be used for a current purpose, as a 

telephone number to be called in the immediate future, for example. If repetition does not occur, we will 

quickly forget it (i.e. information expires from the STM). The principal aspects of continual rehearsal 

are summarised in Table 21. As shown in Fig. 25, the STM continually communicate with the LTM 

through elaborative rehearsal and retrieval. This latter aspect is presented in section 2.1.1.5.  

2.1.1.5. The passage through the LTM: elaborative rehearsal and 

retrieval 

Giving meaning to information favours its transfer in the LTM, i.e. the archive containing our 

knowledge, with a theoretically unlimited capacity (cf. Table 20). Let us suppose, for example, that the 

above phone number (cf. section 2.1.1.4) belongs to our dear friend, who we well know (i.e. whose 

information is thus already encoded in our LTM). Not only we often call this number, but we also 

associate a meaning to it, i.e. “belonging to our dear friend”. This process ensures that information is 

encoded in the LTM and is called elaborative rehearsal (cf. Fig. 25). Moreover, some information about 

our dear friend will be immediately recalled to awareness, as his image or the date of his birthday: this 

is a consequence of the retrieval process (cf. Fig. 25). According to Fig. 25, elaborative rehearsal and 

retrieval form a continual information cycle between the STM and the LTM. Notably, not only the 

information incoming from the STM can be encoded in the LTM, but it can also potentially decode (i.e. 

retrieve) some information already encoded in the LTM [52,60]. The bidirectional interaction between 

STM and LTM can be better understood by comparing the STM to a computer desktop, and the LTM 

to the hard disk (i.e. the storage unit). As a desktop, the STM represents a working space, where 

information is temporarily manipulated and prepared to execute several tasks [59] (cf. section 2.1.1.4). 

As a hard disk, the LTM constitutes our stable archive of information, which is continually used and 

modified during all the performed tasks. Indeed, we do not normally see on the desktop all the files 

stored in the hard disk, as well as we do not normally see the overall information available in the LTM. 

Let us provide more details about elaborative rehearsal and retrieval.  

• Elaborative rehearsal. This process consists of linking new information, incoming from the STM, 

with information already stored in the LTM in a meaningful way [52]. Notably, elaborative rehearsal 

is more effective than continual rehearsal, since it involves the construction of new synapses, which 
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ensure a much more stable information encoding than STM. The stability of encoded information 

over time also depends on the motivational and emotional state of the subject. This makes difficult 

to define the storing duration, which can vary from few minutes to a lifetime (cf. Table 20) [60]. 

• Retrieval. Information decoding (retrieving) requires a similitude (associative) relationship 

between the information incoming from the STM and the information to be decoded. The incoming 

information is “compared” to the synaptic trace of encoded information: the more similitudes they 

share, the higher the probability the latter is decoded and recalled to the STM (i.e. “visualised” on 

our desktop) [61]. This physically occurs with the reactivation of the synaptic traces (neuronal path) 

corresponding to the decoded information [62]. As seen for elaborative rehearsal, the retrieving of 

encoded memories also depends on motivational and emotional state of the subject.  

The processes of rehearsal and retrieval are summarised in Table 21.  

Table 21: The processes of rehearsal and retrieval (cf. Fig. 25) and their principal aspects. 

Process Description Associated synaptic mechanism 

Continual (or 

maintenance) 

rehearsal (cf. section 
2.1.1.4) 

Verbally (or mentally) repeating 

information (repetition loop, cf. Fig. 

25), in general without thinking about 
its meaning  

Continual adjustment 

(“regeneration”) of the synaptic 

trace corresponding to the 
repeated information 

Elaborative rehearsal  

Linking new information with 

information already encoded in the 

LTM by means of meaning.  
 

Influenced by the emotional and 

motivational state. 

Construction of new synapses 

which ensure a stable information 
encoding  

Retrieval  

Information incoming from the STM is 
“compared” to information encoded in 

the LTM: the more similitudes they 

share the higher the probability the 

encoded information is decoded and 
recalled. 
 

Influenced by the emotional and 

motivational state. 

Reactivation of the synaptic 

traces corresponding to the 

encoded information 

2.1.1.6. LTM: explicit and implicit knowledge 
In the current section, we provide more details about the type of information encoded in the LTM 

(cf. Table 20), to better understand what kind of knowledge we can store and retrieve. Since the 1970s, 

many models of the LTM have been developed, typically by defining different LTM sub-categories, 

with different roles and characteristics [63–65]. The model represented in Fig. 26, proposed in [63], was 

one of the first and most influential ones. As shown in Fig. 26, the LTM can be divided into two parts: 

an explicit knowledge, also called declarative (or conscious), and an implicit knowledge, also denoted 

as non-declarative (or unconscious). Both parts are in turn divided into two sub-categories. Although 

more recent models propose a greater number of sub-categories, they always retain the same distinction 

between explicit and implicit knowledge [64–66].  
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Fig. 26: Influential model of the LTM [63]. 

According to [63], the explicit knowledge involves conscious effort to encode and recall 

information, and it is mainly categorised into (cf. Fig. 26): 

• Semantic memory, which includes the knowledge about concepts and word meanings, as well as 

general knowledge. For instance, we know that Rome is the capital of Italy because we “hold” a 

semantic link (elaborative rehearsal, cf. Fig. 25 and Table 21) between “Rome” and “to be capital 

of Italy”, and this information is consciously “declarable”. As reported in Table 20, the semantic 

memory constitutes the main part of the explicit knowledge. 

• Episodic memory, which contains information about experienced events, regarding for example: 

specific moments of our life (called autobiographical memories, as our first day of school), general 

feelings associated to an activity (for example, the feeling associated to running), and exceptionally 

vivid and detailed “snapshots” linked to important or surprising circumstances (called flashbulb 

memories). All this knowledge is consciously declarable, and it is mainly encoded as visual and 

auditory information (cf. Table 20). 

On the other hand, the implicit knowledge involves unconscious and automatic (and thus not consciously 

controlled) thoughts, and it includes all we have implicitly or “accidentally” stored. The implicit 

knowledge is typically distinguished into (cf. Fig. 26): 

• Procedural memory, including skills and habitudes linked to the tasks we commonly execute without 

conscious efforts. For instance, the memory of the motor skills for riding a bike, or the habitude to 

brush the teeth every morning.  

• Priming memory, including all the factors which unconsciously (i.e. implicitly) influence the 

response to other stimuli. According to [63–66], two main components of the priming memory can 

be distinguished (cf. Fig. 26). The first one, called conditioning memory, determines all the 

emotional and reflex based behaviours. The second one, called perceptual memory, involves objects 

and language models (or structures, cf. Table 20).  

Notably, the models stored in the perceptual memory (cf. Fig. 26) constitute “predefined” and familiar 

recognition patterns which allow to speed up the learning process.
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2.1.1.7. Final considerations: important aspects concerning memory 

and its functioning 
We have discussed how information is processed by the brain, analysing the main mechanisms 

enabling new information to be encoded in the memory and which allow stored knowledge to be 

retrieved and made available. Based on the presented elements, we want to finally highlight some 

important aspects regarding memory and its functioning, in order to better introduce machine learning 

in the next sections.  

• Continual modification and re-elaboration of the stored knowledge. As seen in section 2.1.1.5, 

the retrieval process (cf. Fig. 25) involves the decoding of the information stored in the LTM (our 

hard disk), by reactivating their synaptic traces, and their recalling to the STM (our desktop). Due 

to the continual information cycle between STM and LTM the same information just retrieved can 

be redirected towards the LTM, thus re-processed and re-encoded by elaborative rehearsal. This 

phenomenon is called reconsolidation: retrieved memories are actively modified and re-elaborated, 

and thus re-encoded by means of new synaptic traces [67]. Due to reconsolidation, some retrieved 

memories can be completely rewritten, or even erased. The synaptic mechanisms linked to this 

phenomenon are still unclear [68]. However, this supports the idea that our memory should not be 

considered as a passive archive containing static information, but rather as an active archive whose 

stored knowledge is under continual modification and re-elaboration [69].  

• Loss of the capability to access (retrieve) some stored information over time. As reported in 

Table 20, the capacity of the LTM is thought to be theoretically unlimited, which means an infinite 

amount of information could be potentially encoded, and thus be available by retrieval (cf. Fig. 25) 

[52,53]. Rather than availability, the main constraint regards the accessibility to the stored 

knowledge. According to Table 21, the access to the stored knowledge reposes on the similarity 

between the information to be decoded and the retrieval information incoming from the STM. The 

retrieval signal can be consciously elaborated in order to recall specific encoded information. 

However, the capability to retrieve some memories can be gradually lost over time, due to the loss 

of the neuronal paths which allow to access them. As argued in [70], this mechanism occurs 

unintentionally (unconsciously), and it explains why older memories are generally harder to retrieve 

than more recent ones. Notably, this does not necessarily mean that those memories have been 

removed: they are probably still available in the LTM, but we are no more able to access them.   

• Implicit (unconscious) effects of emotional conditioning on learning and retrieving. Based on 

Fig. 26, the responses to received stimuli are generally influenced by the priming memory, on which 

we have a limited cognitive control due to its non-declarative nature [63]. The effect of the emotional 

conditioning component (cf. Fig. 26) on the elaborative rehearsal and retrieval processes has been 

already highlighted in Table 21. These effects can be both positive and negative. For example, it is 

widely demonstrated that certain emotions can facilitate learning and memorization. A similar effect 

can be observed for retrieving: the emotional content of some perceived stimuli can potentially 

facilitate the retrieval of specific and detailed memories. Clearly, these abilities differ from a person 

to another, since emotions are extremely personal. On the other hand, specific emotions can also be 

responsible of unwanted memory suppression (psychological trauma, for example), whose 

mechanism is however still unclear [71].  

• Conscious and unconscious (or cognitive) memory biases. According to [72–74], two types of 

memory biased attitudes (or biases) can be distinguished: unconscious (or cognitive) biases (cf. 

Table 6), due implicit knowledge, and conscious biases, due to explicit knowledge (cf. Fig. 26). As 

widely discussed in the previous (cf. section 1.2.3), the cognitive biases operate outside our 

awareness, and involve negative effects on our behaviour and design habitudes (BDHs, cf. Table 7 

and Fig. 11). Notably, three principal cognitive biases have been identified in Table 6: status quo, 
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functional fixedness, and confirmation. Based on literature, it is not easy to establish whether each 

one of these biases belongs to procedural rather than priming memory. They should be probably 

considered as spread all over the implicit memory. Nonetheless, we believe some connections could 

be found, for example, between confirmation and functional fixedness biases and the perceptual 

memory (cf. Fig. 26). As reported in Fig. 26, the perceptual memory is characterised by models of 

objects and language, which play a fundamental role in speeding up the learning process. On the 

other hand, these models constitute familiar patterns (functional fixedness, cf. Table 6) which 

unconsciously involve a selective learning: information “fitting” with these models (confirmation 

bias, cf. Table 6) is permanently retained in the LTM, while the rest risks to be early forgotten [71]. 

Contrarily to cognitive biases, conscious biases are explicitly and semantically processed, mostly as 

words and concrete actions. Consequently, conscious biases manifest in a more overt way, as for 

example physical and verbal harassment or different modalities of social exclusion (sexism, racism 

and other types of discriminations) [73,74]. Since conscious biases are explicitly expressed, we are 

thus more aware of them than cognitive biases, which are instead typically unknown and unnoticed. 

Regarding our purposes in this thesis (cf. Table 9), we believe cognitive biases are much more 

dangerous than conscious due to their implicit nature. Nonetheless, conscious biases are important 

as well to understand how memory operates.  

The discussed aspects are summarised in Table 22. 

Table 22: Important aspects regarding memory and its functioning. 

Memory aspect Description 

Continual modification and re-
elaboration of the stored memories 

Reconsolidation: retrieved memories are modified and re-

written, i.e. re-encoded in a different way. 
 

The LTM is an active archive: it does not contain static, but 

rather continually modified and re-elaborated information. 

Loss of the capability to access 

(retrieve) some encoded information 
over time 

Loss over time of the neuronal paths which allow to access 

some information. This information remains potentially 
available, but it is no more retrievable. 

Implicit (unconscious) effects of 
emotional conditioning on learning 

and retrieving 

Positive effect: facilitated learning and retrieving for 

information which holds a certain emotional content.  
 

Negative effect: unwanted memory suppression due to 
specific emotions. 

Conscious and unconscious (or 
cognitive) memory biases 

Unconscious (or cognitive) biases (cf. Table 6, Table 7 and 

Fig. 11): mental mechanisms negatively affecting our 

behaviour and operating outside our awareness (implicit 
knowledge).  

• Confirmation and functional fixedness biases: selective 

learning due to the objects and language models which 

characterise the perceptual memory (cf. Fig. 26). 
 

Conscious biases: negative attitudes explicitly and 

semantically processed as words and concrete actions.  

• Examples: physical and verbal harassment, different 

types of social exclusion (sexism, racism, etc.). 
 

Regarding our purposes (cf. Table 9), cognitive biases are 
more dangerous than conscious biases due to their implicit 

nature.  

Since each individual has different memory performances, the weight of these aspects can be 

different from one person to another [71]. According to Table 22, we must however keep in mind that 

there exist many factors in our memory we cannot explicitly control, and which represent a potential 

obstacle to the achievement of our purposes.  



67 

 

2.1.2. From brain to machine 
The analysis of memory conducted in section 2.1.1 allowed to better understand how knowledge is 

stored in our LTM and made available to our brain. According to the proposed memory model (cf. Fig. 

25), input information is processed through three different memory stores (cf. Table 20). Thanks to the 

bidirectional communication between STM and LTM (cf. Fig. 25), input stimuli can be encoded as 

permanent knowledge (elaborative rehearsal, cf. Table 21), and contemporarily enable encoded 

information to be retrieved as output (retrieval, cf. Table 21). Regarding conceptual design (cf. Fig. 16), 

the input stimulus is constituted by initial idea and specifications, while the retrieved (and elaborated) 

output is represented by the developed CVs. Based on the example illustrated in Fig. 27, let us assume 

to cognitively perform a conceptual design procedure by exploiting the design knowledge stored in our 

brain. In this case, the input stimulus involves a cantilever beam with a full squared section (initial idea), 

and the reduction of its mass (specification). These elements are thus processed by our brain, which 

quickly proposes two different CVs.  

 
Fig. 27: Example of conceptual design performed by the brain. 

As shown in Fig. 27, both inputs and outputs are characterised by:  

• A dialectic description (use of natural language). 

• A visual representation of the design configuration. 

These characteristics involve the main categories of the explicit knowledge (cf. Fig. 26), i.e. the 

semantic memory and the episodic memory, respectively. Moreover, they immediately emphasise the 

changes of the CVs from to the initial idea, in accordance with the PAAs reported in Table 18. The green 

bolded words (cf. Fig. 27) highlight the SPs on which the proposed CVs are based. Regarding CV1, the 

concept of “lower material density” has been added to the initial idea. In the corresponding 

representation, the use of a lower density material is indicated by the grey beam. Regarding CV2, its 

description highlights that the concept of “full”, which characterises the section of the initial idea, has 
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been changed into “hollow”. Both CV1 and CV2 constitute two valid conceptual solutions since they 

both allow to satisfy the required specification. The following important considerations, based on this 

example, enable to introduce the organization of the current section. 

• The proposed CVs seem two common and immediate solutions. Probably, an experienced brain can 

achieve them without so much effort, almost automatically. How is that possible? Usually, we do 

not realize how much powerful our brain is. Notably, some key cognitive abilities, denoted KCAs, 

can be considered as the main source of our extraordinary brain performances [50,75,76]. In section 

2.1.2.1, we want to introduce the KCAs and study their role in conceptual design.  

• Although the power of brain performances is unquestionable, the proposed CVs constitute only two 

possible solutions. We are surely capable to generate other different CVs, based on different 

knowledge we can retrieve and manipulate. Nonetheless, we will be hopelessly limited by several 

aspects, mostly due to our own memory (cf. Table 22). Can machine reproduce the extraordinary 

brain capabilities without being affected by its limits? We will answer this question in section 

2.1.2.2, by providing a comparison between the brain and the machine.  

Final considerations are given in section 2.1.2.3. 

2.1.2.1. The key cognitive abilities (KCAs) and their role in 

conceptual design 

According to [50,75], our performances of learning, reasoning and knowledge manipulation are 

mainly based on three KCAs: abstraction, generalization and analogy-making. Their generic definitions, 

adapted from [75–78], are reported in Table 23. 

Table 23: KCAs and their generic definitions. 

KCA Generic definition 

Abstraction 
Ability of mentally isolating a characteristic of a concrete context, to consider 

the isolated characteristic as a specific analysis object.  

Generalization 
Ability of associating a similar (or the same) meaning to a variety of similar 

inputs, regarding for instance objects, experiences, or contexts in general.  

Analogy-making 

Ability of adapting the knowledge about an already known and familiar context 

to explain and characterise phenomena occurring in a new unfamiliar context, 
which however shares one or more similitudes with the first one. 

We continually and automatically use these abilities, often without realize it. Their role in 

conceptual design can be better explained with the help of the example in Fig. 27. Fig. 28 shows an 

original representation of the mental processes which led to CV1 and CV2 (cf. Fig. 27), highlighting the 

intervention of the KCAs in the two main steps of the adopted conceptual design procedure (cf. Table 

18 and Fig. 16). This is one of the possible interpretations of how our brain operates, and it is assumed 

to explain the roles of the KCAs.  
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Fig. 28: Original representation of the mental processes leading to CV1 and CV2, which is assumed to illustrate the roles of 

the KCAs during conceptual design. 

Steps 1 and 2 are thus analysed in detail as follows. 

Step 1: identification of the SPs. By abstraction, our brain firstly associates the initial idea to similar 

experienced design scenarios, denoted DSs (Design Samples, cf. Fig. 28). Notably, the abstraction 

ability (cf. Table 23) enables to isolate different characteristics of the initial idea, which are thus used to 

retrieve different DSs by means of similitudes (cf. Table 21). In Fig. 28, the similitudes shared by initial 

idea and DSs, i.e. “beam” and “full section”, have been underlined and highlighted with the same colours 

(green and blue). In general, the similitudes can involve one or more characteristics of the initial idea. 

By generalization, our brain then exploits the experiences gained on the DSs to formulate the SPs, as 

function of the specifications to satisfy. According to Table 23, the generalization ability enables to 

adopt similar (or the same) responses for similar inputs. In our example (cf. Fig. 28), the same SPs used 

to reduce the mass of the DSs (which are similar to the initial idea) are adopted to reduce the mass of 

the initial idea. As also indicated in Fig. 27, the identified SPs involve the use of a lower density material 

and of a hollow section, instead of full.  

Step 2: development of the CVs. As represented in Fig. 28, our brain has already experienced how the 

identified SPs can be applied to the DSs. As done in Fig. 27, the grey beam (DS1+SP1, cf. Fig. 28) 

indicates the use of a lower density material. The characteristics of the DSs involved in the application 

of the SPs, i.e. “beam” and “section”, have been underlined and highlighted with two different colours 
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(red and violet, cf. Fig. 28). By analogy based on these characteristics, the knowledge on the application 

of the SPs is adapted to the initial idea for developing the CVs (analogy-making, cf. Table 23). Notably, 

the knowledge of applying SP1 to DS1 is adapted to the initial idea based on the “beam” characteristic, 

thus resulting in CV1 (cf. Fig. 28). CV2 is generated in a similar way: based on the “section” 

characteristic, the knowledge about the application of SP2 is transferred from DS2 to the initial idea (cf. 

Fig. 28). 

The analysed conceptual design steps are briefly summarised in Table 24 with the involved KCAs. 

Table 24: Conceptual design steps and involved KCAs. 

Conceptual 

design step 
Description Involved KCA 

1. Identification of 
the SPs 

1a. Retrieving of experienced 

design samples (DSs) similar to the 
initial idea 

Abstraction: The features of the 
initial idea are isolated and used to 

retrieve the experienced DSs by 

similitude 

1b. Exploiting the experiences 
gained on the DSs to formulate the 

SPs.  

Generalization: the similitudes 

between initial idea and DSs involve 

a similar (or the same) response to 

the required specification 

2. Development of 
the CVs 

The knowledge of applying the SPs 

to the corresponding DSs is adapted 
to the initial idea for developing the 

CVs.  

Analogy-making: exploiting the 

analogies (similitudes) between 
initial idea and DSs for the 

knowledge adaption.  

As assumed in Fig. 28, we did not employ any scientific equation to study the behaviour of the 

identified DSs, or the influence of the adopted SPs on the initial idea. On the other hand, all the mental 

operations which led to CV1 and CV2 by exploiting the KCAs were based on similitudes (cf. Table 24), 

which mostly involved the language used to describe initial idea, DSs and CVs (as the words “beam” 

and “section”, cf. Fig. 28). Indeed, scientific equations contribute to the comprehension of the physical 

and mechanical phenomena during the construction of our design knowledge. Once the concepts 

expressed by equations have been learnt and interiorized, the viewpoint adopted in this thesis is that our 

brain is able to quickly retrieve and manipulate them in a dialectic form and by means of similitudes, 

without executing any equation. The latter aspects are in accordance with the PAAs (cf. Table 18), which 

means KCAs are potentially very suitable to favour the development of breakthrough design solutions.  

2.1.2.2. Towards machine learning: an original brain-machine 

comparison 
For brevity, only two CVs have been considered in the above example (cf. Fig. 28), as well as only 

two DSs and only two SPs have been retrieved and manipulated. With a greater conscious effort, we can 

surely develop novel CVs by means of our KCAs (cf. Table 24). Despite these extraordinary cognitive 

abilities, the number of novel combinations will be hopelessly limited by several aspects inherent in our 

brain, as those due to memory (cf. Table 22). Based on these ideas, we need something able to reproduce 

the KCAs, without however being affected by brain limits. Is machine suitable for this task? With the 

help of Table 25, let us compare brain and machine. Notably, the comparison terms regard the limits 

due to memory (cf. Table 22), and two more aspects involving language variety and multidisciplinary 

abilities, which are directly linked to the PAAs (cf. Table 18).  
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Table 25: Original brain-machine comparison. 

Aspect Brain Machine 

Conscious and 

unconscious 

memory biases 

Very dangerous and affecting all the 

phases of conceptual design 
 

Main negative effects: 

• Prior exclusion of potentially 
interesting solution paths 

• Selective learning (cf. Table 22) 
 

Very difficult to mitigate (especially 

unconscious biases) 

Potentially introduced in the 

knowledge base by programmer  
 

The more different programmers 
(specialized in different disciplines) 

contribute to the knowledge base, the 

more biases’ influence is mitigated 

Continual 

modification of the 
stored knowledge 

Retrieved knowledge is necessarily 

modified 
 

No explicit control on the knowledge 

base: 

• Risk of modifying/over-writing the 

experienced DSs and SPs 

• Impossible to consciously retrieve 
some DSs and SPs, since their 

semantic link could have been 

modified. 

• Undesired knowledge cannot be 
consciously forgotten 

No, and the knowledge base can be 

directly handled: 

• Copying data before modifying 
them avoids over-writing 

• All the available knowledge can be 

retrieved at will and manipulated ➔ 

possibility to generate more CVs 

• Undesired data can be deleted at 
will 

Loss of the 

capability to 
retrieve stored 

knowledge over 

time 

The older the design experiences (DSs 

and SPs), the less probable they can be 

retrieved for contributing to 
conceptual design 

No limit in retrieving old data.  
 

The knowledge base can be easily 

transferred to new hard disks, 

theoretically avoiding the time 
deterioration of the hardware 

components 

Implicit emotional 
conditioning 

Not consciously controllable and not 

predictable influence: 

• Positive effects cannot be easily 
reproduced 

• Negative effects cannot be easily 

avoided 

The occurrence of non-predictable 

and non-controllable (i.e. implicit) 

events is strongly reduced. 

Language variety 

Limited:  

• About 17,000 word families for 

university graduates 

• Up to 20,000 word families for 

really cultured people 

Potentially unlimited ➔ A more 

varied lexicon can involve more 

different CVs 

Multidisciplinary 

abilities (cf. Table 
3) 

Often specialized in only one 

discipline, and rarely in two or more 
different disciplines 

• Less analogies between different 

and apparently unrelated concepts 

• Difficulty in sharing knowledge 

with other specialized in different 
disciplines 

Potentially unlimited ➔ analogies 

between very different and apparently 
unrelated disciplines are more likely 

(more different and potentially 

breakthrough CVs) 
 

The more programmers specialized in 

different disciplines contribute to the 

knowledge base, the more different 
analogies are likely 
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Let us analyse each aspect in detail. 

• Conscious and unconscious (or cognitive) memory biases. We believe memory biases represent 

the most dangerous limit of our brain, regarding our purposes (cf. Table 9).  

Brain. According to Table 7, Fig. 11 and Table 22, both conscious and unconscious biases involve 

the prior exclusion of potentially interesting solution paths due to different reasons. Notably, 

unconscious biases can also be considered as a potential cause of selective learning (confirmation 

and functional fixedness, cf. Table 22). Memory biases can heavily affect conceptual design from 

the earliest phases. For instance, we could be led to priorly fix some characteristics of the initial 

idea. In general, memory biases are very difficult to mitigate, especially unconscious ones, which 

are not consciously controllable (cf. Table 22).  

Machine. Theoretically, a machine does not have any biases, even if they could be potentially 

introduced by the human programmer during the construction of its knowledge base. Nevertheless, 

the effects of memory biases on thoughts and actions differs from one individual to another [71], 

and they also depend on the received education (cf. Table 6). We thus believe their presence and 

influence can be mitigated if more and different programmers, specialized in different disciplines, 

contribute to the knowledge base of the machine.  

• Continual modification of the stored knowledge. Due to reconsolidation, retrieving and 

manipulating design knowledge necessarily involve its continual modification and re-elaboration.  

Brain. Each time DSs and SPs are retrieved and manipulated, they risk being “over-written” (or 

anyway modified, cf. Table 22). This also implies we do not have a clear and global vision on the 

overall design knowledge stored in our LTM: we do not know exactly how many and which DSs 

and SPs we have experienced, since they are under continual modification. Consequently, it could 

be potentially impossible to consciously retrieve some DSs and SPs: their neuronal path (and thus 

the corresponding semantic link) could have been changed [67,68]. Moreover, we cannot 

consciously decide to forget undesired experiences by eliminating their corresponding synaptic 

trace. In summary, we cannot explicitly control our knowledge base. 

Machine. A machine does not have these problems. Notably, the knowledge base can be directly 

handled. Data can be copied before being modified (avoiding over-writing) and deleted at will. 

Moreover, the knowledge base can be completely scanned to consider all the available knowledge: 

during conceptual design, this enables to enlarge the space of the potential similitudes (cf. Fig. 28), 

thus increasing the number of generated CVs. 

• Loss of the capability to retrieve stored knowledge over time.  

Brain. We better remember the DSs and SPs we have recently manipulated, or which we often 

manipulate. Indeed, recent design experiences can be normally retrieved without so much effort. 

However, it is more difficult to retrieve older design experiences, since their corresponding neuronal 

path may have potentially deteriorated over time. Consequently, the older the DSs and SPs are, the 

less they can contribute to conceptual design: the less novel CVs can thus be developed. 

Machine. Contrary to the brain, a machine has no limit in retrieving old data stored in its knowledge 

base. Moreover, the knowledge base of a machine can be easily transferred to a new hard disk, 

avoiding potential damages due to the time deterioration of the hardware components. 

• Implicit emotional conditioning.  

Brain. Based on Table 22, the implicit and unexpected character of emotions constitute an element 

of uncertainty and randomness, which can benefit or limit our memory performances in a given 

context. Their implicit nature makes them not consciously controllable. This means potentially 

positive effects cannot be easily reproduced, and potentially negative effects cannot be easily 

avoided. 
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Machine. A machine has no emotions, which strongly reduces the occurrence of non-predictable 

and non-controllable events. Nonetheless, some algorithms used in machine learning, as the genetic 

algorithm, are purposely based on the introduction of random events to better perform optimization 

tasks in extremely non-linear problems.   

• Language variety. The use of natural language represents one of the crucial points of the adopted 

approach (cf. Table 18). As assumed in Fig. 28, the manipulation of the design concepts in form of 

language enables our brain to quickly generate different CVs by means of the KCAs (cf. Table 24). 

The more varied our lexicon (i.e. the more different words we know), the more different concepts 

we can express and combine.  

Brain. Estimating an average size of individual lexicon is particularly difficult. Based on [79–81], 

it mainly depends on age and education. As argued in [80], people learn and use thousands of 

inflected forms of words which however share the same core meaning. In the current analysis, we 

have thus adopted the concept of “word family” 7 (cf. Table 25) as measure of lexicon size, in 

accordance with [79]. Considering English, about 54,000 different word families exist [79]. On 

average, a 20-years-old native speaker knows about 11,100 word families (about 16,700 different 

words) [80,81]. A lexicon of 17,000 word families can be estimated for university graduates, while 

really cultured people meanly achieve 20,000 word families. It is however interesting to notice that 

we could comprehend the 95% of the oral English by knowing “only” 2,000-3,000 word families.   

Machine. The number of different words which can be stored in the knowledge base is potentially 

unlimited. Consequently, a machine can potentially manipulate and combine a larger variety of 

concepts than brain, thus increasing the possibility of generating breakthrough CVs.  

• Multidisciplinary abilities. Based on Table 3, a broad multidisciplinary specialization increases 

the possibility of making analogies between different and apparently unrelated concepts, which 

favours the birth of breakthrough solutions.   

Brain. On average, we are specialized in one discipline, and we have superficial knowledge in the 

other ones. Designers are rarely specialized in two or more different disciplines. Due to this aspect, 

they often have difficulty in sharing their knowledge with others specialized in different disciplines. 

This is also linked to cognitive biases: we feel safe in our domain, and it is hard to admit different 

standpoints inherent to other disciplines (cf. Table 6).  

Machine. The number of disciplines a machine can specialize in is potentially unlimited: analogies 

between very different and apparently unrelated concepts are more likely. On the other hand, the 

number of disciplines depends on the number of programmers with different specializations who 

contribute to the knowledge base of the machine. 

Regarding our purposes (cf. Table 9), almost all the aspects reported in Table 25 represent a limit for 

the brain. Notably, the first four ones are limits due to memory which cannot be consciously controlled 

and are almost impossible to eliminate, while those due to language variety and multidisciplinary 

abilities cannot be easily balanced. On the other hand, the emulation of the KCAs by means of the 

machine requires a non-negligible programming effort, and it thus involves a potential limit in the use 

 

 

 

 

7 A word family is a group of different words sharing the same core meaning (e.g.  stimulate, stimulation, 

stimulated, stimulating, stimulates, stimulative, etc.). The first member represents the base form, while the 

following ones constitute the derived forms, which can be verbs, adjectives, nouns, etc. By knowing the meaning 

of either member of a family, one can easily infer the meaning of all the other members of the same family [79]. 
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of the machine. In general, the comparison in Table 25 suggests that machine is potentially more suitable 

for conducting conceptual design according to our purposes.  

2.1.2.3. Final considerations 

Based on sections 2.1.2.1 and 2.1.2.2, two important considerations can be finally remarked:  

• On one side, our brain is endowed with very powerful cognitive capabilities. As seen in Fig. 28, 

different design concepts can be quickly retrieved from our memory, and effectively manipulated 

by means of the KCAs (cf. Table 24) to develop novel CVs. 

• On the other side, brain performances are limited by several aspects, which however do not affect 

the machine (cf. Table 25).  

By means of machine learning, we want to exploit the power of the KCAs and all the advantages 

offered by machine during conceptual design, without being affected by brain limits. This is the idea on 

which the methodology of the developed demonstrator is based, and thus the motivation for using 

machine learning. As reported in Fig. 23, due to the difficulties encountered in realizing this ambitious 

idea, our efforts in this work will be mainly focused on the first step of the conceptual design 

(identification of the SPs, cf. Fig. 28). This means that the machine learning methods integrated in the 

developed demonstrator will mainly focus on emulating the KCAs of abstraction and generalization 

(step 1a, cf. Table 24). The second step of the conceptual design procedure (cf. Fig. 28) will be instead 

performed by the human user, and we are thus aware that the development of the CVs could be 

potentially influenced by memory biases and other brain limits (cf. Table 25). This important assumption 

will be resumed in chapter 3 before presenting the demonstrator.
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2.2. Presentation of the implemented machine 

learning methods 
In this section, we want to introduce and present the machine learning methods used in the current 

work. Machine learning, afterwards denoted as ML, generally involves the implementation of 

computational algorithms, able to emulate specific human cognitive abilities by learning from the 

surrounding environment. In the recent decades, many ML techniques have been developed for different 

purposes, as pattern recognition, data clustering and computer vision, and are more and more used in 

different domains as engineering, medicine, finance and entertainment [47]. Before presenting the 

organization of this section, let us introduce some important definitions regarding the used terminology. 

• We refer to “ML model” (or “machine learning model”) to indicate the type of human cognitive 

ability or a specific aspect of the human intelligence we want to emulate. 

• We refer to “ML method” (or “machine learning method”) to identify the computational procedures 

(i.e. the algorithms) which a given learning model is implemented with.  

These definitions are summarised in Table 26. 

Table 26: Definitions of machine learning model and machine learning method. 

Terminology Definition 

ML model (or machine learning model) It represents the type of human cognitive ability 

to be emulated 

ML method (or machine learning method) It represents the computational procedure 
(algorithm) by which a given learning model is 

implemented. 

The current section is organized as follows. The three principal ML models, called supervised, 

unsupervised and reinforcement learning, are presented in section 2.2.1. The ML methods implemented 

in this work are based on the supervised and unsupervised learning models and are respectively 

presented in sections  2.2.2 and 2.2.3. Notably, our objective is to well outline their base ideas and to 

describe their functioning, highlighting the main parameters and their influence. This will enable non-

expert readers to become more familiar with the principal technical aspects generally involved in ML 

algorithms. Some indications to lighten the reading of the following sections are rather provided to ML 

experts.  

2.2.1. Learning models 
Based on current established literature on machine learning and in particular on [47,50,82,83], three 

principal learning models exist: supervised learning, unsupervised learning and reinforcement learning, 

which are respectively presented in sections 2.2.1.1, 2.2.1.2 and 2.2.1.3. Their summary is then provided 

in section 2.2.1.4, together with some final considerations. The ML expert readers can directly skip to 

section 2.2.1.4. 

2.2.1.1. Supervised learning 
The base principle of supervised learning is to emulate the human generalization ability (cf. Table 

23). As shown in Fig. 29a, the supervised learning model typically involves two distinct phases: training 

and generalization. Let us analyse these phases in detail according to [47,50,82,84]. 

Phase 1: training. This phase concerns the calibration of the learning algorithm on a suitable set (or 

array) of training samples (called training set), which represent the ensemble of knowledge that we want 

the machine to learn. According to Fig. 29a, each training sample consists of an input, called training 

input, and the corresponding output, called training output. Let us imagine, for instance, to train our 
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learning algorithm for classifying dogs and cats into two different categories, labelled as “DOG” and 

“CAT”. The adopted training set is shown in Fig. 29b: each sample is characterised by an image of dog 

or cat (training input) and by the label of the category associated to the image (training output), i.e. what 

each image truly represents. With an iterative process, the training set is submitted to the learning 

algorithm, which is thus calibrated to associate the “DOG” label to dog images, and the “CAT” label to 

cat images (cf. Fig. 29a).  

Phase 2: generalization. The trained algorithm is now able to recognize dogs and cats, by associating 

itself the label “DOG” or “CAT” to new images. The latter ones still depict dogs and cats, which are 

however different from the dogs and cats involved in the training set. As shown in Fig. 29a, the trained 

algorithm exploits the acquired knowledge to generalize (cf. Table 23), i.e. it can associate the same 

meaning (i.e. the same label) to new inputs which are similar to the training ones. The label associated 

to the new inputs is called generalization output (cf. Fig. 29a). 

 
Fig. 29: (a) Scheme of the supervised learning model and (b) example of training set for the classification of dogs and cats. 

If the submitted training set is not enough representative of the data to be classified, the trained 

algorithm will have poor generalization performances. Notably, the training outputs represent a sort of 

“absolute truth”, on which the algorithm is calibrated, and which enable to directly check if the resulting 

generalization outputs are pertinent or not. Due to this aspect, the supervised learning model is not 

strictly plausible from the biological standpoint (absolute truth does not exist in nature). However, 

supervised learning is very effective and very suitable for many practical tasks, mainly regarding:   

• Classification, i.e. the object categorization based on the recognition of common systematic patterns 

or characteristics. Software of image recognition typically reposes on this kind of approach. In the 

example above (cf. Fig. 29b), dog and cat images can be classified according to different systematic 

characteristics, as size, ears’ shape, etc. 
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• Prediction, i.e. the approximation of a future event occurring in a known system. For instance, 

predictive maintenance software emploies this kind of approach: a given system (as an industrial 

machine) is continually monitored and the responses to future potential issues are elaborated in real 

time based on the collected data [50,84].  

The supervised learning model is summarised in Table 28. 

2.2.1.2. Unsupervised learning 
The unsupervised learning model concerns the identification of hidden patterns or clusters (i.e. data 

groupings) in a set of samples, called training set. A cluster is defined as a group of training samples 

similar to one another. The samples contained in a cluster are thus dissimilar to the samples contained 

in other clusters. Contrary to supervised learning, the training set now consists of only unlabelled input 

data (without the corresponding output). As shown in Fig. 30a, the learning algorithm analyses the 

training inputs and groups them into different clusters which depend on the adopted clustering features, 

afterwards denoted as CFs [47,50,82,84].  

 
Fig. 30: (a) Scheme of the unsupervised learning model; (b) representation of the training set (dog and cat images, cf. Fig. 
29b) in an n-dimensional space (upper part) and clustering of the training samples according to the adopted CFs (lower 

part). 

Let us resume the example illustrated in section 2.2.1.1 to better illustrate the unsupervised learning 

model and the concept of clustering feature (CF). The considered training set corresponds to the 

unlabelled images of dogs and cats (only the training inputs, cf. Fig. 29b). As shown in Table 27, let us 

describe the training samples based on n different features, abstracted from the subjects of the studied 

images (cf. Fig. 29b). Each sample is thus expressed by means of different words, which represent the 

values of the abstracted features. 



78 

 

Table 27: Description of the training samples (cf. Fig. 29b) based on abstracted features. 

 Feature 1 Feature 2 … Feature n 

Sample # Hair length 
Predominant hair 

colour 
… … 

Sample 1 short black … … 

Sample 2 short white … … 

… … … … … 

Sample N long brown … … 

Table 27 provides an abstract representation of the training set: each feature can be isolated from 

the other ones and considered as a specific analysis object, emulating the abstraction ability of the brain 

(cf. Table 23). Moreover, as shown in Fig. 30b, the training set can be now represented as an ensemble 

of points in a n-dimensional space, where the dimensional axes (F1, F2, …, Fn) correspond to the 

abstracted features. The learning algorithm tries to group the training samples by “measuring” (or 

identifying) the similarities between their features. The two clustering examples proposed in Fig. 30b 

are characterised by two different CFs (feature 1 and feature 2, cf. Table 27), i.e. the features by which 

the samples are grouped. Notably, the CF corresponds to the “specific analysis object” in the definition 

of abstraction (cf. Table 23). In these cases, the similarity of the clustered samples is based on the words 

used in the description of the adopted CFs: for instance, the cluster “short” contains the samples where 

feature 1 is equal to “short”, while the cluster “black” contains the samples where feature 2 is equal to 

“black”. Depending on the adopted CFs, the same training samples can be clustered in different ways 

leading to different interpretations of the training set. Contrary to supervised learning, there is no 

“absolute truth” (training output) to directly check if results are pertinent or not. In general, it is thus 

preferred to verify a-posteriori if the generated clusters are representative of the chosen clustering 

features. Due to this aspect, the unsupervised learning is considered more biologically plausible than 

supervised learning. The practical uses of the unsupervised learning model mainly regard: 

• Data organization and interpretation. Preliminary data clustering can be very effective to organize 

and better visualize data structure, before processing them by means of other methods. 

• Anomaly detection, as in the fraud detection systems, for instance. An anomaly can be generally 

considered as a sample of the analysed training set which does not belong to anyone of the identified 

clusters. The concept of anomaly can be better understood with the help of Fig. 31: can you identify 

the “anomalous cat”? At first glance, we would probably answer that the black cat is the anomaly, 

because our attention is immediately captured by the colour difference. However, if we are 

interested in the direction of cats’ look, the white cat in the centre will rather constitute the anomaly. 

In accordance with  Fig. 30, anomaly identification thus strongly depends on the adopted CFs.   

 
Fig. 31: Example of anomaly detection.  

The unsupervised learning model is summarised in Table 28. 
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2.2.1.3. Reinforcement learning 
The base idea of this model is to emulate a real time learning process conducted by trial and error, 

which is very similar to the way a baby learns [50]. The typical scheme of reinforcement learning is 

reported in Fig. 32, where the learning algorithm is “impersonated” by an agent exploring a given 

environment by attempts. At each attempt, the agent tries an action and immediately receives feedback 

from the environment. The feedback indicates whether the made action was right or wrong, and it 

consists of a “reward” or a “punishment”, which reinforces the agent’s knowledge of the environment 

(cf. Fig. 32). At the beginning, the agent has no knowledge of the environment, and he will thus receive 

many negative feedbacks for the first tried actions. However, after several attempts, the agent will 

gradually improve himself, by “calibrating” its behaviour to take only good decisions. Similarly to 

supervised learning (cf. Fig. 29a), actions and feedbacks can be respectively considered as training 

inputs and outputs (cf. Fig. 32). On the other hand, while in supervised learning the training set is entirely 

known from the beginning (Fig. 29a), in reinforcement learning the training inputs (actions) are 

generated in real time at each attempt, based on the training inputs (feedbacks) received in the previous 

attempts [47,50,83].    

 
Fig. 32: Scheme of the reinforcement learning model. 

Very common uses of reinforcement learning mainly regard: 

• Robotics, where it is typically employed to teach machine different actions based on the surrounding 

environment. Many applications also involve automatic pilot devices for cars and drones [50].  

• Adaptive online learning, where the knowledge of already trained systems continues to improve 

during their operation. This approach has been recently applied to videogame AIs, whose knowledge 

gradually adapts to the player’s ability, in order to gradually increase game difficulty [83,85].     

Let us see an example of reinforcement learning: let us imagine teaching a robot (agent) to walk, 

going as far as possible without damaging itself. The robot sees the environment through a camera. At 

each step (action), it receives images about its position and a feedback about its integrity, and it thus 

decides to make a new step (new action). The robot will encounter many obstacles du ring the walk. By 

crashing against obstacles, it will gradually learn to avoid them to continue advancing. At the beginning, 

the robot knows nothing, and has no danger instinct. If it walks on a cliff edge, it will need to fall off 

the cliff to learn it took a bad decision: too late, because it will be already destroyed. This can represent 

a big drawback regarding reinforcement learning. Indeed, it is preferred to preliminary train the agent 

on the basic environment laws by simulations, before passing to the real environment [47,50,83]. The 

reinforcement learning model is summarised in Table 28.
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2.2.1.4. Summary and final considerations 
The presented ML models are summarised in Table 28, reporting their base principles and main 

application tasks. 

Table 28: Summary of the ML models: base principles and main application tasks. 

ML model Base principles Main application tasks 

Supervised learning 

Emulation of the human 
generalization ability, involving two 

phases (cf. Fig. 29a). 
 

Phase 1: training. Calibration of the 
learning algorithm on the training set 

(i.e. the ensemble of knowledge to be 

learnt by the machine), to acquire the 

generalization ability.  
 

Phase 2: generalization. Exploiting 

the acquired knowledge to generalize 

(cf. Table 23).  
 

Warning: The training set must be 

sufficiently representative of the 

generalization database. 

• Classification: categorization 

based on the recognition of 

common systematic patterns or 
characteristics (e.g. image 

recognition). 
 

• Prediction: approximation of 

future events occurring in a 

known system (e.g. predictive 
maintenance). 

Unsupervised 

learning 

Identification of clusters in a dataset 

(training set).  
 

Definition of cluster. Group of 

training samples similar to one 
another. The samples contained in a 

cluster are thus dissimilar to the 

samples contained in other clusters. 
 

The identified clusters depend on the 

adopted clustering features (CFs, i.e. 

the abstracted features by which the 
training samples are grouped, cf. Fig. 

30b and Table 27). 
 

Warning: the pertinence of the 
identified clusters should be verified a 

posteriori.  

• Data organization and 

interpretation: clustering to 
preliminary organize and better 

visualize data structure.  
 

• Anomaly detection: clustering 

data to identify anomalies 
according to different CFs (e.g. 

fraud detection systems). 

Reinforcement 

learning 

Emulation of a real time learning 

process conducted by trial and error.  
 

The agent (learning algorithm) 

explores the environment by attempts. 

Tried actions involve feedbacks from 
the environment (rewards or 

punishment, cf. Fig. 32), which enable 

agent to reinforce his knowledge in 

order to take only good decisions.  
 

Warning: preliminary training by 

simulation is suggested before 

passing to the real environment. 

• Robotics: teaching machines 

different actions based on the 

surrounding environment (e.g. 
autopilot devices).  

 

• Adaptive online learning: 

Improving (adapting) the 

knowledge already trained 

systems (e.g. videogame AIs). 

According to Table 28, these ML models represent the base for emulating many human cognitive 

abilities. As seen in section 2.2.1.1 and 2.2.1.2, the characteristics of the supervised and unsupervised 

learning models make them very suitable to emulate the KCAs of generalization and abstraction, i.e. 

those involved in the first step of the conceptual design procedure (cf. Fig. 28). According to section 
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2.1.2.3, these are the machine learning models on which the methodology of the current demonstrator 

is based.  

2.2.2. The implemented supervised learning-based method: 

artificial neural networks (ANNs) 
The two mainly used types of supervised learning algorithms are the artificial neural networks 

(ANNs) and the random forest (RF) [47,50,86–89]. The first type was chosen in this thesis. The 

implemented ANN will be employed for classification tasks, emulating the generalization ability of the 

human brain (cf. Table 28). In this section, we want to describe how data are processed in ANNs and 

how calibration (training, cf. Fig. 29a) is conducted, highlighting the influence of the main parameters. 

The current section is organized as follows. In section 2.2.2.1, ANNs and RF are introduced and 

compared, and the motivations for the choice of ANNs are provided. In section 2.2.2.2, the adopted type 

of ANN is presented and discussed in detail. The procedure to train ANN is introduced and presented 

in section 2.2.2.3. Some mathematical parameters regarding the training procedure are briefly discussed 

in section 2.2.2.4. The fundamental guide principles to improve training efficacy are provided in section 

2.2.2.5. The implemented ANN is finally presented and tested in section 2.2.2.6. The experts of 

supervised learning and ANNs can directly skip to section 2.2.2.6.  

2.2.2.1. Introduction and comparison of Artificial Neural Networks 

(ANNs) and Random Forest (RF) 
As reported in [47,50,86–89], two different ML methods (or algorithms cf. Table 26) are mainly 

used to perform classification and prediction tasks (cf. Table 28): artificial neural network (ANN) and 

random forest (RF), respectively represented in Fig. 33a and Fig. 33b.  

 
Fig. 33: (a) Representation of an artificial neural network (ANN) and (b) representation of a random forest (RF). 

ANN and RF are based on different ideas. An ANN is inspired to biological neural systems and 

consists of multiple connected and interdependent artificial neurons, which are typically organized in 

different layers (cf. Fig. 33a). Input information is processed layer by layer by all neurons 

simultaneously, and the final classification (or prediction) output is provided by the neurons in the last 

layer. Instead, a RF is an ensemble of independent decision trees (DTs), each one with a different 

structure [90]. As shown in Fig. 33b, each DT in the RF elaborates the input information and provides 

its own classification (or prediction) output. Therefore, the RF final output is the average of all the 

outputs given by the single DTs. The ANN-RF comparison proposed in Table 29 helps to understand 

which method is more suitable to our purposes. According to [86–89], the comparison is based on three 
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main criteria, and the characteristics highlighted in green indicate which method is better regarding a 

given criterion.  

Table 29: Comparison ANN-RF (for green colour see text description) [50,86–89,91–93]. 

Comparison criterion ANN RF 

Type of processable data 
Numerical, text (natural 

language), audio and image 
Numerical 

Robustness of the method to 

dispersed training data (influence 
on the accuracy of the trained 

algorithm) 

High Low 

“Tuning parameters” (or 

hyperparameters, influence on the 
accuracy of the trained algorithm) 

Many and less user-friendly Few and more user-friendly 

The first criterion suggests that ANNs can be used to process any type of data, including natural 

language, whose processing is one of the main PAAs (cf. Table 18), while RF based methods are 

typically limited to process numerical data. The robustness (second criterion, cf. Table 29) measures the 

attitude of ML methods to not be influenced by dispersed (anomalously distributed) training data sets, 

which is often the case of natural language processing. Based on [86–89], this characteristic influences 

the accuracy of the trained algorithm. As indicated in Table 29, ANNs are less influenced by dispersed 

data than RFs. The third comparison criterion regards the number and the entity of the “tuning 

parameters” (often referred to as hyperparameters) of the learning algorithm. These parameters are used 

to regulate the training phase, and they should be set-up and tuned during the training phase (cf. Fig. 

29a) to ensure results relevancy and improve the accuracy of the used ML method [91]. In general, the 

hyperparameters involve the algorithm architecture, as the number of neurons and layers for ANNs and 

the number of DTs for RFs, and other different mathematical parameters. As indicated in Table 29, RF 

has fewer hyperparameters, which are also more user-friendly than ANN [86–89]. In summary, ANNs 

can be employed in more cases, including language processing (PAAs, cf. Table 18), and are more 

robust to dispersed training data, even if their use generally requires a deeper study than RFs. Otherwise, 

RFs are more interesting for fast numerical applications where a deep knowledge of machine learning 

is not required. Regarding ANNs, many indications to help users setting-up hyperparameters are 

however provided in literature [50,91–93]. For these reasons, ANNs represent the supervised learning 

method implemented in this work.  

2.2.2.2. Adopted type of ANN and information processing in 

neurons  
Based on Fig. 33a, the type of ANN adopted in this work is shown in Fig. 34, and it is characterised 

by three layers: input layer, hidden layer and output layer. Neurons are denoted with a letter, which 

indicates the respective layer, and a number. For example, “i2” is the second neuron of the input layer, 

“h3” is the third neuron of the hidden layer, and “o1” is the first neuron of the output layer (cf. Fig. 34). 

The numbers of input and output neurons depend on the dataset to be processed (i.e. on the studied 

problem), while the number of hidden neurons is an hyperparameter (cf. Table 29) and it should be 

selected by attempts during the training phase [50,91–93]. The chosen ANN model also involves two 
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additional “special neurons”, called bias8 neurons and denoted with “b” (cf. Fig. 34). In each layer, each 

neuron is connected to all the neurons of the following layer by means of artificial synapses. Each 

artificial synapse is identified by a weight, denoted with “w”, i.e. a real number (R) whose function is 

inspired to the adjustability of the biological chemical synapses. As reported in Table 19, this property 

is the base of the learning process in biological neural systems, and it consists of varying the quantities 

and the nature of the neurotransmitters released across the synaptic clefts (cf. Fig. 24b). In a similar way, 

the ANN learning process is based on the calibration (adjustment) of the synaptic weights during the 

training phase (cf. Fig. 29a). In mathematical terms, the synaptic weights thus represent the system 

unknowns. Regarding the annotations used in Fig. 34, the superscript of the synaptic weights indicates 

the connected layers, while the subscript indicates the numbers of the connected neurons. For example, 

the synapse w13
ih  connects the neurons “i1” and “h3”, the synapse w22

ho connects the neurons “h2” and 

“o2”, and the synapse w3
bh connects “h3” to the respective bias neuron (cf. Fig. 34). 

 
Fig. 34: Type of ANN adopted in the current work. 

Each artificial neuron represents an elementary processing unit, where received information is 

elaborated by means of different mathematical functions and then provided to the neurons of the 

following layer. The mathematical functions contained in the neurons are reported in Fig. 34 according 

to [50]. Their role can be better understood by illustrating in detail how information is processed layer 

by layer, assuming the ANN as already trained (the synaptic weights are calibrated). For each layer, let 

 

 

 

 

8 In this context, the term “bias” is used for mathematical purposes [50]. There is no connection between bias 

neurons and memory biases (cf. Table 22 and Table 25).  
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us adopt “x” to indicate the input of the generic neuron, and “y” to indicate the output of the generic 

neuron.  

Input layer. The role of input neurons is to introduce the input data provided by user into the ANN. As 

shown in Fig. 34, each input neuron is characterised by the identity function (y = x), which means the 

neuron output y, i.e. the information passed forward to the hidden layer, is equal to the neuron input x, 

i.e. the information provided by user (x). 

Hidden layer. Let us see how information is processed by hidden neurons. In Fig. 35a, the neuron h1 

is considered. Information processing involves two steps, characterised by two different functions: sum 

and sigmoid (cf. Fig. 34). As shown in Fig. 35a, the first step concerns the accumulation of the 

information incoming from the input neurons by means of a weighted sum, generating the accumulated 

signal x′. This operation is inspired to the accumulation of input signals in a unique nucleus potential 

which occurs in a biological neuron (cf. section 2.1.1.1), as indicated in Fig. 35b. 

 
Fig. 35: (a) Information processing in the artificial neuron h1 (cf. Fig. 34); (b) analogy with biological neuron (cf. Fig. 24a). 

As shown in Fig. 35a, the second step involves the neuron activation and consists of passing the 

accumulated signal x′ into the sigmoid function to generate the neuron output y, which is limited in the 

range between 0 (inhibiting) and 1 (stimulating). According to Fig. 35b, the base idea of using sigmoid 

function is to emulate the nucleus of a biological neuron, which activates if the accumulated signal 

exceeds a specific threshold potential (cf. section 2.1.1.1). The same operations of accumulation and 

activation are performed in the neurons h2 and h3. The outputs generated by the hidden neurons are then 

passed forward to the output layer (cf. Fig. 35a). 

Output layer. As the hidden neurons, also output neurons involve the two sequential steps of 

accumulation and activation (cf. Fig. 35a). The accumulated signals x1
′  and x2

′  are first generated in the 

output neurons o1 and o2 by means of the weighted sum, in the same way as Fig. 35a. The activation of 
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the output neurons is thus represented in Fig. 36, where the softmax function is used to generate the 

ANN outputs y1
  and y2

 . As shown in Fig. 36, the softmax is a normalized exponential function and it 

represents a generalization of the Sigmoid function for multiple dimensions. The reason for using the 

sigmoid function in the output layer is explained as follows.  

 
Fig. 36: Activation of the output neurons o1 and o2 (cf. Fig. 34). 

Three different examples of softmax calculation are proposed in Table 30 for neurons o1 and o2, to 

better understand what kind of result is provided by this function. For the rows o1 and o2 (cf. Table 30), 

the values of x 
′ are chosen arbitrarily and the values of y (neuron outputs) are calculated with the 

equations reported in Fig. 36, while the row o1+o2 (cf. Table 30) provides the sum of x 
′ and y values.  

Table 30: Examples of softmax calculation. 

 Example 1 Example 2 Example 3 

Neuron 𝐱′ 𝐲 = 𝐬𝐨𝐟(𝐱′) 𝐱′ 𝐲 = 𝐬𝐨𝐟(𝐱′) 𝐱′ 𝐲 = 𝐬𝐨𝐟(𝐱′) 
o1 3 0.73 -1 ≈ 0 -4 0.95 

o2 2 0.26 5 ≈ 1 -7 0.05 

o1+o2 5 1 4 1 -13 1 

As shown in Table 30, the single neuron outputs (y) are limited in the range [0;1], and their sum is 

always equal to 1 (this is true even with more than two output neurons). For these reasons, the output of 

softmax function can be seen as a probability distribution in percentage, and it is thus very suitable for 

multiclass classification problems [94], as in our case.  

The two similitude aspects identified in this section between ANN and biological neural systems 

are reported in Table 31, while the role of the mathematical functions used in the adopted type of ANN 

(cf. Table 30) is summarised in Table 32. 

Table 31: Similitude aspects between ANN and biological neural systems (cf. Fig. 35 and Fig. 36) [47,50]. 

Aspect Biological neural system ANN 

Learning process 
Adjustment of the chemical 
synapses (cf. Table 19) 

Calibration (adjustment) of the 

synaptic weights (w, cf. Fig. 34) 

during the training phase 

Two-step information 

processing in neurons  

1. Accumulation of input signals in 
a unique nucleus potential 

2. Activation of the neuron 

generating an electrical output 

impulse (cf. section 2.1.1.1) 

1. Accumulation of the neuron 

inputs into the signal x 
′ (cf. Fig. 

35a) 

2. Activation of the neuron 
generating the output y (hidden and 

output neurons, cf. Fig. 35a and 

Fig. 36) 
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Table 32: Role of the mathematical functions used in the ANN (cf. Fig. 34). 

Layer Step Used function Role 

Input  Identity 
Introducing the input data provided by 

user into the ANN 

Hidden 

1. Accumulation Weighted sum 

Accumulating (collecting) the 

information incoming from the input 
neurons 

2. Activation Sigmoid 

Generating a neuron output limited 

between 0 (inhibiting) and 1 
(stimulating), similarly to the threshold 

potential of biological neurons.  

Output 

1. Accumulation Weighted sum 

Accumulating (collecting) the 

information incoming from the hidden 
neurons 

2. Activation Softmax 
Providing a multiclass probability 

distribution in percentage [%] 

2.2.2.3. ANN training: introduction and procedure flowchart 
The overall knowledge stored in our memory is encoded in the synaptic traces formed and adjusted 

during the processes of rehearsal (cf. Table 21). Similarly, the knowledge of an ANN is encoded in the 

synaptic weights calibrated during the training phase (cf. Table 31). Based on Fig. 29a, this phase 

notably consists of minimizing the error between the ANN outputs and the desired (target) outputs, i.e. 

the outputs of the samples contained in the training set (cf. Fig. 29b), by adjusting the synaptic weights 

[50]. The following example will help to better illustrate the training phase. The training set reported in 

Table 33 is assumed as example to illustrate the training phase, and it is composed by 100 training input 

and the 100 corresponding training outputs (cf. Fig. 29b). The idea is to teach the ANN in Fig. 34 to 

classify XY coordinates according to the four quadrants of the Cartesian plane. It is important to remark 

that the number of inputs for each training samples corresponds to the number of input neurons (i.e. two, 

cf. Fig. 34), and that the number of outputs for each training sample is equal to the number of output 

neurons (i.e. two, cf. Fig. 34). X and Y values are assumed limited in the range [-100;100]. Moreover, 

based on Table 32, training outputs are in form of probability arrays: for instance, sample 1 has 0% 

probability (t1 = 0) to belong to the first or to the third quadrant (I | III, cf. Table 33), and 100 % 

probability (t2 = 1) to belong to the second or to the fourth quadrant (II | IV, cf. Table 33).  

Table 33: Training set assumed as example to illustrate the training phase: classification of the XY coordinates according to 
the four quadrants of the Cartesian plan.  

 Training input 

Coordinates 

Training output 

Probability 

# Sample X Y I | III (t1) II | IV (t2) 

1 +30 -67 0 1 

2 +58 +39 1 0 

… …  … … 

100 -42 -84 1 0 

The flowchart of the iterative training procedure is schematized in Fig. 37a. Before starting the 

procedure, all synaptic weights (w 
ih,w 

ho,w 
bh, w 

bo, cf. Fig. 34) are initialized with random real 

numbers, as suggested in [50]. After starting the procedure, the training samples are presented to the 

ANN one by one. For each sample, two main steps can be distinguished: a forward step and a backward 

step.  
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Fig. 37: (a) Flowchart of the iterative training procedure; (b) forward step of the sample 1 (cf. Table 33). 

Let us describe these steps. 

Forward step. As reported in Fig. 37a, the nth training sample is first passed into the ANN. The sample 

error En is thus calculated with Eq. (7) (cf. [50]), as function of the generated ANN outputs (y) and of 

the training outputs (t1 and t2, cf. Table 33), i.e. the target outputs.  

 En =
1

2
∑(tk − yk)

2

2

k=1

. (7) 

The forward step of the sample 1 (cf. Table 33) is represented in Fig. 37b. According to the response 

provided by the ANN, sample 1 has a 57% probability (y1
 = 0.57) to belong to the first or to the third 

quadrant (I | III, cf. Table 33), and a 43% probability (y2
 = 0.43) to belong to the second or to the fourth 

quadrant (II | IV, cf. Table 33). This leads to the sample error E1 = 0.32, calculated with Eq. (7). It can 

be moreover remarked that the sum of y1
  and y2

  is equal to 1, in accordance with Table 30. 

Backward step. Synaptic weights’ corrections (∆w) are calculated as function of En (cf. Fig. 37a). The 

popular computational procedure used to perform this step is called back-propagation algorithm (BPA) 

[50,95,96]. Since the BPA is a well consolidated and accessible method, we will only provide some base 

passages to help understanding its functioning, without presenting the complete mathematical procedure 

implemented, which is however well documented in [50]. For instance, let us focus on the synaptic 

weight w11
ho, connecting the neurons h1 and o1 (cf. Fig. 34). Let us calculate the correction associated 

to w11
ho, i.e. ∆w11

ho, by resuming the training procedure from the calculation of the sample error E1 in 

Fig. 37b. According to the BPA method, ∆w11
ho is expressed by the gradient of the sample error E1 with 

respect to w11
ho, as reported in Eq. (8): 

 ∆w11
ho =

∂E1

∂w11
ho
=
∂E1

∂y1
 ∙
∂y1

 

∂x1
′ ∙

∂x1
′

∂w11
ho
 , (8) 
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where the operator “∂” indicates the partial derivate. Based on [50], the gradient in the second term of 

Eq. (8) can be decomposed into three components by means of the derivative chain rule9. By focusing 

on the neuron o1, Fig. 38a shows the process of backward chain derivation, while Fig. 38b reports the 

expressions of the three gradient components, which correspond to the partial derivates of the sample 

error (cf. Eq. (7)), of the softmax function (cf. Fig. 36), and of the weighted sum (cf. Fig. 35a). 

 
Fig. 38: (a) Backward chain derivation in the neuron o1 (cf. Fig. 34) according to the BPA; (b) expressions of the gradient 

components (cf. Eq. (7) , Fig. 36 and Fig. 35a).  

All the variables contained in the equations of Fig. 38b are known from the forward step (cf. Fig. 37b). 

Consequently, all the three gradient components can be easily calculated, and thus replaced in Eq. (8) 

to obtain ∆w11
ho. The corrections associated to the synaptic weights w 

ih (cf. Fig. 34) are calculated in a 

similar way. In this case, the gradient components of ∆w 
ih corrections will be expressed as function of 

the accumulated signals (x 
′) and outputs (y) generated in the hidden neurons10. As reported in Fig. 37a, 

the calculated corrections are finally applied to the synaptic weights, and the training procedure 

continues with the sample 2.  

Forward and backward steps are performed for each training sample. Once all the 100 samples have 

been treated, the first iteration (epoch 1, cf. Fig. 37a) is completed. As shown in Fig. 37a, an epoch error 

Eep is thus calculated to measure the efficiency of the training process, i.e. the classification accuracy 

achieved by the trained ANN. Typically, Eep is calculated as the average error, the root mean square 

error or the maximum of the sample errors calculated during the just past epoch. However, in our case, 

the ANN outputs can be more easily interpreted as “right” or “wrong”, depending on the resulting 

probability distribution. According to [50], the output of the ANN is considered right if the maximum y 

(between y1 and y2, cf. Fig. 37b) corresponds to the training output (t1 or t2, cf. Fig. 37b) which is equal 

 

 

 

 

9 Mathematical demonstrations and examples are reported at: 

• https://tutorial.math.lamar.edu/classes/calci/chainrule.aspx 

• https://en.wikipedia.org/wiki/Chain_rule 

10 A step-by-step back-propagation example which illustrates in detail the calculation of ∆w 
ih is reported at   

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/. 

https://tutorial.math.lamar.edu/classes/calci/chainrule.aspx
https://en.wikipedia.org/wiki/Chain_rule
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
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to 111. Otherwise, the output of the ANN is considered wrong. For example, the response provided by 

the ANN in Fig. 37b is wrong, since the maximum y (y1 = 0.57) does not correspond to t2 = 1. The epoch 

error Eep is thus calculated with Eq. (9): 

 Eep = 1−
NR

NS
 , (9) 

where NR is the number of right responses provided by the ANN during the just past epoch, and NS is 

the number of training samples in the training set. The lower Eep, the more accurate the trained ANN. 

After calculating Eep, the latter is finally compared to a target error Etarget set by the user (cf. Fig. 37a). 

If Eep < Etarget a new epoch is started. Otherwise, the training process ends. In general, the decreasing 

of Eep epoch after epoch indicates that the training process is well performing (ANN classification 

accuracy is increasing).  

2.2.2.4. ANN training: brief discussion on mathematical 

hyperparameters 
In section 2.2.2.3, the training process of an ANN has been presented with the help of Fig. 37a. For 

brevity, some aspects regarding the calculation of weights’ corrections (∆w, cf. Fig. 37a) with the BPA 

(cf. Eq. (8)) have been voluntarily omitted. Notably, this operation involves two “mathematical” 

hyperparameters (cf. Table 29), called learning rate (η) and momentum (μ), which are both defined in 

the range [0;1]. According to [50,95,96], Eq. (8) can be rewritten into Eq. (10) for the nth training sample:  

 ∆w(τ) = −η
∂En

∂w
+ μ∆w(τ − 1), (10) 

where τ indicates the actual epoch, and the sample error gradient is calculated with Eq. (8), by 

means of the derivative chain rule (cf. Fig. 38). Based on Eq. (10), the role of learning rate (η) is to 

reduce the entity of the sample error gradient (i.e. 
∂En

∂w
), while the role of momentum (μ) is to weight the 

correction of the actual epoch (i.e. ∆w(τ)) on the correction calculated in the previous epoch (i.e. 

∆w(τ − 1)). In both cases, the main purpose is to slow down the learning process, to avoid the ANN 

from forgetting (losing) the knowledge acquired in the previous epochs and to prevent the learning 

algorithm from being trapped in local minima. The roles and the purposes of these hyperparameters are 

summarised in Table 34 according to [50,97]. Typically, the values of η and μ should be tuned with 

different training tests. In this work, these hyperparameters will be set-up at the beginning of the training 

phase, based on some indications reported in literature (cf. [50,91–93,97]) and on priorly conducted 

training tests (which are not presented here for brevity).  

 

 

 

 

 

 

 

 

11 This assures that all the other neuron outputs are lower, since the sum of all y outputs is always equal to 1 (cf. 

Table 30 and Fig. 37b). 
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Table 34: Roles and purposes of learning rate and momentum [50,97]. 

ANN math. 

hyperparameter 
Role Purposes 

Learning rate (η) 

Reduce the entity of the sample 

error gradient (
∂En

∂w
, cf. Eq. (10)) 

calculated with the derivative 
chain rule (cf. Eq. (8)) 

Slow down the learning process for:  

• Avoiding the knowledge 

acquired in the previous epochs 
to be forgotten (lost) by the 

ANN. 

• Preventing the learning 

algorithm (cf. Fig. 37a) from 
being trapped in local minima 

during the training phase.  

Momentum (μ) 

Weight the correction of the actual 

epoch (∆w(τ), cf. Eq. (10)) on the 

correction calculated in the 

previous epoch (∆w(τ − 1), cf. 

Eq. (10)) 

We also believe that a more detailed mathematical explanation of these hyperparameters is not 

mandatory for the comprehension of ANN functioning in the context of this work. We thus address the 

reader to some literature contributions for their exhaustive discussion12 [97–100].  

2.2.2.5. ANN training: fundamental guide principles 
The fundamental guide principles to improve the efficiency of the training process are provided in 

Table 35 according to [47,50,96]. The potential risks in not following the guide principles are also 

reported.  

Table 35: Fundamental guide principles to train an ANN [47,50,96]. 

Guide principle Potential risk if not followed 

1. Use a high number of training samples (a 

thousand of sample at least is typically 
suggested). 

The number of samples is not sufficient to allow 

the ANN acquires the generalization ability. The 

ANN could merely memorize the training 
samples (overfitting), obtaining a low 

classification accuracy. 

2. All the used training samples must be different 
from each other. 

The ANN knowledge is biased towards the 
repeated samples. 

3. Mix the order of the training samples at each 

epoch. 

The ANN merely memorizes the order of the 

training samples (overfitting), without acquiring 

the generalization ability (low classification 
accuracy). 

4. At the end of each epoch, test the ANN with a 

validation set different from the training set: 

validation samples are not directly used to 
calibrate the synaptic weights with the BPA, but 

they are used to test the generalization ability 

acquired by the ANN during the training process. 
 

Epoch errors to be calculated:  

Eep
t  ➔ epoch error due to training samples 

Eep
v  ➔ epoch error due to validation samples 

During the training phase, it is more difficult to 

check whether the ANN is effectively acquiring 
generalization ability (classification accuracy is 

increasing) or it is merely memorizing the 

training samples (overfitting). 

 

 

 

 

12 Some useful graphic explanations for setting-up learning rate and momentum are reported at:  

• https://cnl.salk.edu/~schraudo/teach/NNcourse/momrate.html. 

• https://www.jeremyjordan.me/nn-learning-rate/. 

• https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d. 

https://cnl.salk.edu/~schraudo/teach/NNcourse/momrate.html
https://www.jeremyjordan.me/nn-learning-rate/
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
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Based on Table 35, the mere memorization of the training samples (implying a poor classification 

accuracy of the ANN) is one of the most probable negative effect if the given guide principles are not 

observed. As argued in [47,50], the phenomenon of sample memorization is called overfitting. The first 

guide principle represents one of the main weaknesses of ANNs. Indeed, training data are not always 

readily available and their number is often limited, mostly for engineering applications where training 

samples derive from experimental data. In the following chapter, we will use a clever method to solve 

this problem and generate thousands of different training samples. Based on the fourth guide principles, 

validation samples are often used to test the generalization ability of the implemented ANN during the 

training phase. Contrary to training samples, validation samples are not involved in the weights’ 

calibration process with the BPA (cf. Eq. (8) and Fig. 38). According to Table 35, the ANN classification 

accuracy is thus measured by calculating two different epoch errors at the end of each epoch: Eep
t , due 

to training samples, and Eep
v , due to validation samples. This aspect will be further clarified in section 

2.2.2.6. 

2.2.2.6. Presentation and testing of the implemented ANN 
Based on the theory presented in sections 2.2.2.2, 2.2.2.3 and 2.2.2.4, a versatile model of ANN 

integrating the classical BPA (cf. [95,96]) has been implemented in MATLAB [48]. The set-up interface 

of our ANN is entirely handled by means of the two Excel tables shown in Fig. 39, which make the 

parameter initialization very intuitive and original. The data contained in the green cells can be modified 

by the user.  

 
Fig. 39: Interface tables of the implemented ANN. 

The first interface table (interface 1, cf. Fig. 39) enables to test different configurations of ANN, by 

changing the number of neurons in the hidden layer and the mathematical hyperparameters which act 

on weights’ corrections (cf. Eq. (10) and Table 34). The number of neurons in the input layer and in the 

output layer is automatically set by the program, because it depends on the dataset to be processed. The 

second interface table (interface 2, cf. Fig. 39) involves three important settings impacting on the training 

process: 

• The first setting regards the maximum number of epochs to be performed. When the set number of 

epochs is achieved, the training process is stopped. At any moment, the training phase can be 

restarted from the beginning or from the last epoch achieved.  

• The second setting enables to automatically generate the validation set (cf. Table 35, fourth guide 

principle) from the training set. For example, the value of 90% reported in Fig. 39 indicates that the 

10% of training samples is randomly selected at the beginning of the training phase, and then used 
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as validation set during the training process. According to [47,50], this setting is typically limited in 

the range [70;90]%. 

• The third setting regards the epoch interval to mix the order of the training samples. According to 

the third guide principle in Table 35, this parameter is almost always set to 1, as in Fig. 39.  

The implemented ANN is thus tested in an original classification problem regarding image 

recognition. The considered training set is represented in Fig. 40a, and it consists of 900 samples. The 

training inputs are images of 15x20 pixels (white and black) depicting numbers from 0 to 9. These 

images were realized by hand with the program Paint by seven different people, to assure that all the 

designed numbers are sufficiently different from each other (cf. Table 35, second guide principle). The 

corresponding training outputs are given in form of probability arrays of 10 elements, where the value 

1 identifies the 100% probability of being the number depicted in the image (cf. Fig. 40a). The idea is 

to teach the ANN to recognize the number depicted in the input image, studying the influence of the 

number of hidden neurons. Four different numbers of hidden neurons will be tested: 5, 10, 20 and 30. 

For each one, three different training tests will be conducted to verify the reproducibility of the 

obtainable training results (and thus the robustness of the implemented ANN13), for a total of twelve 

training tests. The list of the conducted tests is reported in Table 36. 

 
Fig. 40: (a) Original training set for image recognition; (b) forward step of the sample n (cf. Fig. 37b). 

 

 

 

 

13 Synaptic weights are initialized with random rational numbers at the beginning of the training phase (cf. Fig. 

37a). Therefore, all training tests will start with different synaptic weights. The robustness condition is the 

following: for each tested number of hidden neurons, the three training tests must achieve similar values of Eep
v  

(i.e. a similar accuracy, cf. Table 35). 
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Table 36: List of the conducted training tests. 

Training test # 1 2 3 4 5 6 7 8 9 10 11 12 

Number of hidden 

neurons 
5 10 20 30 

Each training test involves two distinct steps:  

• Set-up, i.e. the initialization of the ANN configuration and of the training settings in the program 

interfaces (cf. Fig. 39) before starting the training phase. 

• Training, i.e. the “true” training phase (cf. Fig. 29a), which follows the iterative procedure reported 

in Fig. 37a. 

Each step is described in detail as follows.  

Set-up. Regarding interface 1, the values of learning rate and momentum are set as in Fig. 39 according 

to [50,97] and on priorly conducted training tests, while the number of hidden neurons is changed every 

three tests (cf. Table 36). Regarding interface 2, the training settings have been set as in Fig. 39. This 

means we will have 810 training samples (90% of the original 900 samples) and 90 validation samples 

(10% of 900), the latter randomly selected from the original training set (cf. Fig. 40a). The idea is to 

have as many training samples as possible14 to allow the ANN to acquire a good classification accuracy, 

even if the current amount of training samples (810) is lower than the typically suggested minimum (cf. 

Table 35, first guide principle).  

Training. The training phase follows the iterative procedure reported in Fig. 37a. The forward step of 

the nth training samples is shown in Fig. 40b. Image rows are firstly organized in a pixel array, and then 

encoded in a binary numerical array, which can be thus given to the ANN. White pixels are converted 

into 1 and black pixels are converted into 015. As done in Fig. 37b, ANN outputs (y) and training outputs 

(t) are used to calculate the sample error En by means of Eq. (7). According to Fig. 37a, the following 

backward step involves the calculation of weights’ corrections with the BPA (cf. Eq. (8) and Fig. 38) 

and their application to synaptic weights by means of Eq. (10). All these operations are repeated for 

each training samples until the epoch is concluded. At the end of each epoch, the epoch errors Eep
t  and 

Eep
v  (cf. Table 35, fourth guide principle) are respectively calculated with Eq. (11) and Eq. (12), which 

are adapted from Eq. (9). 

 
Eep
t = 1−

NRt

810
 , (11) 

 
Eep
v = 1−

NRv

90
 . (12) 

In these equations, NRt  and NRv  are the numbers of right responses (cf. section 2.2.2.3 and Eq. (9)) 

provided by the ANN on the training set (810 samples) and on the validation set (90 samples), 

respectively. New epochs are thus performed until the maximum number of epochs is achieved (i.e. 200, 

Fig. 39). 

 

 

 

 

14 90% is the maximum of the typical range [70;90]% suggested for this training setting [47,50]. 
15 This is the most classical method to transform black and white images into numerical inputs.  
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Let us analyse and discuss the results of the conducted training tests (cf. Table 36). The respective 

trends of Eep
t  and Eep

v  are reported in Fig. 41, Fig. 42, Fig. 43 and Fig. 44, and are all characterised by 

several epoch ranges where Eep
t  and Eep

v  remain constant (plateaux) and by sudden error diminutions.  

 
Fig. 41: Trends of 𝐸𝑒𝑝

𝑡  and 𝐸𝑒𝑝
𝑣  in the training tests 1, 2 and 3 (5 hidden neurons, cf. Table 36). 

 
Fig. 42: Trends of 𝐸𝑒𝑝

𝑡  and 𝐸𝑒𝑝
𝑣  in the training tests 4, 5 and 6 (10 hidden neurons, cf. Table 36). 

 
Fig. 43: Trends of 𝐸𝑒𝑝

𝑡  and 𝐸𝑒𝑝
𝑣  in the training tests 7, 8 and 9 (20 hidden neurons, cf. Table 36). 

 
Fig. 44: Trends of 𝐸𝑒𝑝

𝑡  and 𝐸𝑒𝑝
𝑣  in the training tests 10, 11 and 12 (30 hidden neurons, cf. Table 36). 
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In all the conducted tests, the greatest decrease of Eep
t  and Eep

v  is localised in the first 50 epochs. 

Further error diminutions generally occur up to the 150th epoch. After the 25th-30th epoch, on average, 

Eep
t  tends to decrease more than Eep

v . This occurs when few training samples are used (less than a 

thousand, cf. Table 35), as in this case. According to Table 35 (fourth guide principle), the training 

samples represent the ensemble of knowledge on which the synaptic weights are directly calibrated, 

while the role of validation samples is to test the generalization ability acquired by the ANN at the end 

of each epoch, without participating to weights’ corrections (cf. Table 35, fourth guide principle). For 

this reason, Eep
v  is typically considered more reliable than Eep

t  for the evaluation of the classification 

accuracy achieved by the trained ANN [47,50]. Monitoring Eep
t  is still very useful to understand if the 

training process is affected by overfitting (cf. Table 35). Indeed, the reductions of Eep
t  and Eep

v  normally 

occur in the same epoch. However, a potential risk of overfitting exists when Eep
t  continues decreasing 

while Eep
v  remains constant. This trend can be remarked for tests 2, 7 and 8. In these cases, the training 

process should be stopped, and the trained ANN at the epoch before overfitting should be retained (cf. 

Fig. 41 and Fig. 43). The values of Eep
t  and Eep

v  achieved during the training tests are summarised in 

Table 37, together with the average values (Eep,av
 ), coefficients of variation (COV) and percentage error 

variations (∆Eep,av
 ) calculated for each tested number of hidden neurons. The red values refer to the 

tests potentially affected by overfitting. For these tests, the values of Eep
t  and Eep

v  at the epoch previous 

to overfitting (cf. Fig. 41 and Fig. 43) are considered. All the other values refer to the 200th epoch (i.e. 

the maximum allowed, cf. Fig. 39).  

Table 37: Values of 𝐸𝑒𝑝
𝑡  and 𝐸𝑒𝑝

𝑣  achieved in the training tests, and average values (𝐸𝑒𝑝,𝑎𝑣
 ), variation coefficients (COV) and 

percentage error variation (∆𝐸𝑒𝑝,𝑎𝑣
 ) for each tested number of hidden neurons. 

   Training Validation 

Number 

hidden 

neurons  

Test 

# 

Epoch 

# 
𝐄𝐞𝐩
𝐭  𝐄𝐞𝐩,𝐚𝐯

𝐭  
𝐂𝐎𝐕 

𝐭 

[%] 

∆𝐄𝐞𝐩,𝐚𝐯
𝐭  

[%] 
𝐄𝐞𝐩
𝐯  𝐄𝐞𝐩,𝐚𝐯

𝐯  
𝐂𝐎𝐕 

𝐯 

[%] 

∆𝐄𝐞𝐩,𝐚𝐯
𝐯  

[%] 

5 

1 200 0.59 

0.60 2 --- 

0.70 

0.69 3 --- 2 181 0.59 0.66 

3 200 0.62 0.71 

10 

4 200 0.08 

0.14 48 -76 

0.30 

0.31 4 -55 5 200 0.11 0.31 

6 200 0.24 0.33 

20 

7 158 0.10 

0.13 24 -7 

0.27 

0.30 7 -3 8 132 0.17 0.32 

9 200 0.11 0.31 

30 

10 200 0.07 

0.11 60 -15 

0.29 

0.29 3 -3 11 200 0.06 0.30 

12 200 0.21 0.28 

Two main considerations can be made according to Table 37: 

• About the influence of the hidden neurons’ number. For both Eep
t  and Eep

v , an important decrease 

of the average error (-76% and -55%, respectively) can be remarked when the number of hidden 

neurons is increased from 5 to 10. Much lower error diminutions can moreover be remarked when 

the number of hidden neurons is further increased. Considering Eep
v  as a more reliable accuracy 

indicator, the obtained results suggest that a number of hidden neurons between 10 and 20 is suitable 

for the current classification problem, with an achieved accuracy around the 70% (Eep,av
v  ≈ 0.3). In 

general, even higher accuracy values can be obtained with ANNs. We however believe the results 

obtained in the conducted training tests strongly depend on the number of used training samples 

(810), which is lower than the minimum suggested (cf. Table 35, first guide principle).  



96 

 

• About the robustness of the implemented ANN. Based on COV 
t and COV 

v, Eep
t  values are 

generally characterised by a high dispersion, while a much lower dispersion can be remarked for 

Eep
v . According to [47,50], more interest should be however addressed to Eep

v , since it represents the 

main parameter for the evaluation of the obtained results. Consequently, the low values of  COV 
v 

suggest the training results are reproducible, thus confirming the robustness of the implemented 

ANN13.  

It is finally important to remark that the main target of the proposed tests was not to obtain a super 

accurate ANN to be used in the future, but rather to show how training should be conducted, what type 

of results are obtained and how they should be interpreted. We believe that the discussed aspects are 

enough for the comprehension of ANNs and their training process in the context of the current work. 

2.2.3. The implemented unsupervised learning-based 

method: K-means clustering by genetic algorithm (GA) 
The implemented unsupervised learning-based method (cf. Table 26) is presented and discussed in 

this section. As shown in Table 27, any set of samples can be described by means of different features 

abstracted from the same samples. Based on the definition of abstraction (cf. Table 23), each feature can 

be isolated and used as CF (clustering feature) to cluster the samples in different ways, as done for 

example in Fig. 30b. In this section, we want to describe the used clustering method and the algorithm 

by which it is conducted, highlighting the main parameters and their influence. The current section is 

organized as follows. An overview and comparison of the two principal clustering approaches, 

partitional and hierarchical, is firstly proposed in section 2.2.3.1. This enables to better introduce the 

terminology used in the following sections and to better delimit the adopted clustering method, which 

is based on partitional clustering. In sections 2.2.3.2 and 2.2.3.3, the adopted partitional clustering 

method, called K-means, is introduced and illustrated with an example. The genetic algorithm (GA) 

represents the computational procedure by which the K-means method will be conducted. The base ideas 

and the procedure flowchart of the GA are presented in section 2.2.3.4, together with an example. The 

main parameters of the GA are discussed in section 2.2.3.5. The implemented GA is finally presented 

and tested in 2.2.3.6. The experts of K-means clustering and GA can directly skip to section 2.2.3.6. 

2.2.3.1. Overview on the principal clustering approaches: partitional 

clustering and hierarchical clustering 
According to [101–103], two principal clustering approaches exist: partitional clustering and 

hierarchical clustering. In partitional clustering, the training set is partitioned into various clusters, which 

are subsequently evaluated by means of some criteria to verify their pertinence (cf. Table 28). An 

example of partitional clustering is reported in Fig. 30b, where two different partitioning levels16 (i.e. 

the two clustering examples) of the same training set can be distinguished. The first partitioning level is 

based on feature 1 (hair length, cf. Table 27) and includes two different clusters (“long” and “short”, cf. 

Fig. 30b), while the second partitioning level is based on feature 2 (predominant hair colour, cf. Table 

27) and involves three different clusters (“white”, “black” and “brown”, cf. Fig. 30b). There is no 

hierarchy between these partitioning levels, which are independent from one another [47,102]. In 

 

 

 

 

16 The term “partitioning level” (or “partitioning”) identifies an ensemble of clusters obtained with the same CFs. 
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hierarchical clustering, training set elements are combined into clusters, the latter are further partitioned 

into smaller clusters and so on, creating a hierarchy of partitioning levels. This approach can be 

considered as an extension of partitioning clustering. Two examples of hierarchical clustering are 

reported in Fig. 45, where the same training set and clustering features as Fig. 30b are assumed (cf. 

Table 27).  

 
Fig. 45: Based on the example in Fig. 30b: (a) hierarchical clustering according to feature 1 (hair length, cf. Table 27) and 

feature 2 (predominant hair colour, cf. Table 27); (b) hierarchical clustering according to feature 2 and feature 1. 

Contrary to partitional clustering, the partitioning levels are now dependent from one another. In 

Fig. 45a, the first partitioning level is based on feature 1 (hair length, cf. Table 27), and the second 

partitioning level is based on feature 2 (predominant hair colour, cf. Table 27). Vice versa in Fig. 45b. 

The same clusters are obtained in the last partitioning levels. The order of the partitioning levels is 

arbitrarily decided by user. In both cases, the similarity between the elements of each cluster increases 

from the left side to the right side of the hierarchical structures (cf. Fig. 45). As for partitioning 

clustering, the pertinence of the identified clusters must be evaluated a posteriori [101,103]. The two 

principal clustering approaches are summarised and compared in Table 38.
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Table 38: Description and comparison of the two principal clustering approaches. 

  Comparison aspects 

Clustering 

approach 
Description 

Representation of the 

generated clusters  

Size of the 

training set 

Partitional 

The training set is partitioned into 

various clusters. Different 
partitioning levels can be 

constructed based on different CFs 

(cf. Fig. 30b) and are independent 
from one another. 
 

The pertinence of identified 

clusters must be evaluated a 
posteriori. 

One different 
representation for each 

partitioning level 

constructed. 

Suitable for small 

and large dataset. 

Hierarchical 

Training samples are combined 

into clusters, which are further 

partitioned into sub-clusters and so 
forth, creating a hierarchy of 

partitioning levels, which are thus 

dependent from one another (cf. 
Fig. 45).  
 

The pertinence of identified 

clusters must be evaluated a 
posteriori. 

It involves more 

partitioning levels at 

once, but it depends on 
their hierarchical order.  

More suitable for 

small dataset. 
 

It requires a more 
elevated 

computational 

effort for large 
dataset. 

Compared to partitional clustering, hierarchical clustering generally provides a more complete 

representation of data structure which involves more partitioning levels at once. However, the 

interpretation of the training set is linked to the hierarchical order of the partitioning levels decided by 

user. Moreover, hierarchical clustering is less suitable than partitional clustering for large dataset, for 

which the construction of the hierarchical structure generally requires an elevated computational effort 

[47,101–103]. The clustering method implemented in this work is based on the partitional clustering 

approach. 

2.2.3.2. Introduction to partitional clustering: procedure flowchart 

and K-means method 
The base idea of partitional clustering methods is to determine the minimum number of clusters, so 

as the dispersion of the training samples in the single clusters is minimum. The general flowchart of a 

partitional clustering procedure is reported in Fig. 46a (cf. [47,104,105]), and it is characterised by two 

nested iterative minimization cycles. The external cycle, whose steps are indicated with “e”, consists of 

determining the minimum number of clusters (K) of the final training set partitioning16. The internal 

cycle, whose steps are indicated with “i”, corresponds to the step 1e. As shown in Fig. 46a, the internal 

cycle involves the construction of the training set partitioning (P), composed of K clusters, and the 

minimization of the associated dispersion (D). The superscript “K” designates the partitioning P of 

minimum dispersion which results from step 1e (PK) and the associated dispersion (DK).  
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Fig. 46: (a) General flowchart of a partitional clustering procedure; (b) Operations corresponding to the method K-means. 

Let us focus on the internal cycle (step 1e). Steps 1i and 2i (cf. Fig. 46a) correspond to the main 

steps of the partitional clustering approach, i.e. training set partitioning and evaluation of the constructed 

clusters (cf. Table 38), and are respectively based on the operations of similarity measure and dispersion 

measure. The differences between the existing methods of partitional clustering mainly reside in how 

these steps are performed. The similarity measure generally requires the initialization of fixed points in 

the space of training samples which are used as references to construct the clusters. The K-means 

method, adopted in this work, consists of initializing these reference points as artificial samples (denoted 

ASs), i.e. artificially created in the value range of the training samples [104,105]. The measures of 

similarity and dispersion typically used in the K-means method are reported in Fig. 46b. As argued in 

[106], K-means is one of the most widely used clustering methods, and its success is mainly due to easy 

application to many practical cases. The clustering procedure and the K-means method are illustrated 

with the following example. Let us consider the training set reported in Table 39, composed of 10 

different training samples defined in R2. According to Table 27, the coordinates x and y, also indicated 

as Si1 and Si2, represent the features of the considered training samples. Let us start the clustering 

procedure with K=2: in the first iteration of the external cycle (cf. Fig. 46a), the training set must be 

partitioned into two clusters. According to the K-means method (cf. Fig. 46b), we must designate two 

ASs (one for each cluster to construct). The designated ASs are reported in Table 40, where the values 

of the features ASj1 and ASj2 have been arbitrarily initialized in the value range of Si1 and Si2. 
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Table 39: Considered training set.  Table 40: Designated ASs. 

Sample 

(Si) 

Coordinate x 

(Si1) 

Coordinate y 

(Si2) 
 

Sample 

(ASk) 

Coordinate x 

(ASj1) 

Coordinate y 

(ASj2) 

S1 2 2  AS1 4 3 

S2 1 3  AS2 6 7 

S3 4 7     

S4 3 4     

S5 9 4     

S6 7 6     

S7 2 9     

S8 6 8     

S9 7 3     

S10 8 7     

With the help of Fig. 46a, let us see in detail how steps 1i and 2i are performed. 

Step 1i. According to the K-means method, the clusters are constructed by measuring the similarity 

between the designated ASs and the training samples. The similarity measure is performed with Eq. 

(13): 

 d(ASj, Si) = √∑(ASjh − Sih)2
n

h=1

 , (13) 

i.e. the Euclidean (cf. Fig. 46b) distance between the generic artificial sample ASj = (ASj1, ASj2, …, 

ASjn) and the generic training sample Si = (Si1, Si2, …, Sin), where n is the number of dimensions (i.e. 

the number of features) of the considered training set. The lower d(ASj, Si), the more similar ASj and 

Si. The distances calculated with Eq. (13) between the designated ASs (cf. Table 40) and the considered 

training samples (cf. Table 39) are reported in Table 41. In this case, both x and y have been adopted as 

CFs, since both features (Si1 and Si2) are involved in the similarity measure.  

Table 41: Euclidean distances between the designated ASs and the considered training samples, and corresponding clusters. 

Sample (Si) d(AS1,Si) d(AS2,Si) Lower AS Cluster 

S1 2.24 6.4 AS1 C1 

S2 3 6.4 AS1 C1 

S3 4 2 AS2 C2 

S4 1.41 4.24 AS1 C1 

S5 5.1 4.24 AS2 C2 

S6 4.24 1.41 AS2 C2 

S7 6.32 4.47 AS2 C2 

S8 5.39 1 AS2 C2 

S9 3 4.12 AS1 C1 

S10 5.66 2 AS2 C2 

According to the calculated values, the samples S1, S2, S4 and S9 are more similar to the AS1, while 

the samples S3, S5, S7, S8 and S10 are more similar to AS2. The actual partitioning P is thus 

characterised by the clusters C1 = {S1, S2, S4, S9} and C2 = {S3, S5, S6, S7, S8, S10} (cf. Table 41). 

C1 and C2 are represented in Fig. 47a, where the round ticks correspond to the training samples (cf. Table 

39) and the “X” ticks to the designated ASs (cf. Table 40). The content of C1 and C2 can be varied by 

changing the adopted CFs. Adopting CF = x involves that only x is considered in the similarity measure, 

i.e. in Eq. (13). The resulting clusters C1 = {S1, S2, S3, S4, S7} and C2 = {S5, S6, S8, S9, S10} are 

represented in Fig. 47b. Otherwise, adopting CF = y involves that only y is considered in Eq. (13). The 

obtained clusters C1 = {S1, S2, S4, S5, S9} and C2 = {S3, S6, S7, S8, S10} are represented in Fig. 47c. 
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Fig. 47: Representation of the clusters C1 and C2 obtained by adopting different CFs: (a) CFs = x, y; (b) CF = x; (c) CF = y. 

Step 2i. Based on the adopted similarity measure (cf. Eq. (13)), the dispersion measure will describe 

how much the samples contained in each cluster are distant from the designated ASs. As indicated in 

Fig. 46b, the dispersion associated to the partitioning P is measured as the sum of the squared distances 

between the clustered samples and the respective ASs, and it is expressed by Eq. (14), 

 

D =∑Dj

K

j=1

=∑∑d(ASj, Si(j))2 ,

Nj
S

i=1

K

j=1

 (14) 

where: 

• K is the number of clusters in the actual partitioning P = {C1, C2, …, CK}. 

• Dj is the dispersion contribution due to the jth cluster. 

• Nj
S is the number of training samples contained in the jth cluster. 

• ASj is the artificial sample (i.e. the reference) of the jth cluster.  

• Si(j) is the generic training sample contained in the jth cluster. 

The lower D, the better the overall partitioning. Moreover, due to square, the more training samples are 

distant from the respective AS, the more weight they have on the dispersion D [104,105]. For example, 

let us consider the partitioning P = {C1, C2} obtained in Table 41 and represented in Fig. 47a. Eq. (14) 

leads to D = 74. The weight of the single clusters and of single samples on D can be observed in Table 

42 (cf. Eq. (14)). 

Table 42: Weight of clusters and training samples on the partitioning dispersion (cf. Table 41). 

Cluster ASj Si d(ASj,Si)
2
 

𝐝(𝐀𝐒𝐣,𝐒𝐢(𝐣))𝟐

𝐃
 [%] Dj 

𝐃𝐣

𝐃
 [%] 

C1 AS1 

S1 5 6.8 

25 33.8 
S2 9 12.2 

S4 2 2.7 

S9 9 12.2 

C2 AS2 

S3 4 5.4 

49 66.2 

S5 18 24.3 

S6 2 2.7 

S7 20 27 

S8 1 1.4 

S10 4 5.4 

According to Table 42, the highest contribution to D is given by the cluster C2 (66.2 %), and notably by 

the samples S5 (24.3 %) and S7 (27 %), which are the most distant from AS2 (cf. Table 41).    



102 

 

2.2.3.3. Dispersion minimization in the internal cycle and choice of 

the final partitioning 
Based on Fig. 46a, the internal cycle consists of continually varying the position of the ASs until 

the minimum dispersion of the constructed partitioning is reached. Let us resume the previous example, 

where the ASs designated in Table 41 led to the global dispersion D = 74 (cf. Table 42). According to 

the K-means method (cf. Fig. 46b), let us re-initialize the two ASs with different values of x and y and 

construct a new partitioning by performing the steps 1i and 2i (cf. Fig. 46a) with Eqs. (13) and (14). The 

partitioning P = {C1, C2} represented in Fig. 48a is obtained with AS1 = (2.4, 5) and AS2 = (7.4, 5.6), 

and is characterised by D = 63 (<74). In general, the internal cycle is continually re-started with different 

ASs until D converges towards a minimum value. Notably, the minimization of D represents the most 

challenging aspect regarding the K-means method [104–106], and it will be better discussed in section 

2.2.3.4. In this case, the partitioning in Fig. 48a corresponds to the partitioning with the minimum 

dispersion obtainable for K=2.  

 
Fig. 48: Partitioning levels with minimum dispersion for (a) K=2, (b) K=3, (c) K=4 and (d) K=5. 

According to Fig. 46a, step 1e is thus concluded, and the resulting PK and DK
 = 63 (cf. Fig. 48a) are 

passed to step 2e. As shown in Fig. 46a, the stop condition in step 2e requires comparing DK to the 
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minimum dispersion obtained in the previous iteration, i.e. DK-1. In this case, step 1e has been directly 

performed for K=3, K=4 and K=5 to study the influence of K on DK. The resulting partitioning levels 

are respectively shown in Fig. 48b, c and d. The samples contained in the clusters and the position of 

the ASs in the partitioning levels of Fig. 48 are summarised in Table 43.  

Table 43: Content of the clusters and position of the ASs for PK=2, PK=3, PK=4 and PK=5 (cf. Fig. 48a, b, c, d). 

    Corresponding ASs 

K Partitioning Cluster Samples (Si) ASj x (ASj1) y (ASj2) 

2 PK=2 
C1 S1, S2, S3, S4, S7 AS1 2.4 5 

C2 S5, S6, S8, S9, S10 AS2 7.4 5.6 

3 PK=3 

C1 S1, S2, S4 AS1 2 3 

C2 S5, S6, S9, S10 AS2 7.8 5 

C3 S3, S7, S8 AS3 4 8 

4 PK=4 

C1 S1, S2, S4 AS1 2 3 

C2 S5, S9 AS2 8 3.5 

C3 S6, S8, S10 AS3 7 7 

C4 S3, S7 AS4 3 8 

5 PK=5 

C1 S1, S2, S4 AS1 2 3 

C2 S5, S9 AS2 8 3.5 

C3 S6, S10 AS3 7.5 6.5 

C4 S3, S8 AS4 5 7.5 

C5 S7 AS5 2 9 

Based on Fig. 48, the ASs reported in Table 43 correspond to the centroids of the respective clusters. 

Moreover, as K increases, the positions of the ASs tend to coincide with the training samples’ ones. For 

example, the position of AS5 in Fig. 48d coincides with the position of S7 (cf. Table 43). The values of 

DK obtained from K=2 to K=5 (cf. Fig. 48a, b, c and d) are summarised in Table 44, where RD represents 

the total percentage reduction of DK due to the increasing of K, and it is expressed by Eq. (15): 

 RD = 1 −
DK

DK=1
 , (15) 

and ∆RD represents the increment of RD between two adjacent values of K. 

Table 44: Values of DK and associated RD (cf. Fig. 48a, b, c, d and Eq. (15)). 

K D
K 

RD [%] ∆RD [%] 

1 125 0 --- 

2 63 50 +50 

3 27 78 +28 

4 14 89 +11 

5 10 92 +3 

DK=1 = 125 (cf. Table 44) represents the dispersion of the training samples (cf. Table 39) around 

their centroid (x = 4.9, y = 5.3) and it is calculated with Eq. (14). Based on [104–106], DK=1 corresponds 

to the “worst partitioning scenario” (one unique cluster containing all the training samples) and it is thus 

employed as reference value for calculating RD (cf. Eq. (15)). The more K increases, the more DK 

reduces and the more RD increases. We can see that DK tends to significantly reduce for K=2 (∆RD = 

+50%, cf. Table 44) and K=3 (∆RD = +28%, cf. Table 44). A less meaningful reduction of DK can be 

moreover remarked when K is increased from 3 to 4 (∆RD = +11%, cf. Table 44). Much lower dispersion 

diminutions are obtained for K>4. The curve K-RD reported in Fig. 49 is finally used to select the final 

partitioning. 
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Fig. 49: Curve K-RD (cf. Table 44). 

According to [104–106] and Fig. 46a, the final partitioning solution is a compromise between 

minimizing K and minimizing DK. The relative weight of these factors is clearly decided by the user. As 

shown in Fig. 49, the elbow of the curve K-RD separates the zone with a high RD variation (K≤3) from 

the zone with a weak RD variation (K≥4), and it thus represents the ensemble of the compromise 

solutions. In general, the elbow of the curve K-RD can be more or less accentuated depending on the 

training set, making the choice of the partitioning solution more or less complicated. As indicated in 

Fig. 49, the partitioning levels PK=3 and PK=4 (cf. Fig. 48b, c and Table 43) represent the two possible 

solutions of the clustering procedure. With PK=3, we have less clusters, globally characterised by a higher 

dispersion. With PK=4, we have more clusters, globally characterised by a lower dispersion.  

2.2.3.4. The genetic algorithm (GA): base ideas and procedure 

flowchart 
In step 1e (internal cycle, cf. Fig. 46a), the partitioning dispersion (D) is minimized by varying the 

position of the designated ASs (ASj1, ASj2, …, ASjn, cf. Table 40) in the space of the training samples. 

Notably, this process requires the implementation of an optimization algorithm able to automatically 

handle the variation of ASs’ position, and it thus represents the most challenging aspect regarding the 

K-means method. As argued in [104–106], most of the algorithms which are classically used for this 

task are based on gradient descend (gradient algorithms). This approach is however very sensible to 

ASs’ initial positions, involving a high risk of getting trapped in local minima of D during the 

optimization procedure. We thus adopted an alternative optimization technique which is much less 

affected by these problems: the genetic algorithm (GA). The GA is inspired to the Darwinian laws of 

the natural evolution, from which it takes two base aspects:  

• The natural selection, i.e. the process enabling a population of individuals to change over the 

generations. The individuals endowed with more advantageous survival characteristics have a 

higher probability to survive and reproduce. Similarly, a GA starts from an initial population of 

solutions, which is randomly generated at the beginning of the optimization process. At each 

iteration (generation), the solutions are evaluated, and a score (fitness) is assigned to each one: the 

higher the fitness, the better the solution. Based on fitness, different solutions are then selected as 

“parents” and recombined each other (reproduction) into a new population of solutions (“sons”). 

The parental selection favours the solutions with a higher fitness, which thus tend to transmit their 

good characteristics to the following generations [107,108].  
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• The hereditary transmission mechanisms of the genetic characteristics (genes) from a generation to 

the following ones. To emulate these mechanisms, the solutions are encoded in a binary 

representation. As shown in Fig. 50a, each solution in the population is represented by a 

chromosome, i.e. an ensemble of genes characterised by the bits 1 or 0. Cross-over and mutation are 

the two genetic mechanisms emulated in a GA and are shown in Fig. 50b. During reproduction, the 

genetic materials of the parents is firstly recombined by cross-over (chromosomic “cut” and 

“exchange”) and transmitted to the sons, whose genes are afterwards subjected to a mutation (bit 

flip from 1 to 0 or vice versa). In general, the cross-over cutting points and the mutating genes (cf. 

Fig. 50b) are randomly selected.  

The two base aspects of the GA are summarised in Table 45. 

 
Fig. 50: (a) Binary representation of the solutions in a GA; (b) mechanisms of genetic transmission: cross-over and mutation. 

Table 45: Base aspects of the GA inspired to the natural evolution. 

Aspect Description 

Natural selection 

An initial population of randomly generated solutions is iteratively 

evolved over several generations. At each generation, the solutions 

with higher fitness (better and more advantageous characteristics) 
have a higher probability to be selected as parents of the new 

generation.  

Hereditary transmission 

mechanisms of the genetic 

characteristics (genes) 

Representation of the solution in binary code (chromosome, cf. Fig. 
50a). 
 

Emulation of the following genetic mechanisms (cf. Fig. 50b): 

• Cross-over: recombination of the parents’ genetic material during 

reproduction, emulated by means of chromosomic “cut” and 
“exchange”.  

• Mutation: random change of sons’ genetic characteristics emulated 

by flipping the bit in the selected mutating gene.  

The procedure flowchart associated to the GA is reported in Fig. 51 and it is divided into two parts 

(a and b): Fig. 51a shows the preliminary steps and Fig. 51b the iterative phase of optimization, where 

G (generation)  indicates the generic iteration. The procedure in Fig. 51 is illustrated by the following 

example. Let us perform the step 1e of the clustering procedure in Fig. 46a with the GA, by considering 

the training set in Table 39 and by assuming K=2. Our variables thus correspond to the coordinates x 

and y of the two ASs to determine, i.e. AS11, AS12, AS21 and AS22, whose values will be limited in the 

range [0;10] (cf. Table 39). Both the features x and y are adopted as CFs. The GA will determine the 
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values of AS11, AS12, AS21 and AS22 corresponding to the partitioning of minimum dispersion, i.e. PK=2 

(cf. Fig. 46a). 

 
Fig. 51: GA flowchart: (a) preliminary phase and (b) iterative optimization phase. 

Each step of the procedure in Fig. 51 is described in detail as follows. 

Solution encoding. According to Fig. 51a, this step consists in fixing the number of genes used in the 

binary representation of the solution (chromosome, cf. Fig. 50a). As shown in Fig. 52, the generic 

chromosome is characterised by four ordered sections, each one inherent to one of the considered 

variables and with the same number of genes (g). In each section of the chromosome, the genes represent 

the value of the corresponding variable expressed in binary code. The possible values that each variable 

can assume during the optimization procedure depend on g. 

 
Fig. 52: Structure of the generic chromosome. 
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Let us adopt the symbol “ASjh” (cf. Eq. (13)) for generically referring to the variables AS11, AS12, AS21 

and AS22. Based on Fig. 52, ASjh has 2g possible values which are equally spaced in the range [0;10]. 

The distance increment between two values (∆r) is expressed by Eq. (16): 

 ∆r =
rmax − rmin

(2g − 1)
 , (16) 

where rmin and rmax correspond to the range boundaries and are respectively equal to 0 and 10. Let us see 

some examples: 

• If g = 1, ASjh will have only 2 possible values, i.e. 0 and 10, corresponding to the range boundaries. 

In the chromosome (cf. Fig. 52), these values will be respectively represented by the bits 0 and 1. 

• If g = 2, ASjh will have 22 = 4 possible values spaced of ∆r = 3.33 (cf. Eq. (16)). The possible values 

and their corresponding binary representations are reported in Table 46.  

Table 46: Possible values of the generic variable ASjh and corresponding binary representations for g = 2. 

  Binary representation 

# Value Gene 1 Gene 2 

1 0 0 0 

2 3.33 0 1 

3 6.67 1 0 

4 10 1 1 

• If g = 3, ASjh will have 23 = 8 possible values spaced of ∆r = 1.43 (cf. Eq. (16)). The possible values 

and their corresponding binary representations are reported in Table 47.  

Table 47: Possible values of the generic variable ASjh and corresponding binary representations for g = 3. 

  Binary representation 

# Value Gene 1 Gene 2 Gene 3 

1 0 0 0 0 

2 1.43 0 0 1 

3 2.86 0 1 0 

4 4.29 0 1 1 

5 5.71 1 0 0 

6 7.14 1 0 1 

7 8.57 1 1 0 

8 10 1 1 1 

The higher g, the more refined the optimization space (cf. Table 46 and Table 47), and the more time 

the optimization procedure will take. For brevity, g = 2 is adopted in the current example. Our 

chromosomes will be thus composed of four couples of genes corresponding to the variables AS11, 

AS12, AS21 and AS22, in the same order as Fig. 52. Table 46 will be used in the next steps of the 

procedure (cf. Fig. 51) for decoding the binary representations of the variables. 

Initial population. The current step involves the generation of an initial population of N random 

solutions (cf. Fig. 51a). According to [107,108], the choice of N is typically based on literature 

indications and on priorly conducted optimization tests. For brevity, N = 5 is adopted in the current 

example. Our initial population thus consists of 5 different solutions, which are reported in Table 48. 

The binary representation of each variable can be decoded by means of Table 46. The decoded values 

are reported in Table 49. Each solution thus represents a specific combination of the variables AS11, 

AS12, AS21 and AS22. 
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Table 48: Initial population of randomly generated chromosomes. 

 AS11 AS12 AS21 AS22 

Solution # Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 

1 1 1 0 0 0 1 1 1 

2 1 1 0 1 0 0 0 1 

3 0 0 1 0 1 0 1 1 

4 0 1 1 1 0 0 0 1 

5 0 0 0 0 0 1 1 1 

Table 49: Values corresponding to the encoded variables in Table 48 (cf. Table 46). 

Solution # AS11 AS12 AS21 AS22 

1 10 0 3.33 10 

2 10 3.33 0 3.33 

3 0 6.67 6.67 10 

4 3.33 10 0 3.33 

5 0 0 3.33 10 

Fitness evaluation. Based on Table 45, the fitness is an indicator of how good a given solution is: the 

higher the fitness, the better the solution. The fitness of our solutions depends on the dispersion (D) of 

the partitioning levels constructed with the ASs’ coordinates in Table 49. As done in section 2.2.3.2, the 

partitional clustering (step i1 and i2, cf. Fig. 46a) of the training set (cf. Table 39) is first performed for 

all solutions in the initial population (cf. Table 49), by using the similarity and the dispersion measures 

(cf. Eq. (13) and (14)). The fitness of each solution is then calculated with Eq. (17) (cf. [107,108]): 

 fitness =

1
D

∑ (
1
Di
)N

i=1

 , (17) 

where D is the dispersion of the corresponding partitioning. The lower D, the higher the fitness. The 

values of D and of fitness associated to the solutions of the initial population are reported in Table 50. 

Table 50: Partitioning dispersion (D) and fitness of the solutions (chromosomes) in the initial population. 

Solution # D Fitness 

1 275 0.16 

2 164 0.26 

3 204 0.21 

4 217 0.20 

5 253 0.17 

Thanks to Eq. (17), the sum of all fitness values is always equal to 1 (cf. Table 50). As suggested in 

[107,108], this enables to consider the fitness as a percentage probability indicator: the higher the fitness, 

the more probable the corresponding solution is selected as parent of the new population (cf. Table 45). 

According to Table 50, the highest fitness belongs to solution 2, characterized by AS1 = (10, 3.33) and 

AS2 = (0, 3.33) (cf. Table 49), while the lowest fitness belongs to solution 1, characterized by AS1 = 

(10, 0) and AS2 = (3.33, 10) (cf. Table 49). The preliminary steps of the GA are now concluded, and 

the first generation of the optimization phase can thus start (cf. Fig. 51).  

Parental selection. This step consists of selecting N couples of parents from the initial population which 

will be used to generate a new population of solutions in the following reproduction step (cf. Fig. 51b). 

The fitness values reported in Table 50 represent the probability of each solution in the initial population 

to be selected as parent. The parental selection is performed with the so-called roulette method 

[107,108]. As shown Fig. 53a, the initial population can be represented in a pie chart, where the angular 

width of the sections is proportional to the fitness values of the solutions (cf. Table 50). Let us imagine 

rotating the pie chart like a roulette of a casino for 2N times. At the end of each rotation, the solution 
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indicated by the parent selector is selected as parent. Clearly, the solutions with a higher fitness may be 

selected more than once, while those with a lower fitness have a lower probability to be selected. As 

shown in Fig. 53b, the roulette method can be easily implemented by representing the population as an 

ensemble of probability ranges, whose widths are proportional to the fitness value of the solutions. A 

random number between 0 and 1 is thus generated by the machine and used to select the parents, as done 

in Fig. 53b. The couples of selected parents are reported in Table 51. 

 
Fig. 53: (a) Roulette method for the parental selection and (b) computational implementation of the roulette method. 

Table 51: Couples of selected parents. 

 Couple 1 Couple 2 Couple 3 Couple 4 Couple 5 

Parent 1 

(solution #) 
4 1 2 2 3 

Parent 2 

(solution #) 
3 2 3 1 5 

In this case, all initial solutions have been selected at least once. Solution 2 and 3 are more frequent due 

to their high fitness values (26% and 21%, respectively), while the other solutions are less frequent.  

Reproduction. A new population of N solutions is generated from the initial population (cf. Fig. 51b). 

Each couple of parents (cf. Table 51) generates one new solution, by means of the cross-over and 

mutation mechanisms (cf. Fig. 50b). The employed types of cross-over and mutation are respectively 

represented in Fig. 54a and b. According to [107,108], the use of both single and double mechanisms 

enables to recombine the parents’ genetic characteristics in more diverse ways, and this increases the 

probability to generate better solutions. For both single and double mechanisms, the positions of the 

cross-over cutting points (cf. Fig. 50b) and of the mutating genes is randomly decided just before 

crossing the parents and are different for each couple of parents. 
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Fig. 54: (a) Used types of cross-over and (b) used types of mutation. 

The generation of the 5 new solutions from the 5 selected couples of parents (cf. Table 51) is shown in 

Table 52. The colours green and blue help to better visualize the performed cross-over mechanisms as 

done in Fig. 50b and Fig. 54a, while the genes affected by mutation are highlighted in red as in Fig. 54b. 

Notably, couples 1 and 3 have been crossed with a double-point cross-over, while couples 2, 4 and 5 

with a single-point cross-over (cf. Fig. 54a). Moreover, sons 1 and 2 have been subjected to a double 

mutation, while sons 3, 4 and 5 to a single mutation (cf. Fig. 54b). The chromosomes of the new 

generated solutions (sons, cf. Table 52) have been decoded by means of Table 46, and the values of the 

variables have been reported in Table 53. 

Table 52: Generation of the new population from the selected parents (cf. Table 51) by cross-over and mutation. 

  AS11 AS12 AS21 AS22 

 Solution # Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2 

Couple 1 
4 0 1 1 1 0 0 0 1 

3 0 0 1 0 1 0 1 1 

Son 1 1 0 0 1 0 1 0 1 1 

Couple 2 
1 1 1 0 0 0 1 1 1 

2 1 1 0 1 0 0 0 1 

Son 2 2 1 1 1 0 0 0 1 1 

Couple 3 
2 1 1 0 1 0 0 0 1 

3 0 0 1 0 1 0 1 1 

Son 3 3 0 1 0 1 1 0 0 1 

Couple 4 
2 1 1 0 1 0 0 0 1 

1 1 1 0 0 0 1 1 1 

Son 4 4 0 1 0 1 0 0 0 1 

Couple 5 
3 0 0 1 0 1 0 1 1 

5 0 0 0 0 0 1 1 1 

Son 5 5 0 1 0 0 0 0 1 1 

Table 53: Values of the variables in the new population. 

Solution # AS11 AS12 AS21 AS22 

1 0 6.67 6.67 10 

2 10 6.67 0 10 

3 3.33 3.33 6.67 3.33 

4 3.33 3.33 0 3.33 

5 3.33 0 0 10 

Fitness evaluation. According to Fig. 51b, let us evaluate the fitness of the solutions in the new 

population (cf. Table 53). As done in the preliminary phase (cf. Fig. 51a), the partitional clustering (step 

i1 and i2, cf. Fig. 46a) of the training set (cf. Table 39) is first performed for all solutions of the new 



111 

 

population (cf. Table 53). The fitness of each solution is then calculated with Eq. (17). The resulting 

values of D and fitness are reported in Table 54. In Table 55, the new population (generation 1, cf. Table 

54) is compared to the initial population (generation 0, cf. Table 50) in terms of minimum and average 

dispersion values. 

Table 54: Partitioning dispersion (D) and fitness of the solutions in the new population (generation 1). 

Solution # D Fitness 

1 204 0.18 

2 255 0.15 

3 108 0.34 

4 184 0.20 

5 297 0.13 

Table 55: Comparison of the dispersion values of the initial population (generation 0) and of the new population 
(generation 1). 

Generation Dmin Dav ∆Dmin [%] ∆Dav [%] 

0 (initial) 164 223 --- --- 

1 (new) 108 210 -34 -6 

The results indicate that both minimum and average dispersion values decrease from the initial to the 

new population. In the current generation, the population of solutions has thus evolved towards the 

partitioning of minimum dispersion.  

Stop condition. According to [107,108], the iterative optimization phase is generally stopped based on 

one or more of the following conditions:   

• The achievement of a fixed number of generations (Gmax, cf. Fig. 51b). 

• The achievement of a fixed execution time.  

• The achievement of a fixed number of generations without an improvement of the parameter being 

optimized (as the minimum partitioning dispersion in the population).  

• The convergence of the parameter being optimized towards a fixed value.  

The first option is adopted in this work. Notably, fixing a sufficiently high Gmax enables to better monitor 

and study the optimization phase without potential interruptions. When G = Gmax, the GA is stopped (cf. 

Fig. 51b). The partitioning of minimum dispersion PK=2 and the associated dispersion value DK (cf. Fig. 

46a) are given by the values of AS11, AS12, AS21 and AS22 corresponding to the solution with the 

minimum dispersion achieved in the optimization phase. 

2.2.3.5. Solution diversity and hyperparameters of the GA 

As seen in Fig. 53a, the solutions characterised by a low fitness value are not excluded from parental 

selection, but they rather have less probability to be selected as parents of the new population. The 

following questions may thus be spontaneous. Why should bad solutions be included in parental 

selection? Is it not better to consider only good solutions? As argued in [107,108], the genetic 

optimization efficiency strongly depends on the diversity of the solutions in the population. At each 

generation, the population should be composed of solutions as diverse as possible, thus including good 

as well as bad ones. This is evidently assured by the presence of also bad solutions among the selected 

parents. Without selecting any bad solutions, solution diversity in the population decreases, and the GA 

risks to converge towards apparent optimums. Similarly to ANNs, the GA involves some 

hyperparameters which are typically set-up to favour and maintain a certain solution diversity in the 

population over the generations:  

• The number of genes per variable (g), which is fixed in the first step of the preliminary phase 

(solution encoding, cf. Fig. 51a and Fig. 52). As seen in the above example, g determines the number 

and the entity of the possible solution values (cf. Eq. (16)): the higher g, the higher the number of 
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potentially explorable solutions, and the more varied the population at each generation. However, 

increasing g also means increasing the duration of the optimization procedure, because the solution 

space is more refined (the research space is wider), and more generations are generally required to 

achieve the optimal solution. 

• The number of solutions in the population (N), which is fixed in the second step of the preliminary 

phase (initial population, cf. Fig. 51a). The lower N, the less diverse the couples of parents obtained 

during parental selection. For example, the couples 2 and 4 in Table 51 involve the same parents 

(i.e. the solutions 1 and 2). In general, same parents risk to generate identical sons, thus mining the 

diversity in the population. Otherwise, the higher N, the more the selected couples of parents are 

characterised by diverse solutions, but the more the time needed to execute the operations of parental 

selection, reproduction and fitness evaluation at each generation (cf. Fig. 51b). In accordance with 

[107,108], we also believe that fixing a very high N does not make so much sense. Indeed, the base 

idea of the GA is to iteratively evolve the population (cf. Table 45) by exploring the solution space 

little by little (cf. Table 45), without necessarily test a huge number of combinations at each 

generation. 

• Parameters associated to the modified roulette method. Assuring that also bad solutions could 

become parents of the new population is crucial to maintain a certain solution diversity over the 

generations. The higher N, the less the roulette method (cf. Fig. 53a) is capable to assure the 

selection of very bad solutions during parental selection. For example, the roulette method shown 

in Fig. 55a regards a population composed of 50 solutions. The sections indicated by the red arrows 

correspond to the worst solution (they are almost “invisible”, cf. Fig. 55a). Their fitness values are 

so low that these solutions have almost no chance of being selected as parents. This has a potential 

negative effect on solution diversity over the generations, causing the GA to converge towards an 

apparent optimal solution. The selection of also bad solutions can be assured by adopting a modified 

roulette method, as the one shown in Fig. 55b. The solutions in the population are first organized in 

order of increasing dispersion (from the best solution to the worst one). Therefore, the minimum 

dispersion value (Dmin) will correspond to solution 1, while the maximum dispersion value (Dmax) 

will correspond to solution N. The ordered population is then divided into four partitions, each one 

composed of N/4 solutions, as illustrated in Table 56. A different fitness is finally assigned to each 

partition by the user (cf. Fig. 55b). During parental selection, the parents will be randomly selected 

in the partition indicated by the parent selector [107,108].  

 
Fig. 55: (a) Example of roulette method (cf. Fig. 53a) with N=50 and (b) modified roulette method. 
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Table 56: Partition of the ordered population in the modified roulette method (cf. Fig. 55b). 

Partition Solution # Dispersion value 

Good 

1 Dmin 

2 … 

… … 

N/4 … 

Not so good 

N/4 + 1 … 

… … 

2N/4 … 

Not so bad 

2N/4 +1 … 

… … 

3N/4 … 

Bad 

3N/4 + 1 … 

… … 

N Dmax 

Similarly to the standard roulette method (cf. Fig. 53a), good solutions have a higher probability to 

be selected as parents, as well as bad solutions have a lower probability. However, the probability 

to select also bad solution is no more affected by high values of N (as in Fig. 55a), and this enables 

to better maintain solution diversity over the generations. In general, the hyperparameters associated 

to the modified roulette method regard the number of partitions, the number of solutions in each 

partition and the fitness assigned to each one (cf. Fig. 55b and Table 56). 

• The probabilities of cross-over (pc) and mutation (pm), which are used to alternatively enable and 

disable the homonymous mechanisms during reproduction (cf. Fig. 51b). Both pc and pm are defined 

in the range [0;1] and must be fixed before starting the optimization phase. The parameter pc allows 

a certain percentage of parents to survive, by directly becoming members of the new population 

without crossing. For example, if pc = 0.7 (70%), the 30% of solutions in the new population 

corresponds to surviving parents, randomly chosen among all the couples of parents obtained by the 

parental selection. Beside the single and the double cross-over (cf. Fig. 54a), pc thus introduces a 

new mechanism which further contributes to diversify the solutions in the new population. Similarly, 

pm allows only a certain percentage of the generated sons to mutate. For example, if pm = 1 (100%), 

all the new generated sons mutate. This evidently enables to maintain a high solution diversity in 

the population, because the mutating genes are always selected at random. However, it risks 

destroying all the good genetic characteristics transmitted by the parents to the sons, preventing the 

population to progress towards an optimal solution. For this reason, the mutation occurrence is 

typically limited by setting pm lower than 100% [107,108].  

The hyperparameters of the GA and their effects and roles are summarised in Table 57. Similarly to 

ANN, GA hyperparameters will be fixed according to literature indications and to priorly conducted 

optimization tests, which for brevity will not be presented in this work.  
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Table 57: GA hyperparameters and corresponding effects/roles. 

Parameter Effects/Roles 

Number of genes per 

variable (g) 

The higher g, the higher the number of potentially explorable solutions.  
 

Positive effect: the population is more varied (more diversity). 
 

Negative effect: more generations required to achieve the optimal 

solutions (more time).  

Number of solutions in 
the population (N) 

The higher N, the more diverse the selected couples of parents. 
 

Positive effect: more diverse solutions generated at each reproduction. 
 

Negative effects:  

• More time to execute the operations of parental selection, reproduction 

and fitness evaluation (cf. Fig. 51b) at each generation. 

• The roulette method is less capable to assure the selection of very bad 
solutions during parental selection (cf. Fig. 55a). 

Modified roulette 

method: 

• Number of partitions 

• Number of solutions in 
each partition 

• Fitness assigned to 

each partition 

Role: Assuring the selection of also very bad parents. This enable to better 
maintain a certain solution diversity over the generations.  

Cross-over probability 
(pc) 

Defined between 0 and 1. It allows a certain percentage of parents to 

directly become members of the new population without crossing. This 
mechanism contributes to further diversify the solutions in the new 

population. 

Mutation probability (pm) 

Defined between 0 and 1, but typically < 1. It allows only a certain 

percentage of the generated sons to mutate, avoiding losing all the good 

characteristics transmitted by parents to the new population at each 
generation.  
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2.2.3.6. Presentation and testing of the implemented GA 
Based on the theory presented in sections 2.2.3.4 and 2.2.3.5, a versatile model of GA was 

implemented in MATLAB [48], and it enables to perform the step 1e of the clustering procedure by 

means of the K-means method (cf. Fig. 46a, b). Similarly to ANNs, the set-up interface of our GA is 

entirely handled by means of the three Excel tables shown in Fig. 56, which make the GA initialization 

very intuitive and original. The data contained in the green cells can be modified by the user.  

 
Fig. 56: Interface tables of the implemented GA. 

Let us explain the function of each interface table: 

• The features of the ASs to be determined (i.e. the variables of the GA) are initialized in the first 

interface table (interface 1, cf. Fig. 56), in terms of range boundaries (rmin and rmax, cf. Eq. (16)) and 

number of genes (g). Clearly, the number of initialized variables depends on the adopted number of 

clusters (K, cf. Fig. 46a). For example, the four variables “AS1_1”, “AS1_2”, “AS2_1” and 

“AS2_2” initialized in Fig. 56 regard the partitioning of a training set in R2 into two clusters (K=2). 

The ASs to be determined are defined in the range [0;10] and have 25 = 32 possible values spaced 

of ∆r = 0.32 (cf. Eq. (16)). If K=3 is adopted, for instance, the variables “AS3_1” and “AS3_2” will 

be simply added in the afterwards rows of interface 1. It is important to remark that interface 1 also 

enables to choose different values of rmin, rmax and g for each variable. 

• The second interface table (interface 2, cf. Fig. 56) involves the set-up of the hyperparameters N, pc 

and pm (cf. Table 57), and of the maximum number of generations to perform (Gmax, cf. Fig. 51b). 

As suggested in [107,108], all these parameters will be fixed according to previous tests to assure 

the genetic optimization efficiency with a reasonable execution time.  

• The third interface table (interface 3, cf. Fig. 56) involves the set-up of the hyperparameters 

regarding the modified roulette method (cf. Table 57). For example, the values chosen in Fig. 56 

correspond to the modified roulette method shown in Fig. 55b and Table 56. A higher number of 

partitions can be simply set-up by adding, for instance, a fifth partition, and maintaining the total 

number of solutions equal to N and the sum of the fitness probabilities equal to 100%. 

The implemented GA is thus tested in a partitional clustering problem. The considered training set, 

shown in Fig. 57, consists of 500 training samples in R2 and it is characterised by three main portions 

whose centroids correspond to A, B and C. Notably, the point H is the centroid of the overall training 

set, while DK=1 = 4795 represents the dispersion of the training samples around the centroid H and it is 
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calculated with Eq. (14). Considering both x and y as CFs (cf. Fig. 47a), the idea is to obtain the curve 

K-RD (cf. Fig. 49) by determining the coordinates of the ASs with the implemented GA, and to finally 

select the most suitable partitioning. Three different optimization tests will be conducted for each K for 

verifying the reproducibility of the obtainable results (and thus the robustness of the implemented GA17), 

as done for the implemented ANN (cf. section 2.2.2.6). The list of the conducted tests is reported in 

Table 58.  

 
Fig. 57: Considered training set. 

Table 58: List of the conducted optimization tests. 

Optimization test # 1 2 3 4 5 6 7 8 9 10 11 12 

K 2 3 4 5 

Each optimization test involves two distinct steps:  

• Set-up, i.e. the initialization of the variables to determine (i.e. “AS1_1”, “AS1_2”, etc.) and of the 

GA hyperparameters in the program interfaces (cf. Fig. 56), before starting the optimization. 

• Optimization, following the procedure reported in Fig. 51. 

Each step is described in detail as follows.  

Set-up. Regarding interface 1, the same values of rmin (=0), rmax (=10) and g (=5) are fixed for all 

variables (cf. Fig. 56) in all optimization tests (cf. Table 58). This assures the same ∆r (= 0.32, cf. Eq. 

(16)) and the same number of possible values (= 25 = 32) for all variables and makes the results of all 

tests comparable to each other. Regarding interface 2, the hyperparameters N, pc and pm are fixed as in 

Fig. 56, while increasing values of Gmax are adopted depending on K. This choice can be explained with 

the help of Table 59: the higher K, the higher the number of variables to initialize in interface 1, and the 

higher the number of genes per chromosome. Consequently, the higher K, the wider the solution space 

(i.e. the higher the number of possible variable combinations which can be explored during the 

 

 

 

 

17 The solutions in the initial population are randomly generated (cf. Fig. 51a). Therefore, all tests start with 

different initial populations. The robustness condition is the following: for each K, the three optimization tests 

must have similar values of DK (cf. Fig. 46a), which represents the minimum dispersion achieved in the 

optimization phase.  
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optimization, cf. Table 59), and the higher the Gmax granted to the GA to achieve the optimal solution 

(cf. Table 57, effect of the number of genes).  

Table 59: Adopted values of Gmax as function of K. 

K 
Number of 

variables 

Number of genes 

per variable (g) 

Number of genes 

per chromosome 

Number of possible 

combinations 

Adopted 

Gmax 

2 4 5 20 220 ≈ 106 100 

3 6 5 30 230 ≈ 109 200 

4 8 5 40 240 ≈ 1012 300 

5 10 5 50 250 ≈ 1015 400 

Regarding interface 3, the settings of the modified roulette method are fixed as in Fig. 56: four partitions 

with a selection probability decreasing from 40% to 10%. The fixed values of N, pc and pm (interface 2, 

cf. Fig. 56), the values of Gmax adopted in Table 59 and the used settings of the modified roulette method 

(interface 3, cf. Fig. 56) are all based on literature indications (cf. [107,108]) and on several tests 

conducted with the implemented GA, which for brevity are not presented in this work. 

Optimization. After performing the preliminary phase (cf. Fig. 51a), the iterative optimization 

procedure is launched (cf. Fig. 51a). The GA is stopped when the Gmax corresponding to the current K 

is achieved (cf. Table 59).  

The results of the conducted optimization tests are firstly presented and compared in terms of Dmin, 

which represents the minimum dispersion in the population at each generation (cf. Table 55). The trends 

of Dmin observed during the optimization tests are reported in Fig. 58a, b and c. All trends are 

characterised by several generation ranges where Dmin remains constant (plateaux), alternating with 

sudden diminutions of Dmin. In all tests, the greatest decreases of Dmin are localised in the first 50 

generations. Further less meaningful diminutions can be remarked for the tests with K=3, K=4 and K=5, 

until the last generation (Gmax). The minimum dispersion achieved by the GA (G = Gmax, cf. Fig. 58a) 

corresponds to DK, i.e. the dispersion of the final partitioning  PK (cf. Fig. 46a). The values of DK 

achieved in the optimization tests are summarised in Table 60, together with the coefficients of variation 

(COV), average values (DK
av) and percentage dispersion reductions (RD, cf. Eq. (15)) calculated for each 

K. ∆RD represents the increment of RD between two adjacent values of K. 
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Fig. 58: Trends of Dmin: (a) tests 1, 4, 7, 10; (b) tests 2, 5, 8, 11; (c) tests 3, 6, 9, 12 (cf. Table 58). (d) Curve K-RD. 

Table 60: Values of DK achieved in the optimization tests, and variation coefficients (COV), average values (DK
av) and 

percentage dispersion reduction (RD, cf. Eq. (15)) for each K.  

K Test # D
K

 COV [%[ D
K

av RD [%] ∆RD [%] 

1 --- 4795 --- 4795 0 --- 

2 

1 2682 

0.02 2681 44 +44 2 2681 

3 2681 

3 

4 1153 

0.29 1155 75 +31 5 1153 

6 1160 

4 

7 976 

0.97 986 79 +4 8 999 

9 984 

5 

10 829 

0.06 828 83 +4 11 828 

12 828 
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Two main considerations can be made according to Table 60: 

• About the robustness of the implemented GA. The factor supporting the robustness of the 

implemented GA can be deducted by the comparison between the adopted values of Gmax and the 

number of possible combinations for each K (cf. Table 59), and the very low variation coefficients 

obtained for each K (between 0.02% and 0.97%, cf. Table 60). In all the conducted tests, the GA 

could never have explored all the possible combinations with such a low Gmax, since the number of 

explorable combinations is given by the adopted number of solutions in the population (N = 100, 

cf. Fig. 56) multiplied by Gmax.  For instance, in the tests with K=5, the GA could have explored a 

maximum of 40,000 different combinations, when the effective number of possible combinations is 

about 1015 (cf. Table 59), and thus extremely higher. However, for each K, all tests converged 

towards almost the same values of DK, as suggested by the low variation coefficients in Table 60, 

despite different initial populations17 and the adopted Gmax, which is very low if compared to the 

total number of potentially explorable combinations. This confirms the robustness of the 

implemented GA.  

• About the selection of the most suitable partitioning and the relevancy of the resulting clusters. 

For each K, the values of RD reported in Table 60 have been obtained with Eq. (15), by considering 

the average values of DK (i.e. DK
av). The corresponding curve K-RD is represented in Fig. 58d. The 

more K increases, the more DK reduces and the more RD increases. It can be easily remarked that 

K=2 and K=3 involve the most significant reductions of DK (respectively ∆RD=+44% and 

∆RD=+31%, cf. Table 60). A much less meaningful RD increments are obtained for K>3 (∆RD=+4%, 

cf. Table 60). Based on [104–106], the elbow of the curve K-RD (cf. Fig. 58d) is neatly visible and 

suggests that K=3 (and thus PK=3) is the best compromise between the minimum dispersion and the 

minimum number of clusters of the partitioning. The partitioning PK=3 adopted as final solution of 

the clustering procedure is shown in Fig. 59, and it is the one obtained in tests 4 and 5, which 

achieved the lowest value of DK for K=3 (i.e. DK=3 = 1153, cf. Table 60). The coordinates of the 

corresponding ASs determined with the GA are reported in Table 61, and are all multiples of ∆r = 

0.32, which results from Eq. (16) with the set values of rmin, rmax  and g (cf.  Fig. 56, interface 1).  

 
Fig. 59: PK=3 (tests 4 and 5). 

 Table 61: Coordinates of the ASs in 
Fig. 59. 

 x (1) y (2) 

AS1 1.92 5.76 

AS2 5.76 2.88 

AS3 6.72 7.04 

   

Fig. 59 enables to verify the relevancy of the resulting clusters, in accordance with Table 28 (see 

unsupervised learning). We can easily remark that the clusters C1, C2 and C3 represent the three 

main portions of the training set (cf. Fig. 57). Moreover, the coordinates of the ASs in Table 61 are 
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quite similar to the ones of the centroids A, B and C in Fig. 57, and this assures the relevancy of the 

results provided by the implemented GA with the used clustering method and to the adopted CFs18. 

 

 

 

 

18 As seen in section 2.2.3.3, the ASs associated to the partitioning of minimum dispersion (PK, cf. Fig. 46a) tend 

to coincide with the centroids of the corresponding clusters (cf. Fig. 48 and Table 43).  
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3. A natural language processing 

methodology for conceptual design: an 

original demonstrator  

In the previous chapter, we introduced the reasons for adopting machine learning in the current 

work (cf. section 2.1), and we then presented the developed ML methods, i.e. ANNs and partitional 

clustering via GA (cf. section 2.2). According to the adopted approach (PAAs, cf. Table 18), in this 

chapter we will see how these methods were used for implementing an original methodology of natural 

language processing (NLP), operating with an everyday and non-scientific language. This NLP 

methodology was then employed as base for developing our original demonstrator of conceptual design 

procedure. The conceptual map reported in Fig. 60 represents the path followed in this chapter.  

 
Fig. 60: Conceptual map of the chapter developed to explain the original path leading to implemented demonstrator. 
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As shown in Fig. 60, the current chapter is organized in two main sections. The first one (section 

3.1) is devoted to the NLP methodology, whose base ideas are immediately clarified, and the training 

process of the NLP algorithm is then described. According to Fig. 60, the afterwards testing of the 

developed NLP methodology enables to verify its robustness and to outline some limits concerning our 

purposes in this work (cf. Table 9). The NLP methodology is finally improved to overcome the identified 

limits. As shown in Fig. 60, the second section of the chapter (section 3.2) is devoted to the demonstrator. 

The hypotheses on which the demonstrator is based are immediately presented. The NLP methodology 

previously developed operates with an every-day and non-scientific language, and its adaptation to the 

conceptual design language is thus described. After training the NLP algorithm, the use of the 

demonstrator is illustrated with an original example of conceptual design, and the main original results 

concerning our purposes in this work are finally outlined. 
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3.1. An original methodology for processing every-

day language 
As reported in Table 18, the use of the natural language to express and identify the SPs and the CVs 

represents one of the principles of the adopted approach. In this section, we make the last step before 

presenting our demonstrator, by describing how the implemented ML algorithms (cf. chapter 3) are 

combined into NLP methodology. The presented NLP methodology is original, and it operates with an 

everyday and non-scientific language. This will enable to better understand the base ideas and the 

technical aspects involved in a NLP algorithm, before introducing a more specific language of 

mechanical design. The current section is organized as follows. In section 3.1.1, we present the base 

ideas and the development of our NLP methodology, with a particular emphasis on the training process, 

which involves the use of the implemented ML methods (ANNs and GA). In section 3.1.2, our NLP 

methodology is tested for verifying its robustness and for better outlining its limits concerning the 

purposes pursued in this work (cf. Table 9). In section 3.1.3, the developed NLP methodology is finally 

improved for resolving the limits highlighted in the previous section. 

3.1.1. Base ideas and development of the NLP methodology 
The natural language processing involves the machine elaboration of text inputs written in a spoken 

language [109,110]. According to [109–111], the NLP methodology developed in this work combines 

the implemented ML methods to accomplish two base ideas, which are schematized in Fig. 61a: 

• Understanding the context of an incomplete input sentence by analysing its lexicon and its syntax, 

for identifying the involved circumstance. The definitions of lexicon and syntax are reported in 

Table 62. 

• Proposing multiple continuations of the incomplete input sentence which are coherent to the 

identified context.  

 
Fig. 61: (a) Base ideas of the developed NLP methodology; (b) example of the NLP algorithm functioning. 
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Table 62: Definitions of lexicon and syntax. 

Term Definition 

Lexicon (or vocabulary) 
Ensemble of different words used in a sentence (or in a set of 

sentences) 

Syntax 
Study of how different words (or lexical elements) are combined 

(associated and organized) to form sentences of complete sense 

In the example reported in Fig. 61b, the incomplete input sentence “if you are sick, then go to” is 

lexically and syntactically analysed by the NLP algorithm, which then proposes different continuations. 

All the continuations are coherent with the context of “being sick” and of “going somewhere”. 

Moreover, remark that the proposed continuations are of different type: “pharmacy” and “hospital” 

identify two specific places, while “doctor” identifies a professional figure, and thus a person. Referring 

to the adopted conceptual design procedure (step 1, cf. Fig. 16), it is not difficult to imagine the 

incomplete input sentence as the ensemble of initial idea and specifications (context), and the proposed 

continuations as multiple and different SPs (see BDPs, cf. Table 5). The abilities of context 

understanding and sentence continuation (cf. Fig. 61a) are acquired by the NLP algorithm with a suitable 

training, exploiting the potential of the implemented machine learning methods (GA and ANN). 

According to [110,111], the training process of the NLP algorithm is realised in two steps, called pre-

training and fine-training, and it is schematized in Fig. 62. To avoid creating confusion in the 

terminology, the term “training” refers to the overall training of the NLP algorithm, while the term 

“calibration” refers to the training of the ANN in the fine-training step (cf. Fig. 62). 

 
Fig. 62: Steps of the NLP algorithm training and respective machine learning methods. 

As shown in Fig. 62, the pre-training step is based on the unsupervised learning model (cf. Fig. 30a 

and Table 28), and it involves the K-means clustering of the training sentences, which represent the 

ensemble of language knowledge we want the NLP algorithm to learn. The idea is to group the training 

sentences into clusters containing similar lexical and syntactic forms. According to Fig. 62, each cluster 

will be characterised by a specific sentence continuation model. The following fine-training step is based 

on the supervised learning model (cf. Fig. 29a and Table 28) and it concerns the calibration of an ANN, 

which must learn to classify incomplete sentences (as that in Fig. 61b) based on the recognition of 

common lexical and syntactic patterns. This enables the ANN to acquire the ability of context 

understanding (cf. Fig. 61b). As reported in Fig. 62, the calibration set consists of incomplete input 

sentences, generated from the training sentences, and of the corresponding output contexts, which 

depend on the clusters identified in the pre-training step. After completing both training steps, the NLP 

algorithm will be finally able to understand the context of new incomplete input sentences via the 

calibrated ANN (generalization, cf. Fig. 29a), and to propose multiple and different continuations by 

means of the sentence continuation models constructed in the pre-training step (cf. Fig. 62). The pre-
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training step is described in sections 3.1.1.1 and 3.1.1.2, while the fine-training step in sections 3.1.1.3 

and 3.1.1.4. The scheme of trained NLP algorithm is finally presented in section 3.1.1.5. 

3.1.1.1. Pre-training: numerical representation of text inputs 

The use of the K-means clustering method (cf. Fig. 46) requires training sentences are transformed 

from textual into numerical inputs19. Based on Fig. 62, the numerical representation of text inputs must 

conserve both lexical and syntactic characteristics of the training sentences (cf. Table 62). Let us 

consider, for example, the set of three sentences reported on the left side of Table 63 as our training 

input (cf. Fig. 62), where each sentence thus corresponds to a different training sample. The bag-of-

words model (BOW), shown in Table 63, enables to easily transform textual inputs into numerical ones, 

and it is one of the most used in NLP [112,113]. In this model, the training set is represented based on 

different features (cf. Table 9), which correspond to the words of the overall used lexicon (i.e. “you”, 

“like”, …, “with”, cf. Table 63). Notably, each sentence is expressed as a binary array, where the values 

1 and 0 respectively indicate the presence or the absence of the word in the sentence.  

Table 63: Set of considered training sentences and corresponding BOW model based on word presence/absence. 

# Sentence 
BOW (word presence) 

you like football and I love music eat with 

S1 you like football 1 1 1 0 0 0 0 0 0 

S2 you and I love music 1 0 0 1 1 1 1 0 0 

S3 I eat with you 1 0 0 0 1 0 0 1 1 

This representation effectively describes the lexicon used in each sentence (i.e. which words are 

used, cf. Table 62), but it completely ignores the syntax (i.e. how words are combined, cf. Table 62), 

which is however needed for a more accurate definition of the context (cf. Fig. 61a). An enhanced BOW 

model able describe the sentence syntax can be obtained by considering the relative position of the words 

in each sentence, instead of their presence. The proposed enhanced BOW model represents an original 

improvement of the standard BOW described in [112,113] (cf. Table 63). Let us indicate with Nw the 

number of words in the generic sentence. Therefore, let us consider the generic sentence as a segment 

of length 1, divided into Nw portions of length ∆x. The expression of ∆x is reported in Eq. (18). The 

relative position of the ith word in the generic sentence (xi) can be finally calculated with Eq. (19). 

 
∆x =

1

Nw
 . (18) 

 xi = {
∆x

2⁄  

xi−1 + ∆x  
  
for i = 1
for i > 1

 . (19) 

For example, Fig. 63 illustrates how Eqs. (18) and (19) are applied to the sentence S1 (cf. Table 

63). The enhanced BOW model based on word relative positions is reported in Table 64, which also 

indicates the frequency of each word of the overall lexicon in the training sentences. The most frequent 

words, i.e. “you” and “I”, have been highlighted in red.  

 

 

 

 

19 The use of the similarity and dispersion measures (cf. Eqs. (13) and (14)) in the clustering procedure requires 

numerical inputs.  
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Fig. 63: Calculation of the word relative positions for S1 (cf. Table 63 and Eqs. (18), (19)). 

Table 64: Set of considered training sentences and corresponding enhanced BOW model based on word position (cf. Table 
63). 

# Sentence 
Enhanced BOW (word relative position) 

you like football and I love music eat with 

S1 you like football 0.17 0.5 0.83 0 0 0 0 0 0 

S2 you and I love music 0.1 0 0 0.3 0.5 0.7 0.9 0 0 

S3 I eat with you 0.88 0 0 0 0.13 0 0 0.38 0.63 

           

Presence Frequency 3 1 1 1 2 1 1 1 1 

Contrary to the BOW model based on word presence (cf. Table 63), the enhanced BOW model 

describes both the employed lexicon (non-zero values, cf. Table 64) and the syntax (relative order of the 

used words) in the training sentences.  

3.1.1.2. Pre-training: K-means clustering and construction of the 

sentence continuation models 
The K-means method (cf. Fig. 62) can now be applied by considering each training sentence as a 

point in a n-dimensional space, whose coordinates correspond to the relative positions of the words (cf. 

Table 64). Based on [111,114], the most frequent words (“you” and “I”, cf. Table 64) can be considered 

as the most representative features of the training set, and are thus adopted as CFs. Notably, adopting 

few representative features (rather than all the available ones) as CFs involves few ASs to determine, 

and it thus enables to conduct the clustering procedure in a reasonable time. The training samples to 

cluster are resumed in Table 65. In this case, given the small size of the training set, the clustering 

procedure (cf. Fig. 46) was directly performed with Eqs. (13) and (14), without using the GA. The results 

in terms of DK and RD are reported in Table 66 and Fig. 64a. For K=3, the number of clusters equals the 

number of training samples, and this clearly gives RD = 100% (cf. Table 66). As indicated by the elbow 

in Fig. 64a, the partitioning PK=2 = {C1,C2} is the solution of the clustering procedure20 and it is 

represented in Fig. 64b, while the corresponding ASs are provided in Table 67. 

 

 

 

 

20 Remember that K must be minimized (cf. Fig. 46a). 



127 

 

Table 65: Samples to cluster 
(Table 64) 

 
Table 66: Values of DK and RD (cf. 

Eq. (15)) 
 

Table 67: ASs’ coordinates in 
PK=2. 

S# you  I  K D
K 

RD [%]   you I 

S1 0.17 0  1 0.51 0  AS1 0.14 0.25 

S2 0.1 0.5  2 0.13 75  AS2 0.88 0.13 

S3 0.88 0.13  3 0 100     

 
Fig. 64: (a) Curve K-RD and (b) representation of the partitioning PK=2 = {C1, C2} (CFs = “you”, “I”). 

We can easily remark that AS1 is the centroid of the cluster C1 = {S1,S2}, while AS2 coincides 

with S3 since the latter is the unique sample contained in the cluster C2 (cf. Fig. 64b). According to Fig. 

62 (pre-training), we grouped the training sentences into clusters of similar lexicon and syntax, where 

the similarity is clearly based on the adopted CFs (“you” and “I”, cf. Table 65). Now, we must construct 

the sentence continuation model of each cluster. The construction procedure of the sentence continuation 

model for the cluster C1 (cf. Fig. 64b) is shown in Fig. 65. The continuation model of C1 is firstly 

initialized as a square matrix of zeros, whose rows and columns contain all the features of the considered 

training set (i.e. the 9 different words of the overall lexicon, cf. Table 64), while the grey cells indicate 

the diagonal of the matrix. Sentence by sentence, the value 1 is then assigned to each couple of words, 

as represented in Fig. 65. For repeated specification-SP couples, the value 1 in the target cell is 

maintained. This continuation model is called left-to-right (LTR), since the couples of words are selected 

by scanning the sentences from left to right [115]. The LTR model of the cluster C2 is constructed in a 

similar way, as function of the sentence S3. The complete LTR models of C1 and C2 are respectively 

reported in Table 68 and Table 69, where values 1 have been highlighted in red.  
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Fig. 65: Construction of the LTR model of sentence continuation for the cluster C1 = {S1, S2}. 

Table 68: LTR model of the cluster C1 = {S1,S2} (cf. Table 64). 

C1 
Right: possible continuation 

you like football and I love music eat with 
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you 0 1 0 1 0 0 0 0 0 

like 0 0 1 0 0 0 0 0 0 

football 0 0 0 0 0 0 0 0 0 

and 0 0 0 0 1 0 0 0 0 

I 0 0 0 0 0 1 0 0 0 

love 0 0 0 0 0 0 1 0 0 

music 0 0 0 0 0 0 0 0 0 

eat 0 0 0 0 0 0 0 0 0 

with 0 0 0 0 0 0 0 0 0 

Table 69: LTR model of the cluster C2 = {S3} (cf. Table 64). 

C2 
Right: possible continuation 

you like football and I love music eat with 
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you 0 0 0 0 0 0 0 0 0 

like 0 0 0 0 0 0 0 0 0 

football 0 0 0 0 0 0 0 0 0 

and 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 1 0 

love 0 0 0 0 0 0 0 0 0 

music 0 0 0 0 0 0 0 0 0 

eat 0 0 0 0 0 0 0 0 1 

with 1 0 0 0 0 0 0 0 0 

Based on [115], each LTR model condensates all the information concerning the lexicon and the 

syntax of the corresponding cluster in a unique representation, without any distinction among the 

original sentences. This enables to account for different and multiple continuation options when the last 

word of the incomplete input sentence (cf. Fig. 61b) is part of the training set lexicon. For example, let 

us consider the incomplete sentence “do you” as input, and let us use the LTR model of C1 (Table 68) 
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to find some possible continuations. Remark that the word “do” is not included in the lexicon of the 

training set. As shown in Fig. 66a, the last word of the input sentence (“you”, which belongs to the 

lexicon of the training set) is fed into the LTR model, providing two possible continuations (“like” and 

“and”) which lead to the output sentences “do you like” and “do you and”.  Both output sentences can 

be further continued by exploiting the same LTR model (cf. Table 68), finally obtaining the sentences 

“do you like football” and “do you and I love music”. Although these sentences are very similar to S1 

and S2, respectively, they are new because they are not included in the original training set (cf. Table 

64).  

 
Fig. 66: (a) Example of sentence continuation by using the LTR model of C1 (cf. Table 68); (b) global three-dimensional LTR 

database of the obtained partitioning (PK=2, cf. Fig. 64). 

The mechanism of sentence continuation described in Fig. 66a enables the NLP algorithm to process 

incomplete sentences whose lexicon is partially unknown, and to generate new sentences which are not 

included in the original training set. Before passing to fine-training, the constructed LTR models (i.e. 

Table 68 and Table 69) are organized in the global three-dimensional LTR database represented in Fig. 

66b, where the third dimension corresponds to the number of clusters (K) in the obtained partitioning 

(PK=2, cf. Fig. 64).  

3.1.1.3. Fine-training: generation of the calibration set and ANN 

calibration 
The calibration set of the ANN consists of different calibration samples, each one composed by an 

incomplete input sentence and by the corresponding output context. According to Fig. 62, the calibration 

samples are generated as function of the training sentences (cf. Table 64) and of the clusters identified 

in the previous pre-training (cf. Fig. 64b). The generation process of the generic calibration sample is 

illustrated in Fig. 67a, and it is described as follows. An initial training sentence is randomly selected 

from the training set (phase 1), as the sentence S1 in Fig. 67a (cf. Table 64). The selected sentence is 

thus cut in a random point between two words and its right end is deleted (phase 2), obtaining an 

incomplete sentence. In the final step, each word of the current incomplete sentence has the 15% 

probability to be masked (phase 3). This technique is inspired to the new NLP algorithm recently 

developed by Google (cf. [111]), and its fundamental functions in our NLP methodology will be 

discussed in detail in section 3.1.1.4. As shown in Fig. 67a, the resulting calibration sample is thus 

characterised by the just generated incomplete sentence (input), with potentially masked words, and by 

its output context, which corresponds to the cluster containing the initial training sentence (i.e. C1, cf. 

Table 64 and Fig. 64b). 
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Fig. 67: (a) Generation process of the calibration samples; (b) forward step of the sample n (cf. Table 70). 

An example of calibration set generated with the process in Fig. 67a is reported in Table 70, where 

both mask-with and mask-free sentences are included thanks to the chosen word masking probability 

(cf. Fig. 67a). For each calibration sentence, the corresponding enhanced BOW model is obtained by 

Eqs. (18) and (19), and the relative position of the words replaced by “MASK” is zero. For example, if 

we compare samples 2 and 4 (cf. Table 70) which derive from the same training sentence (S1, cf. Table 

64), we can see that the relative position of “you” is 0.25 in sample 2, while it is zero in sample 4 due 

to masking. Finally, the output context in Table 70 are represented as probability arrays, where t1 and t2 

are the probabilities of belonging to C1 and C2, respectively (cf. Table 33). 

Table 70: Examples of generated calibration samples with the respective enhanced BOW models and probability arrays. 

 Calibration input Calibration output 

Sample 

# 

Incomplete 
sentence 

Original 
sentence 

Enhanced BOW (9 words) Context 
(cluster) 

Probability 

you like … with t1 t2 

1 I MASK with S3 0 0 … 0.83 C2 0 1 

2 you like S1 0.25 0.75 … 0 C1 1 0 

3 I eat S3 0 0 … 0 C2 0 1 

4 MASK like S1 0 0.75 … 0 C1 1 0 

… … … … … … … … … … 

n you MASK I love S2 0.13 0 … 0 C1 1 0 

… … … … … … … … … … 

N you and MASK S2 0.17 0 … 0 C1 1 0 

Once the calibration set has been generated, the calibration of the ANN is conducted by following 

the iterative procedure in Fig. 37a and the tests presented in the section 2.2.2.6. The forward step of the 

nth calibration sample (cf. Table 70) is illustrated in Fig. 67b, where the enhanced BOW model of the 

sentence “you MASK I love” represents the calibration input fed into the ANN (cf. Fig. 67b). Clearly, 

the numbers of input and output neurons correspond to the lengths of the BOW models and of the 

probability arrays (i.e. 9 and 2, respectively, cf. Table 70), while the number of hidden neurons must be 
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determined iteratively (cf. section 2.2.2.6). As shown in Fig. 67b, the ANN outputs (y1 and y2) and the 

calibration outputs (t1 and t2) are thus used to calculate the sample error En (cf. Eq. (9)), which will be 

used in the backword step to calculate weights’ corrections (cf. Fig. 37a). For brevity, we assume our 

ANN is calibrated. 

3.1.1.4. Fine-training: the fundamental functions of word masking 
Before proceeding, it is important to better understand the crucial role of masked words in the 

calibration set. It must be said that masking some words during the generation of the calibration samples 

is a commonly used technique in the training of the NLP algorithms, as the recent bidirectional encoder 

representation transformer (BERT) developed by Google in 2019 [111]. Based on BERT, the masking 

word technique has three main functions:  

• Generating a higher number of different calibration samples, in accordance with the fundamental 

guide principles of ANN calibration reported in Table 35. As seen in Table 70, the masking word 

probability (cf. Fig. 67a) enables to generate both mask-with and mask-free calibration sentences. 

For example, starting from the training sentence “you and I love music” (cf. Fig. 67a), we can obtain 

not only the calibration sentences “you and I love”, “you and I” and “you and”, but also their 

respective masked versions “you MASK I love”, “you and MASK” and “MASK and”. This enables 

to generate a calibration set that is much larger and much more varied than the initial training set.  

• Teaching the ANN to process input sentences whose lexicon is partially unknown, since the masked 

word simulates a word which is not included in the lexicon of the considered training set (as the 

word “do” in Fig. 66a). Within a certain limit, the use of masked words thus enables to extend the 

ANN abilities of context understanding without enlarging the original training set. 

• Teaching the ANN to process and classify input sentences which are potentially characterised by 

missing information. Considering the example in Fig. 27, let us suppose masking a word of the 

initial idea, obtaining the sentence “cantilever MASK full squared section”, where the masked word 

simulates a missing information. The presence of both mask-with and mask-free sentences in the 

calibration set (cf. Table 70) thus teaches the ANN to work with both weakly and clearly defined 

inputs. 

The three functions of the word masking technique are summarised in Table 71. The probability 

value of 15% (phase 3, cf. Fig. 67a) is adopted according to [111] and to previously conducted tests, 

which will not be presented for brevity.   

Table 71: Functions of the masking word technique (cf. [111]). 

# Function 

1 
Generating a higher number of different calibration samples. The calibration set is much larger 

and much more varied than the initial training set. 

2 
Teaching the ANN to process sentences whose lexicon is partially unknown. This means 

extending its abilities of context understanding without enlarging the original training set.  

3 
Teaching the ANN to process also inputs characterised by missing information. The calibrated 

ANN will be able to successfully elaborate both weakly and clearly defined inputs. 
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3.1.1.5. Scheme of the trained NLP algorithm 
The functioning scheme of the trained NLP algorithm is reported in Fig. 68, and it combines the 

global LTR database (cf. Fig. 66b) and the calibrated ANN (cf. section 3.1.1.3), respectively obtained 

in the steps of pre-training and  fine-training (cf. Fig. 62). By considering the incomplete input sentence 

“do you” (cf. Fig. 66b), let us see how the NLP algorithm accomplish the two base ideas initially 

schematized in Fig. 61a.  

 
Fig. 68: Functioning scheme of the trained NLP algorithm 

As shown in Fig. 68, the input sentence is first encoded according to the enhanced BOW model by 

means of Eqs. (18) and (19). The context understanding (cf. Fig. 61a) is then realized by extracting the 

LTR model indicated by the ANN output from the global database. Clearly, the selected LTR model 

(C1) corresponds to the highest probability resulted from the ANN (y1, cf. Fig. 68). As previously 

illustrated in Fig. 66b, the sentence continuation (cf. Fig. 61a) is finally accomplished by feeding the 

last word of the input sentence (“you”) into the selected LTR model and obtaining the possible 

continuations “like” and “and” (cf. Fig. 68). The output sentences “do you like” and “do you and” can 

be potentially re-fed into the NLP algorithm to be further continued. 
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3.1.2. Testing of the developed NLP algorithm 
In this section, the NLP algorithm (cf. Fig. 68) is trained by adopting an initial training set which is 

much larger than that reported in Table 64, enabling the reader to become more familiar with some 

critical technical aspects of the training process. The trained NLP algorithm is finally tested in order to 

verify its robustness and to highlight its potential limits regarding our purposes (cf. Table 9). The 

considered training set is composed by 50 different sentences belonging to the database of the most 

commonly used words21 in the Corpus of Contemporary American English22 (COCA) [116], and it is 

reported for brevity in annex A.1. Table 72 shows a reduced section of the training set and of the 

corresponding enhanced BOW model (cf. Table 64), where the 133 words of the total lexicon are 

reported in descending order of frequency. 

Table 72: Reduced section of the considered training set (cf. annex A.1) and of the corresponding enhanced BOW model. 

# Sentence 
Enhanced BOW (total lexicon = 133 words) 

I is you my this to … year 

S1 will you be my friend 0 0 0.3 0.7 0 0 … 0 

S2 you and I will always be friends 0.36 0 0.07 0 0 0 … 0 

S3 today is the first of november 0 0.25 0 0 0 0 … 0 

… … … … … … … … … … 

S48 
there are so many things I want to 
learn 

0.61 0 0 0 0 0.83 … 0 

S49 
this is the year I am going to learn 

english 
0.45 0.15 0 0 0.05 0.75 … 0.35 

S50 I am so sorry 0.13 0 0 0 0 0 … 0 

          

Presence Frequency 21 19 15 9 9 8 … 1 

Notably, each sentence of the training set (cf. annex A.1) contains at least one word among the first 

6 shown in Table 72 , i.e. the words “I”, “is”, “you”, “my”, “this” and “to”, which can be thus considered 

as the most representative features of the training set [111,114]. For this reason, these 6 features are 

adopted as the CFs for the clustering process in the pre-training step (cf. section 3.1.1.2). The current 

section is organized as follows. The two steps of pre-training and fine-training (cf. Fig. 62) are 

respectively described in sections 3.1.2.1 and 3.1.2.2. The results provided by the trained NLP algorithm 

and its limits are finally discussed in section 3.1.2.3. 

3.1.2.1. Pre-training: clustering and construction of the LTR 

database 

According to the 6 CFs adopted (“I”, “is”, “you”, “my”, “this” and “to”), the training dataset to 

cluster corresponds to the first 6 columns of the enhanced BOW model reported in Table 72, and it thus 

consists of 50 samples defined in R6. Based on the tests presented in section 2.2.3.6, the clustering 

procedure was conducted with the implemented GA by testing seven different numbers of clusters, from 

K=2 to K=8. For brevity, the parameters used in the GA (cf. Fig. 56) are summarised in annex A.2 for 

 

 

 

 

21 Find the training sentences at https://gonaturalenglish.com/1000-most-common-words-in-the-english-

language/. 
22 For more details, see https://www.english-corpora.org/coca/. 

https://gonaturalenglish.com/1000-most-common-words-in-the-english-language/
https://gonaturalenglish.com/1000-most-common-words-in-the-english-language/
https://www.english-corpora.org/coca/
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each K. The resulting values of DK, RD and ∆RD are reported in Table 73 (cf. Eq.(15) and Table 44), 

while the corresponding curve K-RD is shown in Fig. 69. 

Table 73: Values of DK, RD and ∆RD.  

 

K D
K

 
RD 

[%] 

∆RD 

[%] 
 

1 13.27 0 ---  

2 10.48 21 21  

3 8.21 38 17  

4 5.97 55 17  

5 4.39 67 12  

6 3.61 73 6  

7 2.95 78 5  

8 2.68 80 2  

     

     Fig. 69: Curve K-RD. 

The elbow of the curve K-RD can be identified with the help of ∆RD, whose value is halved from 

12% to 6% when passing from K=5 to K=6 (cf. Table 73). The partitioning PK=5 = {C1, C2, C3, C4, 

C5} is thus chosen as solution of the clustering procedure (cf. Fig. 69). The training samples contained 

in the clusters and the features of the respective ASs are provided in Table 74. Each AS is characterised 

by 6 features, which correspond to the 6 CFs adopted (“I”, “is”, “you”, “my”, “this” and “to”). 

Table 74: Content of the clusters and features of the respective ASs in the partitioning PK=5 (cf. Fig. 69). 

   ASs’ features (CFs) 

Cluster 
 Training samples 

(sentences) # 
AS I is you my this to 

C1 
9, 11, 21, 23, 29, 31, 34, 40, 42, 

43 
AS1 0 0.53 0 0 0.27 0 

C2 12, 15, 17, 32, 35, 44 AS2 0.13 0.13 0.73 0 0 0.13 

C3 6, 22, 33, 41, 47, 48, 49 AS3 0.27 0.07 0 0 0 0.67 

C4 1, 14, 16, 19, 24, 36, 46 AS4 0 0.13 0.07 0.67 0 0 

C5 

2, 3, 4, 5, 7, 8, 10, 13, 18, 20, 

25, 26, 27, 28, 30, 37, 38, 39, 

45, 50 

AS5 0.2 0.07 0.07 0 0 0 

We can see that the training samples are not uniformly distributed in the five clusters. According to 

Table 74, C5 contains the 40% (20/50) of all the training samples, while the other clusters contain far 

fewer samples, i.e. between the 12% (C2) and the 20% (C1). This because AS5 is characterised by low 

values of the features “I”, “is” and “you”, which often appear among the first words of the considered 

training sentences (cf. annex A.1). In the fine-training step (cf. Fig. 62), the non-uniform distribution of 

the training samples in the obtained clusters would lead to generate many calibration samples belonging 

to the context C5 (cf. Fig. 67a), and far fewer samples belonging to the other contexts. This would 

involve a concrete risk of biasing the calibration process towards C5, since the ANN would achieve a 

deep knowledge of this context, but it would have a poor accuracy in the contexts different from C5 

[111,114]. To avoid this problem, the number of samples in the clusters is uniformed by following the 

process illustrated in Fig. 70. The subscript “e” indicates that the clusters, the ASs and the CFs involved 

in Fig. 70 are taken as examples to facilitate the comprehension of the process, and they are thus different 

from those reported in Table 74. The number of samples of each cluster is indicated in the legend. 
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Fig. 70: Redistribution process of the outest samples into the nearest clusters to uniform the number of samples in the 

clusters. 

At the beginning (step 1, cf. Fig. 70), C2e contains far more samples than C1e and C3e, similarly to 

C5 in Table 74. Step by step, the outest samples in C2e are transferred into the respective nearest clusters, 

until the number of samples in all clusters is uniform. For each one of the outest samples to transfer, the 

destination cluster is determined by evaluating the Euclidean distance (cf. Eq. (13)) between the same 

sample and the ASs of the other clusters.  In step 1, the outest samples A and B are respectively 

transferred into C1e and C3e, thus reducing by two the number of samples in C2e and increasing by one 

those of C1e and C3e. The same effect is obtained in step 2, where the outest samples C and D are 

transferred into C1e and C3e, respectively (cf. Fig. 70). At the end, the clusters C1e, C2e and C3e will be 

characterised by six samples each one. It is important to remark that the process illustrated in Fig. 70 

enables to uniformly redistribute the training samples without changing the cores of the clusters obtained 

with the GA. Moreover, it can be easily adapted to our training set in R6 (first six columns of Table 72) 

to uniform the clusters in Table 74. The resulting uniformed clusters are reported in Table 75 and they 

contain ten samples each one. Observing the old clusters in Table 74, we can see that C1 has not been 

modified by the redistribution process, while the first ten samples of the previous C5 have been 

redistributed in C2, C3 and C4. After completing the samples’ redistribution process (cf. Fig. 70), the 

LTR models of the uniformed clusters (cf. Table 75) are constructed by following the process in Fig. 

65, and they are finally organized in the global three-dimensional LTR database represented in Fig. 71 

(cf. Fig. 66b). 

Table 75: Uniformed clusters of the partitioning 
PK=5. 

 

 

Cluster 
Training samples 

(sentences) # 

 

C1 
9, 11, 21, 23, 29, 31, 34, 40, 

42, 43 

 

C2 
1, 7, 12, 13, 15, 17, 20, 32, 35, 
44 

 

C3 
2, 6, 8, 18, 22, 33, 41, 47, 48, 

49 

 

C4 
3, 4, 5, 10, 14, 16, 19, 24, 36, 
46 

 

C5 
25, 26, 27, 28, 30, 37, 38, 39, 

45, 50 

 

   
   Fig. 71: Global LTR database of the partitioning PK=5 (cf. Table 74). 
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According to the obtained partitioning (PK=5, cf. Table 75), the global LTR database is composed 

by five LTR models, whose rows and columns contain the 133 words of the total training lexicon (cf. 

Table 72). Thanks to the redistribution process of the samples, the five LTR model share a similar 

amount of lexical and syntactic knowledge, since the number of training sentences in the starting clusters 

is the same (cf. Table 75).  

3.1.2.2. Fine-training: generation of the calibration set and ANN 

calibration 
The calibration set is generated with the process in Fig. 67a, and it consists of 2000 calibration 

samples equally divided into the five output contexts (cf. Table 75). This enables to observe the 

calibration guide principles reported in Table 35 in terms of number and diversity of calibration samples. 

A reduced section of the calibration set is reported in Table 76. Similarly to the set in Table 70, the 

current calibration set includes both mask-free and mask-with sentences. According to Table 76, the 

ANN to be calibrated is characterised by 133 input neurons, one for each word of the total lexicon, and 

5 output neurons, one for each context (cf. Fig. 67b), while the number of hidden neurons is determined 

during the calibration.  

Table 76: Calibration set generated with the process in Fig. 67a. 

 Calibration input Calibration output 

Sample 

# 

Incomplete 
sentence 

Orig. 
sent. 

Enhanced BOW  

(133 words) 
Context 
(cluster) 

Probability 

I is … year t1 t2 … t5 

1 MASK is the first S3 0 0.38 … 0 C5 0 0 … 1 

2 I want to go with S15 0.1 0 … 0 C2 0 1 … 0 

3 this is MASK year S49 0 0.38 … 0.88 C3 0 0 … 0 

… … … … … … … … … … … … 

2000 that MASK is S11 0 0.83 … 0 C1 1 0 … 0 

Based on the tests presented in section 2.2.2.6, six calibration tests with increasing numbers of hidden 

neurons (5, 10, 15, 20, 25, 30) were conducted with the implemented ANN. Each test refers to a different 

calibrated ANN, whose accuracy is evaluated as function of Eep
v  (cf. section 2.2.2.6 and Table 37). For 

brevity, the used set-up parameters of the ANN (cf. Fig. 39) are reported in annex A.3. The values of 

Eep
v  achieved in the calibration tests are reported in Table 77, together with the values of ∆Eep

v  (cf. Table 

37).  

Table 77: Values of Eep
v  obtained in the calibration tests and corresponding percentage variations (∆Eep

v ). 

Test # 

(ANN #) 

Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]  
Adopted for the 

NLP algorithm 

Accuracy ≈ 90% 

1 5 0.1 --- ← 

2 10 0.1 0  

3 15 0.1 0  

4 20 0.1 0   

5 25 0.1 0   

6 30 0.1 0   

We can easily remark that the same values of Eep
v  were obtained in all tests, indicating an achieved 

accuracy of 90% for all the calibrated ANNs. Based on section 2.2.2.6, the calibrated ANN with the 

minimum number of hidden neurons (5, cf. Table 77) is thus adopted for the NLP algorithm (cf. Fig. 

68). 
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3.1.2.3. Results and limits of the trained NLP algorithm 
Based on Fig. 68, the NLP algorithm schematized in Fig. 72a was implemented in Matlab, and it 

involves the calibrated ANN adopted (10 hidden neurons and 90% accuracy) and the LTR database 

constructed in Fig. 71. Three examples showing the results of sentence continuation are reported in Fig. 

72b, where the superscript of the words indicates the iteration number. At each iteration, the output 

sentences obtained at the previous iteration were entered into the NLP algorithm, until the suggested 

continuations were exhausted. For instance, the sentence “can you give my favorite” was obtained in 

the first iteration with the initial input “can you give me my” (cf. Fig. 72a), while the sentence “can you 

give my favorite cookie” resulted from the second iteration by considering the sentence “can you give 

my favorite” as input. Each example is characterised by a different tree structure, depending on which 

context of the global LTR database was involved in sentence continuation.  

 
Fig. 72: (a) Scheme of the trained NLP algorithm (cf. Fig. 68); (b) examples of sentence continuation. 

All three initial input sentences are different from the original training sentences and contain 

unknown words, i.e. “give”, “wants” and “sure” respectively, which are not included in the lexicon of 

the original training set (cf. annex A.1). In general, the NLP algorithm is quite robust in processing 

unknown sentences and in proposing different coherent continuations, thanks to the use of masked words 

in the calibration set of the ANN (cf. Table 71). This is a very positive result, mostly considering that 

the initial training set (50 sentences and 133 different words) is still very limited compared to that of a 

real person, which already includes about 6,000 different words in 6-years-old children [117]. We can 

remark that quite singular and unexpected output sentences are obtained in some cases, as “can you give 

me my english teachers” and “can you give me my brother” in example 1 (cf. Fig. 72b). In accordance 

with our purposes (cf. Table 9), obtaining unexpected and singular results represents an advantage in 
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view of conceptual design, since solutions that seem uncoherent or even meaningless enable to further 

enlarge the solutions space and could hide a great breakthrough potential. Based on Fig. 61a and on our 

purposes (cf. Table 9), some limits of the developed NLP methodology must be however highlighted. 

The number of possible continuations proposed clearly depends on the adopted training set (cf. Table 

72), and on how and how many times the different words of the training lexicon are employed. 

Therefore, very few possible continuations can be often suggested by the NLP algorithm, mostly in the 

first iterations (as in the examples 2 and 3, cf. Fig. 72b). The number of continuations proposed at each 

iteration can be directly increased by adding new sentences to the initial training set (cf. Table 72). This 

however requires re-training the NLP algorithm, and it may thus be very time consuming. An alternative 

approach consists of selecting more contexts during the phase of context understanding and to combine 

them, in order to increase the effective number of proposed continuations. This enables to exploit the 

current training set as much as possible without adding new training sentences. The latter approach is 

described in section 3.1.3, and it represents an improvement of the current NLP algorithm.  

3.1.3. Improvement of the NLP methodology 
The improvement of the NLP methodology described in this section enables to increase the number 

of sentence continuations proposed by the NLP algorithm without considering additional training 

sentences. The same training set of 50 sentences as Table 72 (cf. annex A.1) is assumed in order to 

compare the final results to those obtained in Fig. 72b. According to [111,114], the 6 most frequent 

words, i.e. “I”, “is”, “you”, “my”, “this” and “to”, were considered as the most representative features 

and were thus adopted as CFs in section 3.1.2. In this section, the idea is to divide the same CFs into 

two distinct groups, rather than considering them as a unique ensemble. This will enable to obtain two 

distinct LTR databases to be combined in the phase of context understanding (cf. Fig. 72b), increasing 

the number of proposed continuations. The current section is organized as follows. The training process 

(cf. Fig. 62) is described in section 3.2.3.1. The scheme of the improved NLP algorithm is presented in 

section 3.2.3.2. Results and conclusions are finally provided in section 3.2.3.3. 

3.1.3.1. Training process 
Let us divide the CFs into two groups: CFs1 = {“I”, “is”, “you”} and CFs2 = {“my”, “this”, “to”}. 

The respective datasets to cluster are reported in Table 78 (cf. Table 72), and they both consist of 50 

samples defined in R3.  

Table 78: Training datasets to cluster according to the two adopted groups of CFs (cf. Table 72). 

 Dataset 1 (CFs
1
) Dataset 2 (CFs

2
) 

Sample #  I is you my this to 

S1 0 0 0.3 0.7 0 0 

S2 0.36 0 0.07 0 0 0 

S3 0 0.25 0 0 0 0 

… … … … … … … 

S48 0.61 0 0 0 0 0.83 

S49 0.45 0.15 0 0 0.05 0.75 

S50 0.13 0 0 0 0 0 

The steps of pre-training and fine-training are conducted in the same way as in sections 3.1.2.1 and 

3.1.2.2, respectively. The only difference is that we will construct two distinct LTR databases, one for 

each dataset (cf. Table 78) and we will calibrate two different ANNs, one for each LTR database. The 

pre-training and fine-training steps are briefly presented as follows. 

Pre-training. As in section 3.1.2.1, two different clustering procedures, one for each training datasets 

(cf. Table 78), were conducted with the implemented GA, by testing seven different numbers of clusters, 
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from K=2 to K=8. The set-up parameters of the GA are the same as annex A.2, while the curves K-RD 

and the resulting partitioning levels inherent to CFs1 and CFs2 are reported in annex A.4 for brevity. The 

partitioning levels inherent to CFs1 and CFs2 are both composed by 4 clusters (K=4), and they are 

respectively indicated as P1
K=4 = {C1.1, C1.2, C1.3, C1.4} and P2

K=4 = {C2.1, C2.2, C2.3, C2.4}. For 

P1
K=4 and P2

K=4, the uniformed clusters are obtained with the redistribution process in Fig. 70 , and they 

are reported in Table 79 and Table 80, respectively. As in section 3.1.2.1, this avoids biasing the 

calibration of the ANN during the step of fine-training.  

Table 79: Uniformed clusters of the partitioning P1
K=4 

(CFs1). 
 Table 80: Uniformed clusters of the partitioning P2

K=4 

(CFs2). 

Cluster Training samples (sentences) #  Cluster Training samples (sentences) # 

C1.1 
6, 16, 19, 22, 24, 33, 36, 40, 42, 45, 

46, 50 
 C2.1 

9, 10, 11, 13, 14, 16, 17, 18, 19, 24, 36, 

46 

C1.2 
2, 3, 4, 14, 21, 23, 25, 26, 27, 28, 

35, 41, 43 
 C2.2 

28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 

44, 45, 50 

C1.3 
1, 5, 15, 29, 30, 31, 32, 34, 37, 38, 
39, 44 

 C2.3 
3, 4, 6, 15, 20, 21, 22, 25, 33, 41, 47, 
48, 49 

C1.4 
7, 8, 9, 10, 11, 12, 13, 17, 18, 20, 

47, 48, 49 
 C2.4 1, 2, 5, 7, 8, 12, 23, 26, 27, 40, 42, 43 

The LTR databases inherent to P1
K=4 and P2

K=4 are respectively represented in Fig. 73a and b (cf. Fig. 

71). Each LTR model was constructed with the training sentences contained in the corresponding 

uniformed cluster (cf. Table 79 and Table 80) by following the process in Fig. 65, and its rows and 

columns contain the 133 words of the total training lexicon (cf. Table 72).  

 
Fig. 73: (a) LTR database of the partitioning P1

K=4 (CFs1) and (b) LTR database of the partitioning P2
K=4 (CFs2).  

Fine-training. The calibration set consists of 2000 different samples and it is reported in Table 81. 

Notably, the same calibration inputs as those in Table 76 were used to allow a more consistent 

comparison between the improved NLP algorithm and the NLP algorithm represented in Fig. 72b. As 

shown in Table 81, we have two different sets of calibration outputs, the first one inherent to P1
K=4 (cf. 

Table 79) and to the LTR database in Fig. 73a and second one inherent to P2
K=4 (cf. Table 80) and to the 

LTR database in Fig. 73b. Two different ANNs must be thus calibrated, one for each set of calibration 

outputs and both characterised by 133 input neurons and 4 output neurons (cf. Table 81), while the 

respective numbers of hidden neurons are determined during the calibration process.  
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Table 81: Calibration set (cf. Table 76). 

 Calibration input Cal. output 1 (P1
K=4

) Cal. output 2 (P2
K=4

) 

S. # 
Incomplete 
sentence 

Orig. 
sent. 

Enhanced BOW 

(133 words) Cont. 
Probability 

Cont. 
Probability 

I … year t1 … t4 t1 … t4 

1 MASK is the first S3 0 … 0 C1.2 0 … 0 C2.3 0 … 0 

2 I want to go with S15 0.1 … 0 C1.3 0 … 0 C2.3 0 … 0 

3 this is MASK year S49 0 … 0 C1.4 0 … 1 C2.3 0 … 0 

… … … … … … … … … … … … … … 

2000 that MASK is S11 0 … 0 C1.4 0 … 1 C2.1 1 … 0 

For both sets of calibration outputs (cf. Table 81), different calibration tests with increasing numbers of 

hidden neurons were conducted with the implemented ANN, similarly to section 3.1.2.2 and using the 

set set-up parameters reported in annex A.3. For brevity, the results of the calibration tests in terms of 

Eep
v  and the choice of the calibrated ANNs are summarised in annex A.5. The characteristics of the 

calibrated ANNs adopted for the improved NLP algorithm are reported in Table 82, in terms of number 

of hidden neurons, corresponding Eep
v  and average accuracy. We can see that ANN1 and ANN2 are 

respectively characterised by 15 and 20 hidden neurons. Their values of Eep
v  are quite similar (0.08 and 

0.06, respectively), indicating an average accuracy of 93%. 

Table 82: Characteristics of the calibrated ANNs adopted for the improved NLP algorithm (cf. annex A.5). 

Calibrated ANN 
Corresponding 

partitioning 

Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  

Average 

accuracy 

ANN1 P1
K=4 15 0.08 

93% 
ANN2 P2

K=4 20 0.06 

3.1.3.2. Scheme of the improved NLP algorithm 

The scheme of the improved NLP algorithm is illustrated in Fig. 74, involving the two ANNs 

calibrated in the fine-training step (cf. Table 82) and the two LTR databases constructed in the pre-

training step (cf. Fig. 73). The same input sentence considered in Fig. 72a is initially encoded into the 

same enhanced BOW composed by 133 numbers, which is now fed into both ANN1 and ANN2. During 

the phase of context understanding, two LTR models are extracted from the respective databases 

according to the outputs of the respective ANNs. The selected LTR models are square matrices of the 

same size (133x133, cf. Fig. 73), and they can be thus easily combined into a unified context (CU) by 

means of a weighted sum, as shown in Fig. 74. This operation not only increases the number of sentence 

continuations proposed by the NLP algorithm, but the values of CU also represent a sort of fitness of the 

proposed continuation words to the input sentence. Clearly, the validity of the fitness depends on the 

initial training sentences. To better understand the results provided by the improved NLP algorithm, the 

same three examples presented in Fig. 72b will be resumed in section 3.1.3.3. 
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Fig. 74: Scheme of the improved NLP algorithm. 

3.1.3.3. Results and conclusions 

The results shown in Fig. 75a were obtained with the improved NLP algorithm (cf. Fig. 74), using 

the same initial input sentences of the three examples in Fig. 72b. The superscript indicates the iteration 

number, and the tree structures resulted by entering the output sentences obtained at the previous 

iteration into the improved NLP algorithm, until exhausting the proposed continuations (cf. section 

3.1.2.3). For brevity, only the first two iterations are shown in Fig. 75a. We remember that all the initial 

input sentences contain unknown words which are not included in the lexicon of the training set, i.e. 

“give”, “dad” and “wants” (cf. annex A.1). The results reported in Fig. 75a lead to the same conclusions 

made in section 3.1.2.3: despite the low number of training sentences and the limited lexicon, the 

improved NLP algorithm demonstrates to be quite robust in processing unknown sentences and in 

proposing different coherent continuations. As in the previous version (cf. Fig. 72a), some unexpected 

or meaningless outputs are possible, like the sentences and “can you give me my cousin” (example 1) 
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and “his dad wants to the first” (example 2, cf. Fig. 75a). However, in this case, the presence of this type 

of outputs can be potentially indicated to the user by a fitness value lower than 123.  

 
Fig. 75: (a) Results obtained with the improved NLP algorithm; (b) fitness histograms comparing the actual results to those 

in Fig. 72b at the first iteration. 

The most significant result regards the number of proposed continuations, which was the purpose 

of the present section and which clearly is much higher than in the previous version. The fitness 

histograms in Fig. 75b compare the actual results to those reported in Fig. 72b at the first iteration of the 

NLP algorithm. For the previous NLP algorithm, the presence of a word among the proposed 

continuations is indicated by a red dotted bar of unitary length (cf. Fig. 75b). An increase of the number 

of proposed continuations can be remarked in all examples. Example 2 shows the most relevant increase, 

with 5 more words proposed at the first iteration than the previous version, and the 80% of them (“learn”, 

“watch”, “visit”, “play”) is clearly coherent with the context of the input sentence. We can conclude that 

the improved NLP algorithm fully satisfy our objective of increasing the number of proposed solutions 

without modifying the initial training set. Moreover, the presented approach can be further extended by 

adopting more than two distinct groups of CFs. Two important considerations can be finally added to 

the present discussion: 

• The more distinct groups of CFs are adopted, the longer and the “more exhausting” the training 

process. Based on section 3.1.3.1, each additional group of CFs requires an additional clustering 

procedure to be performed, an additional LTR database to be constructed and an additional ANN to 

be calibrated. However, we believe the duration can be significantly reduced by including all these 

procedures in a unique automatic and autonomous training algorithm.  

 

 

 

 

23 In this version of the NLP algorithm, the fitness acts as indicator of potentially incoherent solution. In other 

words, a fitness lower than 1 does not necessarily indicate the corresponding solution is incoherent. Verifying the 

consistency of the obtained solutions lies with the user.    
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• The approach presented in this section can be considered as a short-term solution to improve the 

NLP algorithm potential, exploiting the training set as much as possible. In the long term, extending 

the operative range of the NLP algorithm clearly requires the enlargement of the training set. 

Nevertheless, we believe that the presented improvement is very useful when training data are 

difficult to find or when they take a long time to be collected, as we will see for our demonstrator. 

The demonstrator is developed in the next section by adapting the methodology of the improved NLP 

algorithm to the field of conceptual design.
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3.2. Demonstrator of conceptual design procedure 

based on the NLP methodology 
The original demonstrator of conceptual design procedure presented in this section is based on the 

improved NLP algorithm (cf. section 3.1.3). The current section is organized as follows. The two main 

hypotheses on which the developed demonstrator is based are introduced and discussed in section 3.2.1. 

The adaptation of the improved NLP algorithm to conceptual design is presented in section 3.2.2. The 

initialization of the knowledge database and the training process of the NLP algorithm are presented in 

section 3.2.3. The functioning of the demonstrator and the obtained results are illustrated in section 3.2.4 

with an original example of conceptual design. Some important future developments are finally 

proposed and discussed in section 3.2.5.  

3.2.1. Hypotheses 
We present the two main hypotheses of the developed demonstrator. The current section is 

organized as follows. The first hypothesis concerns the conceptual design procedure, and it is given in 

sections 3.2.1.1. The second hypothesis regards instead the knowledge base of the machine, and it is 

discussed in section 3.2.1.2. The hypotheses are finally summarised in section 3.2.1.3. 

3.2.1.1. HP 1: Intervention of the user in the conceptual design 

procedure 

In accordance with the PAAs reported in Table 18, the demonstrator of conceptual design procedure 

implemented in this work involves two main steps: identification of the SPs and development of the 

CVs (cf. Fig. 16). The scheme of the demonstrator represented in Fig. 76 is based on the original 

representation of the mental processes assumed in Fig. 28, and it highlights the roles of user and machine 

in performing the conceptual design steps. The description of the KCAs is reported in Table 24. 

 
Fig. 76: Scheme of the demonstrator highlighting the roles of user and machine in performing the conceptual design steps 

(cf. Fig. 28). 
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The input is initially provided by the user in form of initial idea and specifications. As highlighted 

in Fig. 76, it is assumed that the user is an expert in the field of mechanical and structural engineering. 

The first step is performed by the machine via the NLP algorithm, while the second step is performed 

by the user. As anticipated in section 2.1.2.3, the idea of the developed methodology based on machine 

learning is to exploit the power of the KCAs and all the advantages offered by machine during 

conceptual design, without being affected by brain limits (cf. Fig. 23). Due to the difficulties 

encountered in realizing this ambitious idea, our efforts in this work are mainly focused on the first 

conceptual design step. We are thus aware that the development of the CVs in the second step could be 

potentially influenced by memory biases and other brain limits (cf. Table 25). In the second step, it is 

also assumed to focus on the process of analogy-making for applying the SPs to the initial idea (cf. Fig. 

28), while the new CVs will not be numerically evaluated. In agreement with our purposes (cf. Table 

9), the idea is to remain at a conceptual level, diverting the user’s attention from technical details 

concerning the mechanics of the developed CVs and which would affect the choices of the same user 

via the cognitive biases. 

3.2.1.2. HP 2: Knowledge of the machine based on few words and 

few design samples 
According to Fig. 76 and to the NLP methodology presented in section 3.1.3, the machine (NLP 

algorithm) exploits the knowledge of different design samples (DSs) to formulate the SPs by means of 

a certain number of words, whose ensemble constitutes the total lexicon. A limited lexicon (less than 30 

words) and a limited number of DSs are assumed in the current demonstrator (cf. Fig. 76). Our position 

is clarified in Fig. 77, where the blue curve is adapted from [80,81,117] and it represents the evolution 

of the number of words known by a human as function of the age, while the red curve represents a 

hypothetic evolution of the lexicon known by the machine. 

 
Fig. 77: Evolution of the known number of words (lexicon) in humans (cf. [80,81,117]) and in the machine of our 

demonstrator (cf. Fig. 76) as function of the age, highlighting the position of our work. 

The lexicon of the machine and the known DSs are for now very limited, as in a baby learning his 

first words (cf. Fig. 77). The idea is to highlight the potential of the developed methodology by showing 
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that the machine is able to express complex design concepts and to provide relevant results with few 

words and few design examples to which refer. The DSs and the adopted lexicon are presented as 

follows. The five considered DSs are shown in Fig. 78. All DSs involve bidimensional systems 

composed by one-dimensional structural elements with different behaviour models (wire, axial spring, 

truss and beam), as the standard tests for undergraduate engineering students. The behaviour models of 

all elements can be found in [42,118]. The assumptions made for the DSs are summarised in Table 83.  

 
Fig. 78: Set of considered DSs. 

Table 83: Assumptions on the considered DSs (cf. Fig. 78). 

# Assumption 

1 Small displacement and small deformations 

2 Constraints are perfect, smooth (no friction) and bilateral 

3 Linear elastic isotropic and homogenous material, the spring is also linear 

4 Generic section for beam elements 

The adopted lexicon is composed by 28 different words (cf. Fig. 77) of three types:  

• Clustering features (CFs), used to translate the DSs into BOW models, which will be employed to 

train the NLP algorithm (cf. Fig. 62). The 15 CFs assumed are reported in Table 84, and they are 

divided into two families and five distinct groups. According to the improved NLP methodology 

(cf. section 3.1.3), each group of CFs represents a different way of describing and clustering the DSs 

(cf. Table 78). The criteria to define the values of the CFs will be presented in section 3.2.2. 
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Table 84: Assumed CFs. 

Family Group # Described aspect CFs 
Number 

of CFs 

Spatial 

configuration 

CFs1 Geometry 

free 

linear 
close 

3 

CFs2 Boundary conditions 
straight 

extremity 
2 

Mechanical 

features 

CFs3 Element type 

wire 
spring 

truss 

beam 

4 

CFs4 Constraint type 

carriage 
pin 

joint 

3 

CFs5 Type of internal load 

traction 
compression 

bending 

3 

• Engineering parameters (EPs), used to express the input specifications (cf. Fig. 76). Based on the 

GEPs in TIPS (cf. Table 12), the 6 EPs assumed are reported in Table 85, and they represent different 

generalized design specifications to potentially improve during conceptual design.  

Table 85: Assumed EPs and respective descriptions. 

EP Description 

m Structural mass 

U1 
Absolute value of the maximum displacement along the 

direction 1 (cf. Fig. 78) 

U2 
Absolute value of the maximum displacement along the 

direction 2 (cf. Fig. 78) 

Sr Strength 

Pk Peak load of global buckling 

Fn First natural frequency 

• Complementary lexicon (CL), used to express the SPs (cf. Fig. 76). The 7 words belonging this type 

are reported in Table 86, and they are of three types: material properties, section properties and 

structure topology. The use of the words regarding material and section properties is limited to the 

elements indicated in Table 86, in agreement with the assumptions of Table 83. The word “frame” 

enables to formulate SPs for directly acting on the structure topology, its use will be better clarified 

in section 3.2.4. It is important to remark that the words of the CL identify both parameters to be 

increased or decreased (as “E”, “rho”, etc.), and general characteristics to be added or removed (as 

“hollow”, “variable”, etc.) from the design of the initial idea. This will enable the machine to provide 

SPs of different types, in agreement with the BDPs and with our purposes (cf. Table 5 and Table 9).  
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Table 86: Words of the complementary lexicon (CL), respective description and use limitations. 

Type 
Word of the 

CL 
Description Use limited to 

Material 

properties 

E Elastic modulus 
Wire, spring, truss, 

beam 

rho Density Wire, truss, beam 

Section properties 

A Area Wire, truss, beam 

Jb Bending inertia  Beam 

hollow Beam with hollow section Beam 

variable 
Variable section over the length of 
the beam 

Beam 

Structure topology frame 
Different ensembles of connected 
structural elements 

--- 

3.2.1.3. Summary of the hypotheses 
The two hypotheses presented in this section are summarised in Table 87. 

Table 87: Summary of the hypotheses. 

HP Assumptions 

1. Intervention of the user 

in the conceptual design 

procedure (cf. section 
3.2.1.1) 

Scheme of the demonstrator presented in Fig. 76: 

• Inputs provided by the user in form of initial idea and 

specifications. The user is an expert of mechanical and structural 

engineering. 

• Step 1 (identification of the SPs) performed by the machine via the 

NLP algorithm. 

• Step 2 (development of the CVs) performed by the user (memory 
biases could be potentially introduced). Focus on analogy-making, 

CVs’ numerical evaluation is not included. 

2. Knowledge of the 
machine based on few 

words and few design 

samples (cf. section 3.2.1.2) 

Very limited lexicon composed by 28 words: 

• 15 clustering features (CFs, cf. Table 84), 

• 6 engineering parameters (EPs) to express the specifications (EPs, 
cf. Table 85), 

• Complementary lexicon (CL) of 7 words to express the SPs (cf. 

Table 86). 
 

Only 5 DSs considered (cf. Fig. 78 and Table 83) 
 

The lexicon and the DSs assumed are sufficient to the machine for 

formulating complex design concepts and for providing relevant 

results. 
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3.2.2. Adaptation of the NLP methodology to conceptual 

design 
The scheme of the NLP algorithm used in the first step of the demonstrator (cf. Fig. 76) is 

represented in Fig. 79, and it is based on the improved NLP algorithm illustrated in Fig. 74. The scheme 

enables to immediately visualize how the SPs are provided, and to better introduce the aspects discussed 

in this section. The explanation of Fig. 79 is conducted step by step as follows: 

• Inputs. The initial idea is provided by the user as a structure to be improved. Following the ideas 

of the implemented NLP methodology, we adopted an arbitrary mechanical system different from 

the DSs in Fig. 78. The specifications are expressed by means of the EPs assumed in Table 85, 

where the use of the desinences “_+” (plus) or “_-” (minus) indicates whether the corresponding EP 

must be increased or decreased. 

• Encoding. The initial idea is encoded in a BOW model composed by the 15 CFs assumed in Table 

84. Similarly to the enhanced BOW used in section 3.1, all CFs are defined between 0 and 1. The 

criteria to define the values of the CFs are presented in the current section. As indicated in Fig. 79, 

this step emulates the KCA of abstraction (cf. Fig. 76): the CFs correspond to the abstracted features 

of the initial idea, and they will be used to retrieve the experienced DSs (cf. Table 24).  

• Context understanding and sentence continuation. The encoded initial idea is fed into the ANNs 

of the NLP algorithm. As in Fig. 74, the number of ANNs and LTR databases involved in the context 

understanding corresponds to the number of CFs’ groups (cf. Table 84). The rows and the columns 

of each LTR model respectively contain the specifications and the SPs. The latter are expressed by 

combining the words of the CL (cf. Table 86), the CFs (Table 84) and the desinences “_+” (plus), 

“_-” (minus) and “_w” (where). The definition and the interpretation of the SPs are described in the 

current section, while the construction of the LTR databases will be presented in section 3.2.3. As 

indicated in Fig. 79, these steps emulate the generalization ability (cf. Fig. 76): the conceptual 

solutions contained in the LTR databases are based on the DSs, but they are finally used as SPs on 

the initial idea (cf.  Fig. 28).  

• Outputs. According to our purposes (cf. Table 9), the resulting SPs involve conceptual solutions of 

different types, recommending both “quantitative” (“A_-”) and “qualitative” (“hollow_+ 

bending_w”) changes of the initial idea for reducing the mass. 
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Fig. 79: Scheme of the NLP algorithm in the first step of the demonstrator (cf. Fig. 74 and Fig. 76). 

The current section is organized as follows. The criteria to define the CFs’ values are presented in 

section 3.2.2.1, and they represent an original and effective way of describing a mechanical structure 

with a natural language model inspired to the enhanced BOW (cf. section 3.1.1.1). All criteria were 

integrated in a useful tool implemented in MATLAB [48] for drawing the initial idea. This original tool 

directly provides the values of the CFs as function of the drawn structure, and it is briefly presented in 

section 3.2.2.2. The definition and the interpretation of the SPs are finally described in section 3.2.2.3. 
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3.2.2.1. Criteria to define the values of the CFs 
According to Table 84, the CFs are divided into two families: spatial configuration and mechanical 

features. The CFs of the first family describe how the elements and the boundary conditions 

characterising the structure are arranged, without providing any information about the nature of the 

involved elements and constraints. Vice versa for the CFs of the second family, which also include the 

description about the nature of internal loads. The five structures shown Fig. 80 are used as examples to 

introduce the definition criteria of the CFs. All the structures are based on the legend in Fig. 78. We can 

see that S1 corresponds to the initial idea in Fig. 79, while DS3 and DS4 are among the design samples 

adopted in Fig. 78. The structures S1, S2 and S3 share a similar configuration of the elements, and they 

are used to better highlight the description role of the CFs. 

 
Fig. 80: Examples to introduce the definition criteria of the CFs, including three structures with a similar configuration and 

the design samples DS3 and DS4 (cf. Fig. 78). 

The criteria are presented as follows for each group of CFs, according to the order in Table 84. The 

given criteria will be finally summarised in Table 88. 

Group CFs
1
 = {free, linear, close}. As shown in Fig. 81, the structures are merely considered as 

ensembles of segments delimited by points, neglecting all boundary conditions and all mechanical 

features. The red points in Fig. 81 correspond the intersections between the elements in the original 

structures (cf. Fig. 80), while the green points to the free vertices of the segments. The numbers on the 

structures of Fig. 81 correspond to the different portions identified after tracing the convex envelope 

contour, and they are assigned arbitrarily.  

 
Fig. 81: Definition criteria of the CFs in the first group (CFs1 = {free, linear, close}, cf. Table 84). 

The three CFs belonging to this group are thus defined as follows: 

• The feature “free” is the ratio of the number of free points to the sum of free points and intersection 

points (i.e. the total number of points). 

• The feature “linear” is the ratio between the total number of adjacent segments (i.e. consecutive 

segments arranged on the same line) and the total number of segments. In case of a single segment 

(as DS3, cf. Fig. 81), the value of this feature is assumed as 1. In DS4, we have 6 total adjacent 

segments, i.e. the 4 horizontal ones plus the 2 vertical ones.  
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• The feature “close” is the ratio of the number of structurally closed portions (i.e. delimited by only 

segments) to the total number of portions. For example, the portions 2 and 3 in DS4 are structurally 

closed, while the portions 1, 4, 5 and 6 are structurally open. In case of a single segment (as DS3, 

cf. Fig. 81), the value of this feature is assumed as 0.  

We can see that S1, S2 and S3 are characterised by the same values of the CFs “free”, “linear” and 

“close” the same values.  

Group CFs
2
 = {straight, extremity}. The representation of the structures considered in Fig. 81 is 

resumed in Fig. 82, where the positions of the constraints are now indicated in agreement with Fig. 80. 

Remark that we are considering the constraints as general boundary conditions by neglecting their 

nature.  

 
Fig. 82: Definition criteria of the CFs in the second group (CFs2 = {straight, extremity}, cf. Table 84). 

According to Fig. 82, the two CFs belonging to this group are defined as follows: 

• The feature “straight” is the ratio of the number of constraints linked by adjacent segments to the 

total number of constraints. For example, in DS4, the two constraints located on the left side and on 

the right side are linked by the four adjacent horizontal segments, leading to 0.67 (2/3). Instead, in 

S1, S2 and S3, we have no adjacent segments, which means that the value of this feature is always 

0. 

• The feature “extremity” is the ratio between the number of constraints coinciding with the contour 

vertices and the total number of constraints.  

We can see that S1, S2 and S3 are now distinguished by the configuration of the boundary conditions, 

since they are characterised by different values of the CF “extremity”.  

Group CFs
3
 = {wire, spring, truss, beam}. As shown in Fig. 83, the structures of Fig. 80 are 

represented as ensembles of elements delimited by nodes, thus enabling to visualize the used behaviour 

models (cf. Fig. 78). The element numbers indicated in Fig. 83 are assigned arbitrarily. The concept of 

node is inspired to the finite element method (FEM, cf. [119]), and it includes: 

• Free points, intersection points and constraint positions (cf. Fig. 82). 

• The application points of the concentrated loads (if any). 

• The limits of the distributed load loads (if any).  

For example, elements 2 and 3 in S3 are separated by the limit of the distributed load (cf. Fig. 80), while 

elements 1 and 2 in DS3 are separated by application point of the concentrated load (cf. Fig. 80).  
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Fig. 83: Definition criteria of the CFs in the third group (CFs3 = {wire, spring, truss, beam}, cf. Table 84). 

According to Fig. 83, each CF is easily defined as the ratio between the number of the elements 

corresponding to the type indicated by the same CF and the total number of elements. Consequently, if 

a type has been assigned to all elements, the sum of the CFs “wire”, “spring”, “truss” and “beam” in 

each structure is necessarily equal to 1. 

Group CFs
4
 = {carriage, pin, joint}. As shown in Fig. 84, the structures are considered as ensembles 

of generic elements delimited by the same nodes defined in Fig. 83, and where it is possible to 

distinguish the different types of used constraints (cf. Fig. 80). Each CF is easily defined as the ratio 

between the number of the constraints corresponding to the type indicated by the same CF and the total 

number of constraints. Consequently, the sum of the CFs “carriage”, “pin” and “joint” in each structure 

is necessarily equal to 1. 
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Fig. 84: Definition criteria of the CFs in the fourth group (CFs4 = {carriage, pin, joint}, cf. Table 84). 

Group CFs
5
 = {traction, compression, bending}. As shown in Fig. 85, the structures are considered 

as ensembles of generic elements delimited by the same nodes defined in Fig. 83, visualizing the internal 

solicitations due to the external loads (cf. Fig. 80). Three types of internal solicitation are considered: 

traction normal effort (N+), compression normal effort (N-) and bending moment (M), whose respective 

CFs are defined as illustrated in Fig. 85. We can remark that the sum of the CFs “traction”, 

“compression” and “bending” in each structure is not necessarily equal to 1, since a same element can 

be solicited by both traction and bending or by both compression and bending. 

 
Fig. 85: Definition criteria of the CFs in the fifth group (CFs5 = {traction, compression, bending}, cf. Table 84). 

All the presented criteria consist of ratios defined in the range [0;1], and whose description is 

summarised in Table 88 in terms of numerator and denominator. The ensemble of these criteria enables 

the user to encode the initial idea into a structural BOW model (cf. Fig. 79). Moreover, the originality 

of the defined criteria is that the determined CFs’ values do not necessarily identify a unique structure, 



155 

 

but an ensemble of structure. This aspect will be exploited in section 3.2.3, during the generation of the 

calibration set for the ANNs.  

Table 88: Definition criteria of the CFs’ values: description of numerator and denominator in the ratios (cf. Fig. 81-Fig. 85). 

CFs’ 

group 
CF Numerator Denominator 

Reference 

figure 

CFs1 

free Number of free points 
Sum of the numbers of free 
points and intersection 

points 

Fig. 81 
linear 

Total number of adjacent 
segments 

Total number of segments 

close 
Number of structurally closed 

portions 
Total number of portions 

CFs2 

straight 
Number of constraints linked by 
adjacent segments Total number of 

constraints 
Fig. 82 

extremity 
Number of constraints coinciding 

with the contour vertices 

CFs3 

wire Number of wire elements 

Total number of elements Fig. 83 
spring Number of spring elements 

truss Number of truss elements 

beam Number of beam elements 

CFs4 

carriage Number of carriages 
Total number of 

constraints 
Fig. 84 pin Number of pins 

joint Number of joints 

CFs5 

traction 
Number of elements in traction 

(N+) 

Total number of elements Fig. 85 compression 
Number of elements in 
compression (N-) 

bending 
Number of elements in bending 

(M) 

3.2.2.2. An original drawing tool to promote hand-sketching 
The comprehension of the criteria to define the CFs (cf. Table 88) and their application may be a 

little challenging for a new user of the demonstrator. All the criteria were thus integrated in an original 

drawing tool inspired to CAD programs and implemented in MATLAB [48]. The idea of this tool is 

actually twofold: 

• Facilitating and speeding up the definition of the CFs’ values when conducting the initial encoding 

step in the NLP algorithm (cf. Fig. 79). A base knowledge of the criteria in Table 88 is clearly 

required for using the drawing tool.  

• In accordance with our purposes (cf. Table 9), developing a tool of “aided hand-sketching” free 

from the rules of mechanics and which leaves more space to improvisation, for helping the user 

overcoming his cognitive bias (cf. Table 8). 

The program interface is composed by the two windows shown in Fig. 86. The window in Fig. 86a 

provides a bidimensional space where the user can draw the structure and the values of the CFs 

associated to the drawn structure which are automatically calculated by the program. The structure 

drawn in Fig. 86a corresponds to DS4, and we can see that all CFs are equal to those found in section 

3.2.2.1 (cf. Fig. 81-Fig. 85). According to the criteria defined in section 3.2.2.1 (cf. Table 88), the 

window in Fig. 86b is used to select the functions for creating segments and nodes (cf. Fig. 81 and Fig. 

83, respectively), for assigning the element types, for creating the constraints and for defining the 

internal loads. All functions are provided as buttons (cf. Fig. 86b).  
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Fig. 86: Interface windows of the original drawing tool: (a) drawing space and CFs’ values; (b) functions [48]. 

The use of the implemented drawing tool is very intuitive, and it is briefly illustrated as follows. 

For example, let use draw the horizontal part of DS4 (cf. Fig. 86a), which is characterised by four 

adjacent beam elements (cf. Fig. 83). We must first draw the horizontal segment representing the whole 

horizontal part of DS4, following the procedure in Fig. 87. The function “Segment” is selected by the 

user, who thus defines two points on the drawing space. The segment is created by the program after 

defining the second point, and the CFs are automatically updated. In a similar way, the procedures to 

assign element types and to create constraints are shown in Fig. 88. The procedure to assign the internal 

load type is analogous to the procedure a (cf. Fig. 88). It is important to remark that the order whom 

operations a and b (cf. Fig. 88) are executed is irrelevant.  

 

Fig. 87: Creating the horizontal part of DS4 with the drawing tool (cf. Fig. 86). 
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Fig. 88: Procedures (a) to define assign element type and (b) to create a constraint (cf. Fig. 86). 

We can now proceed to create the vertical part of DS4 (cf. Fig. 86a) as illustrated in Fig. 89. Based 

on Fig. 87, the new vertical segment P1P2 is first created by defining two points on the drawing space. 

The function of automatic intersection (cf. Fig. 86b) guarantees the automatic creation of the intersection 

point between the horizontal part and the vertical part when the new segment is drawn. Indeed, remark 

that the feature “free” is updated to 0.8 (step 1, cf. Fig. 89), since the new structure involves 1 

intersection point and 4 free points (cf. Fig. 81). Moreover, the feature “beam” is updated to 0.5 (step 1, 

cf. Fig. 89), since the new structure involves 2 beam elements (horizontal) and 2 generic elements 

(vertical), i.e. whose type has not been assigned yet. The function of automatic intersection can be easily 

disabled by pushing on the corresponding button (cf. Fig. 86b) if the user wants to avoid creating an 

intersection point. 

 
Fig. 89: Steps to create the vertical part of DS4 (cf. Fig. 86). 

After creating the new vertical segment, the element type can be assigned as shown in Fig. 88. 

Remark that the feature “beam” is updated to 1 (step 2, cf. Fig. 89), since the whole structure is now 

characterised by beam elements. We have seen that the drawing methodology proposed in the 

implemented tool is intuitive and is free from any mechanical rule regarding the statics of the considered 

structure. For instance, we may draw structures without necessarily assigning an element type to all 

segments. We believe that this could favour creative improvisation, which is a fundamental component 

of the BDPs (cf. Table 5), enabling the user to transcend technical details. This property of the 

implemented tool is object of the future developments of the demonstrator (which are discussed in 

section 3.2.5), and its benefits to conceptual design thus still need to be better studied and evaluated.
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3.2.2.3. Definition and interpretation of the SPs 
Based on Fig. 79, the SPs are sentences provided in an original abbreviated form, to facilitate the 

construction of the LTR models. As schematized in Fig. 90, the SPs are sentences composed by two 

parts. The first part involves an action suggested to satisfy a required specification, while the second 

part gives further indications for applying the action to the initial idea, as for example the type of element 

which must be affected by the action. As seen Fig. 79, the second part can be provided or not, depending 

on the complexity of the expressed conceptual solution. If the second part is not provided, the suggested 

action can be applied to the whole initial idea at the user’s discretion.  

 
Fig. 90: Scheme of a SP. 

According to Fig. 90, both parts of a SP are composed by a suffix and a desinence. It is assumed 

that the suffix of the first part can be formed by both CFs (cf. Table 84) and words of the CL (cf. Table 

86), while the suffix of the second part by only CFs. Three different desinences are assumed: 

• “_+” (plus) indicates that the object of the corresponding suffix should be increased (or added); 

• “_-” (minus) indicates that the object of the corresponding suffix should be decreased (or removed); 

• “_w” (where) is used to designate the corresponding suffix as a location.  

Different types of conceptual solutions can be obtained, depending on how the desinences are employed 

in the two parts of the SP. The six assumed types of SPs are reported in Table 89, where the suffixes of 

action (part 1) and indication (part 2) are respectively indicated with “object1” and “object2”.  

Table 89: Assumed types of SP and respective interpretation. 

Type Action (part 1) 
Indication (part 

2) 
Interpretation 

1. General 

increase (addition) 
object1_+  Increase (add) object1 

2. General 

decrease (removal) 
object1_-  Decrease (remove) object1 

3. Local increase 

(addition) 
object1_+ object2_w Increase (add) object1 in/at/of object2 

4. Local decrease 

(removal) 
object1_- object2_w 

Decrease (remove) object1 in/at/of 

object2 

5. Replacement object1_+ object2_- Add object1 in place of object2 

6. Structural 

addition 
object1_+ object2_+ 

Add object1 fixed to object2 (object2 is 

a new constraint to add) 

According to Table 89, the SPs provided in Fig. 79, i.e. “A_-” and “hollow_+ bending_w”, 

respectively belong to the types 2 and 3. Notably, the SP “A_-” recommends decreasing the section area 

to reduce the structural mass. Lacking further indications (part 2), the section area can be reduced both 

in the horizontal and in the vertical part of the initial idea (cf. Fig. 79). The SP “hollow_+ bending_w” 

(type 3, cf. Table 89) recommends adding the characteristic of hollow section (cf. Table 86) in the parts 
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of the structure which are solicited to bending. According to Table 89, the SPs belonging to the types 1 

and 4 are interpreted in a similar way. Two examples of the types 5 and 6 as follows: 

• Type 5: “pin_+ carriage_-”, recommending replacing a carriage with a pin. 

• Type 6: “truss_compression_+ pin_+”, suggesting reinforcing the structure by adding a truss in 

compression fixed to a new pin. 

When multiple words are used in the suffix, they are organized in the order of Table 84 and Table 86, 

in accordance with Fig. 90. In general, the types 1, 2, 3 and 4 can be easily understood and applied to 

the initial idea thanks to the interpretation provided in Table 89, while the types 5 and 6 involve more 

complex and specific actions and thus need more exhaustive explanations to be applied. According to 

the adopted approach (PAAs, cf. Table 18), the types 5 and 6 and some other SPs will be thus supported 

by illustrated design examples inspired to the effects used in TIPS (cf. Table 16) and based on the DSs 

(cf. Fig. 78). The illustrated design examples are indicated as supporting DCs (supporting design cases) 

and will be presented in section 3.2.3. 
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3.2.3. Training of the NLP algorithm employed in the 

demonstrator 
The training of the NLP algorithm employed in the demonstrator involves the two phases reported 

in Fig. 91. In the training set-up phase, we initialize the knowledge database of the NLP algorithm. As 

shown Fig. 91, the knowledge database is composed by three different levels: the BOW models of the 

DSs, the SPs to construct the LTR databases (cf. Fig. 79) and the DCs supporting some SPs (cf. section 

3.2.2.3). The following phase corresponds to the training process of the NLP algorithm (cf. Fig. 62), and 

it is conducted in a similar way to that of the improved NLP methodology presented in section 3.1.3.1.  

 
Fig. 91: Steps to train the NLP algorithm (cf. Fig. 62). 

This section is organized as follows. The set-up of the knowledge database is described in section 

3.2.3.1. The pre-training step is thus presented in section 3.2.3.2, while the fine-training step in section 

3.2.3.3. 

3.2.3.1. Training set-up: initialization of the knowledge database 
The overall knowledge database is initialized into a unique Excel file including three different 

datasheets, one for each level. The three initialized knowledge levels are reported and described one by 

one as follows. 

Level 1. The database of the DSs is shown in Fig. 92. The rows contain the CFs in the same order as 

Table 84, while the columns contain the names of the five considered DSs (cf. Fig. 78). The initialized 

values of the CFs were calculated with the drawing tool presented in section 3.2.2.2.  

 
Fig. 92: Excel datasheet of level 1: BOW models of the DSs (cf. Fig. 91). 

 

Group Name CFs DS1 DS2 DS3 DS4 DS5

free 0 1 1 0 0.75

linear 0.29 1 1 0.75 0

close 1 0 0 0.33 0

straight 1 0 1 0.67 0

extremity 1 1 1 1 1

wire 0 0 0 0.25 0

spring 0 0 0 0 0.33

truss 1 0 0 0 0.67

beam 0 1 1 0.75 0

carriage 0.5 0 0.5 0.67 0.33

pin 0.5 0 0.5 0 0.33

joint 0 1 0 0.33 0.33

traction 0.57 0 0 0.25 0

compression 0.43 0 0 0.5 1

bending 0 1 1 0.5 0

𝐂 𝐬 𝐂 𝐬 

𝐂 𝐬𝟐

𝐂 𝐬 

𝐂 𝐬 

𝐂 𝐬 
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Level 2. The complete database of level 2 (cf. Fig. 91) includes about 40 different SPs. A section of the 

initialized SPs’ database is shown in Fig. 93, where the first column contains the names of the five DSs 

initialized in Fig. 92. Based on Table 85 and Fig. 79, 12 different design specifications were defined by 

combining the 6 EPs assumed and the two desinences “_+” and “_-”. For each DS, we generated as 

many different SPs as possible for satisfying all 12 specifications, based on the indications given in Fig. 

90 and Table 89. We can see that the same SP can be used to satisfy different specifications. For 

example, the SP “truss_compression_+ pin_+” is used in DS1 for decreasing both U1 and U2. The 

efficacy of all SPs was tested with the finite element method (FEM). The FEM models of the DSs used 

for this purpose were implemented in ABAQUS [120], and their characteristics are summarised in annex 

Errore. L'origine riferimento non è stata trovata.. Some examples illustrating the verification of the 

SPs via the FEM models are reported in annex B.2. The empty cells in Fig. 93 indicate that no SP was 

defined for those specifications. In DS2 (cf. Fig. 78), for example, U2 is equal to zero due to the 

assumptions in Table 83, and the specifications “U2_+” and “U2_-” cannot be thus satisfied. Finally, 

the right column of the SP database indicates if the corresponding SPs are supported by one or more 

DCs (cf. section 3.2.2.3). The supporting DCs are employed for all SPs belonging to the types 5 and 6 

(cf. Table 89) and, where necessary, for some SPs belonging to the other types (cf. Fig. 93).  

 
Fig. 93: Section of the Excel datasheet of level 2: list of the SPs to construct the LTR databases (cf. Fig. 79 and Fig. 91). 
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Level 3. The function of the DCs is to illustrate possible ways of applying the SPs to the DSs, supporting 

the interpretation of the SPs (cf. Table 89). The DCs are based on the DSs, and they are verified with 

the same FEM models used for the SPs (cf. annex B.2, examples 3 and 4). The generated DCs were 

organized in a morphological matrix inspired to that used in TIPS for sub-functions and effects (cf. 

Table 16). A section of the initialized morphological matrix is shown in Fig. 94. The rows of the matrix 

contain the five DSs (cf. Fig. 78), while the columns contain the SPs for which the presence of 

supporting DCs was indicated in the initialized SPs’ database (cf. Fig. 93). For example, the DC 

corresponding to DS1 and to the SP “truss_compression_+ pin_+” (type 6, cf. Table 89) shows the 

evolution of DS1 by adding two new trusses in compression fixed to two new pins. To define this DC, 

we assumed that the new added pins are aligned to the constraints already existing. Notably, same DCs 

can support different SPs, as well same SPs can be used to satisfy different specifications (cf. Fig. 93). 

Moreover, more than one DC can be contained in the same cell of the morphological matrix, since there 

could be more than one possibility of applying the same SP to the same DS. The grey colour indicates 

the empty cells.  

 
Fig. 94: Section of the Excel datasheet of level 3: morphological matrix containing the DCs (cf. Fig. 91). 

The knowledge database referred to the single DS1 is finally schematized in Fig. 95, which is based 

on Fig. 18. A similar schematization can be clearly adopted for all the other DSs. The schematization in 

Fig. 95 enables to better visualize the three knowledge levels presented in this section.  

 
Fig. 95: Schematization of the knowledge database referred to the single DS1 (cf. Fig. 91). 

pin_+ truss_compression_+ … truss_compression_+ …
carriage_- pin_+ … …

DS1 … …

DS2 … … … … …
DS3 … … … … …

DS4 … … … …

DS5 … … … … …
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According to the adopted approach (cf. Table 18), the knowledge database of the NLP algorithm (cf. 

Fig. 92-Fig. 94) involves an original use of the natural language (CFs and SPs) supported by illustrated 

DCs. Notably, the efficacy of the initialized SPs was tested by means of FEM models, but these only 

represent a verification tool exterior to the implemented NLP methodology, and they are not used in the 

demonstrator to provide responses.  

3.2.3.2. Pre-training: clustering and construction of the LTR 

databases 
The pre-training of the current NLP algorithm is based on that presented in section 3.1.3.1, 

considering the DSs as training samples. The datasets to cluster are generated from the database of level 

1 (cf. Fig. 92), and they are schematized in Table 90, based on (cf. Table 78). 

Table 90: Schematization of the training datasets to cluster corresponding to the five adopted groups of CFs (cf. Table 78 
and Fig. 92). 

 Dataset 1 (CFs
1
) Dataset 2 (CFs

2
) Dataset 3 (CFs

3
) … Dataset 5 (CFs

5
) 

S. # free … close straight extr. wire … beam … traction … bending 

DS1 0 … 1 1 1 0 … 0 … 0.57 … 0 

DS2 1 … 0 0 1 0 … 1 … 0 … 1 

DS3 1 … 0 1 1 0 … 1 … 0 … 1 

DS4 0 … 0.33 0.67 1 0.25 … 0.75 … 0.25 … 0.5 

DS5 0.75 … 0 0 1 0 … 0 … 0 … 0 

Based on section 3.1.3.1, five different clustering procedures (one for each training dataset, cf. Table 

90) were conducted with the implemented GA. In each clustering procedure, the number of clusters is 

increased from K=2 to K=424. The set-up parameters of the GA correspond to those reported in annex 

A.2 (from K=2 to K=4). For brevity the obtained curves K-RD (cf. Fig. 69) are summarised in annex 

B.3. The five resulting partitioning levels, the corresponding clusters and the respective ASs are reported 

in Table 91. For each partitioning, the number of samples in the clusters is uniform, and there is thus no 

need to apply the redistribution process of Fig. 70. The pertinence of the obtained results can be easily 

assured by comparing the CFs’ values of the DSs in each cluster to the corresponding ASs. In P1
K=3, for 

example, C1.1 contains DS2 and DS3, both characterised by unitary values of the CFs “free” and 

“linear”, and by null values of the CF “close”. We can see that the corresponding AS1.1 is characterised 

by the same features (cf. Table 91). Similar considerations can be made for each cluster in each 

partitioning.  

 

 

 

 

 

24 For K=5 the ASs to determine directly correspond to the five DSs 
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Table 91: Resulting partitioning levels, corresponding clusters and determined ASs (cf. annex B.3).  

CFs 

group 
Partitioning Cluster DS# AS ASs’ features (CFs) 

CFs1 P1
K=3 

 free linear close 

 

C1.1 2, 3 AS1.1 1 1 0 

C1.2 5 AS1.2 0.73 0 0 

C1.3 1, 4 AS1.3 0 0.53 0.67 

CFs2 P2
K=2 

 straight extremity 

 C2.1 1, 3, 4 AS2.1 0.87 1 

C2.2 2, 5 AS2.2 0 1 

CFs3 P3
K=2 

 wire spring truss beam 

C3.1 1, 5 AS3.1 0 0.13 0.87 0 

C3.2 2, 3, 4 AS3.2 0.07 0 0 0.93 

CFs4 P4
K=3 

 carriage pin joint 

 

C4.1 1, 3 AS4.1 0.53 0.53 0 

C4.2 2 AS4.2 0 0 1 

C4.3 4, 5 AS4.3 0.47 0.13 0.33 

CFs5 P5
K=3 

 traction comp. bending 

C5.1 2, 3 AS5.1 0 0 1 

C5.2 5 AS5.2 0 1 0 

C5.3 1, 4 AS5.3 0.4 0.47 0.27 

The LTR models involved in the NLP algorithm were shown in Fig. 79. The construction process 

of the LTR models is based on Fig. 65, and it is illustrated in Fig. 96 for the cluster C1.1 (cf. Table 91). 

The generic LTR model is first initialized as a matrix of zeros, whose rows and columns respectively 

contain the 12 specifications and the 40 different SPs available in the whole database of level 2 (cf. Fig. 

93). This assures that all the generated LTR models share the same number of rows and the same number 

of columns. As shown in Fig. 96, the value 1 is assigned to every specification-SP couple corresponding 

to the DSs contained in the considered cluster. For repeated specification-SP couples, the value 1 in the 

target cell is maintained. The constructed LTR models are finally organized into a three-dimensional 

LTR database (cf. Fig. 79). Five different LTR databases are obtained, i.e. one for each partitioning (cf. 

Fig. 79 and Table 91). 

 
Fig. 96: Construction process of the LTR model for the cluster C1.1 = {DS2, DS3} (cf. Table 91). 
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3.2.3.3. Fine-training: generation of the calibration set and 

calibration of the ANNs 
Unlike section 3.1.3.1, we cannot generate the current calibration set with the process in Fig. 67a, 

due to the very low number of training samples (i.e. the five DSs). If we did, we would generate a lot of 

repeated calibration samples, involving a concrete risk of biasing the calibration process (cf. Table 35). 

Based on Fig. 67a, an alternative process for generating the calibration set was thus developed for the 

current demonstrator, and it is illustrated in Fig. 97. This new process is divided into three phases. The 

first one consists of generating a fictitious design sample (FDS), characterised by random CFs’ values 

limited in the range [0;1]. According to the defined CFs’ criteria (cf. Table 88), the generated FDS 

represents an ensemble of hypothetic DSs sharing the same CFs’ values. In the second phase, the five 

target contexts (one for each partitioning) of the new FDS are determined by calculating the Euclidean 

distance (cf. Eq. (13)) between the same FDS and the ASs (cf. Table 91). For each partitioning, the 

distance is calculated as function of the CFs in the corresponding CFs’ group. For P1
K=3, for example, 

the three distances between FDS and the artificial samples AS1.1, AS1.2 and AS1.3 are evaluated as 

function of the the CFs “free”,”linear” and “close”, and the minimum distance identifies the target 

context (cf. Fig. 97). In the third step, the FDS is submitted to masking (cf. Table 71). Based on Fig. 

67a, each CF has the 15% probability to be masked, and when this happens the corresponding value is 

set to zero.  

 
Fig. 97: Generation process of the calibration samples in the current demonstrator (cf. Fig. 67a). 

As shown in Fig. 97, the finally obtained calibration sample is thus composed by an input part, i.e. 

the FDS, and by an output part, i.e. the five target contexts. As in section 3.1.3.1, the generated 

calibration set consists of 2000 different samples, and it is reported in Table 92. In this case, we have 
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five different sets of calibration outputs, i.e. one for each partitioning (cf. Table 91). Five different ANNs 

must be thus calibrated, all characterised by 15 input neurons (as the 15 CFs). For each ANN, the number 

of output neurons is equal to the K of the corresponding partitioning (cf. Table 92), while the number of 

hidden neurons is determined during the calibration process. 

Table 92: Calibration set (cf. Table 81). 

 Calibration input Cal. output 1 (P1
K=3

) … Cal. output 5 (P5
K=3

) 

S. # 
FDS (15 CFs) 

Cont. 
Probability … 

Cont. 
Probability 

free linear … bending t1 t2 t3 … t1 t2 t3 

1 0.71 0 … 0.87 C1.2 0 1 0 … C5.1 1 0 0 

2 0.06 0.48 … 0 C1.3 0 0 1 … C5.3 0 0 1 

3   …  C1.3 0 0 1 … C5.2 0 1 0 

… … … … … … … … … … … … …  

2000 0 0.69 … 0.23 C1.1 1 0 0 … C5.3 0 0 1 

As in section 3.1.3.1, different calibration tests with increasing numbers of hidden neurons were 

conducted with the implemented ANN for each set of calibration outputs, using the set-up parameters 

reported in annex A.3. For brevity, the results of the calibration tests in terms of Eep
v  and the choice of 

the calibrated ANNs are summarised in annex B.4. The characteristics of the five calibrated ANNs 

adopted in the NLP algorithm of the demonstrator (cf. Fig. 79) are reported in Table 93, in terms of 

number of hidden neurons, Eep
v  and average accuracy. The values of Eep

v  achieved by the calibrated 

ANNs are quite similar, and they indicate an average classification accuracy of 91%. 

Table 93: Characteristics of the calibrated ANNs adopted for the NLP algorithm of the demonstrator (cf. annex B.4). 

Calibrated ANN 
Corresponding 

partitioning 

Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  

Average 

accuracy 

ANN1 P1
K=3 10 0.09 

≈ 91% 

ANN2 P2
K=2 5 0.07 

ANN3 P3
K=2 15 0.08 

ANN4 P4
K=3 10 0.10 

ANN5 P5
K=3 15 0.09 
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3.2.4. Functioning of the demonstrator and results 
The functioning of the demonstrator is illustrated in this section with an example. The initial idea 

shown in Fig. 79 is assumed as input structure, and it is unknown to the trained NLP algorithm (it is not 

included in the set of considered DSs, cf. Fig. 78). As shown in Fig. 98, the CFs’ values are quickly 

calculated with the implemented drawing tool (cf. Fig. 86). The assumed input specifications are 

reported in Table 94, and they involve the reduction of the structural mass and the increasing of the 

structural stiffness along both directions.  

 
Fig. 98: Automatic calculation of the CFs belonging to the input initial idea with the implemented drawing tool (cf. Fig. 86a). 

Table 94: Input specifications. 

Specs. Description 

m_- Reduce structural mass 

U1_- Reduce the maximum displacement along direction 1 

U2_- Reduce the maximum displacement along direction 2 

The current section is organized as follows. The first step (cf. Fig. 76) is automatically performed 

by the trained NLP algorithm (cf. Fig. 79) and it is presented in section 3.2.4.1, while the second step is 

manually performed and presented in section 3.2.4.2. Based on the conducted example, the achieved 

results concerning our purposes (cf. Table 9) are finally commented in section 3.2.4.3, also highlighting 

some important progresses embedded in the current demonstrator.  

3.2.4.1. Step 1: identification of the SPs 
The NLP algorithm schematized in Fig. 79 is characterised by five ANNs and five LTR databases 

(cf. Fig. 79), in agreement with the results of the training process (cf. Table 91 and Table 93), and it was 

implemented in MATLAB [48]. The intuitive user interface consists of a unique Excel table, which is 

shown in Fig. 99a. The data contained in the green cells are initialized by the user, and they involve the 

CFs of the input initial idea (cf. Fig. 98) and the input specifications (cf. Table 94). The resulting SPs 

are directly reported on the MATLAB command window with the same format as the SPs’ database 

(specification, action, indication and eventual supporting DC, cf. Fig. 93), and they are shown in Fig. 
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99b. The supporting DCs extracted by the DCs’ database (cf. Fig. 94) are shown in Fig. 100-Fig. 104, 

where the numbers correspond to the indices of the resulting SPs (cf. Fig. 99b).  

 
Fig. 99: (a) Input user interface of the demonstrator; (b) SPs provided by the implemented NLP algorithm (cf. Fig. 79). 

 
Fig. 100: DCs supporting the SPs of indices 5 and 9 (cf. Fig. 99b). 

 
Fig. 101: DCs supporting the SP of index 10 (cf. Fig. 99b). 



169 

 

 
Fig. 102: DCs supporting the SPs of indices 11 and 12 (cf. Fig. 99b). 

 
Fig. 103: DCs supporting the SP of index 13 (cf. Fig. 99b). 

 
Fig. 104: DCs supporting the SP of index 14 (cf. Fig. 99b). 
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Observing Fig. 99b, we can see that multiple SPs were provided for the specifications “m_-” and 

U1_-”, while no SP was provided for “U2_-”. Some of the provided SPs can be considered equivalent 

in the present case, i.e. the SPs 3 and 4 and the SPs 7 and 8, respectively, since the overall structure of 

the initial idea is solicited to bending (cf. Fig. 98). Regarding “m_-” and U1_-”, we obtained different 

SPs enabling to considerably expand the solution space and to act on the initial idea at different scales: 

material properties, section properties and structure topology (cf. Table 86). The evolution of the 

structure topology is particularly encouraged by the presence of many SPs of types 5 and 6 (cf. Table 

89). Indeed, the respective supporting DCs provide many ideas to adopt different types of reinforcements 

based on wires and trusses (cf. Fig. 100-Fig. 104), but also to radically change the base structure. For 

example, the DC of index 5 (cf. Fig. 100) illustrates the replacement of a full beam with a frame of 

trusses. The fitness of the resulting SPs is on average high, between 0.8 and 1 (cf. Fig. 99b). According 

to these values, the majority of the SPs represent potentially relevant conceptual strategies23, able to 

satisfy the corresponding specification. Finally, the NLP algorithm provided no SP for the specification 

“U2_-” (index 15, cf. Fig. 99b), while there effectively exists a non-zero displacement along the 

direction 2 in the initial idea (cf. Fig. 79). However, according to the provided DCs (cf. Fig. 100-Fig. 

104), the majority of the resulting SPs is based on DS2 and DS3 (cf. Fig. 78), where U2 is zero due to 

the assumptions made in Table 83. It is thus important to remark that the absence of SPs for “U2_-” is 

due to the limited size of the knowledge database, which is based on very few DSs. In the following step 

of the demonstrator, we will focus on “m_-” and U1_-”. 

3.2.4.2. Step 2: development of the CVs 
The development of the concept variants is manually conducted by applying the SPs provided by 

the NLP algorithm to the initial idea, and it is shown in Fig. 105. According to Fig. 76, this process is 

based on the interpretation of the SPs reported in Table 89, and on the analogies found between initial 

idea and supporting DCs (cf. Fig. 100-Fig. 104). As shown in Fig. 105, each SP is first applied to the 

initial idea following the order of the indices in Fig. 99b, and the applied SPs are then combined into 

new CVs. Based on the first hypothesis of the demonstrator (cf. Table 87), some of our memory biases 

could be introduced in both phases, and the numerical evaluation of the developed CVs is not performed: 

we remain at a conceptual level, where “everything” is potentially possible. According to our purposes 

(cf. Table 9), this enables to mainly focus on finding original ways to apply and combining the SPs, 

considering less important the technical details concerning the statics of the generated CVs25. For 

brevity, the following assumptions were made in Fig. 105: 

• As anticipated in section 3.2.4.1, we focus on solving the specifications “m_-” and “U1_-”, since 

no SP was for now provided for “U2_-” (cf. Fig. 99b). 

• We mainly focus on the SPs supported by the DCs (i.e. 5, 9-14, cf. Fig. 99b), which enable to better 

visualize the evolution of the initial idea. It is assumed that the other SPs can be applied very easily 

and quickly by an expert user. 

• A maximum of two application possibilities are given for each SP, and some SPs are considered in 

couple, as the SPs 9 and 10 and the SPs 11 and 12 (Fig. 99b), respectively, whose supporting DCs 

involve similar solutions. 

 

 

 

 

25 This aspect is object of the future developments and it is resumed in section 3.2.5.  
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Fig. 105: Development of the CVs based on the application of the SPs to the initial idea (cf. Fig. 79 and Fig. 98). 

The different SPs combined into the generated CVs were chosen arbitrarily, and the number of 

combined SPs increases going from CV1 (2 SPs combined) to CV3 (4 SPs combined). We are aware 

that our memory biases could have potentially influenced both the phases of analogy-making and 

combination (cf. Fig. 105). According to the required specifications, each CV shown in Fig. 105 includes 

conceptual solutions for answering to both “m_-” and U1_-”. The topology of the CVs is considerably 

evolved from that of the initial idea. In accordance with the adopted approach (PAAs, cf. Table 18), all 

changes to the original structure were introduced without the help of any equation, but only by following 

the indications of the SPs, whose interpretation is reported in Table 89, and by finding analogies between 

the initial idea and the supporting DCs. According to Fig. 105, the most exploited analogy concerns the 
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horizontal part of the initial idea and the design samples DS2 and DS3 (cf. Fig. 78), on which the 

majority of the supporting DCs is based (cf. Fig. 100-Fig. 104). We believe that all the generated CVs 

represent valid and relevant solutions, at least at a conceptual level. The effect of the combined SPs will 

be numerically weighted by the user in the subsequent embodiment design step (cf. Fig. 2), by 

transforming the CVs into design layouts to be tested and optimized.  

3.2.4.3. Achieved results and important progresses concerning our 

purposes 
Based on the presented example, the most important results concern the NLP algorithm used in the 

first step (cf. section 3.2.4.1). In agreement with the BDPs (cf. Table 5), the NLP algorithm provides 

multiple and different SPs (cf. Fig. 99b), pertinent to the input initial idea and enabling to act on the 

initial idea at different scales. This result is even more encouraging if we consider that the knowledge 

database of the NLP algorithm is based on a very limited number of DSs (cf. Table 87), and that the 

initial idea considered in the presented example is not included among them, i.e. it is unknown. Thanks 

to the non-numerical form of the SPs, there is no distinction between more performing (“good”) and 

less performing (“bad”) SPs, and this involves a minor focus on optimal solutions (cf. Table 9). Even 

with a very limited base lexicon (cf. Table 87), the defined SPs can express simple as well as more 

complex design concepts, which can be easily applied to the initial idea with the help of the DCs. All 

these elements contribute to enlarge the solution space, limiting the effects of cognitive biases (cf. Fig. 

11) and providing the designer many different ideas for the conceptual development of the initial idea. 

Two other characteristics of the developed demonstrator represent an important progress towards the 

promotion of a design approach more oriented to improvisation and less depending on technical design 

rules (cf. Table 5 and Table 9): 

• The implemented drawing tool (cf. section 3.2.2.2): it not only facilitates the definition of the CFs 

in the initial encoding step (cf. Fig. 79), but it also represents an original way to promote hand-

sketching, whose benefits are summarised in Table 8.  

• The process of analogy-making and SPs combination presented in Fig. 105 (cf.  section 3.2.4.2), by 

which the user have more possibilities to invent and to take unconventional design choices 

Both characteristics are object of future developments, and they will be resumed in section 3.2.5. 
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3.2.5. Future developments 
The original conceptual design methodology presented in this chapter is the first demonstrator a 

future advanced software for aided breakthrough design. Based on the encouraging results achieved with 

the NLP algorithm and on the made progresses (cf. section 3.2.4.3), many future developments of the 

demonstrator are possible. The most important ones are reported as follows in order of increasing 

implementation difficulty:  

• Enlargement of the knowledge database (cf. Fig. 92-Fig. 94). This first requires expanding the 

set of considered DCs (cf. Fig. 78) and the base lexicon (cf. Table 84-Table 86), then generating 

additional SPs and supporting DCs, possibly by also adopting new SP types (cf. Table 89). This 

development (ideally at short-term) would widen the potential of the NLP algorithm, which would 

be able to process many more different initial ideas and specifications and to propose many more 

diverse conceptual solutions in the first step.  

• Processing of “incomplete” initial ideas. In agreement with the adopted approach (PAAs, cf. Table 

18), both the drawing tool and the NLP algorithm are free from any model or equation regarding the 

statics and the mechanical response of the studied structure26. Thanks to this aspect and to the use 

of the masking word technique in the generation of the calibration set (cf. Fig. 97 and Table 71), the 

drawing tool and NLP algorithm are potentially able to process “incomplete” initial idea, i.e. 

characterised by “missing information”, as for example a non-assigned element type or a missing 

constraint which makes the structure unstable. First, is this feature useful? We believe so: it is 

possible that the user of the demonstrator may have an unclear initial idea (and thus incomplete), 

especially at the beginning of the conceptual design. Therefore, how much incomplete can the initial 

idea be for obtaining relevant results with the NLP algorithm? Answering to the latter question 

requires further specific tests, whose development represents a future middle-term objective.    

• Performing the second step with the machine. The second step of the conceptual design procedure 

is for now manually conducted by the user (cf. Fig. 76 and section 3.2.4.2). As said in section 3.2.4.3, 

we believe that the hypotheses made in Table 87 favour the outflow of the user’s spirit of invention 

and a minor focus on technical details during the generation of the CVs, in accordance with our 

purposes (cf. Table 9). However, the user is hopelessly conditioned by his memory biases. As 

experts, we will mostly be influenced by our subconscious functional fixedness (cf. Table 6), which 

will always prevent us to “think outside the box”, more or less significantly. The implementation of 

an algorithm emulating the processes of analogy-making and of SPs’ combination illustrated in Fig. 

105 represents the most challenging (and thus a long-term) future development. In an even more 

distant but not utopistic future, such algorithm will also be able to autonomously test the generated 

CVs and to automatically feed the knowledge database of the NLP algorithm, thus leading to an 

extremely powerful conceptual design software. 

 

 

 

 

26 The FEM models used to test the efficacy of the generated SPs represent a pure verification tool exterior to the 

NLP methodology, and they a0re not used in the demonstrator to provide responses (cf. section 3.2.3.1).  
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Conclusions 

Conclusions are afterwards presented by retracing the main points of our work and by highlighting 

the original contributions. The focus, the purposes and the approach pursued in the current thesis were 

outlined chapter 1 by following the original path illustrated in Fig. 1. The focus of the work was 

immediately clarified in section 1.1, where we first introduced the three main roles of design (cf. Table 

1) and a well-established model of design process (cf. Fig. 2). We thus described each step. The 

conceptual design step was presented in Fig. 3, where the important notions of solution principle (SP) 

and concept variant (CV) are also introduced. We finally highlighted the fundamental differences 

between conceptual design, where “everything is possible”, and the subsequent embodiment design, 

where the CVs are transformed in technical layouts and where everything is now constrained to the 

chosen preliminary conditions (cf. Fig. 4).  

The definition of the purposes (cf. section 1.2) was conducted in an original way, starting by 

analysing the evolution of the innovation concept in the industrial and entrepreneurial worlds in the 

second half of the 20th century, and its relationship with design. The adopted definition of innovation is 

reported in Fig. 7, which highlights the three principal aspects of novelty (diversity), combination and 

change. Following the path in Fig. 1, we then focused on breakthrough innovations, whose key element 

is represented by the concept originality (cf. section 1.2.2.2), and we formulated three important 

breakthrough design practices (BDPs, cf. Table 5) based on the human tacit knowledge (cf. Table 3). 

As remarked in section 1.2.2.7, the BDPs cannot guarantee the achievement of breakthrough innovations 

but, if observed, they enable to enormously enlarge the solution space, increasing the possibility to 

include and reach breakthrough design solutions. The subsequent analysis of the cognitive biases 

revealed that BDPs are usually ignored by designers, who tend instead to subconsciously follow some 

“bad” design habitudes (BDHs, cf. Table 7). After studying the role of cognitive biases in inducing the 

BDHs and in restricting the solution space (cf. Fig. 11), we introduced some important principles to 

mitigate their influence on the design process (cf. Table 8). Based on the BDPs and on the study of the 

cognitive biases, we finally formulated three purposes (cf. Table 9) aimed to favour the birth of original 

design concepts (i.e. the key to breakthrough innovations, cf. section 1.2.2.2), and which were afterwards 

pursued in the development of our demonstrator.  

The approach followed to implement the demonstrator was presented in section 1.3 in an original 

way. We first clarified that optimization, i.e. the most widespread design approach, is out of our scope. 

This was done by performing an optimization example (cf. sections 1.3.1.2 and 1.3.1.3), and by 

identifying the aspects of this approach which collide with our purposes (Table 11). Many of these 

aspects can be reconducted to the BDHs (cf. Table 7), as the excessive focus on technical details. To 

better introduce our approach, we then studied a well-established conceptual design theory, i.e. TIPS, 

based on the use of equation-free design methods and of natural language. The analysis of an application 

example of TIPS reported in literature shown that these features involve a minor focus on technical 

aspects and optimal solutions during the design process, enabling to consider different types of solutions 

to enlarge the research space, in agreement with the formulated purposes (cf. Table 9). Based on these 

ideas, we finally defined the principles of the adopted approach (cf. Table 18), which were afterwards 

followed during the implementation of the demonstrator. 

The developed machine learning methodology was presented in chapter 2 by following the original 

path in Fig. 23. We first explained the reasons for adopting machine learning in section 2.1, by 

comparing human brain to machine. We made a preliminary overview on some basic biological aspects 
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of the brain (neurons and synapses), and on memory, analysing how information is processed, stored 

and retrieved (cf. Fig. 25). Thanks to this study, we identified some aspects of our memory which could 

represent a limit during conceptual design (cf. Table 22). An original interpretation of the designer’s 

mental processes was assumed in Fig. 28 and to introduce our three main key cognitive abilities 

(abstraction, generalization and analogy-making), and to explain their roles in conceptual design (cf. 

Table 24). As assumed in Fig. 28, the power of the KCAs enables our brain to quickly retrieve the design 

concepts previously interiorized, to manipulate them in a dialectic form (natural language) and to adapt 

them by means of similitudes, without executing any equation. On the other hand, the original brain-

machine comparison conducted in Table 25 revealed that our thinking is constantly influenced by the 

unconscious mechanisms due to memory which are almost impossible to eliminate (cf. Table 22), and 

which are dangerous to our purposes. Moreover, our brain is inherently limited in language variety and 

multidisciplinary knowledge, whereas the machine has potentially unlimited capabilities. It is not 

excluded that cognitive biases can be introduced in knowledge base of the machine by programmer’s 

choices, but their effects can be mitigated by increasing the number of programmers. Based on the 

presented elements, 0the idea of the developing a machine learning methodology was to emulate the 

KCAs, exploiting their power and all the advantages offered by machine during conceptual design, 

without being affected by brain limits (cf. Table 25). Due to this ambitious idea, in this work we focused 

our efforts on the KCAs of abstraction and generalization (step 1, Fig. 28). This assumption was also 

reported in Fig. 23. 

In section 2.2, we presented the developed ML methodology. The three principal ML models were 

first analysed, and their main characteristics were summarised in Table 28. Among them, the supervised 

and unsupervised models were judged as more suitable, and thus adopted, to emulate the KCAs of 

abstraction and generalization, respectively. Based on the theory provided in the literature, we 

implemented a versatile model of artificial neural network (cf. Fig. 34) to perform supervised learning, 

and a genetic algorithm (cf. Fig. 51) to perform the unsupervised learning by means of the method K-

means (cf. Fig. 46). Both algorithms were implemented in MATLAB [48], and their set-up is entirely 

handled with intuitive Excel interfaces (cf. Fig. 39 and Fig. 56), which represent an original contribution 

of this work. For both algorithms, we analysed the role of the main hyperparameters (cf. Table 34 for 

ANNs and Table 57 for GA), and we conducted different numerical tests. The implemented ANN was 

tested with an original example of image recognition (cf. Fig. 40), while the response of our GA was 

evaluated in a partitional clustering problem (cf. Fig. 57). Numerical tests finally confirmed the 

robustness and the relevancy of the results provided by both algorithms. 

Chapter 3 was devoted to natural language processing and to the implementation of the 

demonstrator, following the path in Fig. 60. In section 3.1, the ML methods developed in chapter 2 were 

combined into an original methodology for the processing of every-day language. Based on the ideas 

introduced in Fig. 61, the NLP algorithm (cf. Fig. 68) analyses the context of an incomplete input 

sentence via an ANN (cf. Fig. 67b), and it then proposes multiple coherent continuations exploiting the 

LTR models obtained by the training sentences (cf. Fig. 65). The NLP algorithm was implemented in 

MATLAB [48], and some aspects of its training are inspired to the BERT algorithm of Google [111], 

as the two steps of pre-training and fine-training (cf. Fig. 62) and the use of the masking word technique 

(cf. Fig. 67a and Table 71). Preliminary tests (cf. Fig. 72) revealed that the NLP algorithm is quite robust 

in processing unknown sentences and in proposing different coherent continuations. This result is very 

encouraging, mostly considering the very limited size of the training set (50 sentences and 133 different 

words, cf. Table 72), whereas a 6-years-old child, for example, already knows 6,000 different words 

[117]. The very limiting aspect concerned the reduced number of proposed continuations (examples 2 

and 3, cf. Fig. 72b), which was however improved in an original way. Instead of considering a unique 

group of CFs, these were divided into two groups (cf. Table 78), from which two distinct LTR databases 
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and two distinct ANNs were derived (cf. Fig. 73 and Table 82, respectively). In the improved NLP 

algorithm, the two designated LTR models are thus combined into a unified context (cf.  Fig. 74). Based 

on the results in Fig. 75, this improvement enables to increase the number of proposed continuations 

without enlarging the initial set of training sentences, despite it extends the duration of the training 

process (cf. 3.1.3.3). 

The original demonstrator of conceptual design procedure was finally presented in section 3.2. We 

immediately gave the two principal hypotheses (cf. Table 87). Based on Fig. 28, the first hypothesis 

outlines the roles of the machine (NLP algorithm) and of the user (expert engineer) in the conceptual 

design steps, providing the scheme of the demonstrator (cf. Fig. 76). The second hypothesis concerns 

the knowledge base of the machine, which is limited to 5 design samples (DSs) and less than 30 different 

words (cf. Fig. 77), and it included all the assumptions about the considered DSs (cf. Fig. 78 and Table 

83). The idea is to show that the machine is able to express complex design concepts and to provide 

relevant results with few words and few design examples to which refer. The NLP algorithm used in the 

first step (cf. Fig. 79) is based on the improved NLP methodology (cf. Fig. 74), whose adaptation to 

conceptual design was described as follows. We first illustrated the criteria to define the values of the 

CFs (cf. Table 88), which represent an original and effective way of describing a mechanical structure 

with the natural language. We thus implemented an original and intuitive drawing tool (cf. Fig. 86) 

which facilitates the definition of the CFs’ values by the user and which promotes hand-sketching (cf. 

Table 8), with the idea to mitigate cognitive biases according to our purposes (cf. Table 9). Finally, we 

defined the architecture and the types of the SPs (cf. Fig. 90 and Table 89), which are characterised by 

an original abbreviated form facilitating the construction of the LTR models (cf. Fig. 79). The afterwards 

training of the NLP algorithm was conducted as shown in Fig. 91. In the training set-up, the knowledge 

database was organized in three distinct levels: CFs’ values of the five initial DSs considered in Fig. 78 

(level 1, cf. Fig. 92), database of the SPs (level 2, cf. Fig. 93), and morphological matrix of the supporting 

DSs (level 3, cf. Fig. 93). They were initialized in Excel datasheets to facilitate future developments of 

the knowledge database. The training process of the NLP algorithm was then conducted as in the 

improved NLP methodology (cf. section 3.1.3.1). After training the NLP algorithm, the demonstrator 

was tested by adopting the initial idea and the specifications reported in Fig. 79. The CFs’ values were 

determined with the implemented drawing tool (cf. Fig. 98), and the SPs proposed by the NLP algorithm 

in the first step were reported in Fig. 99b. In general, these original results show that the machine 

provides different SPs enabling to considerably expand the solution space, in agreement with our 

purposes. This is very encouraging as the knowledge of the NLP algorithm is based on few words and 

on few DSs (cf. Table 87), which however implies that some specifications could be unanswered (as 

“U2_-”, cf. Fig. 99b). The supporting DCs (cf. Fig. 100-Fig. 104) provide the user many ideas to adopt 

different types of reinforcements and to radically evolve the initial idea. This aspect of the demonstrator 

is very useful mostly in the second step (cf. Fig. 105), which was for now manually conducted according 

to the made hypotheses (cf. Table 87). The most important results and progresses concerning our 

purposes were discussed in section 3.2.4.3. At the end of chapter 3, we proposed three possible future 

development of the demonstrator (cf. section 3.2.5), highlighting the will to pursue our work for 

achieving a complete and more powerful conceptual design software.  
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Annexes 

A. Development of the NLP methodology 

 

A.1 Complete set of 50 training sentences from the COCA 

database 

S. # Sentence  S. # Sentence 

S1 will you be my friend  S26 that is not what I want 

S2 you and I will always be friends  S27 I cannot open it 

S3 today is the first of november  S28 will you come by and see me 

S4 I saw a bear today  S29 she is very happy 

S5 she is in her room  S30 do you like blue or yellow 

S6 let go to the park  S31 her role as an english teacher is very important 

S7 I have a few questions  S32 what are you thinking of 

S8 I like her too  S33 I want to go there 

S9 it is sunny outside  S34 this is their house 

S10 I really like it here  S35 what can I do for you 

S11 that door is open  S36 can you get me my eyeglasses 

S12 this letter is for you  S37 what if I fail 

S13 you are really nice  S38 would you help me out 

S14 he is my brother  S39 I have her book 

S15 I want to go with you  S40 all my favourite books are on this shelf 

S16 I watch movies on my ipad  S41 my mom is coming to visit 

S17 what will you do now  S42 what is this movie about 

S18 can I say something  S43 do you know where this place is 

S19 this is my favourite cookie  S44 I will help you find that place 

S20 can you pick me up at the mall  S45 I live up in the mountains 

S21 I am sorry but she is away  S46 she is one of my english teachers 

S22 we are going to watch a movie  S47 there was a time I liked to play golf 

S23 this is his box  S48 there are so many things I want to learn 

S24 this card came from my cousin  S49 this is the year I am going to learn english 

S25 that is a really cool trick  S50 I am so sorry 
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A.2 Set-up parameters of the GA used in the K-means 

clustering 
The following parameters were set in the user interfaces 1 and 2 of the implemented GA (cf. Fig. 

56). The settings of the modified roulette method in the user interface 3 were set as in Fig. 56. 

 Interface 1 Interface 2 

K rmin rmax g Gmax N pc [%] pm [%] 

2 0 1 4 200 100 80 40 

3 0 1 4 400 100 80 40 

4 0 1 4 600 100 80 40 

5 0 1 4 800 100 80 40 

6 0 1 4 1000 100 80 40 

7 0 1 4 1200 100 80 40 

8 0 1 4 1400 100 80 40 

A.3 Set-up parameters of the ANN 
The following parameters were set in the user interfaces 1 and 2 of the implemented ANN (cf. Fig. 

39). The symbols η and μ respectively indicate the learning rate and the momentum (cf. Table 34). 

 Interface 1 Interface 2 

Test 

# 

Number 

of hidden 

neurons 

η 

hidden 

layer 

η 

output 

layer 

μ 

hidden 

layer 

μ 

output 

layer 

Calibration/ 

validation 

division 

[%] 

Maximum 

number 

of epochs 

Epoch 

interval 

of 

mixing 

1 5 0.2 0.15 0.3 0.3 75 200 1 

2 10 0.2 0.15 0.3 0.3 75 250 1 

3 15 0.2 0.15 0.3 0.3 75 300 1 

4 20 0.2 0.15 0.3 0.3 75 350 1 

5 25 0.2 0.15 0.3 0.3 75 400 1 

6 30 0.2 0.15 0.3 0.3 75 450 1 
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A.4 Pre-training of the improved NLP algorithm: curves K-

RD and resulting partitioning levels inherent to CFs1 and 

CFs2 

 

𝐏 
𝐊=  ASs’ features (CFs

1
) 

Cluster Training samples (sentences) # AS I is you 

C1.1 
1, 3, 4, 5, 6, 7, 8, 10, 13, 16, 19, 20, 
22, 24, 25, 27, 28, 30, 33, 36, 38, 

39, 40, 42, 45, 46, 50 

AS1.1 0 0.07 0.07 

C1.2 9, 11, 14, 21, 23, 29, 31, 34, 41, 43 AS1.2 0 0.67 0.07 

C1.3 12, 15, 17, 32, 35, 44 AS1.3 0.13 0.13 0.73 

C1.4 2, 18, 26, 37, 47, 48, 49 AS1.4 0.53 0.07 0 

 

𝐏𝟐
𝐊= 

 ASs’ features (CFs
2
) 

Cluster Training samples (sentences) # AS my this to 

C2.1 1, 14, 16, 19, 24, 36, 46 AS2.1 0.67 0 0 

C2.2 

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 17, 

18, 20, 21, 23, 25, 26, 27, 28, 29, 

30, 31, 32, 34, 35, 37, 38, 39, 44, 

45, 50 

AS2.2 0 0.07 0 

C2.3 6, 15, 22, 33, 41, 47, 48, 49 AS2.3 0 0 0.67 

C2.4 40, 42, 43 AS2.4 0.07 0.67 0 
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A.5 Fine-training of the improved NLP algorithm: results of 

the calibration tests inherent to 𝐏 
𝐊=  and 𝐏𝟐

𝐊=  and 

choice of the ANNs 
The results of the calibration tests are reported below in terms of Eep

v  and ∆Eep
v , in the same way as 

in Table 77 (cf. section 3.1.2.2). 

𝐏 
𝐊= 

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]   

1 5 0.1 ---  

Adopted for the 

NLP algorithm 

Accuracy ≈ 92% 

2 10 0.09 -10  

3 15 0.08 -11 ← 

4 20 0.08 0  

5 25 0.08 0  

6 30 0.08 0   

 

𝐏𝟐
𝐊= 

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]   

1 5 0.07 ---   

2 10 0.07 0   

3 15 0.07 0  Adopted for the 

NLP algorithm 

Accuracy ≈ 94% 
4 20 0.06 -14 ← 

5 25 0.06 0  

6 30 0.06 0   
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B. Development of the demonstrator 

 

B.1 FEM models used for the verification of the SPs 
The implemented FEM models are illustrated below and are based on the five DSs reported in Fig. 

78. The assumed values of L, P, q (see figure) and those of Ei, rhoi, Ai and Jbi (see table below) enable 

to obtain numerical results which are coherent with the assumptions made in section 3.2.1.2 (cf. Table 

83). Varying H enables to test different configurations. For the table below check the use limitations 

concerning element types in Table 86.  

 

 

 
Types of structural element used in the FEM models above 

Characteristic Beam Truss Wire Spring 

Size of the finite 
element 

10 mm 
The finite element corresponds to the structural element 

(see figure above) 

Type of the 

finite element in 

ABAQUS 

B21 T2D2 SpringA 

Elastic modulus 

(E) 
200,000 MPa (steel) 20 N/mm 

Density (rho) 7.8 ∙ 10-9 t/mm3 (steel) --- 

Section area (A) 10 mm2 1 mm2 --- 

Bending inertia 
(Jb) 

10,000 mm4 --- 
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B.2 Examples of SP verification via the FEM models 
An example for each SP type is provided (cf. Table 89). U1 and U2 represent the absolute values 

of the maximum displacements along the directions 1 and 2, respectively (cf. Table 85). 

Example 1: SP of type 1 (general increase, cf. Table 89). Type 2 (general decrease) is analogous. 

DS name Spec. 
SP to verify 

SP interpretation 
Part 1 (action) Part 2 (ind.) 

DS1 
U1_- 

A_+  Increase A 
U2_- 

Lacking indications (part 2), the section area A is increased in all truss elements of DS1 (cf. section 

3.2.2.3). The results in the table below are obtained with the FEM model of DS1 (cf. annex B.1), by 

studying four different values of H. The section area A (cf. annex B.1) was arbitrarily increased by 20%.  

 A = 10 mm2 1.2 A = 12 mm2 

H U1 [mm] U2 [mm] U1 [mm] U2 [mm] 

L/4 0.73 0.25 0.61 (< 0.73) 0.21 (< 0.25) 

L/2 0.44 0.13 0.37 (< 0.44) 0.1 (< 0.13) 

3L/4 0.48 0.08 0.4 (< 0.48) 0.07 (< 0.08) 

L 0.57 0.06 0.48 (< 0.57) 0.05 (< 0.06) 

An increase of A produces a decrease of both U1 and U2 ➔ the SP is verified for both U1_- and U2_- 

Example 2: SP of type 3 (local increase, cf. Table 89). Type 4 (local decrease) is analogous. 

DS name Spec. 
SP to verify 

SP interpretation 
Part 1 (action) Part 2 (ind.) 

DS5 

U1_- 

E_+ spring_w Increase E of the spring U2_- 

Fn_+ 

The results in the table below are obtained with the FEM model of DS5 (cf. annex B.1), by studying 

four different values of H. The stiffness of the spring (cf. annex B.1) was arbitrarily increased by 20%. 

 E spring = 20 N/mm 1.2 E spring =  24 N/mm 

H U1 [mm] U2 [mm] Fn [Hz] U1 [mm] U2 [mm] Fn [Hz] 

L/4 42.5 31.8 107 35.4 (< 42.5) 26.4 (< 31.8) 117 (> 107) 

L/2 35 52.3 68.4 29.2 (< 35)  43.6 (< 52.3) 74.9 (> 68.4) 

3L/4 27.5 61.5 45.7 22.9 (< 27.5) 51.2 (< 61.5) 50 (> 45.7) 

L 20 59.4 32.5 16.7 (< 20) 49.4 (< 59.4) 35.6 (> 32.5) 

An increase in E of the spring produces a decrease of U1 and U2, and an increase in Fn ➔ the SP is 

verified U1_-, U2_- and Fn_+ 

Example 3: SP of type 5 (replacement, cf. Table 89). 

DS name Spec. 
SP to verify 

SP interpretation 
Part 1 (action) Part 2 (ind.) 

DS3 
U1_- 

joint_+ carriage_- Add joint in place of carriage 
Fn_+ 

The following FEM model, named DS3a, is obtained from DS3 (cf. annex B.1) by replacing the carriage 

with a joint, and it is used to verify the SP.  
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The results below are obtained with the FEM models DS3 (cf. annex B.1) and DS3a  

DS3 DS3a 

U1 [mm] Fn [Hz] U1 [mm] Fn [Hz] 

10.4 251.5 4.7 (< 10.4) 392.9 (> 251.5)  

The replacement of the carriage with a joint produces a decrease of U1 and an increase of Fn ➔ 1) the 

SP is verified for both U1_- and Fn_+  2) The model DS3a will be used as supporting DC for the verified 

SP 

Example 4: SP of type 6 (structural addition, cf. Table 89).  

DS name Spec. 
SP to verify 

SP interpretation (cf. Table 89) 
Part 1 (action) Part 2 (ind.) 

DS2 
U1_- 

truss_compression_+ pin_+ 
Add truss in compression fixed to a 

new pin Fn_+ 

The following FEM model, named DS2a, is constructed based on DS2 (cf. annex B.1), and it is used to 

verify the SP. It is assumed to add the new pin on the left side, in alignment with the beam joint. The 

properties of the added truss in terms of A and E are the same as the beam (cf. annex B.1. 

 

The results below are obtained with the FEM models DS2 (cf. annex B.1) and DS2a, studying for 

different values of H.   

 DS2 DS2a 
H U1 [mm] Fn [Hz] U1 [mm] Fn [Hz] 

L/4 

62.5 89.6 

5.9 (< 62.5) 184.7 (> 89.6) 

L/2 3.5 (< 62.5) 294.8 (> 89.6) 

3L/4 3.1 (< 62.5) 340.8 (> 89.6) 

L 3 (< 62.5) 356.7 (> 89.6) 

The added truss produces a decrease of U1 and an increase of Fn ➔ 1) the SP is verified for both U1_- 

and Fn_+  2) The model DS2a will be used as supporting DC for the verified SP 
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B.3 Pre-training: curves K-RD 
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B.4 Fine-training: results of the calibration tests inherent to 

the five partitioning levels (cf. annex B.3) and choice of 

the ANNs 
The results of the calibration tests are reported below in terms of Eep

v  and ∆Eep
v , in the same way as 

in annex A.5 for the improved NLP methodology.  

𝐏 
𝐊= 

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]   

1 5 0.13 ---  Adopted for the 

NLP algorithm 

Accuracy ≈ 91% 

2 10 0.09 -31 ← 

3 15 0.09 0  

4 20 0.09 0   

5 25 0.09 0   

6 30 0.09 0   

 

𝐏𝟐
𝐊=𝟐

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]  
Adopted for the 

NLP algorithm 

Accuracy ≈ 93% 

1 5 0.07 --- ← 

2 10 0.07 0  

3 15 0.07 0  

4 20 0.07 0   

5 25 0.07 0   

6 30 0.07 0   

 

𝐏 
𝐊=𝟐

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]   

1 5 0.15 ---  

Adopted for the 

NLP algorithm 

Accuracy ≈ 92% 

2 10 0.09 -40  

3 15 0.08 -11 ← 

4 20 0.08 0  

5 25 0.08 0  

6 30 0.08 0   

 

𝐏 
𝐊= 

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]  

Adopted for the 

NLP algorithm 

Accuracy ≈ 90% 

1 5 0.12 ---  

2 10 0.10 -16 ← 

3 15 0.10 0  

4 20 0.10 0  

5 25 0.10 0  

6 30 0.10 0   
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𝐏 
𝐊= 

   

Test #  
Number of 

hidden neurons 
𝐄𝐞𝐩
𝐯  ∆𝐄𝐞𝐩

𝐯  [%]   

1 5 0.11 ---  

Adopted for the 

NLP algorithm 

Accuracy ≈ 91% 

2 10 0.10 -9  

3 15 0.09 -10 ← 

4 20 0.09 0  

5 25 0.09 0  

6 30 0.09 0   

 

 

 

 

 


