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Abstract: 

Rheumatoid Arthritis (RA) is an inflammatory autoimmune disease that affects women three times 

more than men. Epidemiological studies found that the incidence of Autism Spectrum Disorder 

(ASD), a neurological and developmental disorder, in children born to mothers suffering from RA is 

higher compared with the control population. Considering that the pathogenesis of ASD could be 

traced back to pregnancy and in uterine conditions, and the evidence of reduced folate levels in the 

brain of ASD-affected children, we aimed to study the role of folate, as an important nutritional factor 

during pregnancy, in associating maternal RA to ASD development in the offspring. Folate balance 

during RA could be influenced twice, initially during the immune activation associated with disease 

onset, and later during the treatment with anti-folate drugs, with a potential consequence of folate 

deficiency. Maternal folate deficiency during pregnancy could increase homocysteine levels, 
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oxidative stress, and global DNA hypomethylation, all known risk factors in ASD pathogenesis. 

These effects could be intensified by genetic polymorphisms in the folate system, which were also 

found as genetic risk factors for both RA and ASD. The available evidence suggests that folate level 

as an important factor during RA, pregnancy and ASD could have pathological and therapeutical 

significance and should be carefully monitored and investigated in the RA-pregnancy-ASD axis.  
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Background 

Autoimmune diseases, as one of the leading causes of death and disability, have a prevalence higher 

than 5% (1). Most autoimmune diseases are more common in females than males and could occur 

during the reproductive age (1,2). Epidemiological studies have identified a positive association 

between maternal autoimmune diseases and neurodevelopmental disorders in the offspring (3,4). This 

is further supported by animal studies demonstrating that maternal immune activation could affect 

normal brain development and function in littermates (5–7). Accordingly, a positive correlation 

between maternal Rheumatoid Arthritis (RA) and an increased risk of filial Autism Spectrum 

Disorders (ASDs) has been identified (8,9) (Figure 1). RA is one of the most common systemic 

autoimmune diseases during which autoantibodies, increased circulating immune cells, and 

inflammatory cytokines are  activated (10). ASD is a neurodevelopmental disorder with a global 

prevalence of approximately 1–2% and is characterized by impairments in social interaction and 

communication, restricted interests, and repetitive behaviours (11).  

There are at least two possible explanations for the increased risk of ASD in the offspring of women 

suffering from RA. One is the disturbance of the intrauterine environment caused by the activated 

maternal immune system (12,13) which through affected placenta induces alterations in brain 

morphologic features and leads to atypical foetal brain development accompanied by future 

behavioural deficits and risk of later development of ASD (14,15). The other relates to the inheritance 

of genetic risk loci such as human leukocyte antigen (HLA)-DRB1*04A ((16–19), C4B null allele 

(20), PTEN, MET, and RELN (21,22) which predispose the mother to systemic immune dysregulation 

and the fetus to neurodevelopmental impairment in the brain (8,9,23,24). 

By considering several pieces of evidence, such as a) the prevalence of RA is three times higher in 

women compared to men (25), b) the shift of childbearing towards later ages (26), c) the observed 

increasing number of children being born to mothers with RA (27,28), and d) the growing incidence 

of ASD (29), having more autistic children being born to mothers with RA is increasingly foreseen. 

Therefore, it is important to study the different connecting aspects of maternal RA to filial ASD. 

Nutrition is an essential aspect of a healthy lifestyle and its changes could have pathological, 

consequential, or therapeutical significance. Folate is one of the essential vitamins for health and 

development, and its disturbance has been associated with both RA (30,31) and ASD (32,33). Folate 

is necessary for normal cell metabolism and homeostasis especially during periods of rapid growth 

like pregnancy, as all pregnant women should get 600 µg of folic acid per day in order to prevent 

some birth defects such as anencephaly and spina bifida (34). In this study, we reviewed the role of 

folate, as an important player during RA, pregnancy, and ASD, in associating maternal RA with ASD 

in offspring.  
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Figure 1. Maternal RA-Folate Status-ASD Axis. Maternal RA could influence folate status and affect 

pregnancy outcomes, including increasing the risk of ASD. BBB: Blood Brain Barrier (The figure 

was partially designed by Freepik; www.freepik.com). 

 

Folate 

Folate, also known as vitamin B9, plays a fundamental role in maintaining normal metabolism, 

regulation, division and homeostasis in human cells by providing one-carbon units (35). Once folate 

ingested, cellular absorption starts primarily in the duodenum and jejunum mainly by folate-specific 

entries named reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT) (36). After 

entering the cell, two enzymes folylpolyglutamate synthase (FPGS) and γ-glutamyl hydrolase (GGH) 

maintain intracellular folate homeostasis. Through the polyglutamylation process, FPGS adds 

glutamate residues to the folate molecules, which promotes intracellular folate retention and a steady 

supply for folate-dependent reactions. On the other hand, GGH hydrolyzes polyglutamylated folate 

into monoglutamylated for export from the cell, as it is the only form of the folate available in 

circulation (37) and through folate receptors (FRs) enters the cells (37,38). In the cell, through two 

reduction steps in the folate cycle, polyglutamated folate is converted first to dihydrofolate (DHF) and 

then tetrahydrofolate (THF) by the dihydrofolate reductase (DHFR) enzyme. Afterward, 5,10-

methyleneTHF reductase (MTHFR) converts THF to 5-methylTHF (5MTHF). By the activity of 

methionine synthase/methionine synthase reductase (MTR/MTRR) enzymes, 5-methylTHF could be 

recycled to THF and methionine. In the methionine cycle, subsequently, methionine is used to 

produce S-Adenosyl-methionine (SAM), S-adenosyl-homocysteine (SAH) and homocysteine. SAM is 

the main cellular methyl donor for DNA, RNA, protein, and phospholipid methylation (39) (Figure 2). 

Through these cycles, folates function as coenzymes in methionine regeneration, transsulfuration 

pathway, thymidine production, de novo purine synthesis, and influence the intracellular pools of 

glutathione, serine, glycine, and NADPH. Folates are necessary for nucleic acid synthesis, 
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transmethylation pathways, and maintaining a redox state, and therefore an adequate supply of folates 

is essential for health and normal development (35,40,41). Folate supply is primarily determined by 

the amount and bioavailability of dietary intake (35). However, malabsorption (e.g. due to 

alcoholism), an increased requirement (e.g. during pregnancy), medications (e.g. anti-folate drugs) 

(42), and polymorphisms in genes encoding folate enzymes and receptors (43) may all have an impact 

on its effective bioavailability. The classical symptom of folate deficiency is megaloblastic anemia 

(44). During folate deficiency, reduced serum or plasma folate levels and decreased red blood cell 

(RBC) folate occur (44) and all of the reactions in which folate is involved are compromised to a 

varying degree, as could be marked by the accumulation of various substrates and metabolic 

intermediates (35) such as elevated serum or plasma total homocysteine (tHcy) concentrations 

(hyperhomocysteinemia) (35) or alteration in DNA methylation (45) and oxidative stress (46), which 

all are associated with deleterious consequences (35,47,48). 

 

 

Figure 2. One carbon metabolism. DHFR: Dihydrofolate Reductase; THF: Tetrahydrofolate; SHMT: 

Serine Hydroxymethyltransferase; MTHFR: 5,10-MethyleneTHF Reductase; MTR: Methionine 

Synthase; MTRR: Methionine Synthase Reductase; MAT: Methionine Adenosyltransferase; SAHH: 

SAH hydrolase; SAM: S-Adenosyl-Methionine; SAH: S-Adenosyl-Homocysteine;  

 

Folate in RA 

A complex interaction between environmental and genetic factors triggers RA pathogenesis during 

which aberrant activation of innate and adaptive immune systems occurs. This immune activation is 

characterized by a breakdown of immune tolerance, presenting autoantigen by T cells, activation of 

dendritic cells, neutrophils, and macrophages, B cell activation and autoantibody production, and 

release of inflammatory cytokines, ending in synovitis followed by joint and bone damage (49,50). 

During the RA course, the folate supply undergoes two significant changes, the first during immune 

activation leading to disease onset, and the second after starting the therapy with first-line drugs, 

methotrexate (MTX) or sulfasalazine (SSZ). 

Immune activation, which is accompanied by proliferation and lymphopoiesis, has an increased need 

for nucleotide generation that is provided by folate-dependent purine and pyrimidine de novo 
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biosynthesis, as evidenced by elevated expression of folate-dependent enzymes glycinamide 

ribonucleotide formyltransferase (GART), DHFR, and AICAR-TF/IMP cyclohydrolase (ATIC) in 

blood cells of untreated RA patients (30). Since immune activation is associated with the production 

of reactive oxygen species (ROS) and oxidative stress, increased consumption of tetrahydrofolates, as 

an in vivo antioxidant vitamins, occurs (51) and could diminish blood concentrations of 

tetrahydrofolate (52,53). Another piece of evidence is the expression of folate receptor β (FRβ) on 

activated macrophages of RA patients (49), which has been suggested to play a role in delivering 

folates for biopterin metabolism, which enhances the production of ROS in macrophages (54), or to 

create a folate-deficient environment for depriving pathogens from nutrients (55), or for involvement 

in signalling processes (56,57).  

Disease-modifying antirheumatic drugs (DMARD) such as MTX and SSZ are well known to interfere 

with folate metabolism (58). MTX/Folate homeostasis is tightly controlled at several levels, including 

a) cellular uptake and efflux, b) intracellular metabolism and retention, and c) expression of folate-

dependent enzymes (30). MTX, by being structurally similar to folates, acts as a folate antagonist and 

blocks the activity of the DHFR enzyme, as its affinity for DHFR is approximately 1000 higher than 

that of folate (59). Moreover, MTX-polyglutamates (MTXGlu) probably inhibit the activity of the 

thymidylate synthase (TS) enzyme. The activities of DHFR and TS are necessary for de novo 

biosynthesis of pyrimidines and purines required for DNA replication and cellular proliferation. 

Accumulation of dihydrofolate polyglutamate and MTXGlu after DHFR inhibition could inhibit the 

activity of other downstream enzymes such as GART and MTHFR (60,61), which are important in de 

novo biosynthesis of purine and methylation of DNA, RNA, and proteins (30). On the other hand, 

SSZ, which is less studied compared with MTX, by inhibiting PCFT-mediated folate transport in the 

proximal small intestine, interferes with folate absorption (36). In addition, SSZ causes malabsorption 

of folates by inhibition of DHFR, MTHFR, serine-hydroxymethyltransferase (SHMT) (62), and GGH 

into the absorbable form (63). In RA patients, to reduce the side effects of MTX and SSZ, due to 

folate antagonism and malabsorption, folate administration is provided: a weekly dose of 5-10 mg 

folic acid (FA) in the case of treatment with MTX (64) and only a folate intake recommendation in 

case of SSZ treatment. 

Folate in ASD 

Pathogenesis of ASD is the result of gene-environment interactions (65–68). As evidenced by post-

mortem and genetic studies, ASD develops because of developmental impairment in the brain 

affecting the frontal cortex, hippocampus, cerebellum, and amygdaloid nucleus (69). Different 

cellular, neural, and anatomical processes such as neurogenesis, neuritogenesis, synaptogenesis, 

neuronal migration, maturation, differentiation, and degeneration are involved in ASD pathogenesis 

(70–72). Since folate deficiency before or during early pregnancy, i.e. first trimester, is associated 

with the increased risk of neural tube defects (NTDs) and this risk could be significantly reduced with 

periconceptional folate supplementation, milder forms of neurodevelopmental disorders like ASD in 

early childhood could be associated with folate deficiency without being specifically limited to pre-

conception and early gestation folate status (73). Folate plays a critical role in brain development as it 

is required for neurogenesis, neurotrophic factors, gene expression, DNA methylation, and myelin 

formation (74) and could be explained by its active transport in the placenta and its higher levels in 

the fetal brain compared with the adult brain (75). Animal studies showed that eliminating folic acid 

one week before birth is associated with lower brain weight (76) and prenatal folate deficiency is 

correlated with anxiety-related behaviour (77). Neuropsychiatric conditions such as ASD were found 

to be correlated with low levels of 5MTHF in cerebrospinal fluid (CSF) (78–80). Low levels of folate 

in CSF could be caused by: a) insufficient folate intake and absorption, as FA supplementation in 

autistic children with low levels of 5MTHF in CSF was shown to reduce the ASD symptoms (81); b) 

inflammation of the blood brain barrier (BBB) which impairs efficient transport of folate to CSF. The 

choroid plexus and BBB control the transport of folate between blood and CSF (82). BBB has three 
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major transporters: folate receptor alpha (FR∝), PCFT and RFC (83); c) mutations and 

polymorphisms in folate transporters and carriers genes (FR∝, PCFT and RFC) and folate 

metabolizing enzymes (i.e. DHFR, MTHFR, MTR and MTRR); and d) presence of folate receptor 

alpha autoantibody (FRAA) (31) that inhibits the transfer of folate to the brain, considering that 

folates are more concentrated in the brain than the plasma and its active import by FRα is crucial (84). 

RA-Pregnancy-ASD 

The consequences of folate deficiency in RA patients could contribute to elevated serum and plasma 

homocysteine (85,86), increased oxidative stress (87) and global hypomethylation of DNA (88,89). 

Patients who began MTX therapy while receiving FA supplementation had lower serum/plasma 

homocysteine levels (85), increased oxidative stress (90) and normalized DNA methylation (91). RA 

patients before conception should consult a gynaecologist and a rheumatologist to receive timely 

medication and meet pregnancy restrictions and requirements. Since MTX is in category X of the 

FDA, it should be discontinued 3 months before conception, as its active metabolites remain for 

several months in tissue with a 4 to 10-week median time of being undetectable in red blood cells 

(92,93). On the other hand, SSZ could be continued during pregnancy while supplemented with FA 

(94). SSZ can cross the placenta and reach maternal concentrations in the growing fetus (95), and its 

use is associated with elevated homocysteine (96) and oxidative stress (97). 

In addition to folate deficiency, which can directly affect the complex biological pathways such as 

DNA synthesis and cell division required for embryogenesis, fetal growth and development (98), 

elevated maternal homocysteine, oxidative stress and DNA hypomethylation could complicate 

pregnancy outcomes. During placentation, folate is involved in critical processes such as extravillous 

trophoblast proliferation, invasion of placental trophoblasts, and angiogenesis (99,100). Its deficiency 

is known to affect placental development, resulting in impaired fetal growth (101) and is considered a 

risk factor for ASD development (102). Elevated homocysteine may cause atherosclerosis by 

damaging the endothelial layer and enhancing inflammation (103,104), causing vascular injury in the 

placenta (105), and also by influencing the permeability of the BBB (106) could impair the transport 

of nutrients to the developing fetus. Chronic hyperhomocysteinemia, by having proinflammatory 

effects, could increase IL-6 and IL-1β cytokines in the maternal blood, which could cross the 

placental barrier and affect the development of the fetal brain (107–109). As evidenced in rat models, 

elevated Hcy is associated with increased IL-1β, the number of astroglial and microglial cells, and the 

phosphorylation level of p38 MAPK (mitogen activated protein kinase), indicating the development 

of neuroinflammatory processes (110,111). Accordingly, neuroinflammation, as an independent risk 

factor, was observed during ASD (21,112–114) and could be supported by the observation of 

increased levels of Hcy in the biological fluid of ASD children (115). Oxidative stress is involved in 

the pathophysiology of RA and could be found in the serum and different tissues of affected 

individuals (116).  Correspondingly, oxidative stress could be raised in the cord blood and the 

placental tissue (117,118).  Regulating oxidative stress in the placenta is vital for maintaining its 

physiological activities and normal immune microenvironment (119). Oxidative stress is considered 

another contributing factor to ASD, and folate, by regulating the redox potential of the neurons, could 

play a preventive role. During cortical folate deficiency, depletion of glutathione (GSH), which is an 

important antioxidant produced by the transsulfuration pathway, occurs and leads to stimulation of 

cortical excitability (72,120). RA patients with active disease experience global DNA 

hypomethylation, which is correlated with the relative degree of expression of folate genes, such as 

MTR and MTHFR (91). Treatment with MTX reverses this global DNA hypomethylation (91) and 

normalizes the up-regulated folate pathway genes (30). It was found that children born to mothers 

with RA have altered DNA methylation compared with controls (121), and ASD patients, similar to 

RA patients, experience global DNA hypomethylation (122,123), which could be an implication of 

folate deficiency (124), as maternal supplementation with FA during pregnancy could change the 

DNA methylation in genes related to brain development in cord blood (125). 
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Inheritance of genetic factors related to the folate pathway could be a contributing factor in giving 

birth to an autistic child in mothers with RA. There are several genetic polymorphisms in folate 

pathway genes with different effects on folate metabolism. These polymorphisms include MTHFR 

c.677C>T (rs1801133), MTHFR c.1298A>C (rs1801131), MTR c.2756A>G (rs1805087), MTRR 

c.66A>G (rs1801394), SLC19A1 c.80A>G (rs1051266), MTHFD1 c.1958G>A (rs2236225), DHFR 

19bp del/ins (rs70991108) and a 28bp repeats in TYMS gene (rs45445694) (44,126). Some of these 

variants are identified in both RA and ASD as risk factors, which include MTHFR c.677C>T  (127–

129), MTR c.2756A>G (130,131) and SLC19A1 c.80A>G (132,133). However, the latter 

polymorphism in the mothers of autistic children is associated with autism in the foetus, not its 

presence in the foetus itself (133).  

 

Conclusion and future directions 

RA and ASD are two distinct pathologies with different pathogenesis pathways. The occurrence of 

ASD in early childhood and tracking its development back to the in utero period highlights the 

pregnancy conditions during which folate is considered a fundamental player. Immune activation 

during RA and its treatment with anti-folate agents could affect the folate cycle twice and leave 

systemic influences with varying consequences, as signs of folate deficiency are first seen in serum 

and plasma and later in RBC. This systemic influence, which may be exacerbated by genetic 

polymorphisms in the folate system, may affect uterine conditions by reducing folate supply for fast 

growing fetuses, impairing placenta function by elevated homocysteine levels, disrupting the redox 

balance required for normal pregnancy, and influencing DNA methylation processes. These changes, 

besides contributing to folate deficiency in the brain, could influence normal development and 

function of the brain and increase ASD risk. Although folate supplementation in ASD children 

showed improvement in autistic behaviours, excessive supplementation was also reported to be 

associated with ASD (134). Therefore, having a precisely balanced and steady supply of folate during 

pregnancy should be advised, although it is not an easily controllable condition in RA patients. 

Besides, there are three different commercially available synthetic folates that do not resolve the 

folate deficiency and its consequences equally, and supplementation with them might have different 

impacts on both RA treatment and brain development (31,135) as they enter the folate cycle from 

different points (135). Therefore, it is imperative to conduct further research on the maternal RA-

folate status-filial ASD axis by taking into account the genetic background of the folate system in 

women with RA, carefully monitoring serum/plasma and RBC folate concentration before and during 

pregnancy, and the type of folate supplemented during both RA treatment and pregnancy. In 

conclusion, maternal RA as well as folate imbalance as environmental factors could contribute to 

ASD development in genetically predisposed offspring, and folate interventions might have important 

impact on ASD prevention and management in the fetus of mothers with RA.  
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Highlights 

 Folate balance is important for a healthy pregnancy 

 Maternal RA could influence folate balance during disease onset and treatment 

 Folate status is associated with ASD 

 Maternal RA by influencing folate balance might contribute to filial ASD 
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