PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: July 6, 2023
ACCEPTED: September 18, 2023
PUBLISHED: October 13, 2023

Measurement of A transverse polarization in eTe™
collisions at /s = 3.68 — 3.71 GeV

BESIT

The BESIII collaboration

E-mail: besiii-publications@ihep.ac.cn

ABSTRACT: With data samples collected with the BESIII detector at seven energy points at
V5 = 3.68 — 3.71 GeV, corresponding to an integrated luminosity of 333 pb~!, we present
a study of the A transverse polarization in the eTe~ — AA reaction. The significance
of polarization by combining the seven energy points is found to be 2.60 including the
systematic uncertainty, which implies a non-zero phase between the transition amplitudes
of the AA helicity states. The modulus ratio and the relative phase of EM-psionic form
factors combined with all energy points are measured to be RY = 0.71f8:%g +0.03 and APY

= 23J_r§:(8) + 1.6°, where the first uncertainties are statistical and the second systematic.
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1 Introduction

The understanding of the structure of baryons is a very important issue in contemporary
physics [1-6]. In the context of the Quantum Chromodynamics (QCD), it is particularly
interesting to measure the electromagnetic form factors (EMFFs) of nucleons and hyperons,
which are expected to reveal the aspects of the QCD description of the hyperon structure.
In the 1960s, Cabibbo et al. [7] first proposed that time-like EMFFs could be studied on

et

e~ experiments by measuring the baryon pair production cross sections. Among them,
the proton is a stable particle, and can be available as a target to study its space-like EMFFs
by means of scattering experiments. This case is different from the unstable hyperons with
finite lifetime which cannot be used in such scattering experiments. The advantage is that
their weak parity-violating decay gives straightforward access to the polarization. The time-
like form factors are related to more intuitive quantities such as charge and magnetization
densities by dispersion relations [8, 9]. The production of spin-1/2 baryon-anti-baryon pairs
from eTe™ collisions is described by two independent parameters, the electric form factor
Gp and the magnetic form factor Gy [10, 11].

They are both analytic functions of the four-momentum transfer squared ¢. In the

time-like region, starting from the threshold, corresponding to the squared mass of the



lightest hadronic state that can couple to the intermediate virtual photon, the EMFFs are
complex. In particular, the complex value of their ratio implies a polarization effect in the
final state baryons even when the initial state leptons are unpolarized. This provides a
handle to understand the intrinsic structure of hyperons better.

Up to now, experimental data on hyperon EMFFs are very limited. The first determi-
nation of A EMFFs was reported by the BABAR collaboration [12] using the initial state
radiation (ISR) method for the ee™ — AA process. It measured the effective form factor,
which is proportional to the total cross section assuming one-photon exchange. The cross
section and EMFFs of some baryon pairs (p, A, £°, 2=, and Q~) were determined by the
CLEO collaboration [13, 14]. Their conclusions regarding EMFFs and di-quark correla-
tions [15, 16] rely on the assumption that one-photon exchange dominates the production
process and that decaying charmonia contributions are negligible. The BESIII collabora-
tion has also measured cross sections of some baryon pairs (A, ¥°, ==, £+ =% and Q™)
near the production threshold [17-22] and above the open charm threshold [23-25], while
the experimental investigations of the relative phase between G and G are still limited.

At the resonances of vector charmonia, the spin formalism [26] is valid. In these cases,
the amplitudes no longer represent EMFFs but instead the so-called EM-psionic form
factors, G and GY; [27]. And the polarization is determined by the relative difference of
electric and magnetic form factors A®Y = @% — <I>]‘I\’4, with Gg v = |GE M| e'®e.M | which
were neglected in previous studies [19, 20, 23, 28-34]. Recently the A polarization was
observed and measured in the ete~ — AA process by the BESIII collaboration in .J /1,
¥(3770) and off-resonance regions [27, 35-37]. Subsequently, the ¥ hyperon polarization
was observed by the BESIII collaboration in e*e™ — J/4,1(3686) — YT~ processes [38].
The results reveal not only a non-zero relative psionic phase, but also that the phase changes
sign at the ¢ (3686) mass with respect to the value measured at the .J/v¢ resonance. In
the ete™ — J/1,1(3686) — Z"Z% channel [39-41], a non-zero polarization has also
been observed for the == hyperon. The energy points around 3.686 GeV are interesting in
this regard since the production occurs through an interplay of one-photon exchange [37],
mixing with (3770) resonance [27] and resonance dominating only [35, 36]. The large data
samples corresponding to an integrated luminosity of 333 pb~!, collected at /s = 3.680,
3.683, 3.684, 3.685, 3.687, 3.691, and 3.710 GeV with the BESIII detector [42] recording
symmetric eTe™ collisions provided by the BEPCII storage ring [43], enable the study of
this phenomenon, which we present in this article.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [42] records symmetric ete™ collisions provided by the BEPCII stor-
age ring [43] in the center-of-mass (CM) energy range from 2.0 to 4.95GeV, with a peak
luminosity of 1 x 103 cm~2s~! achieved at /s = 3.77 GeV. BESIII has collected large
data samples in this energy region [44]. The cylindrical core of the BESIII detector covers
93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC),
a plastic scintillator time-of-flight system (TOF'), and a CsI(T1) electromagnetic calorime-
ter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T



magnetic field. The magnetic field was 0.9 T in 2012, which affects 100% of the total
J/1 data. The solenoid is supported by an octagonal flux-return yoke with resistive plate
counter muon identification modules interleaved with steel. The charged-particle momen-
tum resolution at 1 GeV/c is 0.5%, and the dE/dz resolution is 6% for electrons from
Bhabha scattering. The EMC measures photon energies with a resolution of 2.5% (5%)
at 1 GeV in the barrel (end cap) region. The time resolution in the TOF barrel region is
68 ps, while that in the end cap region is 110 ps. The end cap TOF system was upgraded
in 2015 using multigap resistive plate chamber technology, providing a time resolution of
60 ps, which benefits 100% of the data used in this analysis [45-47].

Simulated data samples produced with a GEANT4-based [48] Monte Carlo (MC) pack-
age, which includes the geometric description of the BESIII detector [49] and the detector
response, are used to determine detection efficiencies and to estimate backgrounds. The
simulation models the beam energy spread and ISR in the eTe™ annihilation using the
generator KKMC [50]. The detection efficiency for ete~ — AA is determined by MC sim-
ulations. A sample of 1,000,000 events is simulated with a uniform phase space (PHSP)
distribution for each of 7 CM energy points from 3.68 GeV to 3.71 GeV. The A baryon and
its subsequent decays are handled by the EVTGEN program [51, 52] with PHSP model.
The production process is simulated by the KKMC generator that includes the beam energy
spread and ISR [53] in the eTe™ annihilation.

3 Event selection

The full reconstruction method is performed to proceed event selection with the decay
processes A — pr— and A — prT. There are four charged particles in the final state,
a proton, an anti-proton and two charged pions from AA. Thus, good candidates should
satisfy the event selection criteria below.

Charged tracks are required to be reconstructed in the MDC within its angular cov-
erage: |cosf| < 0.93, where 6 is defined with respect to the z axis, which is the symmetry
axis of the MDC in the laboratory system. Events with at least two negative-charged
tracks and two positive-charged tracks are kept for further analysis. Tracks with momen-
tum larger than 0.6 GeV/c are considered as proton candidates, and others are assumed
to be pion candidates. Events with at least one proton, one anti-proton, one 7, and one
7~ are retained for further analysis.

To reconstruct A(A) candidates, a secondary vertex fit [54] is applied to all combina-
tions of pr—(prt) within one event. The pair of A and A candidates with the minimum

Iz
mass of the pr~ (pr™) pair. To further suppress background from non-A events, the decay

value of \/(Mpr —mp)? 4 (Mpr+ —mp)? is selected. Here, M, - (5r+) is the invariant

length of A candidate, i.e., the distance between its production and decay positions, is
required to be greater than zero.

To further suppress background contributions and improve the mass resolution, a four-
constraint (4C) kinematic fit imposing energy-momentum conservation from the initial
eTe™ to the final AA state is applied for all AA hypotheses after the A(I_X) reconstruction,
with the requirement of XZC < 200. Figure 1 shows the distribution of My + versus M, -
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Figure 1. Two-dimensional distribution of Mg+ versus M, for all data samples, where the red
solid box indicates the signal region, the blue dash boxes show the selected background regions.

after performing the 4C kinematic fit. A clear accumulation of events around mp can be

seel.

4 Extraction of A polarization

The exclusive process ete™ — v*/¥ — AA — pprTn~ can be fully described by the A
scattering angle in the center-of-mass (CM) system of the e™e™ reaction, 65, and the p (p)
direction in the rest frame of its parent particle, fa;(722). Here 7*/W represents that the
process ete™ — AA is produced by pure EM process or 3 resonance. The components
of these vectors are expressed using a coordinate system (x,ya,zx) with the orientation
shown in figure 2. A right-handed system for each hyperon decay is defined here, with the
z axis along the A momentum p, = —pj; = p in the CM system. The y axis is taken as
the normal to the scattering plane, k.- X p,, where k.- = —k_+ = k is the electron beam
momentum in the CM system. For the determination of the modulus of the EM-psionic
form factors RY [27] and relative phase A®Y, the angular distribution parameter 7 (but not
its absolute normalization) is of interest. In ref. [26], the joint decay angular distribution
of the process ete™ — v*/¥ — AA — pprtr is expressed in terms of the phase A®Y
and the angular distribution

W(&; Q) =1+ ncos® b,
+ apo {sin2 Or(n1zn2e — N1 ynay) + (0082 Op + 77)711,?,”2,2}

+ apagp [\/ 1 —n? cos(A@‘Ij) sin @ cos Op (ng zn2 » + nlyzng,z)}

+ /1 — 2 sin(A®Y) sin O, cos Op (apn1y + aznay),

(4.1)
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Figure 2. Definition of the coordinate system used to describe the eTe™ — v* /¥ — AN — pprto—
reaction. The A particle is emitted along the z, axis direction, and the A in the opposite direction.
The y, axis is perpendicular to the plane of A and e™, and the x5 axis is defined by a right-handed
coordinate system. The A decay product, the proton, is measured in this coordinate system.

where © = (1, A®, ap, ) represent the production and decay parameters, the kinematic
variables & = (0,71, 72) describe the production and subsequent decay, and « A(R) de-

notes the decay asymmetry of the A(A) — pr~(pr) decay process. The scattering angle
distribution parameter 7, is related to the ratio RY by

T(1—mn)

RY = ,
1+n

(4.2)

where T = my is the known A mass [55], and s is the square of the CM energy. If the

S
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initial state is unpolarized, and the production process is either strong or electromagnetic
and hence parity-conserving, then a non-zero polarization is only possible in the transverse

direction y. The polarization is given by

P V1 —n?sinf cosfp in(AGY)
v 1+ ncos? O i '

(4.3)

To determine the set of A spin polarization parameters €2, an unbinned maximum
likelihood fit is performed to extract the decay parameters, where the decay parameters
ay/; are fixed to the value 0.754 obtained from the average in ref. [36] assuming C'P
conservation. In the fit, the likelihood function .Z is constructed from the probability
function, P(&;), for an event i characterized by the measured angles &;

N N
& =P ) = [[cW(E, &), (4.4)
i=1 i=1

where N is the number of events in the signal region. The joint angular distribution
W(E,;, Q) is given in eq. (4.1), and €(&;) is the detection efficiency. As for the ISR effect at
higher energy points 3.691 and 3.710 GeV, studies based on MC simulations are performed
and the contribution from ISR process is negligible, where the input cross section for
ete™ — AA for calculating the ISR effect is taken from ref. [56]. The normalization factor

C = NLC ij:Mlc W(&7, Q) is given by the sum of the corresponding angular distribution



function W using the accepted MC events Nyic, and the difference between data and MC
simulations is taken into account. The minimization of the function

S = —InLyarq + 0Ly, (4.5)

is performed with the RooFit package [57]. Here, L4+, is the likelihood function of events
selected in the signal region, and .%}, is the likelihood function of background events deter-
mined in the sideband regions and continuum contribution, where continuum contribution
is normalized by taking into account the luminosity and CM energy dependence of the
cross section using the energy points at /s = 3.581 GeV, i.e.

LNom. o 53581

Ncon. = N3.581 X ) (46)

L3581  SNom.

where Ngop. is the normalized event for continuum process and N3ss1 = 12, L3581 and
s3.581 are the number of observed events, the luminosity and CM energy. The Lyom.,
SNom. are the luminosity and CM energy for each energy point and combined one in this
work. Note that since the statistics for this analysis is limited, the background effect is
taken into account in the part of systematic uncertainty later. Figure 3 shows distributions
of the five moments [26]

Ny,
= Z(sinQGAnixn%’x + COSZQAniZTLé’Z),
i=1
Ny
= Z sinfx COS@A(nixné,z + nﬁzném),
i=1
Ny,
I3 = Z sinfy cos@AniLy, (4.7)
i=1
Ny
F, = Z sinf COSGAnQy,
i=1
N,
Iy = Z(nizné’z — sin29Aniyn§7y),
i=1
with respect to cosf,, which are calculated for 10 intervals in cos@,. Here, Nj is the
number of events in the k™ cos @, interval, and 7 is the index from 1 to Nj. The numerical
fit results, with asymmetric uncertainties, are summarized in table 2 and table 3, which
are consistent with theoretical predictions [58]. The results presented in table 2 are the
combined values for merging all scan energy points for 1 resonance compared with the
results from J/¢ and 9(3770), which could provide more insights into the underlying
production mechanism of hyperon anti-hyperon pairs at different charmonium states and
different energy points. Figure 4 shows the result of the hyperon transverse polarization
P, distribution, which is consistent with the behavior of eq. (4.3) as compared to the data.

The moment given by
Ny,
m . .
M(COS 9/\) = A Z(nll,y - né,y)v (48)

N 1=1



U o

-1 05 05 1 T 205 05 1

0 0
cos@A cosHA

Figure 3. Distributions of Fy(k = 1,2,...,5) moments with respect to the cosf, and the cos @y
distribution (bottom right). The dots with error bars are data from total energy points, and the
red solid lines are the weighted PHSP MC corrected by the results of global fit. The blue dashed
lines represent the distributions of the simulated events evenly distributed in phase space, without
polarization.

is related to the polarization, and calculated for m = 10 intervals in cosf,. Here, N
represents the total number of events in the data sample. Assuming C'P conservation, we
have oy = —aj, and the expected angular dependence is M (cos 6 ), which is proportional
toy/1 — n2apsin A®Y cos f) sin ), as shown in figure 4 according to eq. (4.1).

The relative phase of the EM-psionic form factors is different from zero with a signif-
icance of 2.60 including systematic uncertainty, and is estimated by comparing the likeli-
hoods of the baseline fit and the one defined assuming no polarization. The effects of sys-
tematic uncertainty are estimated conservatively by varying the decay parameters ap(a3)
by one standard deviation and by considering the employed requirements, respectively, and
the combination with the smallest significance is adopted.
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Figure 4. The moment M(cosfy) as a function of cosfy for the ete™ — AA reaction around
Vs = 3.686 GeV. Points with error bars are data, the red solid lines are the weighted PHSP MC
corrected by the results of global fit, and the blue dashed lines represent the distributions without
polarization from simulated events, evenly distributed in the phase space.



5 Systematic uncertainties

5.1 A reconstruction

The uncertainty due to the A reconstruction combined with the tracking and particle
identification is determined from a control sample of J/i) — AA events with the same
method as used in ref. [27].

5.2 Mass window

The uncertainty due to the requirements on the pr~ mass window is estimated with the
smearing method as introduced in ref. [38].

5.3 4C kinematic fit

The uncertainty due to 4C kinematic fit is estimated using the helix correction method
mentioned in ref. [59]. We repeat the fit procedure using the MC sample corrected by the
track parameters, and take the difference between both results as the related systematic

uncertainty.

5.4 Background

The systematic uncertainty due to the background is estimated in the fit of the parameter
extraction with and without the contributions of sideband and continuum backgrounds.
The difference is taken as the systematic uncertainty.

5.5 Fit method

To validate the reliability of the fit results, an input and output check based on 400 pseu-
doexperiments is performed with the helicity amplitude formula given in ref. [26]. The
polarization parameters measured in this analysis are used as input in the formula, and the
number of events in each generated MC sample is nearly equal to the number in data sam-
ple. The differences between the input value and output value are taken as the systematic
uncertainty by fitting method.

5.6 Decay parameter

The uncertainties from the decay parameters of A — pm™, a, /A» are estimated by varying
the baseline value, obtained from averaging the results in ref. [36], by £10. The largest
difference in the result is taken as the systematic uncertainty.

5.7 Summary of systematic uncertainty

Assuming all sources are independent, the total systematic uncertainties on the measure-
ment of the polarization parameters for the eTe™ — AA — ppr ™7~ process are determined
by the square root of the quadratic sum of these sources as listed in table 1.



Source n ADY (°)

A reconstruction 0.002 0.057
Mass window 0.012 0.286
4C kinematic fit 0.001 0.286

Sideband Background 0.009 1.375
Continuum Background 0.001 0.516

Fit method 0.001 0.115
Decay parameter 0.005 0.573
Total 0.016 1.633

Table 1. Summary of absolute value of the systematic uncertainty of polarization parameters.

Para. n ADY (°) RY

This work (Sum) 0.6910:07 + 0.02 23788 + 1.6 0.711010 + 0.03
P(3770) — AA [27] 0.85503% + 0.02 71T £ 5 0.48703% + 0.04
J/p — AA [36] 0.4748 + 0.0022 + 0.0031 43.09 + 0.24 + 0.38 0.8162 + 0.0023 + 0.0033
etem — AA (/5 = 2.396 GeV) [37] 0.12 4 0.14 + 0.02 37+£12+6 0.96 + 0.14 + 0.02

Table 2. The measured parameters from (3686) resonance for merging all scan energy points
compared with previous measurements by combining the seven energy points. For each measure-
ment, the first uncertainty is statistical and the second one is systematic.

6 Summary

In summary, we measure the A hyperon transverse polarization in the ete™ — AA reaction
at CM energies between 3.68 and 3.71 GeV, using a data sample corresponding to an inte-
grated luminosity of 333 pb~! collected with the BESIII detector at BEPCIIL. By combining
the seven energy points, the relative phase and the modulus of the ratio of the EM-psionic
form factors and the angular distribution parameter are determined, respectively. The rel-
ative phase is determined to be different from zero with a significance of 2.6¢ including the
systematic uncertainty. The comparison between our result and previous measurements in
ete™ — AA at 2.396 GeV [37] and J/1) — AA [36] is summarized in table 2. The value
from the phase obtained in 1(3686) resonance is roughly consistent with the measurement
from (3770) decay and ete™ annihilation at /s = 2.396 GeV within the uncertainty of
1o, but deviate from the measurement with J/1 decay by 2.40. The 1 values are obviously
different from the ones for J/v peak and /s = 2.396 GeV, but roughly consistent with the
¥(3770) one. This implies the presence of different ete~ — AA production mechanisms.
More data samples at different energy points are needed for a detailed understanding for
the underlying AA production mechanism and the structure of the A hyperon.
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