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Abstract: The deployment of heterogeneous networks (HetNets) is a way to increase the network

capacity and release part of the traffic generated by users inside a cell to small-scale wireless networks

for service. In this context, the main problem is managing the interference due to the coexistence of

small cells and macro cells. In this paper, a QoS-aware Resource Allocation (RA) algorithm jointly

working with admission control (AC) over a two-tier HetNet scenario is investigated in the presence

of both the pilot-symbols for channel estimation and the channel estimation error. The RA algorithm

allows two users, the macro cell user (CU) and small cell user (SU), to simultaneously share the same

resource block. Moreover, system performance and fairness are improved by including adaptive

power allocation to users over resource blocks. In the framework of RA with proportional rate

constraints, a novel algorithm is designed by including the effects of pilot-aided channel estimation.

The algorithm is able to distribute the same proportional rate to all CUs and SUs, even in the presence

of channel estimation error. Relevant numerical results for the downlink of a two-tier HetNet with

pilot-aided channel estimation show that the rate dispersion is driven to zero while the sum-rate is

maximized, and the average user rate penalty with respect to a perfect-CSI scenario may rise to 20%.

Keywords: resource allocation; heterogeneous networks; pilot-aided channel estimation; imperfect

CSI; OFDMA systems

1. Introduction

The data rate in 4G/5G/6G mobile communications has largely grown due to the
inclusion of multimedia traffic, increasing in this way the interference among multiple
users over wireless channels, thus making it more challenging to preserve performance in
terms of Quality-of-Service (QoS).

A new network paradigm in the evolution to 5G systems, consisting of the Hetero-
geneous Networks (HetNets) [1], has been introduced in the last years. In HetNets, an
underlay cellular system [2] with micro-femto cells and device-to-device (D2D) commu-
nications coexists with a macro cell to reduce the traffic and energy consumption. One of
the main focuses in multi-tier networks is managing interference through suitable resource
allocation (RA) schemes [3–7] in order to achieve maximum network throughput while
guaranteeing the QoS required by the users. The complexity of the RA problem involved
increases when new scenarios and new technologies, e.g., MIMO systems, are introduced
along the 5G–6G path [8], and multiple types of resources have to be considered for global
optimization [9].

In most research work, the performance of HetNets has been investigated with the
assumption of a perfect knowledge of the wireless channel at the receivers and at the resource
allocation unit of the network. However, in practical implementations, the channel of each
wireless link is estimated through some specific techniques, e.g., pilot-aided channel estima-
tion, that introduce some overhead in the transmission and also a channel estimation error
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that degrades the performance of each link in terms of the achievable rate [10–15]. Moreover,
if the resource allocation algorithms do not properly take into account such performance
degradation, they may fail to optimize the network throughput and to provide a fair QoS
to all the users. This paper tries to address this issue by investigating QoS-aware RA
algorithms that are able to operate in the presence of pilot-symbols for channel estimation
and channel estimation errors.

1.1. Contribution of the Paper

In our paper, an RA algorithm is proposed for the downlink of a heterogeneous two-
tier network (macrocell-femtocells) where pilot-symbol-aided channel estimation is used,
which introduces rate and power penalties and also a channel estimation error. The RA
algorithm allows two users, the macrocell user and small cell user, to simultaneously share
the same resource block and provides adaptive power allocation to users over resource
blocks to improve network performance and fairness in the presence of interference.

The RA algorithm is derived as a suboptimal solution of a sum-rate maximization
problem with proportional rate constraints and per cell power constraints. In this frame-
work, a novel solution is designed by including the effects of pilot-aided channel estimation.
It consists of two decoupled algorithms: one for subchannel allocation and one for power
allocation. The second algorithm allows multiple iterations that converge to a stable solu-
tion. The RA algorithm jointly works with a suitable admission control (AC) that controls
the admission of users to the network and the network load on a long-term basis by also
taking into account the effects of pilot-aided channel estimation.

The results obtained from the proposed algorithms are compared with the results
obtained from algorithms not aware of pilot-aided channel estimation effects and from
algorithms working in the scenario with perfect CSI. This enables us to evaluate the impact
of imperfect CSI on network and user performance and the impact of CSI awareness in the
resource allocation process. The results also allow us to check the performance sensitivity
to pilot symbol configurations—for example, the amount of power spent over pilots. The
simulation results show that the proposed RA algorithms (with two iterations in the power
allocation procedure) are able to distribute the same proportional rate to all macro cell and
small cell users, with almost zero dispersions, even in the presence of channel estimation
error.

1.2. Organization of the Paper

The paper is organized as follows. After the discussion of the related work in Section 2,
the system model is presented in Section 3. The link model considering the effects of
channel estimation error and pilot symbol overhead is illustrated in Section 4. All the RA
algorithms are derived and presented in Section 5, whereas the AC strategy is summarized
in Section 6. Section 7 illustrates the simulation results, and conclusions follows in Section 8.
The main symbols and acronyms are listed in Table 1.

Table 1. Main symbols and acronyms.

Symbols Description

rc Macro-cell radius
r f Small-cell radius

Kc Number of CUs per cell
Ks Number of SUs per cell
F Number of small-cells

Gb
cu Average channel gain between user u of cell c and BS/AP b

hb
cu,s Fading gain between user u of cell c and BS/AP b on subchannel s

∆B Subchannel bandwidth
wcu Utility weights
qcu Required average rate for user u of cell c
S Subchannels per slot



Sensors 2022, 22, 4545 3 of 26

Table 1. Cont.

Symbols Description

T Slots per frame

γ
(bv)
cus

SINR for the user u of cell c, when it shares the channel with user v of
cell b on subchannel s

Rcu Average rate of user u of cell c over one slot
Pc

T Power budget per frame in cell c
Pc

us Power spent by BS/AP c for user u on subchannel s
acus Allocation variable of user u of cell c for subchannel s
σ2 Noise power per subchannel

σ2
cu Power of estimation error for user u of cell c
µ Number of pilots/Number of data symbols Ratio

Acronyms Full Name

RA Resource allocation
AC Admission control
BS Base station
AP Small-cell access point
CU Cellular user
SU Small-cell user
CSI Channel state information
PDP Power delay profile
SINR Signal-to-interference-plus-noise ratio

RB Resource block

2. Related Work

Access methods play an important role in the design of a correct resource allocation
strategy. In [16], for an OFDM system with adaptive coded modulation, an algorithm is
proposed that combines subcarrier, bit, and power allocation. The authors assume perfect
channel estimation and exclusive use of the subcarriers. They found that for a five-user
scheme, the system achieves at least a 4 dB advantage on the average SNR with respect to
traditional schemes. Dynamic Resource Allocation in Multiuser OFDM [17] makes full use
of multiuser diversity due to the time-varying behavior of the wireless channel. The sum
capacity of MU-OFDM is maximized when each subchannel is assigned to the user with
the best channel-to-noise ratio.

Similarly, an optimal power allocation algorithm with a set of proportional fairness
constraints is proposed in [18] in order to assure that each user can achieve a required data
rate. In order to optimize the subchannel and power allocation, these two subproblems are
solved independently, and the optimization problem is transformed into a linear problem
to reduce the complexity. Therefore, the equally weighted sum capacity was defined as
the objective function, and the proportional fairness was imposed as a set of nonlinear
constraints. In [19], a Proportional-Fairness-Scheduling (PFS) algorithm is considered for
NOMA systems to avoid the cases where the users with weak channel gains cannot be
supported. The algorithm is defined for two users under two different criteria: maximize
the sum-rate and maximize the minimum rate. The results have shown that NOMA/Max-
Min can stabilize transmission rates and provide the smallest standard deviation of rates
with respect to NOMA/Sum proposed in [20].

Resource allocation for heterogeneous networks has been considered in [1–3,5–7]
referring to either a two-tier cellular network or a D2D underlaying cellular network.
It is shown in [6] that spatial interference coordination can improve the spectral and
energy efficiency involved in underlay HetNets. In this context, the cooperative radio
resource management in cognitive radio networks [21,22] and the joint distributed cell
association and power control [3] are promising techniques for 5G systems and beyond. It
is emphasized in [5] that rate-optimized communications can be obtained from the solution
of large-scale—often untractable—optimization problems including resource allocation
and cell association. Among tractable approaches to these problems, those based on game
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theory are often considered. In [23], a mean-field game theory approach has been exploited
to solve the interference management problem in large-scale HetNets. The problem has
been decoupled into a set of smaller localized problems to be solved at the small cells with
local information only. Heterogeneous ultra-dense networks have been also investigated
in [24] where solutions based on game theory are employed to reduce the imbalanced cell
loads and to maximize the resource utilization. Game theory can be also used in cognitive
radio applications as a low-complexity approach to manage interference and to support
secure spectrum sensing, as in [25].

In [26], power control for two-tier femtocell networks has been proposed using
distributed utilities for the femtocells, based on rewards dependent on the signal-to-
interference plus noise ratio (SINR). The SINR equilibrium is attained using distributed
power updates, and the utility adaptation provides up to 30% higher SINR in femtocells,
with respect to the classic Foschini–Miljanic algorithm [27]. In [28], the interference between
D2D and cellular user equipments has been considered by proposing efficient Admission
Control (AC) and radio resource allocation (RA) strategies, jointly working to guarantee
the QoS requirements for all users under cross-tier interference. The maximization of the
average weighted sum-rate under rate constraints was considered to derive allocation
algorithms.

In all the previously referenced works, perfect channel-state-information (CSI) has
been assumed. However, in practice, the RA schemes for HetNets are influenced by CSI
inaccuracy. In [29], the optimization of network capacity was investigated in the presence of
CSI uncertainty, demonstrating that equal power distribution among data subchannels can
be an optimal choice. In [10], an energy-efficient resource allocation scheme for OFDMA
two-way relay networks with imperfect CSI is proposed to improve the transmit power
consumption with given QoS requirements. In addition, an optimal power allocation,
relay selection and subcarrier pairing are derived through convex optimization techniques,
where the related problem is solved with zero-optimal gaps, as in [11]. However, all the
authors did not consider the effects of interference, which can make the problem non-
convex, and relaxation techniques are needed to solve it, as in [30,31]. When the CSI
error is not considered in the RA, sharing the resource blocks (RB) may cause unpredicted
interference to users.

The effects of imperfect CSI are considered in [13] for cognitive multi-radio-access
HetNet. Here, the energy-efficiency optimization [32] is enhanced by properly splitting
the traffic into different radio accesses to guarantee the outage probability requirements
in femtocells. In [14], an optimal outage probability threshold has been derived using a
probabilistic scheme, and a QoS-aware RA for D2D underlay systems has been proposed.
Here, the authors considered outage-based QoS requirements and the interference to
cellular users only, whereas the imperfect CSI in the interfering links is modeled as the
distance-based path loss.

A two-tier HetNet with underlay D2D communications has been investigated in [12,15],
and power control algorithms have been derived by taking channel estimation error into
account. In [12], optimal power is derived using a primal-dual optimization method to
maximize the SINR of D2D links while maintaining a minimum required QoS, whereas
in [15], both centralized and distributed methods are considered to maximize coverage
probability. A two-tier Hetnet with femtocells is investigated in [33], where the effects
of pilot-aided channel estimation have been considered in the design of admission con-
trol, which reduces the number of admitted users in order to satisfy the QoS constraints.
However, the RA issues have not been addressed in this work.

3. System Model

We consider a two-tier cellular network using OFDMA, as in Figure 1. In the network,
there are Kc cellular users (CUs), uniformly distributed in the macrocell and connected
to the base station (BS); KsF small-cell users (SUs), each one assigned to a small-cell; and
F small-cells. The small-cell access points (AP) are uniformly placed in the macrocell
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region limited by the circles of radio ri and rc, where rc is the macrocell radius and ri is a
minimum distance of CUs to BS. The SUs are uniformly distributed inside the small-cells,
at Ks per cell. The small-cell radius is r f . We identify the users with a pair of indexes
(c, u): primary cellular users with c = 0 and u = 1, . . . , Kc; small-cell users with c > 0 and
u = 1, . . . , Ks). Each user is assumed to be preassigned to cell c ∈ {0, 1, . . . , F}, where c = 0
is the macrocell.

Figure 1. HetNet model for the downlink scenario. The lines with arrows denote the wireless links:

direct link (solid), interfering link (dashed).

The available OFDMA bandwidth is divided into S orthogonal subchannels with
bandwidth ∆B, where the elementary resource unit is the resource block (RB), composed of
one subchannel and one time slot. Each subchannel can include several subcarriers: e.g., in
4G numerology, one subchannel includes 12 OFDM subcarriers with ∆B = 180 KHz. All the
available RBs are shared among the coexisting CUs and SUs communications. We assume
that the network is fully loaded and the SUs can only be served in sharing (not orthogonal)
mode with CUs. Thus, an RB can be allocated to either a CU in orthogonal mode or to
a coupled CU and SU in sharing mode. Sharing mode communications are affected by
cross-interference, as in the case illustrated in Figure 1 for the downlink scenario.

The network supports a QoS-aware centralized resource management that controls
resource assignment to all users in order to limit the effects of cross-interference and
optimize the revenue for the service provider while guaranteeing a predefined level of QoS
to users. The QoS requirement is defined in terms of minimum average bit-rate, denoted
with qcu, u = 1, . . . , Kc(Ks), (c = 0, . . . , F). The related revenue for the service provider is
denoted with wcu for u = 1, . . . , Kc(Ks), (c = 0, . . . , F).

We use a dynamic radio resource management due to the time-varying nature of the
wireless channel, as sketched in Figure 2. This is is based on a radio resource allocation
(RA) algorithm that efficiently allocates RBs and controls the power, frame by frame, and
an admission control (AC) algorithm that determines which users can be served by the
network in a long-term period under QoS requirements. The RA algorithm sees short-term
time-varying fading conditions, even in the frequency domain. The AC algorithm sees
average channel conditions in its operating period. It admits the users that have the best
channel conditions in the long-term.
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Figure 2. Time scale of admission control and resource allocation with respect to channel variations.

If the system is properly loaded by the AC algorithm, the RA algorithm works to
guarantee the QoS requirement. More specifically, as better explained in Section 4, the
RA algorithm tries to maximize frame-by-frame the bit-rate of each user while preserving
proportionality to rate requirements. In this case, the service provider revenues depend on
the outcome of the AC algorithm. If we use the binary variable zcu to indicate whether (1)
or not (0) the CUs and the SUs are admitted in the system, respectively, the network utility
revenues become

U(z) =
F

∑
c=1

Ks

∑
u=1

zcuwcu +
Kc

∑
u=1

z0uw0u (1)

where z = {zcu : c = 0, . . . , F, u = 1, . . . , Kc(Ks)} is the outcome of the AC algorithm.

Channel Model

The wireless channel between each transmitter–receiver couple is modeled through
a distance-dependent path loss and a random small-scale fading, which is assumed to be
constant along the set of consecutive slots of a frame. By taking the downlink as a reference
case, the power received by the user u of cell c, from the base station or access point b,
on the OFDM subchannel s is given by Pb

R,cus = Pc
us · Gb

cu · hb
cu,s, where Gb

cu represents the

average channel gain and hb
cu,s represents the random fading gain on the subchannel s. The

notation scheme is illustrated in Figure 3. The average channel gain is the multiplicative
inverse of the path-loss, which is modeled [15] as follows:

PL(dB) =























128.1 + 37.6log10d[km] BS → CU

128.1 + 37.6log10d[km] + 15
BS → SU

AP → CU

98.46 + 20log10d[km] + 0.7d[m] AP → SU

(2)

Small-scale fading is due to multipath propagation in the wireless medium and takes
different correlated values across the subchannels in the frequency domain. In this regard,
we consider a multipath channel model with L + 1 independent paths with zero-mean
complex-Gaussian path gains with variance pl , with l = 0, . . . , L, and ∑l pl = 1. The set of
values pl is also referred to as the Power Delay Profile (PDP) of the channel. The low-pass
transfer function of the channel, between base station b and user (c, u), sampled at the
subchannel frequencies s∆B, with s = 0, . . . , S − 1, is given by

Hb
cu,s =

L

∑
l=0

ab
cu,l · ejθb

cu,l · e−j2πs∆Bτb
cu,l (3)
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where ab
cu,l and θb

cu,l represent the random amplitude and phase, respectively, of the tap

l with delay τb
cu,l , and pl = E

[

(ab
cu,l)

2
]

. The random fading gain is therefore given by

hb
cu,s =

∣

∣

∣
Hb

cu,s

∣

∣

∣

2
.

Figure 3. Notations for the channel gains of the wireless links between base stations and users.

4. Link Model

We first introduce the model of SINR as in [28], for the case when the CSI is perfectly
known at the receiver. After this, we extend this model to include the effects of the
redundancy introduced by pilot symbol-assisted channel estimation and the effects of
channel estimation error.

When the CSI is perfectly known, the SINR for the user u of cell c, when it shares the
channel with user v of cell b on subchannel s, is given by

γ
(bv)
cus =

Pc
usGc

cuhc
cu,s

σ2 + Pb
vsGb

cuhb
cu,s

, b 6= c (4)

We assume that at most one SU can share the subchannel s with a CU. If the user u of
cell c does not share the subchannel, i.e., it operates in orthogonal mode, the SINR misses
the interference term leading to γ′

cu,s = Pc
usGc

cuhc
cu,s/σ2. We use symbol γ′ to denote this

specific case.
When pilot-symbol-aided CSI estimation is implemented to allow OFDM coherent

detection and synchronization, a part of the transmitted symbols in each RB is used as
pilots, thus reducing the number of symbols and the amount of power available for the
transmission of useful data. Moreover, since channel estimation is not perfect, a residual
estimation error acts as additional noise that degrades the link performance.
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We assume that a minimum mean square error (MMSE) estimator is used at each
receiver to estimate the impulse response of the frequency-selective channel, which is
optimal with respect to link capacity. It is shown in [34] that the mean square error, i.e., the
variance of the estimation error, for the generic user u of cell c in case of equipowered and
equispaced pilots, is given by

σ2
cu =

L

∑
l=1

[

1

pl
+

PPcu

σ2
n

]−1

(5)

where PPcu is the total average power received over pilot symbols, σ2
n is the noise power

per subcarrier, and {p0, . . . , pL} is the PDP of the channel with L paths. In a general case,
we have σ2 = Nscσ2

n , where Nsc is the number of subcarriers per RB, e.g., Nsc = 12 in 4G
numerology.

It is also shown in [34] that the instantaneous (short-term) signal-to-noise ratio in a
given subcarrier (or RB in our case) at the receiver is given by

ρ =
P
(RB)
D (1 − σ2

e )g

σ2 + P
(RB)
D σ2

e

(6)

where P
(RB)
D is the average power received over the data symbols of the RB, g is the

instantaneous fading variable, with unit mean, in the given subcarrier (RB in our case), and
σ2

e is the variance of the estimation error.
We apply these results to reformulate the SINR in (4) for a system with pilot-symbol

assisted CSI estimation. By including the short-term and the long-term average components
of (6) and by including the interference, the SNIR for user u of cell c, when it shares the
channel with user v of cell b on the subchannel s, becomes as follows:

γ
(bv)
cus =

Pc
usGc

cuhc
cu,s(1 − σ2

cu)ηp

σ2 + Pc
usGc

cuσ2
cuηp + Pb

vsGb
cuhb

cu,sηp
(7)

where ηp is the power efficiency, i.e., the ratio between the power used over RB data
symbols and the total power Pc

us. In orthogonal mode, the SINR becomes

γ′
cus = Pc

usGc
cuhc

cu,s(1 − σ2
cu)ηp/(σ2 + Pc

usGc
cuσ2

cuηp) (8)

The average rate achievable by the user u of cell c over one slot is therefore given by

Rcu = ∑
s

acus A3ηb∆B

[

acslog2

(

1 + γ′
cus/A1

)

+ ∑
b 6=c,v

abvslog2

(

1 + γ
(bv)
cus /A1

)

]

where the parameters A1 and A3 are the SNR-gap and the rate adjustment, respectively,
depending on the adaptive modulation and coding (AMC) used at the physical layer, ηb

is the bandwidth efficiency of pilot-aided channel estimation, and acus is the allocation
variable of user u of cell c for the subchannel s. The allocation variable acus is 1 when
the subcarrier is allocated to the user; it is 0 otherwise. Similarly, the orthogonal-mode
allocation variable acs = 1 − ∑

b 6=c,v
abvs is 1 when the subchannel s is not allocated to any

user of the cells b 6= c; it is 0 otherwise, noting that at most one of the users of the cells
b 6= c can share the subchannel.

The bandwidth efficiency is given by the ratio between the number of data symbols
and the total number of symbols in one RB, which can also be written as

ηb = 1 − µ = 1 − NP/N (9)

where NP is the number of pilots in one RB and N the total number of symbols in one RB.
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To introduce flexibility in the use of pilots, we consider the possibility to allocate
different amounts of power to pilot and data symbols. If we used the same power level
for all symbols, i.e., a power P, the power allocated to pilots would simply be µP. To
differentiate the power level for pilots, we allocate to them a power equal to αµP, where α is
a power allocation parameter that can be different from 1. In this way, the power efficiency
becomes

ηp = 1 − αµ (10)

According to these definitions, the total power received over pilot symbols by the user u
of cell c in the downlink (note that in the downlink, each receiver is able to process pilots
spread over the entire bandwidth S∆B) becomes

PPcu = α · µ · S · Pc · Gc
cu (11)

where SPc is the total power available at the BS or AP c, and Pc is the power per RB.
Finally, with ηcus = acus A3ηb∆B, the rate becomes

Rcu = ∑
s

ηcus

[

acslog2

(

1 + γ′
cus/A1

)

+ ∑
b 6=c,v

abvslog2

(

1 + γ
(bv)
cus /A1

)

]

5. Resource Allocation

The aim of the RA algorithms is to efficiently assign to the admitted CUs and SUs, in
each frame, the available RBs and the available power. We define for each cell c the set
of admitted users as Ac = {u : zcu = 1}. The RA frame includes S RBs × T slots. For
the sake of simplicity, in the RA problem formulation, we extend the subchannel index
range to cover the entire frame (in this case, the actual user rate becomes Rcu/T), i.e.,
s = 1, . . . , ST, and assume that random fading gains remain constant in the adjacent slots
of the frame. The RA algorithm tries to maximize frame-by-frame the bit-rate of each user
while preserving proportionality to rate requirements.

The optimization problem which is considered for the RA can described as follows:

max
A,P

∑
c

∑
u

Rcu (12a)

s.t. : acus ∈ {0, 1} (12b)

∑
u

a0us ≤ 1 ∀s (12c)

∑
c>0

∑
u

acus ≤ 1 ∀s (12d)

Pc
us ≥ 0 (12e)

∑
s

∑
u

acusPc
us ≤ Pc

T , ∀c (12f)

Rcu

φcu
=

Rc1

φc1
∀u > 1, ∀c (12g)

Rc1

φc1
≤ R01

φ01
∀c > 0 (12h)

where P = {Pc
us, c = 0, . . . , F; u ∈ Ac; s = 1, . . . , ST}, A = {acus, c = 0, . . . , F; u ∈ Ac; s =

1, . . . , ST} and φcu = qcu is the proportionality constant linked to the QoS requirements
defined in Section 2 in terms of the minimum average bit rate. We assume, for the sake of
simplicity, that we renumber the user indexes u ∈ Ac to have them in the range [1, |Ac|].

In problem (12), the constraints b, c and d are related to the allocation variables: each
subchannel can be allocated to no more than one CU and one SU. The constraints e and
f are related to the allocated powers: their sum cannot exceed the power budget Pc

T (per
frame) at each BS or AP. The constraints g and h ensure rate proportionality among CUs
and SUs: the proportionality is strict within each cell, but the proportional rate allocated in
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each small cell may be less than the proportional rate in the macrocell, when the power
budget of each small cell does not support larger rates.

The problem in (12) is a mixed integer programming problem with non-convex object
and constraints. Due to the problem complexity, we seek for a suboptimal solution by
decomposing the problem into two decoupled sub-problems:

• A subchannel allocation problem defined by assuming an equal power distribution
among subcarriers;

• A power allocation problem defined by assuming the subchannels already allocated
according to the solution of the previous problem.

We follow the suboptimal low-complexity approach proposed in [18] for a single-cell
network with perfect CSI knowledge and extend it to our heterogeneous network with
imperfect pilot-symbol assisted CSI estimation. We should remind the reader that the main
scope of the paper is to evaluate the impact of imperfect CSI on the resource allocation
process. Nevertheless, we also provide, as a result of this extension, a novel suboptimal
low-complexity algorithm for RA in a two-tier cellular system.

5.1. Subchannel Allocation Algorithm

We first discuss the suboptimal subchannel allocation algorithm, which is described
by Algorithm 1. It is based on two main successive steps that follow the initialization step.
In the first step, the subchannel allocation to all the CUs is performed. All the channels
are assigned to the CUs trying to maximize the sum-rate while preserving proportional
fairness. This part of the algorithm is similar to the algorithm proposed in [18], Section IV.
In the second step, which is novel with respect to [18], the subchannel allocation to all the
SUs in sharing mode is done. In this part of the algorithm, the sum-rate is maximized by
having in mind that when a channel is assigned to an SU in sharing mode with a CU, the
rate of the CU decreases while the rate of the SU increases.

The specific details of Algorithm 1 are as follows. In step 2.a, one subchannel is
allocated to each CU by selecting the subchannel with the best channel gain in the set of
still unassigned channels. In step 2.b, the remaining unassigned channels are allocated
according to the rule that, in each turn, the user with the smallest proportional rate gets the
priority to choose their best subchannel. In step 3.a, one subchannel is allocated to each SU
in sharing mode by selecting the subchannel with the best rate–fairness tradeoff in the set
of still unassigned channels. The rate–fairness tradeoff due to the allocation of subchannel
s to SU (c, u) is evaluated with the rate metric:

mcu,s = min
(

R′
cu/φcu, R′

0k/φ0k

)

(13)

where k = σ(s) is the index of the CU sharing the subchannel s, and R′
cu, R′

0k are rates
updated with the possible allocation of subchannel s in sharing mode. Finally, in step 3.b,
the remaining unassigned (in sharing mode) channels are allocated according to the rule
that, in each turn, the user with the smallest proportional rate gets the priority to choose
their best subchannel in terms of best rate–fairness tradeoff. The subchannel is assigned
only if the rate metric is equal to or larger than the proportional rate of the SU before
subchannel allocation.
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Algorithm 1 Subchannel allocation algorithm.

Step 1 Initialize Rcu = 0, acus = 0, ∀c, u, s; Initialize set of channels for CUs and SUs
ΩCU = ΩSU = {1, . . . , ST};

Step 2 Allocate subchannels to all CUs;
(a) for u = 1 to KC

find n satisfying h0
0u,n ≥ h0

0u,s, ∀s ∈ ΩCU ;

set a0un = 1, ΩCU = ΩCU − {n};
update R0u according to (9);

endfor
(b) while ΩCU 6= ∅

find k satisfying R0k
φ0k

≤ R0u
φ0u

, ∀u;

find n satisfying h0
0k,n ≥ h0

0k,s, ∀s ∈ ΩCU ;

set a0kn = 1, ΩCU = ΩCU − {n};
update R0k according to (9);
endwhile

Step 3 Allocate subchannels to all SUs [in sharing mode with CUs];
(a) for c = 1 to F, u = 1 to KS

find n satisfying mcu,n ≥ mcu,s, ∀s ∈ ΩSU ;
set acun = 1, ΩSU = ΩSU − {n}, k = σ(n);
update Rcu, R0k according to (9);

endfor
(b) initialize set C = {(c, u), ∀c 6= 0, ∀u}

while C 6= ∅ and ΩSU 6= ∅

find (b, v) satisfying Rbv
φbv

≤ Rcu
φcu

, ∀(c, u) ∈ C;

find n satisfying mbv,n ≥ mbv,s, ∀s ∈ ΩSU ;

if mbv,n ≥ Rbv
φbv

then

set abvn = 1, ΩSU = ΩSU − {n};
set k = σ(n);
update Rbv, R0k according to (9);

else
set C = C − {(b, v)};

endif
endwhile

5.2. Power Allocation Algorithm

The power allocation algorithm is derived by assuming that subchannel allocation,
identified by the set A = {a∗cus}, is the result of Algorithm 1. By considering the general
problem in (12), the power allocation problem can be formulated as

max
P

∑
c

∑
u

Rcu (14a)

s.t. : Pc
us ≥ 0 (14b)

∑
s

∑
u

a∗cusPc
us ≤ Pc

T , ∀c (14c)

Rcu

φcu
=

Rc1

φc1
∀u > 1, ∀c (14d)

Rc1

φc1
≤ R01

φ01
∀c > 0 (14e)
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Due to the presence of the interference term inside the expressions of the rates Rcu,
this optimization problem is non-convex. A simple suboptimal solution can be derived by
assuming all the interference terms to be fixed to a constant value. This can be effectively
done by replacing the interfering powers Pb

vs in the SINR of Equation (7) with the constant
value Pb

T/ ∑
s

∑
v

a∗bvs = Pb. With this assumption, the problem become convex and can be

solved with standard methods.
To simplify the derivation, we modify the notation for the expression of the rate Rcu of

user u in cell c, evaluated through (7) and (12), as follows:

Rcu = ∑
s

η∗
cuslog2(1 + Γcus/A1) (15)

Γcus =
Pc

usGc
cuhv

cus(1 − σ2
cu)ηp

σ2 + Pc
usGc

cuσ2
cuηp + ∑

b 6=c
∑
v

a∗bvsPb
vsGb

cuhb
cusηp

(16)

The notation of (16) can be further simplified as

Γcus =
Pc

usXcus

Pc
usYcu + Zcus

(17)

where
Xcus = Gc

cuhc
cus(1 − σ2

cu)ηp

Ycu = Gc
cuσ2

cuηp

Zcus = σ2 + ∑b 6=c ∑v a∗bvsPbGb
cuhb

cusηp

including the replacement of interfering powers Pb
vs with the constant value Pb.

As shown in Appendix A, a first step to solving the convex problem with constant
interference can be the evaluation of the Lagrangian of the problem, as a function of the set
of powers P. It is found that the set of powers that maximizes the Lagrangian satisfies the
following property:

Lemma 1. For any user u of cell c, given the set of its allocated subchannels, i.e., Scu = {s : a∗cus =
1}, the following relationship holds for any pair of allocated subchannels s, r ∈ Scu:

XcusZcus

(Pc
us)

2Ycu(Xcus + x) + Pc
usZcus(Xcus + y) + A1Zcus

2
=

XcurZcur

(Pc
ur)

2Ycu(Xcur + x) + Pc
urZcur(Xcur + y) + A1Zcur

2
(18)

where x = A1Ycu and y = 2A1Ycu. This relationship holds only if Pc
us > 0 and Pc

ur > 0.

Note that when the channel estimation error is not considered in the allocation algorithm,
i.e., σ2

cu = 0, Ycu becomes 0, leading to the simplified relationship:

Xcus

Pc
usXcus + A1Zcus

=
Xcur

Pc
urXcur + A1Zcur

(19)

The relationship in (18) allows, for each user, the power to be derived to spend on each
subcarrier as function of the power assigned to a reference subchannel of the user, which
can be, for example, the allocated subchannel with the smallest index or the subchannel
with the best SINR. If we denote with rcu the index of the reference subchannel for the
user u of cell c and with pcu the power assigned to this subchannel, we can obtain Pc

us as
the solution of Equation (18) with r = rcu and Pc

ur = pcu. This solution is derived in the
Appendix A and is given by

Pc
us = Fc

us(pcu, rcu) (20)

where function Fc
us(p, r) is defined in (A6) of the Appendix A.
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Now, the solution of the power allocation problem with constant interference can be
obtained as the solution of the set of constraints in Equations (14c), (14d) and (14e) with
the unknown pcu, which becomes

∑
u

Q0u = P0
T (21a)

∑
u

Qcu ≤ Pc
T ∀c > 0 (21b)

Rcu

φcu
=

Rc1

φc1
∀u > 1, ∀c (21c)

Rc1

φc1
≤ R01

φ01
∀c > 0 (21d)

where Qcu = ∑
s

a∗cusFc
us(pcu, rcu) and

Rcu = ∑
s

η∗
cuslog2

(

1 +
1

A1

Fc
us(pcu, rcu)Xcus

Fc
us(pcu, rcu)Ycu + Zcus

)

(22)

It should be remarked that the power constraint for the CUs (c = 0) is active with equality
to guarantee the maximum rate to both CUs and SUs. However, the power constraints (21b)
and the rate constraints (21d) for the SUs (c > 0) are competing with each other, and only
one of them for each small cell c will be active: depending on the power budget Pc

T , the
capacity of the small cell c will be limited by the available power or by the rate constraint.

The power allocation algorithm is described by Algorithm 2. After the initialization
of parameters, functions and indexes of reference subcarriers, in Step 3, the powers of the
CUs (users of cell 0) are derived as the solution of the set of equations obtained from (21c),
with c = 0, and from (21a). In Step 4, for each small cell c, a first attempt is made to derive
the power of the users by solving the equations obtained from (21c) and (21d), for c > 0.
In Step 5, the constraint (21b) is evaluated and checked for each cell c > 0. If the power
constraint is not satisfied, the powers of the SUs of cell c are derived as the solution of the
set of equations obtained from (21c), with c > 0, and from (21b). All the solutions of the non
linear equations and of the set of equations are found with numerical root-finding methods.

We finally remind the reader that the power allocation algorithm provides suboptimal
solutions for the power allocation problem in (14), obtained by fixing the interfering power
in the SINR terms. These solutions can be improved with multiple iterations of Algorithm 2,
where at each iteration, the interfering powers are updated by using the allocated powers
derived at the previous iteration. An additional update can even be performed between
Steps 3 and 4. It is seen that very few iterations are needed to converge to the optimal
solution.
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Algorithm 2 Power allocation algorithm.

Step 1 Initialize Xcus, Ycu, Zcus, ∀c, u, s; define function in (A6);

Step 2 For each user (c, u), define rcu as the subchannel with the best SINR;

Step 3 Find the solutions {p0u, u = 1, . . . , Kc} of the set of equations

{

∑s
η∗

0us
φ0u

log2

(

1 + 1
A1

F0
us(p0u ,r0u)X0us

F0
us(p0u ,r0u)Y0u+Z0us

)

= ∑s
η∗

01s
φ01

log2

(

1 + 1
A1

F0
1s(p01,r01)X01s

F0
1s(p01,r01)Y01+Z01s

)

, ∀u > 1

∑u ∑s a∗0usF0
us(p0u, r0u) = P0

T

Evaluate the powers P0
us, ∀u, s:

P0
us =

{

0 if a∗0us = 0

F0
us(p0u, r0u) if a∗0us = 1

Evaluate the rate R01

Step 4 for c = 1 to F
for u = 1 to Ks

Find the solution pcu of the equation

∑s

ηcus

φcu
log2

(

1 +
1

A1

Fc
us(pcu, rcu)Xcus

Fc
us(pcu, rcu)Ycus + Zcus

)

= R01

Evaluate the powers Pc
us, ∀s:

P0
us =

{

0 if a∗cus = 0

Fc
us(pcu, rcu) if a∗cus = 1

endfor
endfor

Step 5 for c = 1 to F
Evaluate: P = ∑

s
∑
u

a∗cus(Pc
us)

if P > Pc
T

Find the solutions {pcu, u = 1, . . . , Ks} of the set of equations

{

∑s
η∗

cus
φcu

log2

(

1 + 1
A1

Fc
us(pcu ,rcu)Xcus

Fc
us(pcu ,rcu)Ycu+Zcus

)

= ∑s
η∗

c1s
φc1

log2

(

1 + 1
A1

Fc
1s(pc1,rc1)Xc1s

Fc
1s(pc1,rc1)Yc1+Zc1s

)

, ∀u > 1

∑u ∑s a∗cusFc
us(pcu, rcu) = Pc

T

Evaluate the powers Pc
us, ∀u, s:

Pc
us =

{

0 if a∗cus = 0

Fc
us(pcu, rcu) if a∗cus = 1

endif
endfor

6. Admission Control

The aim of the AC is to select a set of CUs and SUs that can be supported by the
heterogeneous cellular network with a guaranteed QoS, i.e., a long-term average rate, and
that maximize the total revenue of the provider. In this work, we consider a reformulated
version the AC algorithm originally proposed in [28] for a cellular system with underlying
device-to-device communications. This reformulated version takes into account the HetNet
scenario and the effects of pilot-aided channel estimation. In this section, we illustrate
the optimization problem from which the algorithm is derived. The details of the algo-
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rithm, which is a low-complexity greedy algorithm based on clustering and iterative linear
programming achieving a solution near to the optimum, can be found in [28].

The basic assumption behind AC is the validity of a simple model for the evaluation
of the average bit-rate achievable over one RB when the RB is not shared with any other
user, i.e., it is used in orthogonal mode, or when the RB is shared with one of the users of
the other cellular tier. This model is what we call a “long-term rate model”. Let us denote

with r
(bv)
cu the long-term average rate of user u of cell c when it shares the RB with user v

of cell b. When user u of cell c operates in orthogonal mode, its average rate is denoted
with r′cu.

In an OFDMA multi-user scenario, the long-term achievable data rate is dependent
on the statistical distribution and on the correlation of the short-term fading in all useful
and interfering links. Since its evaluation is a hard task, the long-term data-rate is usually
estimated (e.g., in [35]) by considering the average channel conditions of direct and inter-
fering links and by also taking into account the multi-user diversity gain captured by the
underlaying RA. This estimation is sufficiently reliable for the AC when the underlying RA
algorithm assigns the resources by maximizing a weighted average sum rate with a QoS
constraint for each single CU or SU.

Based on that, the long-term average rate r
(bv)
cu is estimated as

r
(bv)
cu = A3ηb∆Blog2

(

1 + A2Υb
cu

)

(23)

where the approximated SINR is given by

Υb
cu =

PcGc
cu(1 − σ2

cu)ηp

σ2 + PcGc
cuσ2

cuηp + PbGb
cuηp

(24)

which does not depend on the channel conditions of interfering user v in the downlink.
In the two equations above, Pc is the power per RB available at the BS or AP c, and the
parameter A2 accounts for the multiuser diversity gain captured by the RA algorithm
and the SNR-gap of the AMC used at the physical layer. According to [28], it is defined
as A2 = ς ln (Kc)/A1 and A2 = ς ln (FKs)/A1 for the rate evaluation of CUs and SUs,
respectively, where ς is a tuning parameter. If the user u of cell c has exclusive use of the
RB in orthogonal mode, the average rate is estimated as

r′cu = A3ηb∆Blog2

(

1 + A2Υ′
cu

)

(25)

where Υ′
cu = PcGc

cu(1 − σ2
cu)ηp/(σ2 + PcGc

cuσ2
cuηp).

For a system with perfect CSI available, the long-term average rate model can be easily
obtained from (23) and (24) by dropping ηb, ηp and with σ2

cu = 0.
The AC optimization problem can be defined as follows. By considering a suitably

long time interval, let us denote with αu the fractional amount of RBs per slot allocated to

CU u and with β
(u)
bv the fractional amount of RBs per slot that CU u shares with SU v of cell

b with b > 0. The following resource sharing constraint

F

∑
b=1

Ks

∑
v=1

β
(u)
bv ≤ αu, ∀u (26)

must hold if we assume that one CU can share a RB with no more than one SU. Moreover,
the total amount of allocated RBs per slot must not exceed the total number S, i.e.,

Kc

∑
u=1

αu ≤ S (27)
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The average rate achieved by the CU u, when it shares the RBs with a set of SUs having

β
(u)
bv > 0, must be larger than the rate requirement q0u, i.e.,

(

αu −
F

∑
b=1

Ks

∑
v=1

β
(u)
bv

)

r′0u +
F

∑
b=1

Ks

∑
v=1

β
(u)
bv r

(bv)
0u ≥ q0u (28)

where the first term accounts for the rate achieved in orthogonal mode. On the other hand,
the rate achieved by the SU v of cell b > 0 must be larger than the rate requirement qbv, i.e.,

Kc

∑
u=1

β
(u)
bv r

(0u)
bv ≥ qbv (29)

if we assume that the CUs occupy all the RBs and the SUs operate in sharing mode only, as
already stated in Section 2.

The CU u is an admitted user if and only if αu > 0. The SU v of cell b > 0 is an

admitted user if and only if ∑
Kc
u=1 β

(u)
bv > 0. Therefore, we have

z0u = I(αu > 0), zbv = I

( Kc

∑
u=1

β
(u)
bv > 0

)

(30)

where I(.) is the indicator function. Given the previously presented resource constraints,
the AC algorithm looks for the solution of the following mixed integer linear problem:

max
α,β

U(z) (31a)

s.t. (26), (27), (28), (29), (30) (31b)

where α = {αu ≥ 0, u = 1, . . . , Kc} and β = {β
(u)
bv ≥ 0, b = 1, . . . , F, v = 1, . . . , Ks, u =

1, . . . , Kc}. The AC maximizes the total revenue of the service provider, and when the
revenue from each user is proportional to the required average rate, it maximizes the
network capacity.

It is important to note that the main outcome of the AC algorithm is the set z of
admission variables, which is the input of RA. The sets α and β just define the optimal
average amount of allocated resources predicted by the AC algorithm. These sets are not
considered by the RA algorithm, since it uses the estimated short-term channel gains to
optimize the resource allocation.

Given the results of the AC algorithm, z, we use the admission rate as a metric to
characterize AC performance, defined as

ARc =
Kc

∑
u=1

z0u/Kc (32)

ARs =
F

∑
c=1

Ks

∑
u=1

zcu/(FKs) (33)

for CUs and SUs, respectively. Another relevant metric is the network capacity expected
after AC, given by

CE =
F

∑
c=1

Ks

∑
u=1

zcuqcu +
Kc

∑
u=1

z0uq0u (34)

which is evaluated in [33].
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7. Simulation Results

In this section, we present the numerical results obtained through simulations using
MATLAB® code to implement system models and algorithms. We investigate the effects of
pilot-symbol-assisted channel estimation, which provides imperfect CSI, on the framework
of a QoS-aware RA jointly working with admission control. In particular, we compare the
results, in terms of network capacity and ability to fulfill single-user QoS requirements,
obtained from (i) RA and AC algorithms that are unaware of channel estimation mech-
anisms (CE-unaware strategies), and (ii) RA and AC algorithms proposed in this paper
that take into account channel estimation error and overhead (CE-aware strategies). The
penalty with respect to the perfect CSI case is also evaluated. The CE-unaware strategies
run the RA and AC algorithms designed for the perfect CSI case to select admitted users
and to perform subchannel and power allocation. However, the actual performance of the
system is evaluated by considering pilot-symbol overhead and channel estimation error.
It is also noted that the CE-unaware RA algorithm is the algorithm proposed in [18] for
a single-cell network with perfect CSI knowledge and suitably extended for use in our
multi-cell heterogeneous network. We expect that imperfect CSI, beyond performance
degradation, makes the control of interference and the provision of a fair QoS to all users
difficult. The proposed CE-aware RA and AC algorithms should cope with this challenge.

The simulations are carried out considering the downlink of a two-tier HetNet with
system parameters defined as in Table 2. To set up the parameters, 4G numerology is
considered, as in [33]. The length of the RA frame is arbitrarily chosen to three slots.
For pilot-aided channel estimation, four pilot symbols per RB are used. As the RB has
12 × 7 symbols, we set µ = 1/21. Parameters A1, A3 for the link model are set as in [28].
The utility weights are taken as uniformly distributed in [0.5, 1] for CUs and in [0, 0.5] for
SUs in order to prioritize CUs over SUs. In all simulations, the multipath propagation in
the wireless channel is modeled with an exponentially decaying PDP, as in [29], with a
decay time of 1 µs. In the results, we use different values for the number F of small cells
in the HetNet and for the two high-sensitivity parameters of the system, i.e., the number
of users Ks per cell, and the amplification coefficient α of pilot symbols, which is directly
related to the power efficiency of the channel estimation process.

Table 2. Simulation parameters.

Variables Values

Macro-cell radius (rc) 500 m
Small-cell radius (r f ) 20 m

ri 150 m
A1 2.061
A3 0.945
ς 0.4

Subchannel bandwidth (∆B) 180 KHz
Subchannels per slot (S) 15
Length of RA frame (T) 3

BS/AP power budget (Pc
T/T) 21.7 dBm

Noise power (σ2) 3.360 × 10−15

Fraction of pilots (µ = NP/N) 1/21
Minimum av. rate (qcu) 256 kbps

CU utility weights (wcu, c = 0) uniform in [0.5, 1]
SU utility weights (wcu, c 6= 0) uniform in [0, 0.5]

7.1. Admission Rate

We first investigate the behavior of AC by looking at the admission rate for both CUs
and SUs, which is shown in the plots of Figure 4. The AC outcomes determine the operation
setup (load) of the network, which also influences the behavior of the RA.

We observe from Figure 4a,b that by increasing the number of SUs, the admission rate
decreases as expected. The CUs, which are considered as primary users in the system with
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large weights (service revenue) in the utility function, have admission rates approaching
90–100%. However, the CE-aware scheme, which takes channel estimation error into
account, reduces the admission rate of CUs and admits more SUs that usually experience
a better signal-to noise ratio, due to the small link distance. Admission rate variations
are around 10–15%, When the power allocated to the pilots increases (see Figure 4c), the
channel estimation error decreases, and the CE-aware scheme admits more CUs with a
slight decrease of SUs. This is due to the fact that the utility weights of CUs are larger than
those of SUs: the revenue is therefore maximized by admitting more CUs than SUs when
the link SINR increases.

In the next subsection, we discuss the effects of RA algorithms on the QoS performance
of admitted users.
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Figure 4. Admission rate with Kc = 30 users, different values of F and Ks, 100 iterations. (a) Varying

Ks, α = 1, CE-aware; (b) varying Ks, α = 1, CE-unaware; (c) varying α, Ks = 10, CE-aware.

7.2. Average Rate

In Figure 5, the average user rate provided to both CUs and SUs after subchannel
allocation (CA) only and after CA plus power allocation (PA) is investigated. We observe
that, in general, the suboptimal CA algorithm alone is not able to equalize the rates provided
to the single users. SUs have better channel and interference conditions and achieve larger
unequal rates. Note that the average rates are larger when rate distribution is more unfair.
However, after the PA process, the average rates of CUs and SUs become similar and even
equal when CE-aware strategies are used. It is interesting to note that the QoS requirements
of the users (256 kbps, as in Table 2) are almost satisfied.

From Figure 5a,b, we note that the average rate is almost independent of the number
of candidate SUs, which means that the RA algorithm is able to provide the required QoS
to the set of users carefully admitted by the AC algorithm. Moreover, we note that the
CE-aware algorithm is able to equalize the rates of CUs and SUs, whereas the CE-unaware
algorithm still works, but the SU rate is 20% larger than the CU rate. From Figure 5c,d,
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we note that the achieved average rate increases when the power of the pilot symbols
increases for both CUs and SUs with the CE-aware algorithms. In this case, the positive
effect of channel estimation error reduction overcomes the power efficiency penalty. With
the CE-unaware algorithms, the SU rate decreases when the CU rate increases, but more
power on the pilots makes a noticeable contribution to equalizing the rates.
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Figure 5. Average user rate with F = 1, Kc = 30 users, 100 iterations. (a) Varying Ks, α = 1, CE-

aware; (b) varying Ks, α = 1, CE-unaware; (c) varying α, Ks = 10, CE-aware; (d) varying α, Ks = 10,

CE-unaware.

7.3. Rate Dispersion Index

The Rate Dispersion Index (RDI) indicates if the set of user rates is clustered or
dispersed. It is defined as the difference between maximum and minimum values in the
set, normalized to the average value of the set.

In Figure 6, the plots show the RDI for the same cases of Figure 5. The values of this
index clearly confirm the findings and the comments in the previous subsection. We can
see in Figure 6a,c that the index goes near to zero for both CUs and SUs when the CE-aware
RA algorithm with both CA and PA is used. When RDI = 0, the same average rate (perfect
fairness) is provided to all users. The index raises to 0.4 in Figure 6b for CUs when the
best CE-unaware RA scheme is used, whereas the RA scheme still works well for the SUs.
This is due to the major load of the macrocell with respect to the femtocells. The RDI value
for the CUs is found to be quite sensitive to the power allocated to pilots, as shown in
Figure 6d, and goes below 0.2 when α > 3.
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Figure 6. Rate dispersion index with F = 1, Kc = 30 users, 100 iterations. (a) Varying Ks, α = 1,

CE-aware; (b) varying Ks, α = 1, CE-unaware; (c) varying α, Ks = 10, CE-aware; (d) varying α, Ks = 10,

CE-unaware.

7.4. Outage Rate

The outage rate is the simulative evaluation of the probability that the rate provided
to any user is less than the requirement, i.e., Rcu < qcu, ∀c, u, which is an important metric.
In addition, the results for this metric confirm the previous findings and the good behavior
of CE-aware algorithms with respect to CE-unaware algorithms. We can see in Figure 7a,b
that the outage rate is below 0.2 and quite balanced among CUs and SUs—slightly larger
for CUs. It goes to 0 when the power of pilot symbols increases. The outage rate for CUs
raises to nearly 1 in Figure 7a when a CE-unaware RA scheme is used. It is also quite
sensitive to the power allocated to pilots, as shown in Figure 7b, and goes below 0.2 when
α > 3, approaching 0 in the CE-aware scheme.
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Figure 7. Outage rate with F = 1, Kc = 30 users, 100 iterations. (a) Varying Ks, α = 1; (b) varying α,

Ks = 10.

7.5. Average Sum-Rate

The average sum-rate provides information on the network capacity. Figure 8 shows
the average sum-rate for both macrocells and small-cells separately, for different values of F
from 1 to 3. The RA algorithms include CA and PA. When the number Ks of SUs increases,
the average sum-rate also increases, because the number of served SUs increases (even if
the admission rate decreases, as shown in Figure 4). However, the average sum-rate of the
macrocell is preserved (with the exception of the case with F = 3 and Ks = 20). When the
power of pilot symbols increases, with α up to 4, the sum-rate of the macrocell increases,
which is in part due to the increase of the admission rate (see Figure 4). We can also note
from the plots in Figure 8 that the sum-rate is slightly larger for the CE-unaware scheme,
but this is obtained by sacrificing user rate fairness, as shown by the previous results.

7.6. Comparison with Perfect CSI

We finally compare the performance of the systems with pilot symbol-assisted channel
estimation and with perfect CSI. This allows us to evaluate the penalty due imperfect CSI in
HetNets when AC and RA algorithm are CE-aware. The plots in Figure 9 show the average
user rate, the RDI and the average sum-rate, when varying the number Ks of SUs, for the
perfect CSI case. These plots can be compared with the plots in Figures 5a, 6a and 8a. We
can see that average user rate penalty is around 20%, whereas the average sum rate penalty
is nearly 30% for the macrocell and only a few percent for femtocells. The RDI is always
near to zero.
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Figure 8. Average Sum-Rate with Kc = 30 users, 100 iterations. (a) Varying Ks, α = 1, CE-aware;

(b) Varying Ks, α = 1, CE-unaware; (c) Varying α, Ks = 10, CE-aware; (d) Varying α, Ks = 10, CE-unaware.
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Figure 9. Average user rate, rate dispersion index and average sum-rate with Perfect CSI with

Kc = 30 users, 100 iterations. (a) Varying Ks, F = 1; (b) Varying Ks, F = 1; (c) Varying Ks and F.

8. Conclusions

In this paper, QoS-aware RA jointly working with AC over a two-tier HetNet scenario
has been investigated in the presence of pilot-symbol-aided channel estimation, which intro-
duces rate and power penalties, and a channel estimation error. A novel RA algorithm has
been designed by including the effects of pilot-aided channel estimation, as a suboptimal
solution of a sum-rate maximization problem with proportional rate constraints and per cell
power constraints. The results obtained from the proposed algorithms have been compared
with the results obtained from algorithms not aware of pilot-aided channel estimation
effects and with the scenario with perfect CSI. The simulation results have shown that the
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proposed RA algorithms (with two iterations in power allocation algorithm) are able to
distribute the same proportional rate to all CUs and SUs, with almost zero dispersions,
even in the presence of channel estimation error. For the CE-unaware algorithms, it is much
more difficult to equalize the average rates provided to all users, especially for the CUs in
high load conditions that achieve a RDI above 0.4. The comparison with the performance
obtained in the perfect-CSI scenario has shown that the average user rate penalty is around
20%, whereas the average sum-rate penalty is nearly 30% for the macrocell and only a few
percent for the small cells.
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Appendix A

The aim of this appendix is to address the derivation of the solution of the power
allocation problem in (14). We can start by writing the Lagrangian of the problem as follows:

L(P) = ∑
c

∑
u

∑
s

η∗
cuslog2

(

1 + Γcus
A1

)

+ ∑
c

λc

(

∑
s

∑
u

a∗cusPc
us − Pc

T

)

+

∑
c

∑
u>1

µcu

[

∑
s

η∗c1s
φc1

log2

(

1 + Γc1s
A1

)

− ∑
s

η∗cus
φcu

log2

(

1 + Γcus
A1

)

]

+

∑
c>0

µc1

[

∑
s

η∗01s
φ01

log2

(

1 + Γ01s
A1

)

− ∑
s

η∗c1s
φc1

log2

(

1 + Γc1s
A1

)

]

(A1)

where λc, µcu, with c = 0, . . . , F, u = 1, . . . , Kc(Ks) are the Lagrangian multipliers.
Now, we differentiate with respect to Pc

us in order to find the conditions of the power
variables to achieve the maximum of the Lagrangian. We surely have Pc

us = 0 if a∗cus = 0.
We can derive Pc

us, when a∗cus = 1, from the set of equations

∂L
∂P0

1s

= η01slog2e 1

1+
Γ01s
A1

1
A1

X01sZ01s

(P0
1sY01+Z01s)

2 + λ0a∗01s

+ ∑
c>0

µc1
η∗01s
φ01

log2e 1
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1
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X01sZ01s

(P0
1sY01+Z01s)

2

+ ∑
u>1

µ0u
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log2e 1

1+
Γ01s
A1

1
A1

X01sZ01s

(P0
1sY01+Z01s)

2 = 0

(A2)

∂L
∂Pc

1s
= ηc1slog2e 1

1+
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A1

1
A1
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(Pc
1sYc1+Zc1s)

2 + λ0a∗c1s
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log2e 1
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1
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2

+ ∑
u>1

µcu
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log2e 1

1+
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1
A1

Xc1sZc1s

(Pc
1sYc1+Zc1s)

2 = 0

∀c > 0

(A3)
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∂L
∂Pc

us
= η∗

cuslog2e 1
1+ Γcus

A1

1
A1

XcusZcus

(Pc
usYcu+Zcus)

2 + λca∗cus

−µcu
η∗cus
φcu

log2e 1
1+ Γcus

A1

1
A1

XcusZcus

(Pc
usYcu+Zcus)

2 = 0

∀c, ∀u > 1

(A4)

Note that, from Equation (17), in the text,

1

A1 + Γcus

XcusZcus

(Pc
usYcu + Zcus)

2
=

1

A1 +
Pc

us Xcus

(Pc
usYcu+Zcus)

XcusZbvs

(Pc
usYcu + Zbvs)

2
=

XcusZbvs

A1(Pc
usYcu + Zcus)

2 + Pc
usXcus(Pc

usYcu + Zcus)
=

XcusZcus

(Pc
us)

2αcus + Pc
usβcus + A1(Zcus)

2

where:
αcus = Ycu(A1Ycu + Xcus),
βcus = Zcus(Xcus + 2A1Ycu),

Therefore, all the Equations (A2)–(A4) can be manipulated to assume the form

η∗
cusγcu

XcusZcuslog2e

(Pc
us)

2αcus + Pc
usβcus + A1(Zcus)

2
= −λca∗cus (A5)

where γcu is a constant parameter depending on φcu and the set of Lagrangian multipliers
µcu only. A first important conclusion can be derived from (A5): if the user u of the cell c
has two or more allocated subcarriers, the following relationship applies for any pair s, r of
allocated subcarriers, i.e., with a∗cus = a∗cur = 1:

XcusZcus

(Pc
us)

2αcus + Pc
usβcus + A1(Zcus)

2
=

XcurZcur

(Pc
ur)

2αcur + Pc
urβcur + A1(Zcur)

2

which is the Equation (18) in the text. Similarly to [18], this is the “waterfilling” equation
for the power allocated to each user across subcarriers, when channel estimation error is
taken into account for resource allocation.

If the power allocated over one subcarrier, e.g., subcarrier r, is known, we can imme-
diately find the power allocated to any other subcarrier s of the same user by solving the
following equation with respect to Pc

us:

(Pc
us)

2αcus + Pc
usβcus + A1(Zcus)

2 =
XcusZcus

XcurZcur

[

(Pc
ur)

2αcur + Pc
urβcur + A1(Zcur)

2
]

This is a quadratic equation whose solution is given by Pc
us =

−b±
√

b2−4ac
2a , where

a = αcus,
b = βcus,

c = A1Z2
cus − XcusZcus

XcurZcur

[

(Pc
ur)

2αcur + Pc
urβcur + A1Z2

cur

]

By introducing a more general notation with Pc
ur = p, we can express the solution as

Pc
us = Fc

us[p, r], where

Fc
us[p, r] =

βcus
2αcus

· max

(

0,

√

1 + 4

[

(αcur p2+βcur p+A1Z2
cur) XcusZcus

Xcur Zcur
−A1Z2

cus

β2
cus/αcus

]

− 1

)

(A6)

which also takes the constraint Pc
us ≥ 0 into account.
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