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Abstract
Brain aging is a naturally occurring process resulting in the decline of cognitive func-
tions and increased vulnerability to develop age- associated disorders. Fluctuation in 
lipid species is crucial for normal brain development and function. However, impaired 
lipid metabolism and changes in lipid composition in the brain have been increasingly 
recognized to play a crucial role in physiological aging, as well as in several neurodegen-
erative diseases. In the last decades, the role of sexual dimorphism in the vulnerability 
to develop age- related neurodegeneration has increased. However, further studies 
are warranted for detailed assessment of how age, sex, and additional non- biological 
factors may influence the lipid changes in brains. The aim of this work is to address 
the presence of sex differences in the brain lipid changes that occur along aging, and 
in the two most common age- related neurodegenerative disorders (Alzheimer's and 
Parkinson's diseases). We included the studies that assessed lipid- related alterations 
in the brain of both humans and experimental models. Additionally, we explored 
the influence of sex on lipid- lowering therapies. We conclude that sex exerts a no-
table effect on lipid modifications occurring with age and neurodegeneration, and 
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1  |  BACKGROUND

The continuous increment of worldwide life expectancy has placed 
age as one of the main risk factors to develop several disorders that 
impact our societies by means of diseases (Zampino et al., 2022). 
Among them, neurodegenerative disorders are one of the most 
common age- related pathologies, being Alzheimer's disease (AD) 
and Parkinson's disease (PD) the most prevalent and incident ones 
(Izco et al., 2022). Although considerable advances have been done, 
the factors initiating and contributing to their pathogenesis are not 
completely understood. In this line, adequate lipid homeostasis is 
crucial for brain functions and existing evidence indicates that the 
disruption of lipid metabolism is a key contributor to different neuro-
degenerative processes, including dementia, AD, and PD (Chiurchiù 
et al., 2022; Grassi et al., 2020; Hallett et al., 2019; Kao et al., 2020; 
McFarlane & Kędziora- Kornatowska, 2019; Moll et al., 2020, 2021; 
Wong et al., 2017).

Even if the age- related changes do not necessarily promote 
pathological phenotypes, understanding how the alterations that ap-
pear along aging are shared with or can predispose to age- associated 
diseases can provide key information to improve our quality of life. 
The interplay among different factors acting in the scenario of 
aging, including genetics, biological sex, comorbidities, and/or ex-
ternal stressors (e.g., socioeconomic status), is critical to decipher 
the susceptibility to develop age- related pathologies (Teissier et al., 
2020). Existing evidence indicates that biological sex is a modifier 
(and moderator in some cases) of the most common causes of death 
and morbidity (Mauvais- Jarvis et al., 2020; Tadiri et al., 2021; Zucker 
et al., 2021). Unfortunately, its inclusion in preclinical and clinical re-
search still represents an urgent need.

To the best of our knowledge, a narrative review on the im-
pact of biological sex in the brain lipid changes along aging and 
neurodegenerative- associated processes has not been previously 
conducted. Therefore, the main objective of this work is to provide 
a collection of current knowledge regarding this topic. Firstly, we 
provide an overview of the sex differences in the brain and the main 
lipid species in the brain, including some examples of lipids and sex 
differences cross talk. This section is followed by a review and re-
capitulation of the studies that analyzed the effect of sex on brain 
lipid changes that occur along physiological aging. We used this 
same rationale for the two most incident and prevalent age- related 
neurodegenerative diseases, AD and PD. Finally, we analyzed the 
influence of sex in lipid- reducing therapies with a focus on neuro-
logical events.

2  |  BR AIN DIFFERENCES FROM THE SE X 
PERSPEC TIVE

2.1  |  Sex and gender concepts

The terms sex and gender are used as equivalent words sometimes 
in the literature. However, in this review, they are not considered 
interchangeable terms. Here, the term sex refers to the biological 
construct, that is, the assignment of biological female/male sex at 
birth (Slotnick, 2021). We acknowledge that the biological system is 
not absolutely binary and that additional intersex biological combi-
nations may result from sex chromosome variations, sex hormones, 
and sexual phenotypes. However, in the following sections, we 
will refer to biological sex according to the binary system, which 
represents the majority of individuals included in the experimental 
works. This biological path starts with (but is not limited to) the sex 
chromosome complement, which will determine the developmental 
pathway that culminates in the formation of a gonadal phenotype 
and primary sex characteristics (McCarthy, 2020). This genetic 
background is subsequently accompanied by other biological fac-
tors, including sex steroids, gene expression programs, or epige-
netics, among others (Cerghet et al., 2006; Gamache et al., 2020; 
Gegenhuber & Tollkuhn, 2020; Hong & Reiss, 2014; McCarthy, 
2020; Rosenfeld, 2017).

By contrast, the gender concept considers the social construct: 
how social norms, roles, and relations determine social identities 
(Kiely et al., 2019). Some gender- sensitive factors include stress, 
social roles, education, economic situation, environmental stress 
like nutrition, and the existence of comorbidities (Mauvais- Jarvis 
et al., 2020; Mena & Bolte, 2019). A topic of great interest is how 
sex and gender could determine brain circuits and significantly af-
fect the differential susceptibility to develop neurological disorders 
(Figure 1). In this review, we just focused on literature referring to 
the sex concept.

2.2  |  Biological sex determines differences 
in the brain

In mammals, brains of males and females are different at anatomical, 
structural, cellular, and biochemical levels. The exact mechanisms 
that drive these differences remain unsolved, but sex steroids are 
known to play a crucial role in this phenomenon. Sex steroids are 
cholesterol- derived hormones and they can be grouped into three 

in lipid- reducing interventions. Therefore, the application of sex as an experimental 
variable is strongly encouraged for future research in the field of precision medicine 
approach.
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main classes: estrogens, androgens, and progestins (Larson, 2018). 
Their synthesis is not limited to the gonads; yet, sex hormones 
can be synthetized in both males and females in extra- gonadal tis-
sues and organs, including several brain areas (Barakat et al., 2016; 
Hanukoglu et al., 1977; Payne & Hales, 2004). Therefore, the brain 
can be affected by both, circulating sex hormones and the ones syn-
thetized in situ.

The broad influence of sex hormones in the central nervous sys-
tem (CNS) is exerted via both genomic (nuclear) and non- genomic 
(membrane) receptors. These mechanisms do not necessarily ex-
clude each other; instead, they provide an explanation for the sex 
differences in the sex steroids- mediated neuroprotective effects. 
The most striking example is the increased risk of women to develop 
cognitive decline and different neuropathological events associated 
with the abrupt decline of estrogens during the menopausal transi-
tion compared to men (Ancelin et al., 2014; Derby et al., 2009; Duka 
et al., 2000; Pozzi et al., 2006; Sherwin, 2012). Several works have 
demonstrated as well an association between reduced testosterone 
levels and increased risk of AD (Gillett et al., 2003; Moffat et al., 
2004; Paoletti et al., 2004); however, the decrease in androgens is 
less pronounced than one of estrogens in women and testosterone 
to estrogen conversion may contribute as compensatory mechanism 
(Maioli et al., 2021). Indeed, it is not clear whether testosterone ex-
erts its neuroprotective effects via its binding to androgen receptors 
or through its conversion to estrogen is still under debate (Saldanha 
et al., 2009).

The idea that brain shows sexual dimorphism and that sex ste-
roids have an active role on it was already introduced in the late 
1950s (Kolata, 1979; Wallen, 2009). Initial studies using guinea 
pigs demonstrated that prenatal exposure to steroidal hormones 
at a specific time period during development was associated with 
sexual behavior (Phoenix et al., 1959). These findings were later 
confirmed in other mammalian species, including rodents and non- 
human primates (Bakker, 2022; Wallen, 2005). Since then, differ-
ences between males and females in several brain structures have 
been demonstrated, such as the hypothalamus (Heck & Handa, 
2019; Swaab et al., 2003), the hippocampus (Bowman et al., 2022; 

Chalangal et al., 2022), the dorsal medial preoptic area (Gorski et al., 
1978), the amygdala (Bauer, 2023; McEwen et al., 2016), the fron-
tal cortex (Ginder et al., 2022; Wellman et al., 2020), the thalamus 
(Poeppl et al., 2016), and the cerebellum (Gao et al., 2022; Oguro 
et al., 1998). Therefore, besides sexual behavior, sex steroids regu-
late and contribute to sexual dimorphism of other brain functions, 
including emotional processing, cognition, motor control, pain, and 
energy homeostasis (Coyoy et al., 2016; Gorski et al., 1978; Gurvich 
et al., 2020; Kolata, 1979; Panzica & Melcangi, 2016; Ruigrok et al., 
2014).

Accumulating evidence indicates that sex steroids participate 
and set up sex differences in the brain developmental frame at dif-
ferent levels, including neuronal membrane organization (Baulieu 
& Robel, 1990), number of neurons (Guillamón et al., 1988), length 
and density of dendrites and fibers (Rasia- Filho et al., 2012), synapse 
formation, and neuronal networks (Villa et al., 2016). Furthermore, 
the influence of sex steroids on sexual dimorphism in the brain is not 
restricted to the developmental period. Evidence supporting brain 
anatomical and structural changes across the hormonal fluctuation 
periods in humans has been recently reviewed (Rehbein et al., 2021), 
and a relationship between hormonal variations during the estrus 
cycle and synaptic remodeling was also shown in rodents (Olmos 
et al., 1989). In the adult brain, sex steroids regulate a plethora of 
critical processes, which have been summarized in Figure 2. The sex- 
specific effects and mechanisms of action of sex hormones in these 
functions are highly dependent on the species (and strain in animal 
models), treatments, and age, among others.

In addition to their active role in regulating several processes 
(Figure 2), sex steroids promote sexual dimorphisms in many of them. 
For example, sex differences have been found in the expression of 
enzymes involved in γ- aminobutyric acid (GABA) synthesis in the 
hypothalamus, in the hippocampus, and in the amygdala (McCarthy 
et al., 2002; Perrot- Sinal et al., 2001). The dopaminergic and nor-
adrenergic systems are additional examples of sexually dimorphic 
pathways (Kritzer & Creutz, 2008; Thanky et al., 2002; Zachry 
et al., 2021). The expression of tyrosine hydroxylase in the neurons 
of the Substantia Nigra, the ventral tegmental area, and the locus 

F I G U R E  1  The interplay between 
biological and non- biological factors 
determines brain anatomy and circuits. 
Differences between males’ and 
females' brains are stablished during 
the developmental period because 
of biological factors, including sex 
chromosomes and sex hormones. In 
the following periods of life, different 
additional biological and non- biological 
factors contribute to enlarge differences 
between males’ and females' brains. 
Created with https://biore nder.com.
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coeruleus is sex dependent (Brown, Steadman, et al., 2015; Luque 
et al., 1992; Ma et al., 2007; Thanky et al., 2002). Another sexually 
dimorphic system is one of the neurotrophic factors in which sex 
differences have been largely described. In particular, the concen-
trations, functions, and pathways of the brain- derived neurotrophic 
factor (BDNF) show a sex- specific pattern (1).

Extensive research has focused on analyzing the role of sex ste-
roids in determining sex differences in the hippocampus. In this brain 
region, a sex- dependent regulation has been detected in cell prolif-
eration and survival (Barker & Galea, 2008), number and density of 
dendrites (Mathias et al., 2010; Segarra & McEwen, 1991), patterns 
and density of fibers (Madeira & Paula- Barbosa, 1993), and neuro-
genesis (Blankers & Galea, 2021; Duarte- Guterman et al., 2015), 
among others. In addition, accumulating evidence indicates that the 
hippocampus is a key player in sex steroid synthesis (Brandt et al., 
2020; Gall et al., 2023; Hojo et al., 2009).

These are few of the examples of the extensive influence of sex 
steroids in the brain which have been extensively described and 
reviewed in the literature by others (for details, see Chowen et al., 
2000; DeCasien et al., 2022; Hansberg- Pastor et al., 2015; Kight 
et al., 2020; Panzica & Melcangi, 2016; Uhl et al., 2022).

3  |  BR AIN LIPIDS

The brain is the most lipid- rich organ and lipids account for at least 
50% of its dry weight (Kao et al., 2020; O'Brien & Sampson, 1965; 
Sastry, 1985). Briefly, the lipid composition of the brain comprises 
around 50% phospholipids, below 40% glycolipids, and 10% choles-
terol (including cholesterol ester and traces of triglycerides). In ad-
dition, brain has a very high content of n- 3 and n- 6 polyunsaturated 

fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and arachi-
donic acid (AA) (Skowronska- Krawczyk & Budin, 2020).

In biological membranes, lipids are the principal components 
that determine the basic architecture, drive the formation of highly 
organized multimolecular structures, and lead to the creation of 
multiple and multidimensional levels of order (Sonnino et al., 2014). 
This concept becomes particularly evident in the nervous system, 
which possesses a unique lipid composition that allows the high de-
gree of specialized cellular and tissue functions (Aureli et al., 2015). 
For example, in neurons and in glial cells, the composition of the 
two plasma membrane monolayers is known to be asymmetric: the 
inner leaflet is enriched in phosphatidylserine (PS), phosphatidyleth-
anolamine (PE), and phosphatidylinositol (PI), while the outer leaf-
let is enriched in phosphatidylcholine (PC) and sphingomyelin (SM) 
(Nelson & Cox, 2017). In addition to this specific composition, lipids 
in cell membranes continuously undergo rapid changes (e.g., removal 
and replacement, deacylation/reacylation as well as desialylation/
resialylation cycles). These changes are termed as “membrane re-
modeling” and ensure the adjustments in the chemical structure and 
molecular shape of the cell membranes (Naudí et al., 2015; Prinetti 
et al., 2007).

A comprehensive summary of the main types of lipids in the 
brain, their structure and main functions are listed in Table 1. A clear 
example of lipids and sex differences cross talk is the fact that cho-
lesterol acts as precursor of sex steroids. Thus, altered cholesterol 
metabolism can promote detrimental effects on sex steroid func-
tions and, consequently, on brain maintenance. On the other hand, 
research in animal models indicates that sex steroids in the brain 
have an active role in modulating lipids' homeostasis since, for ex-
ample, estrogen modulates lipid trafficking across the blood– brain 
barrier or de novo fatty acid synthesis (Morselli et al., 2018). Another 

F I G U R E  2  Sex steroids regulate a 
plethora of processes in the nervous 
system. Sex steroids have been shown 
to be involved in determining neuronal 
and glial populations and functions 
(Chesik & De Keyser, 2010; Gildawie 
et al., 2020; VanRyzin et al., 2020), 
synaptic plasticity (Leranth et al., 2004; 
Wissman et al., 2012), neurogenesis (La 
Rosa et al., 2021), cell proliferation, and 
survival (Sohrabji, 2015; Trova et al., 
2021), in the synthesis and metabolism of 
neurotransmitters (Rehbein et al., 2021), 
and the cerebrovascular system (Duckles 
& Krause, 2007; Witt & Sandoval, 2014). 
Created with https://biore nder.com.
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line of evidence in the interaction of sex steroids and lipids concerns 
the induction of the lipid transporter apolipoprotein E (ApoE) iso-
form 3 by estrogens (Nathan et al., 2004). In the following sections, 
we will highlight some additional examples, by no means exhaus-
tive, in which the relationship between sex differences and lipids has 
been evidenced: synaptic transmission, lipid rafts, and lipoxidation.

3.1  |  Synaptic transmission and sex steroids

One of the most important singularities of the nervous system is the 
presence of synaptic transmission. Lipids are essential components 
of synapses, actively participating in both presynaptic and postsyn-
aptic functions (for an excellent review, please refer to Vallés and 
Berrantes (2022)). On the one hand, lipids define the biomechani-
cal properties of the cell membranes (e.g., membrane curvature) and 
dynamics (fluidity and permeability), and compartmentalize anchor 
synapsis- related proteins (Lauwers et al., 2016). These features are 
crucial for membrane- bound networks, synaptic vesicle trafficking, 
neurotransmitter release and reception, ion channel activation and 
activity, and action potential propagation (Skowronska- Krawczyk 
& Budin, 2020). On the other hand, lipids, especially phospholipids 
and inositol lipids, can act as precursors of second messengers (e.g., 
prostaglandins, endocannabinoids) or act as second messengers 
themselves (e.g., AA), being involved in synaptic activity and cogni-
tive functions (Hillard, 2018; Sang & Chen, 2006). Thus, it should 
not be surprising that dysregulation of lipid homeostasis has been 
related to the development of synaptopathies, loss of synaptic plas-
ticity, and neurological disorders Vallés and Berrantes (2022).

As mentioned in the previous section, sex steroids have been 
demonstrated to regulate changes in dendritic spine density and 
fibers distribution in different brain areas, thereby participating in 
synaptic transmission (Kurz et al., 1986; Mukai et al., 2007; Nilsen & 
Brinton, 2002; Woolley et al., 1997). In addition, a number of stud-
ies indicate that, in addition to regulatory effects, sex steroids are 
involved in sex differences in synapses (McEwen & Milner, 2017). 
Two brain areas have received considerable attention in describing 
the role of sex steroid- receptor signaling in synaptic processes: the 
hypothalamus and the hippocampus.

Early studies aimed at analyzing sexual dimorphism in brain struc-
tures identified the hypothalamus as one of these areas that differed 
between males and females (Matsumoto & Arai, 1983; Panzica & 
Melcangi, 2016). Different authors have shown that estrogens medi-
ate the synaptic plasticity in neurons in hypothalamic ventromedial 
nucleus (Lewis et al., 1995; Sá et al., 2009, 2018). In particular, the ef-
fect of estrogens in synaptic organization in this area was found sex-
ually dimorphic in the ventrolateral division of this nucleus: in rats, 
estrogens induced more dendritic synapses in females and more so-
matic synapses in males (Sá & Madeira, 2005). In the same study, it 
was demonstrated that the number of dendritic synapsis changed 
in parallel with physiological variations in hormonal levels in female 
rats. When females were at diestrus, sex differences in the number 
of synapses compared with males were reduced. Thus, these results 

are of considerable relevance since they highlight the importance 
of taking the estrous cycle into account when studying sex differ-
ences in brain circuits. Sex differences have also been found in the 
estrogen- dependent organization of serotonergic projections in dif-
ferent hypothalamic sites (Patisaul et al., 2008).

The involvement of sex steroids in hippocampal- related func-
tions with sex- associated differences has been extensively de-
scribed. Substantial literature suggests that estrogens modulate in 
a sex- dependent manner hippocampal synapses (McEwen & Milner, 
2017). To highlight one example of many, female rats showed a higher 
number of dendrites and spines on apical dendrites of the hippocam-
pal CA3 cells, whereas males had more apical protrusions (Madeira 
et al., 1991; Parducz & Garcia- Segura, 1993). A number of studies 
conducted in experimental models indicate that the regulatory 
mechanisms of synaptic plasticity are sex dependent. For example, 
steroids differentially regulated spine synapses in the rat hippocam-
pus. Testosterone can induce as well spine synapses both in the male 
and female rat hippocampus (Leranth et al., 2004; MacLusky et al., 
2006). However, the effect of estrogen was found just for females 
(Leranth et al., 2003; Lewis et al., 1995; MacLusky et al., 2006). Gall 
and collaborators (Gall et al., 2023) showed that synaptic plasticity 
needs cytoskeleton reorganization both in males and females. It was 
pointed out that synaptic plasticity of hippocampal memory circuits 
in females, but not in males, acts through membrane- associated es-
trogen receptor α and requires neuron- derived estrogen (Gall et al., 
2023). Conversely, males activate the same downstream kinases re-
lying on NMDA receptor action, independent from estrogen recep-
tor α activation (Romeo et al., 2005).

Besides the hypothalamus and the hippocampus, other brain nu-
clei show estrogen- dependent spine synapse formation, such as the 
primary sensory- motor cortex (Chen et al., 2009), the prefrontal cor-
tex (Hao et al., 2007), in the caudal part of the nucleus accumbens 
(Wissman et al., 2012).

Pertinent to lipid metabolism and sex differences, synaptic 
transmission in the brain- born is suppressed by estrogen in females 
but not in males, and this is mediated via inositol triphosphate (IP3) 
generation and IP3 receptor activation (Huang & Woolley, 2012; 
Tabatadze et al., 2015).

3.2  |  Lipid rafts and sex steroids

Small membrane domains are particularly enriched in specific lipid 
species, such as cholesterol, sphingolipids, saturated fatty acids, and 
gangliosides (Grassi et al., 2020; Lingwood & Simons, 2010). This 
peculiar lipid composition configures intrinsic features that lead to 
the formation of small dynamic membrane domains known as lipid 
rafts. These micro-  or nano- entities serve as platforms in which pro-
teins can organize multiprotein complexes to favor their interactions 
at the membrane level and promote signaling cascades (Sonnino 
& Prinetti, 2012). In this sense, lipid rafts provide an adequate en-
vironment for sex hormone signaling via non- genomic pathways. 
Briefly, in the non- genomic mechanism, sex steroids bind to the cell 

 14714159, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jnc.15834 by C

ochraneItalia, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



432  |    CUENCA-BERMEJO et al.

TA B L E  1  Lipids in the brain and their main functions.

Lipid 
class General structure Examples Function

FA Carboxylic acids with hydrocarbonated chains 
(from 4 to 36 carbon atoms). 

Docosahexaenoic acid, linoleic acid, 
and arachidonic acid

Basic building blocks of more complex 
lipids, source of energy (via β- oxidation), 
membrane constituents, and regulation of 
cellular processes (e.g., gene expression) 
(Fritsche, 2015; Janssen & Kiliaan, 2014)

GL Long hydrocarbonated chain attached to a 
glycerol molecule via ester linkages. Each 
carbon atom of glycerol can be linked to a 
fatty acid.

C

C

C

H

H

H

H

OOCR1

OOCR3

OOCR2H

Monoacylglycerol, diacylglycerol, and 
triglycerides

Membrane formation, cell signaling and vesicle 
trafficking, energy storage (Almena & 
Mérida, 2011; Tu- Sekine et al., 2015)

GPL Two fatty acids linked by an ester bond to the 
first and second carbon of glycerol, and a 
polar head group attached to the third carbon 
by phosphodiester bond

C

C

C

H

H

H

H

R1

O

R2H

P(O2) X

Usually a saturated FA

Usually an unsaturated FA

Usually another 
small molecule

Phosphatidic acid, 
phosphatidylethanolamine, 
phosphatidylcholine, 
phosphatidylinositol, and 
cardiolipin.

Basic components of cell membrane, regulation 
of cell processes (e.g., mitophagy), 
regulation of lipid metabolism (Kay & 
Grinstein, 2013; Antonny et al., 2015)

Plasmalogens (pasmenyl 
ether- phospholipids)

Basic components of cell membrane, anti- 
apoptotic properties, regulation of 
inflammatory processes, and key role in 
neurodegeneration (Udagawa & Hino, 2022)

SL Sphingolipid building blocks

Sphingosine 

C

C

C

HO
H

H

H O

H2

CH CH (CH2)12 CH3

NH2

Sphingosine

Ceramide 

C

C

C

HO

H

H

H O

H2

CH CH (CH2)12 CH3

Fatty acid chainNH

Polar head group

H

Ceramide

Sphingosine- 1- phosphate Regulation of cell signaling processes (e.g., cell 
survival) (Bartke & Hannun, 2009; Martin & 
Sospedra, 2014; Proia & Hla, 2015)

Ceramide Participates in lipid raft formation, regulation 
of the mitochondrial respiratory chain, 
and apoptosis (Xu et al., 2010; Mencarelli 
& Martinez- Martinez, 2013; Castro et al., 
2014; Kogot- Levin & Saada, 2014)

Sphingomyelin: phosphatidylcholine as 
polar head group

Major component of myelin (Xicoy et al., 2019)

Neutral glycosphingolipids 
(cerebrosides and globosides: 
one or more sugars as polar head 
group, e.g., glucosylceramide, 
galactosylceramide)

Involved in intracellular transport and cell 
survival (Mesa- Herrera et al., 2019)

Sulfated galactocerebrosides: esters 
of galactocerebrosides in which a 
sulfate group is placed at the C3, 
e.g., sulfatides

Participates in protein trafficking, immune 
reactions, and neural plasticity (Xiao et al., 
2013; Blomqvist et al., 2021)

Gangliosides: polar head groups 
contain oligosaccharides and 
one or more terminal residues of 
N- acetylneuraminic acid (Neu5Ac), 
e.g., GM1, GM2, GD1a, and GD1b

Key role in lipid raft formation, and 
neurotransmission (Itokazu et al., 2018; 
Sipione et al., 2020)
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membrane receptors, which localize in lipid rafts domains (Garza- 
Contreras et al., 2017; Marin & Diaz, 2018). The hormone- receptor 
complex is able to interact with other membrane proteins (e.g., ca-
veolin- 1 or the voltage- dependent anion channel), promoting rapid 
intracellular signaling cascades (Morselli et al., 2018).

Lipid rafts coordinate both androgen-  and estrogen- dependent 
non- genomic neuroprotective functions in both sexes (Marin & 
Diaz, 2018; Sarchielli et al., 2021; Spence & Voskuhl, 2012). A re-
cent study conducted in cell cultures indicates that cholesterol in 
lipid rafts is involved in the expression of membrane androgen re-
ceptor and in testosterone- derived neurotoxic effects in an oxida-
tive stress environment (Fadeyibi et al., 2022). Since cholesterol is 
one of the major components in lipid rafts and participates in ste-
roidogenesis, altered cholesterol metabolism affects not only sex 
steroids synthesis but also impairs their non- genomic pathways.

3.3  |  Lipoxidation and sex differences

Reactive species are essential components in diverse signaling 
pathways; however, the accumulation of oxidative stress is con-
sidered a pivotal mechanism in the aging process as well as in 
the development of age- related diseases (Calabrese et al., 2008; 
Moor et al., 2006; Venkateshappa et al., 2012). The imbalance 
in the redox status with aging toward the accumulation of reac-
tive oxygen and nitrogen species (ROS and RNS, respectively) 
induces oxidative modifications of proteins, DNA damage, and 
lipid peroxidation (LPO), thereby causing cell damage (Balaban 
et al., 2005). Lipids of cell membranes can be easily oxidized by 
reacting with ROS or by enzymatic reaction with lipoxygenases, 
cyclooxygenases, and cytochrome P450 (Li et al., 2022). This vul-
nerability is explained partially by the fact that PUFA residues 
of membrane lipids are very susceptible to oxidation because of 
the presence of double bonds (Yin et al., 2011). LPO of PUFAs 
in cell membranes elevates the endogenous production of al-
dehydes and reactive carbonyl species such as glyoxal, methyl-
glyoxal, malondialdehyde, and 4- hydroxy- 2- nonenal (4- HNE) (Li 
et al., 2022). Additional lipid species are susceptible to oxidation, 
such as phospholipids or prostaglandins (Domingues et al., 2013). 
The resulting toxic byproducts of LPO have the ability to react 
with other biomolecules, such as proteins, inactivating some 

antioxidant enzymes (Sottero et al., 2018; Zarrouk et al., 2014). 
To highlight one example of many, the mitochondrial ATP syn-
thase has been placed as a potential lipoxidative target in human 
brain aging. As a result of lipoxidative damage, the activity of 
the mitochondrial ATP synthase is reduced, triggering associated 
with mitochondrial dysfunction (increased reactive species pro-
duction), thereby contributing to increased oxidative stress and 
cell damage (Jové et al., 2019).

The contribution of LPO to aging and age- related neurodegen-
erative processes has been demonstrated in humans and in exper-
imental models (Cini & Moretti, 1995; Spiteller, 2002). Indeed, the 
4- HNE- protein complex can cause autoimmune reactions and has 
been detected in patients diagnosed with AD, PD, Huntington's dis-
ease, and amyotrophic lateral sclerosis (De Virgilio et al., 2016; Di 
Domenico et al., 2017; Shibata et al., 2011). An emerging research 
area of sex differences in relation to lipids is lipoxidation. Available 
evidence from preclinical studies indicates higher LPO levels in males 
compared to females in advancing (Sobočanec et al., 2003, 2008). 
The greater neuroprotection in females has been mainly attributed 
to the sex- dependent regulation of antioxidant enzymes and the 
neuroprotective effects of estrogens and progesterone (Roof & Hall, 
2000; Sobočanec et al., 2003).

4  |  BR AIN LIPID COMPOSITION: EFFEC T 
OF SE X ON PHYSIOLOGIC AL AGING

In general, the study of brain lipid changes has been done from the 
perspective of pathological conditions (e.g., Alzheimer's disease) 
(Phillips et al., 2022). However, aging results from the confluence of 
time and environmental stressors, creating a scenario of vulnerabil-
ity that might predispose (or not) to age- related pathologies. Some 
authors have reviewed the age- associated changes in the brain 
lipid composition (Naudí et al., 2015; Ooi et al., 2021; Skowronska- 
Krawczyk & Budin, 2020; Svennerholm et al., 1989, 1991, 1994). 
However, this topic has never been reviewed using a sex approach. 
The available studies in which biological sex has been considered 
as a variable when brain lipids were examined are summarized in 
Table 2. Most of these investigations have been performed using 
rodent models, and only few of them have been conducted in hu-
mans (Table 2).

Lipid 
class General structure Examples Function

Sterols Steroid nucleus is the basic structure Cholesterol and cholesterol esters Membrane properties (e.g., fluidity), hormones' 
precursor, lipid raft formation, and signaling 
processes. (Zhang & Liu, 2015; Kao et al., 
2020)

Abbreviations: FA, fatty acids; GL, Glycerolipids; GPL, glycerophospholipids; SL, sphingolipids.

TA B L E  1  (Continued)
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4.1  |  Sexual dimorphism in brain fatty acids

Studies showing changes in fatty acids are the most numerous ones. 
Several works have shown that the fatty acid composition of glyc-
erophospholipids and their unsaturated content is sex specific in 
rats (Galli et al., 1970; Morselli et al., 2016), whereas others have not 
(Kitson et al., 2012; Starčević et al., 2017). These diverse results might 
be because of the different ages of the animals that were analyzed.

Polyunsaturated fatty acids (PUFAs) are essential for normal 
brain development and function (Ekstrand et al., 2021). PUFAs can-
not be synthesized de novo and, therefore, (PUFA) diet intake has a 
critical role in the brain lipid profile. For example, low dietary con-
sumption of n- 3- PUFA has been related to neurodegeneration and 
increased neuroinflammation (McGrattan et al., 2019; Virmani et al., 
2013; Więckowska- Gacek et al., 2021). Importantly, different evi-
dence point out that diet determines in a sex- specific manner in the 
brain PUFA content (Galli et al., 1970; Jacenik et al., 2021; Morselli 
et al., 2014, 2016). Furthermore, PUFA content in diet can promote 
sex- specific behavioral effects. For example, Levant and collabo-
rators demonstrated that postnatal rats (P21- P70) fed with a con-
trol diet showed no significant differences in the content of brain 

DHA, docosapentaenoic acid, and AA of phospholipids when males 
and females were compared. However, locomotor alterations were 
detected just in males, despite the fact that variations in the DHA 
content of the diet resulted in similar changes in the brain LC- PUFA 
composition in both sexes (Levant et al., 2006).

Oxylipins are oxidized PUFAs that act as bioactive lipids (lipid 
mediators), participating in crucial cell pathways for brain function 
in health and disease, such as neuroinflammation (Iliff et al., 2010; 
Kissoondoyal et al., 2021; Tassoni et al., 2008). Oxylipins profile 
in rodents has been previously characterized, showing age- related 
changes: linoleic acid- derived oxylipins are the predominant ones 
in the developing period, while the ones derived from AA are 
the most abundant ones in the adult brain (Ferdouse et al., 2019; 
Hennebelle et al., 2020; Ostermann et al., 2017). In the perinatal 
period, oxylipins levels did not show differences when males and 
females were compared, but the effect of the linoleic acid and the 
13- hydroxyoctadecadienoic acid on axonal growth was sex specific 
(Hennebelle et al., 2020). Conversely, in older animals, oxylipins lev-
els were found generally higher in males than in females, with the 
exception of three particular arachidonic acid- derived oxylipins (9- 
HETE, 11- HETE, and 15- HETE) whose levels were found higher in 

TA B L E  2  Evidence for the effect of sex in lipid composition in physiological aging, AD, and PD.

Condition Lipid class Species Methodology References

Physiological aging Fatty acids Sprague– Dawley rats 2D- TLC Galli et al., 1970

Sprague– Dawley rats HPLC- MS/MS, GC Ferdouse et al., 2019

C57BL/6J mice UHPLC– MS/MS Norman et al., 2022

GPL BL6/129 Mice MS Rappley et al., 2009

C57BL- 6 J Mice MS Chabrun et al., 2020

C57Bl/6J mice HPTLC, GC Acaz- Fonseca et al., 2017

SL C57BL- 6 J Mice MS Chabrun et al., 2020

C57Bl/6J mice TQ- MS Vozella et al., 2017

Sprague– Dawley rats HPLC Palestini et al., 1997

Human LC– MS/MS Couttas et al., 2018

Song et al., 2022

Lipid rafts Human HPLC Canerina- Amaro et al., 2017

TLC, GC Díaz et al., 2018

Alzheimer's disease Fatty acids Mice homozygous for the human 
APOE3 or APOE4 gene

HPLC, LC– MS Martinsen et al., 2019

SL APPSL/PS1Ki mice TLC, HPTLC Barrier et al., 2010

Mice transgenic for APOE3 LC– MS/MS den Hoedt et al. (2021)

Human HPTLC Kracun et al., 1992

LC– MS Chan et al., 2012APPSL and APPSL/PS1 mice

Lipid rafts Human TLC, GC Díaz et al., 2018

Parkinson's disease GPL Human HPTLC Seyfried et al., 2018

SL Human HPTLC Seyfried et al., 2018

Abbreviations: 2D- TLC, Two- dimensional thin layer chromatography; AD, Alzheimer's disease; GC, gas chromatography; GPL, glycerophospholipids; 
HPLC, High- Performance Liquid Chromatography; HPLC– MS/MS, High- Performance Liquid Chromatography tandem mass spectrometry; HPTLC, 
2D high- performance thin layer chromatography; LC– MS/MS MS, mass spectrometry; PD, Parkinson's disease; SL, sphingolipids; TLC, thin layer 
chromatography; TQ- MS, triple quadrupole mass spectrometer; UHPLC– MS/MS, Ultra- High- Performance Liquid Chromatography tandem mass 
spectrometry.

 14714159, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jnc.15834 by C

ochraneItalia, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  435CUENCA-BERMEJO et al.

females (Ferdouse et al., 2019; Norman et al., 2022). Interestingly, 
these sex differences remained unaltered in spite of diet supplemen-
tation with PUFA, whereas a higher glucose diet was able to induce 
sex- specific changes in the oxylipins brain profile (Ferdouse et al., 
2019; Norman et al., 2022). Since these sex- specific differences can-
not be explained alone by the availability of PUFA, different reg-
ulatory mechanisms must underlie. Indeed, sex- related differences 
were detected in the RNA expression levels of the cytochrome P450 
(CYP), an enzyme that participates in the production of oxylipins. 
Although mRNA levels do not necessarily correspond to enzymatic 
activity, these results could provide insights into the differential reg-
ulatory mechanisms of oxylipin levels in the brain (Gerges & El- Kadi, 
2022).

4.2  |  Glycerophospholipids

Sex differences have been detected regarding glycerophospho-
lipids composition in the brain. Rappley and collaborators showed 
that changes in the content of phospholipids along aging were less 
pronounced in females than in males, and this pattern was similar 
across brain regions (Rappley et al., 2009). Furthermore, this study 
revealed significant differences in the lipid composition in the two 
mice strains used, which were housed under identical conditions, 
and these divergences were magnified along aging. Therefore, it is 
of vital importance to consider the experimental model used when it 
comes to translational comparisons.

A recent metabolomic study conducted in the mouse brain re-
vealed that the presence of several lipid metabolites was sexually 
dimorphic (Chabrun et al., 2020). Among them, 32 out of 76 of the 
phosphatidylcholines analyzed were found increased in females’ 
brains compared to males, especially in the brainstem.

On the other hand, a role for estradiol was suggested in the 
activity of phospholipids methyltransferase (assessed by the incor-
poration of 3H- methyl group into membrane phospholipids): ovariec-
tomy produced a significant decrease in the enzyme levels, whereas 
adrenalectomy had no effect on them. Moreover, enzymatic activity 
appeared to be higher in females than in males (Drouva et al., 1987).

Cardiolipin is a phospholipid crucial for mitochondrial- related 
functions. To our knowledge, a single work has investigated possi-
ble sex differences in this lipid, providing promising findings. In the 
mouse cortex, the content of unsaturated fatty acids of cardiolipin 
was higher in males than in females, but the saturation ratio was 
lower in the former (Acaz- Fonseca et al., 2017). In addition, it was 
demonstrated that sex steroids regulate the activity of the enzymes 
involved in the biosynthesis and remodeling of cardiolipin, thereby 
influencing cardiolipin levels (Acaz- Fonseca et al., 2017).

4.3  |  Sphingolipids

Sphingolipids are key components of myelin, especially galactosyl-
ceramide, sulfatide, and SM. Studies using brain imaging techniques, 

both in humans and in experimental models, have evidenced sex- 
associated differences in the brain white matter content and 
structure, as well as in oligodendrocytes (Goldstein et al., 2001; 
Ingalhalikar et al., 2014; Kaczkurkin et al., 2019; Spring et al., 2007). 
Another line of evidence evaluating sphingolipid content showed 
that SMs increased in adult females compared to age- matched 
males (Chabrun et al., 2020). This finding is in line with previous 
studies reporting sex- related differences in myelin metabolism. For 
example, levels of myelin- related proteins were found significantly 
higher in different brain areas (orbitofrontal cortex, corpus callosum, 
fornix, and spinal cord) when females and males were compared. 
Conversely, other brain areas (e.g., the dorsal striatum) did not show 
these differences, suggesting that sexual dimorphism can be found 
in a region- specific way regarding myelin turnover (Bayless & Daniel, 
2015; Cerghet et al., 2006; Ghanem et al., 2017). On the other hand, 
lysophosphatidylcholines were more prominent in males than in fe-
males, a metabolite that has been implicated in myelin sheath degra-
dation (Chabrun et al., 2020).

The hippocampus is one of the brain regions most vulnerable to 
the aging process. Studies analyzing the sphingolipid profile in this 
region have found a general increase in these lipids associated with 
physiological aging, both in mice and in humans (Couttas et al., 2018; 
Vozella et al., 2017). Some of these changes were found common 
to both sexes, while others were sex dependent. In particular, the 
accumulation of sphingolipids containing nervonic acid along aging 
was more notable in females than in males, particularly for cera-
mide (d18:1/24:1), hexosylceramide (d18:1/24:1), and SM (d42:2) 
(Vozella et al., 2017). In humans, the significant accumulation of the 
different species of sphingolipids was observed just in men (espe-
cially in those with N- acyl chains of 16, 22, and 24 carbons) (Couttas 
et al., 2018). On the contrary, a significant decrease in the ratio of 
sphingosine- 1- phosphate/sphingosine was just detected in elderly 
women. Indeed, a recent study found that females were suscepti-
ble to reduce plasmatic sphingosine- 1- phosphate levels in response 
to exercise, whereas this effect was not observed in age- matched 
males (Song et al., 2022).

Moreover, levels of sphingolipids can be influenced by diet in a 
sex- specific manner (Morselli et al., 2014), suggesting that gender- 
sensitive variables such as exercise or diet can affect the levels of 
lipids.

Along the adult life, a progressive loss of gangliosides with 
aging has been reported in human and mouse brains. The trends of 
variations are very complex and different for different brain areas, 
glycolipid species, and age ranges (Barrier et al., 2007; Ohsawa & 
Shumiya, 1991; Svennerholm et al., 1989, 1991, 1994); however, 
very few detected sex- related differences. Palestini and collabora-
tors found that in young rats, the content of the predominant gangli-
osides in the brain was higher in females at younger ages, but higher 
in males in adulthood (Palestini et al., 1997). Therefore, ganglioside 
changes along aging are sex specific. A subsequent analysis showed 
that the gangliosides' specific differences when the two sexes were 
compared were because of the changes in the ceramide moiety. 
Interestingly, they also discovered that ganglioside composition was 
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different when the two hemispheres were compared just in females 
(Palestini et al., 1997).

4.4  |  Cholesterol and sterol metabolism

Several enzymes and proteins involved in the sterols metabolism 
have been found differentially modulated when males and females 
were compared, such as the 3- hydroxy 3- methylglutaryl coenzyme-
 A reductase (HMG- CoA), the low- density lipoprotein (LDL) recep-
tor, and the CYP11A1 (Segatto et al., 2013; Watzka et al., 1999). For 
example, Segatto and colleagues demonstrated age-  and sex- related 
changes in HMG- CoA LDL receptor (Segatto et al., 2013). Among all 
the brain areas analyzed, the hippocampus and the cortex were the 
ones showing the most significant differences in rats. They found that 
these specific changes were independent of estradiol circulating lev-
els, whereas LDL glycosylation might be regulated by this hormone.

4.5  |  Lipid rafts

The process of physiological aging is associated with a variety of al-
terations in brain lipid composition, including the reduction of total 
lipid content, alterations of polyunsaturated fatty acid content and 
profile, decreased ganglioside content, and altered sphingoid base 
composition of sphingolipids (for review, see Ledesma et al. (2012)). 
Such changes have major effects on the physicochemical properties 
of lipid rafts (e.g., local membrane microviscosity). Specific altera-
tions in lipid rafts along non-  pathological aging have been exten-
sively described in humans and in experimental models (Egawa et al., 
2016; Naudí et al., 2015; Grassi et al., 2020; McNamara et al., 2008; 
Cabré et al., 2018). However, studies exploring sex differences re-
lated to the composition and functions of lipid rafts along aging 
are scarce. The analysis of lipid rafts in the human frontal cortex 
revealed profound changes when men and women were compared 
along aging, being those alterations were more pronounced in post-
menopausal women (Canerina- Amaro et al., 2017; Díaz et al., 2018; 
Marin & Diaz, 2018). The major differences in lipid rafts composition 
were evidenced in reduced levels of total neutral lipids, n- 6 PUFAs, 
and cholesterol, together with increased levels of sulfatides and 
total polar lipids. The importance of circulating estrogen to preserve 
lipid rafts has been also reported because of their modulatory role 
on lipid rafts in postmenopausal women (Marin & Diaz, 2018).

5  |  BR AIN LIPID CHANGES: EFFEC T OF 
SE X ON NEURO DEG ENE R AT IVE DISE A SES

Among the age- related neurodegenerative diseases, Alzheimer's 
and Parkinson's diseases are the most common ones (Krishnaswami 
et al., 2020). Thus, the following sections are focused on recapitulat-
ing those works in which the effect of sex in the brain lipid changes 
was considered in both diseases (Table 2).

5.1  |  Alzheimer's disease

AD is the most common age- associated neurodegenerative disorder 
in the world and the main form of dementia. It has a progressive 
and chronic nature and clinical signs include cognitive dysfunction, 
memory loss, and behavioral alterations (Scheltens et al., 2021). Its 
main histopathological features in the brain are the presence of ex-
tracellular Aβ plaques and intracellular neurofibrillary tangles (NFT) 
of hyperphosphorylated tau (Chen & Mobley, 2019). The sporadic 
form of AD is the most common one (>95% of cases) promoted by 
the interplay of different factors, amongst which age is the leading 
risk factor. On the contrary, a small proportion of patients show in-
herited AD associated with genetic variants of three genes: the Aβ 
precursor protein (APP) and the presenilin genes 1 and 2 (PSEN1 and 
PSEN2) (Chen & Mobley, 2019; Kloske & Wilcock, 2020). Although 
the familial form has an early onset, both forms of AD (sporadic and 
genetic) have a similar clinical picture (disease progression and bio-
markers profiles) (Masters et al., 2015).

Approximately, two- thirds of late- onset AD (LOAD) cases are 
women (Alzheimer's Disease Association, 2021; Bailly et al., 2019; 
Nebel et al., 2018; Prince et al., 2016). In addition, different works 
have shown that the progression of the pathology is worse in women 
than in men (Barnes et al., 2005; Henderson & Buckwalter, 1994; 
Koran et al., 2017). This was initially attributed to women living 
longer, but even after adjusting for age, the risk is still increased in 
women compared to men in >85 years old individuals (Alzheimer's 
Disease Association, 2021; Dubal, 2020; Mielke et al., 2014). At the 
same time, it was reported that higher risk for rapid progression and 
death in early- onset AD is associated with male sex (Claus et al., 
1998; Davis et al., 2020; Dubal, 2020; Fernandez & Lapane, 2002; 
Stern et al., 1997; Ueki et al., 2001). Therefore, it is clear that sex 
plays a central role in AD, although a clear conclusion has not been 
reached yet. The contributing factors for these sex- associated dif-
ferences must be diverse, ranging from biological components (e.g., 
hormones) to social reasons (e.g., education level, mental health 
status, stress) (Ferretti et al., 2020; Mielke et al., 2018; Ratnakumar 
et al., 2019).

A large body of evidence has demonstrated that altered lipid 
homeostasis is associated with the development and progression 
of LOAD. In the last decades, this topic has received increasing at-
tention and research has been conducted in this line to understand 
the fundamental role of lipids in the physiopathology of AD. For 
example, lipids are key players in Aβ peptide formation as well as 
in its toxicity (Kao et al., 2020). More specifically, altered lipid raft 
composition (e.g., high enrichment of GM1 ganglioside in some brain 
areas) seems to be responsible for disrupting normal APP- dependent 
signal transduction and pushing APP toward amyloidogenic proteo-
lytic processing via the sequential actions of β-  and γ- secretases. 
In addition, the interaction of newly formed, membrane- bound Aβ 
interaction with GM1 present at high levels in lipid rafts is a major 
trigger for the formation of toxic soluble Aβ aggregates and of in-
soluble amyloid fibrils (Hartmann, 2011). Recently published works 
collected the brain lipid changes in AD patients and experimental 
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models of the disease and therefore will not be repeated here (Chew 
et al., 2020; Kao et al., 2020; Penke et al., 2018; Yin, 2022). Here, we 
collect those studies that explore lipid- related changes in AD using a 
sex- disaggregated approach.

5.1.1  |  Sex- dependent genetic contributors of AD 
related to lipid metabolism

In addition to the three genes directly involved in the risk of suf-
fering from AD (i.e., APP, PSEN1, and PSEN2), genome- wide asso-
ciation studies (GWAS) and transcriptome- Wide Association Studies 
(TWAS) have identified several genes involved in lipid metabolism 
that constitute AD risk factors (Chew et al., 2020; Dong et al., 2017; 
El Gaamouch et al., 2016; Hollingworth et al., 2011; Jones et al., 
2010; Kunkle et al., 2019). However, we have detected that the sex- 
related differences in AD linked to these genes have been explored 
just for two of them, the APOE and the ABCA7 genes.

APOE4
APOE is the gene related to lipid metabolism that has received con-
siderable attention in relation to AD pathology. The E4 isoform of the 
apolipoprotein E (APOE4) has been firmly stablished as the strongest 
genetic risk factor for LOAD (Jessica Tulloch et al., 2018). Briefly, the 
APOE is the principal lipid transporter in the brain, thus it is critical for 
lipid homeostasis in this organ, especially for cholesterol and phos-
pholipids (Growdon & Hyman, 2014; Wong et al., 2019). It is mainly 
expressed by astrocytes, although it can also be found in microglia 
and neurons in a minor proportion (de Chaves & Narayanaswami, 
2008; Kloske & Wilcock, 2020; Xu et al., 2006). The APOE gene en-
codes for three protein isoforms: APOE2, APOE3, and APOE4. In par-
ticular, the amino acid sequence of APOE4 provides conformational 
properties that are associated with reduced lipid transport in the CNS 
and lead to limited neuronal remodeling and repair (Chew et al., 2020; 
Frieden et al., 2017; Li et al., 2002; Nguyen et al., 2014).

Compared to other individuals, those homozygous for APOE4 
have approximately a 15- fold higher risk of developing LOAD 
and even the heterozygous ones show a three- fold increased risk 
(Chartier- Harlin et al., 1994; de Rojas et al., 2021; Kloske & Wilcock, 
2020). Regarding sex differences, carrying the APOE ε4 allele (either 
heterozygous or homozygous) has a higher impact on the develop-
ment and on the progression of the disease in females compared 
to males, both in humans and in preclinical models (Altmann et al., 
2014; Breitner et al., 1999; Bretsky et al., 1999; Buckley et al., 2019; 
Hohman et al., 2018; Martinsen et al., 2019; Mortensen & Høgh, 
2001; Payami et al., 1996; Ramanan et al., 2019). Different GWAS 
studies have found that several SNPs associated with APOE and 
with the lipoprotein metabolism pathway are the highest contrib-
utors to LOAD risk, some of them conferring a differential vulnera-
bility to males and females (Altmann et al., 2014; Guo et al., 2017). 
The interaction between sex and APOE4 is partially explained by the 
effect of sex hormones; however, the sex- specific effect of APOE4 
on AD needs further characterization.

ABCA7
The ATP- binding cassette subfamily A member 7 (ABCA7) has also 
been identified as an AD- related gene (Hollingworth et al., 2011; 
Lambert et al., 2013; Steinberg et al., 2015). ABCA7 mediates lipid 
transport across cell membranes, although its mechanism in the 
brain is not completely understood (Abe- Dohmae et al., 2004). In 
AD patients, ABCA7 is involved in the generation, accumulation, and 
clearance of Aβ peptides (Apostolova et al., 2018; Chan et al., 2008; 
Fu et al., 2016).

Sex differences have been found in ABCA7 in the context of AD. 
In mice, suppression of Abca7 gene promotes differential effects 
in males and females. In particular, deletion of this gene induces 
an increment in cholesterol levels in the serum and in the brain in 
females, while males tend to accumulate other sterols (including 
derivatives of cholesterol and campesterol) (Fu et al., 2022; Kim 
et al., 2005). Levels of lipid metabolites, such as lysosphingomyelin, 
lysophosphatidic acid, or hexosyl- sphingosine, were found similarly 
altered in both sexes when Abca7 gene was suppressed (Fu et al., 
2022). Interestingly, in the same study, it was found that Aβ42 and 
Aβ40 levels were changed in a sex- specific manner. Abca7 KO fe-
males showed a reduced cognitive performance compared to males, 
which was correlated with the cessation of estrous cycling (Logge 
et al., 2012). Evidence from human trials is aligned with these find-
ings of experimental models. Some works have found that carrying 
the genetic variants of ABCA7 related to AD development has a 
higher impact on women than on men (Nettiksimmons et al., 2016; 
Prokopenko et al., 2020). For example, from a total of 15 SNPs sur-
rounding the ABCA7 gene, 10 of them seemed protective for AD 
risk just in women (Prokopenko et al., 2020). In line with these sex 
differences, women with reduced estrogen levels and ABCA7 gene 
variants showed a higher AD risk (Ratnakumar et al., 2019).

5.1.2  |  Altered lipid composition in AD brain from a 
sex perspective

Fatty acids
Little evidence exists on fatty acid changes in AD from the sex per-
spective. Martinsen and collaborators found that the brain fatty acid 
profile and the concentration of different lipid mediators derived 
from omega- 3 acids were affected by age, sex, and APOE genotype 
(Martinsen et al., 2019). For example, the content of DHA in the cor-
tex of older APOE4 females was reduced if compared to the APOE3 
females or the male counterpart.

Sphingolipids
Studies using different experimental models demonstrated that 
the sphingolipid profile in the cortex showed a sex- specific pat-
tern (Barrier et al., 2010; den Hoedt et al., 2021). In mice, APPSL 
females (characterized by the presence of Aβ plaques in the fron-
tal cortex) presented decreased levels of ceramides containing 
saturated fatty acids and increased levels of ceramides containing 
unsaturated fatty acids compared to APPSL males (Barrier et al., 
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2010). Opposite results were found in the AD mouse model based 
on the APOE4 expression (den Hoedt et al., 2021). Likewise, sex 
influenced the hippocampal sphingolipid profile in healthy humans 
carrying the APOE4 genotype (>65 years old): total ceramides, SM, 
and sulfatides were increased in males but not in females (Couttas 
et al., 2018). Despite some discrepancies might exist among the 
different studies, they do not exclude each other. Indeed, they 
suggest that different pathological mechanisms related to lipid 
changes might underlie AD pathology.

Different analyses have shown alterations in the ganglioside 
composition in different brain areas of AD patients (Ariga, 2017; 
Barrier et al., 2007; Chan et al., 2012; Kracun et al., 1992). In general 
terms, changes lead to an accumulation of simple gangliosides (e.g., 
GM2, GM3) and reduction of the complex series (e.g., GM1, GD1a, 
GD1b) (Kao et al., 2020; Sipione et al., 2020). In the Abca7 KO mice, 
a negative correlation between GD1a levels and Aβ42 was in males 
but not in females. These results are in contrast with previous ones, 
therefore providing a tool to explore the pathological mechanism of 
Aβ deposition.

5.1.3  |  Lipid rafts

The importance of lipid rafts in AD pathology has been extensively 
demonstrated, including a central role in Aβ processing and deposi-
tion (Arbor et al., 2016; Sonnino et al., 2014). However, how lipid 
raft alterations contribute to the progression of AD still needs to be 
clarified. Estrogen signaling occurs in lipid rafts and it is able to regu-
late lipid raft homeostasis (Canerina- Amaro et al., 2017; Marin et al., 
2013; Maselli et al., 2015). Alterations at this level in women have 
been demonstrated during menopause and in AD, indicating that 
lipid raft alterations in pathology are also influenced by sex (Marin 
& Diaz, 2018).

5.2  |  Parkinson's disease

PD is a progressive, chronic, age- related neurodegenerative dis-
ease. The two principal histopathological hallmarks involved are (i) 
dopamine depletion (owing to the death of dopaminergic neurons 
in the Substantia Nigra pars compacta (SNpc) and the loss of their 
terminals in the striatum) and (ii) proteinaceous inclusions (enriched 
in misfolded α- synuclein) in neuronal cytoplasm, known as Lewy 
bodies (Cuenca et al., 2018; Poewe et al., 2017). The exact cause 
of PD still needs to be clarified. Less than 10% of the cases are 
identified as familial origin (Bloem et al., 2021). However, the ma-
jority of cases are the result of the complex interplay among several 
factors, such as age, genetics and epigenetics, environmental influ-
ence, and sex (Kalia & Lang, 2015; Kochmanski et al., 2022; Obeso 
et al., 2017).

Biological sex has a determinant role in PD at different levels. 
From an epidemiological perspective, the incidence and prevalence 
of PD are higher in males than in females (Baldereschi et al., 2000; 

Wooten et al., 2004). At the clinical level, the symptoms, course of 
the disease, and the response to medication are also influenced by 
sex (Bakeberg et al., 2021; Gillies et al., 2014; Haaxma et al., 2007). 
A recent study has demonstrated that the DNA methylation profile 
of several core genes of PD pathology is sex specific (Kochmanski 
et al., 2022). The susceptibility to environmental neurotoxicity in 
PD patients has also been demonstrated to be associated with sex 
(Adamson et al., 2022).

Altered lipid homeostasis has received increasing attention as 
an important contributing factor for PD pathology, having a role 
in neuronal impairment, altered cell signaling, and in α- synuclein 
aggregation (Perrin et al., 2000; Ugalde et al., 2019). Recently, sev-
eral authors have recapitulated the changes in the composition and 
content of different lipids in PD patients (Galper et al., 2022; Ma 
et al., 2022; Xicoy et al., 2019). In this section, we review the avail-
able evidence showing sex- related differences in the brain lipid 
changes in PD.

5.2.1  |  Sex- dependent genetic contributors of PD 
related to lipid metabolism

A minor percentage of the cases are directly related to a genetic 
cause; however, several genetic variants have been identified as 
contributors to PD pathology (i.e., loci, mutations, SNP variants). In 
general terms, the genetic contribution in PD can be explained by 
three types of variations: (i) pathogenic ones, which are variants of 
genes that are enough to cause the disease (e.g., SNCA, PARK7); 
(ii) intermediate risk variants, their presence confers a higher risk of 
developing PD with variable penetrance (e.g., GBA and LRRK2 vari-
ants); and (iii) small contribution ones, which are common variants 
having a low effect size (e.g., variations in SNCA, LRRK2, MAPT) 
(Galper et al., 2022; Nalls et al., 2019).

Importantly, several works have found that some PD- related 
genes actively participate in lipid metabolism, such as GBA1 (en-
coding for glucocerebrosidase), GALC (encoding for galactosylce-
ramidase), SMPD1 (encoding for acid sphingomyelinase), ASAH 
(encoding for acid ceramidase), SREBF1 (encoding sterol regulatory 
element binding transcription factor 1), and DGKQ (encoding dia-
cylglycerol kinase theta) (Chang et al., 2017; de Carvalho Guimarães 
et al., 2012; Do et al., 2011; Galper et al., 2022; Gan- Or et al., 2013; 
Robak et al., 2017; Simón- Sánchez et al., 2009; Wang et al., 2012). 
The sex- related differences of these PD genetic risk factors have not 
been examined for all of them yet.

Different studies have evaluated the role of sex in the suscepti-
bility to carry GBA variants in PD patients, although conflicting re-
sults were obtained: some found a male predominance (Neumann 
et al., 2009; Ortega et al., 2022), while others reported that females 
were most predominant for PD- GBA (Mata et al., 2008; Setó- Salvia 
et al., 2012). The reason for these discrepancies might underlie in 
the cohort size or the geographical location (e.g., Spanish, Brazilian, 
or Ashkenazi Jewish populations). Importantly, Ortega and collab-
orators found that even if men were predominant at carrying GBA 
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variants, females were the predominant sex carrying the most se-
vere GBA variants (Ortega et al., 2022). Whether these variants 
confer particular features for the disease, still needs to be clarified. 
In particular, it was demonstrated a male predominance in carrying 
GBA variants, but females were the predominant sex carrying the 
most severe GBA variants. Whether these variants confer particular 
features for the disease still needs to be clarified.

The implication of APOE gene in PD has also received exten-
sive attention and sex component has been proposed. Similar to 
AD, a significant relationship between the APOE4 genotype and 
the age- at- onset was found in women but not in men (Buchanan 
et al., 2007). Sex- related differences in cognitive decline in PD 
have been reported (Cereda et al., 2016; Reekes et al., 2020). 
Interestingly, two recent independent studies found that cognitive 
decline was associated with APOE4 genotype in men with PD (Kim 
et al., 2021; Tipton et al., 2021). These findings demonstrate a sex- 
dependent susceptibility to cognitive impairment in PD and have 
evident clinical implications, although further research should be 
conducted.

5.2.2  |  Altered lipid composition in PD brain from a 
sex perspective

Recently, several authors have recapitulated the changes in the 
composition and content of different lipids in PD patients (Galper 
et al., 2022; Xicoy et al., 2019). The number of studies incorporat-
ing sex as an experimental variable in the analysis of changes in 
the brain lipid composition of PD patients is very low. However, 
a recent work provided evidence that lipids abnormalities in the 
SNpc of PD patients were sex specific (Seyfried et al., 2018). 
Significant changes were found in the PD males' samples for gan-
gliosides, sphingomyelins, and glycerophospholipids (PE and PC) 
when they were compared with their sex- matched controls. These 
results were in agreement with those previously described in 
studies where males and females were grouped (Hadaczek et al., 
2015; Riekkinen et al., 1975; Wu et al., 2012). Surprisingly, none of 
these alterations were detected in the females' samples. Authors 
suggested that these unexpected data could be attributed to the 
possibility that males and females were at different clinical stages 
of the disease, which was not provided. However, a key message 
emerges from this study: underestimating the effect of biological 
sex in lipid profiling of the brain might mask important differences 
that could be crucial to understand the underlying mechanisms of 
the disease.

Importantly, sex differences have also been evidenced in α- 
synuclein toxicity. Rappley and collaborators studied the effect 
of age, sex, and α- synuclein dosage on the glycerophospholipid 
profile in mouse models of PD. The effect of α- synuclein dosage 
was very limited compared to the one exerted by physiological 
aging and sex on the lipid changes observed (Rappley et al., 2009). 
These findings reinforce the importance of taking into account 
the sex of the subject: the particular sex- related alterations in the 

glycerophospholipid environment of cell membranes might induce 
different changes in α- synuclein metabolism that might explain sex-
ual differences in PD.

6  |  NEUROLOGIC AL EFFEC TS OF 
LIPID -  REDUCING THER APIES AND SE X 
DIFFERENCES

The family of lipid- lowering drugs includes statins, inhibitors of cho-
lesterol absorption (e.g., ezetimibe), proprotein convertase subtilisin/
kexin (PCSK) 9- inhibitors (e.g., evolocumab and alirocumab) niacin 
or fibrates (Ruscica et al., 2021). Among them, the use of statins is 
very extended around the world to reduce the risk associated with 
cardiovascular diseases (Gaudet et al., 2017). Their action is based 
on the inhibition of the 3- hydroxy- 3- methylglutaryl coenzyme A 
(HMG- CoA) reductase and they are very effective in reducing serum 
cholesterol levels (Fadeyibi et al., 2022). A number of works have 
proven that lipid- reducing therapies are able to modulate the de-
velopment of neurological diseases (Kosowski et al., 2021) and re-
search to understand their efficacy in the prevention and treatment 
of neurodegenerative diseases has considerably increased in the last 
years (Kosowski et al., 2021; Kuang, 2020; Samant & Gupta, 2021). 
However, this has been a topic of debate since the available results 
from clinical trials are very ambiguous concerning the use of statins 
and other lipid- reducing drugs to prevent or treat neurodegenerative 
disorders. Some clinical and preclinical studies have demonstrated 
beneficial effects of lipid- lowering therapies in dementia, AD, and PD 
(Rockwood & Darvesh, 2003; Wolozin et al., 2000; Yan et al., 2011, 
2014). For example, the use of statins was associated with improve-
ment in cognitive decline (Schultz et al., 2018), the reduced risk of 
statin users to develop AD (Samant & Gupta, 2021), or the reduction 
in the motor symptoms progression in PD (Jeong et al., 2021). A num-
ber of mechanisms have been proposed to explain the neuroprotec-
tive and therapeutical effects in the CNS of the lipid- lowering agents, 
such as their anti- inflammatory and anti- thrombotic properties, the 
ability to induce neuronal plasticity and modulate neurotransmission, 
and the inhibition of Aβ production (Dai et al., 2021; Simons et al., 
2001). Conversely, others have not found significant contribution of 
statins in the neurodegenerative process (Rea et al., 2005) or have 
described harmful effects (Dai et al., 2021; Jeong et al., 2021; Pasha 
et al., 2022; Schultz et al., 2018). Altogether, these evidence point 
out that statins might have both positive and detrimental effects on 
the nervous system, which can be ascribed to different factors (e.g., 
severity of disease, type and dose of statins, variable indicators to 
evaluate the outcome, duration of treatment, ethnicity, etc.) (Karimi 
et al., 2023; Ruscica et al., 2021; Shepardson et al., 2011).

Similar to other scenarios, clinical trials to evaluate the safety and 
efficacy of lipid- lowering therapies have been predominantly per-
formed in men (Faubion et al., 2019; Khan et al., 2020). Therefore, 
the current clinical guidelines barely consider the sex variable in the 
use of lipid- reducing agents as clinical interventions. Mercuro and 
collaborators collected evidence regarding differences in the effect 
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of lipid- lowering therapies in men and women (Mercuro et al., 2011). 
Here, we provide a list of trials that were released after their publica-
tion in which studies have explored the pharmacological properties 
and the effect of lipid- lowering drugs applying the sex disaggregation 
(Table 3). Collectively, these evidence do not allow us to reach con-
sistent conclusions, and research in this line should be expanded to 
create specific guidelines and recommendations. Extensive research 
has concluded that women show less adherence to statin therapy or 

have less likely to be prescribed statins (Olmastroni et al., 2020, b; 
Peters et al., 2018; Zhao et al., 2020). In this line, a roundtable pointed 
out that considering sex and gender is crucial to reach conclusions 
regarding the use of lipid- lowering therapies. They analyzed a series 
of studies and two relevant points can be highlighted from it. The 
first one concerns the underrepresentation of women because of 
the assumed social roles: authors claimed that, compared to single 
or divorced women, the married ones had less participation in clinical 

TA B L E  3  Studies evidencing sex differences in the effects of lipid- lowering therapies.

Reference Research strategy Intervention details Main results

Karimi et al. 2023 Multicenter control– 
case study

Participants: 1917 (34.8% women)
Inclusion criteria: premature coronary artery disease
Treatment: atorvastatin, lovastatin, rosuvastatin, 

simvastatin

LDL levels control:
Lovastatin, rosuvastatin, simvastatin –  

women < men
Atorvastatin –  no significant differences

Paquette  
et al. 2023

Follow- up of clinical 
reports

Participants: 259 (38% women)
Inclusion criteria: patients treated
Treatment: PCSK9 inhibitors

Relative change of LDL levels was 
significantly higher in men > women

Menopausal status did not affect statin 
efficacy

Olmastroni  
et al. (2020, b)

Statistical analysis 
from national 
administrative 
databases (Italy)

Participants: 613654 (50.6% women)
Inclusion criteria: patients under statin treatment for 

5 years.
Treatment: rosuvastatin, simvastatin, pravastatin 

lovastatin, lovastatin, atorvastatin

More side effects reported in women

Wu et al. 2020 Clinical follow- up Participants: 158 (31.6% women)
Inclusion criteria: patients percutaneous coronary 

intervention + statin treatment. Follow- up 
~1 year

Treatment: atorvastatin

Higher decrease in women > men in 
triglycerides, LDL, and ApoB levels

Dagliati et al. 
(2021)

Large- scale cohort 
using the UK 
Biobank and 
statistical 
modeling

Participants: 252327 (54.2% women)
Inclusion criteria: statin users. Follow- up: medical 

visits
Treatment: simvastatin, atorvastatin, pravastatin, 

rosuvastatin

Higher survival rates in men treated with 
statins (compared to women)

Nanna  
et al. (2018)

Statistical comparison 
of the PALM 
registry

Participants: 5693 (43% women)
Inclusion criteria: patients ≤75 and >75 years old 

who were eligible for primary or secondary 
prevention statin use

Treatment: statin type not specified

More side effects reported in women

Sabatine  
et al. 2017

Randomized, double- 
blind, placebo- 
controlled trial

Participants: 27564 (24.6% women)
Inclusion criteria: participants with atherosclerotic 

cardiovascular disease and LDL cholesterol 
levels ≥70 mg/dL receiving statin therapy. 
Follow- up ~2.2 years

Treatment: evolocumab (PCSK9 inhibitor) + statin 
therapy

No sex differences in the efficacy of 
treatments

Zissimopoulos 
et al. 2017a

Examination of 
medical and 
pharmacy claims

Participants: 399979 (60.3% women)
Inclusion criteria: statin users (2006– 2013), high 

or low exposure to statins. Follow- up time 
~7.2 years

Treatment: simvastatin, atorvastatin, pravastatin, 
rosuvastatin

Sex- related differences in the AD risk 
depending on the statin molecule

Hsue et al. 2015 Comparison of six 
large randomized 
clinical trials using 
patient- level data

Participants: 39173 (23.4% women)
Inclusion criteria: randomized clinical trials using 

data from patients following statin treatments. 
Follow- up ~4– 5 years

Treatment: atorvastatin at high and low doses

Higher unwanted side effects in women: 
myalgia (at lower doses) and elevation of 
hepatic enzymes (at higher doses)

No sex differences in the efficacy of 
treatments

More side effects reported in women

a Studies in which neurological effects were explored.

 14714159, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jnc.15834 by C

ochraneItalia, W
iley O

nline L
ibrary on [11/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  441CUENCA-BERMEJO et al.

trials because they assume that they have to provide everyone's care 
but themselves. The second idea relies on the evidence that women 
are more prone to develop new or worse side effects compared to 
men, possibly owing to the fact that some comorbidities are more 
frequent in women than in men (e.g., hypothyroidism), which can be 
exacerbated by statin use (Brown and Mackey et al., 2015).

Few studies have explored the sex differences in the neurolog-
ical outcomes associated with lipid- lowering therapies. Indeed, we 
found just one trial matching these premises (Table 3) (Zissimopoulos 
et al., 2017). A recent preclinical study investigated the possible neu-
roprotective action of atorvastatin after the induction of cerebral 
microhemorrhages (Bergeron et al., 2021). Strikingly, authors found 
that atorvastatin improved visuospatial memory in males but not in 
females. The mechanisms involved in these differences need to be 
clarified in the future research.

7  |  CONCLUDING REMARKS

Sex differences have been observed in both brain and in lipid metabo-
lism, including the neuroscience field. However, the majority of studies 
have not investigated possible sex differences in the experimental de-
sign. To the author's knowledge, this narrative review is the first one that 
recapitulates the evidence of the sex and gender effect on brain lipid 
changes along aging and in age- related neurodegenerative disease.

Along this research, we have observed that the inclusion of the 
female sex in biomedical studies is tending to increase in the last 
decades. Sex- related differences have been demonstrated in several 
lipid classes, including fatty acids, phospholipids, sphingomyelin, or 
gangliosides, among others. However, because of the few available 
data, it is not possible to stablish a consensus regarding the exact 
role of sex on the lipid alterations along aging and neurodegener-
ation, and neither for the underlying mechanisms in those sex dif-
ferences. Noteworthy, even if scarce, the findings observed are 
promising to further characterize the sex- dependent changes and 
explore the functional consequences associated with them. In this 
sense, the application of omics is of special relevance in this area, 
since they are key to provide insights into small variances that can-
not be detected with conventional techniques.

Analyzing the influence of sex adds some complexity to the exper-
imental design; however, not including these variables is associated 
with biased results. Thus, previous works involving a mixed sample 
of both sexes are encouraged to re- examine their data if possible 
and check whether sex- related differences might appear. The study 
of lipid modifications in physiology and pathology paying attention 
to sex is a promising area of research and future research will ben-
efit from it. As demonstrated in this review, most of our knowledge 
on this topic is limited to the description of differences in the lipid 
composition or lipid- related genes. By contrast, little evidence exists 
regarding the biological meaning of these findings remains unclear.

Importantly, sex differences in the brain are not limited to sex 
steroids and involve many other factors, such as epigenetics or gen-
der (Forger, 2016; Peedikayil- Kurien et al., 2022). In particular, we 

observed that research accounting for the gender effect is very limited 
and does not allow us to reach consistent conclusions. At this point, 
it is worthy to mention that gender comprises the social context, 
economic, or education, among others, which also affects brain de-
velopment, functions, and vulnerability to disease. Thus, considering 
these variables may contribute to a better representation of the real 
practical scenario. On the one hand, it will allow us to understand the 
differential susceptibility of men and women to different neurological 
diseases. On the other hand, it could be extremely helpful to inspire 
early diagnostic tools and design effective therapeutical strategies.

Altogether, the present work evidences the existence of sex- 
associated lipid changes in the brain in humans and in preclinical 
models, as well as in their response to lipid- lowering therapies. We 
conclude that sex is an important variable to take into account in the 
study of brain lipid changes and that sex steroids play a key role.
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