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ct

per considers efficiency improvements in a partially linear panel data model that accounts for possible nonline
of common covariates and allows for cross-sectional dependence arising simultaneously from unobserv
n factors and spatial dependence. A generalized least squares-type estimator is proposed by taking into accou
endence structure. Also, possible gains in terms of the rate of convergence are studied. A Monte Carlo stu
d out to investigate the proposed estimators’ finite sample performance. Further, an empirical application

ted to assess the impact of the carbon price linked to the European Union Emission Trading System on carb
emissions.

ds: Climate policy effects, Cross-sectional dependence, European Union Emissions Trading System Partia
odels, Semiparametric efficient estimators.
SC: Primary 62G05, Secondary 62P12

oduction

parametric and semiparametric panel data models traditionally assume independence across individuals. Ho
onomic agents (regions, states, or countries, among others) are typically interdependent due to externaliti
rs, or common shocks. Therefore, ignoring this type of dependence, typically known as cross-sectional d
ce (CSD), may be inappropriate as standard estimation procedures can lead to inefficient and even inconsiste
ors, as shown in [26, 43] and the references therein. Recently, the question of how to characterize CSD h
d considerable attention, emerging two prominent (non-exclusive) strands in the literature.
the one hand, the multifactor error approach states that the correlation structure can be characterized by t
e of a finite number of unobserved common factors that affect all individuals with different intensities.
ent approach within this strand of the literature is the common correlated effect estimator (CCE) introduced
hich has also been extended to a fully nonparametric regression setting by [27, 50], for example.
the other hand, the spatial econometric approach assumes that the correlation structure can be modeled throu
ecified spatial weight matrix that may depend on either the geographic locations of the cross-sectional units
neral economic variables. In this case, the question of efficiency improvements using the correlation structu

s naturally, independently of whether the dependence is allowed in either time or cross-sectional dimensi
). For example, [33, 45] assume an unknown structure of the CSD and shown that a simple Nadaraya-Wats

or is dominated by a Generalized Least Squares (GLS)-type one in efficiency terms, under some conditions
at which the cross-sectional dimension, N, is allowed to growth with the time series length, T .

ile these two approaches are developed separately, several empirical problems have led researchers to p
tention to the development of consistent estimation procedures in the presence of both types of dependen
ly parametric setting with both heterogeneous and homogeneous slope parameters, [42] considers both typ
. However, these types of results are scarce in the nonparametric literature. Recently, [48] extends the CC

esponding author. Email address: alexandra.soberon@unican.es
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h to consistently estimate the parameters of interest in a partially linear panel data model. This model treats t
n observed variables in a nonparametric way and accounts for both the presence of unknown common facto
tial dependence. Nevertheless, different results in terms of efficiency are obtained for the heterogeneous a
neous cases. When the slope parameters are heterogeneous, it is shown that the asymptotic variance does n
on the spatial correlation structure of the model. Unfortunately, this is not the case in the homogeneous slo
ters case. Under this latter setting, the asymptotic variance of the resulting estimator depends on the particu
ation of the correlation structure, so it is possible to obtain more efficient estimators.
above results suggest the possibility of achieving efficiency gains in such semiparametric specifications. Th

sely the focus of our paper: proposing a GLS-type estimation technique that delivers more efficient estimato
rtially linear model. This model features homogeneous slope parameters, heterogeneous smooth functions f
mon observed variables, and accounts for both types of CSD. According to our theoretical results, efficien
ill not only affect the inference analysis, but can also lead to a substantially different estimate of the shape
nown curve and the parameter estimates.
s noteworthy result is further corroborated by a simulation exercise and an empirical illustrative examp

macroeconomic panel dataset is exploited to assess the impact of the European Union Emissions Tradi
(EU ETS) on CO2 emissions. To do so, we propose a partially linear Environmental Kuznets Curve (EK
ation (see [6, 36], among others) where the key policy variable, which is invariant across units, is the price
linked to the European market of allowances. Since there is a high degree of uncertainty surrounding the sha
n) of this policy effect and there are no ex-ante theoretical or empirical reasons to impose a specific paramet
between CO2 emissions and the price of polluting, a nonparametric relationship between these two variab

ted. Furthermore, following the postulates in the EKC literature, the rest of the covariates are specified throu
parametric model. Additionally, unobservable common factors, which could affect individual countries in
eneous manner [35], as well as spatial dependence [46] are also introduced simultaneously.
rest of the paper is organized as follows. Section 2 introduces the model and the estimation method. Secti
to the efficient estimation techniques. Section 4 presents some Monte Carlo simulations to analyze the fin
performance of the proposed estimators, while Section 5 applies that methodology to evaluate the effect of t

on CO2 emissions. Section 6 concludes the paper. All mathematical proofs are relegated to the Appendix.

nometric model and estimation procedures

yit be the response variable for the cross-sectional unit i at time t. We consider the following partially line
ata model with both unobserved common factors and spatially correlated errors,

yit = α⊤i dt + x⊤it β + mi(zt) + γ⊤i ft + ϵit, i ∈ {1, . . . ,N}, t ∈ {1, . . . ,T }, (

it is a p × 1 vector of individual-specific explanatory variables and dt = (d1t, . . . , dnt)⊤ is a n × 1 vector th
ontain deterministic terms or commonly observed variables that enter linearly in the model. We allow for t
e of observed continuous common stochastic covariates (common policy effects), zt ∈ IRq, that enter through
metric heterogeneous function (i.e., mi(·)) in the model. Further, ft is a r × 1 vector of unobserved comm

that are allowed to simultaneously affect all cross-section units, albeit with different intensities measured w
or loadings, γi, and ϵit is the idiosyncratic error term. In addition, β and mi(·) are unknown objects that need
ated. Through the paper, we assume that, if an intercept term exists, it is included in dt. If this is the case,
identify mi(·), we need to impose the following condition: E[mi(zt)] = 0 for each i.

eneral, as it is noted in [39, 50], among others, the unobserved common factors, ft, are allowed to be correlat
observed data (xit, zt, dt). The covariates xit are control variables that are determined in the system and zt c

ical variables that are common among the cross-sectional units [2] and are not determined in the system. The
s can be technological, institutional, environmental, or health factors. The xit’s variables are determined in t
according to the following fairly general specification:

xit = A⊤i dt + gi(zt) + Γ⊤i ft + vit, (

i and Γi are n× p and r× p factor loadings matrices with fixed components, respectively, vit is a p×1 vector
al-specific components of xit, and gi(zt) is a p×1 vector of unknown smooth functions. The spatial dependen
uced by assuming that the idiosyncratic error term, ϵit, is conditionally correlated and heteroscedastic.
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econometric model introduced in (1) and (2) can be motivated from various perspectives. One rationale f
pecification is that in several circumstances such as wage, cost, or production functions, parametric specific
r the main explanatory variables are well established and build on economic theory. However, there is genera
egree of uncertainty surrounding the way in which common observed variables may affect the cross-section
or example, allowing for flexible forms may be suitable when focusing on the effect of real common shoc
uctivity or economic growth or when estimating the effects of oil prices on wages, employment, or producti
[24, 30]. In our empirical application, we will consider an extended EKC model where yit stands for C
ns per capita, the vector xit contains standard explanatory variables in the EKC (such as GDP per capita,
and research and development activities), and the common observed variable zt is the carbon price linked
opean market of allowances that is allowed to have a nonlinear heterogeneous effect among countries [2].
estimate β and mi(·), [48] make an extension of the CCE approach of [39] from fully parametric to partia

odels and proposes to approximate the unobserved factors, ft, by a suitable proxy that does not depend
al estimate of β and mi(·). In particular, in its Online Appendix A it is shown that ft can be approximated
s-sectional averages of the observed variables (yit, xit) assuming: i) rank(Γ∗) = r ≤ (1 + p) for sufficien
, where Γ∗ = E(γi,Γi) = (γ,Γ); ii) N−1 ∑N

i=1 vit
q.m.→ 0 and N−1 ∑N

i=1 ϵit
q.m.→ 0 for each t; and iii) N−1 ∑N

i=1 gi(
1 ∑N

i=1 mi(zt) are twice-continuously differentiable in the neighborhood of z ∈int(Z), whereZ is the support
owing this approach and let yAt = N−1 ∑N

i=1 yit and xAt = N−1 ∑N
i=1 xit, we propose to approximate ft by som

unction of λt = (yAt, xAt, dt) that is a ℓ × 1 vector of observable proxies for ft with ℓ = (1 + p + n) plus a te
ence, the following augmented regression model is considered

yit = x⊤it β + mi(zt) + δ⊤i λt + eit, i ∈ {1, . . . ,N}, t ∈ {1, . . . ,T }, (

it = ϵit + op(1) is the error term and δi is a ℓ × 1 vector of nuisance parameters.
Zz be a T × (1 + q) matrix whose t-th element is Zzt = [1, (zt − z)⊤] for z being a fixed point and KH1 (z) be
iagonal matrix as KH1 (z) = diag{KH1 (z1 − z), . . . ,KH1 (zT − z)}, where H1 is a q × q symmetric and positi
matrix and K(·) is a nonnegative product kernel function such that, for each u, KH1 (u) = |H1|−1 ∏q

ȷ=1 k(H−1
1 u

= (u1, . . . , uq)⊤ and k(·) is a univariate kernel function. Assuming that Z⊤z KH1 (z)Zz is invertible, in [48]
that, for i ∈ {1, . . . ,N}, the following nonparametric estimator can be proposed for mi(·),

m̃i(z,H1) = ι⊤1
{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z) (Yi· − Xi·β − Λδi) , (

i· ≡ (yi1, . . . , yiT )⊤ is a T × 1 vector, Xi· ≡ (xi1, . . . , xiT )⊤ and Λ ≡ (λ1, . . . , λT )⊤ are T × p and T × ℓ matric
ively, and ι1 is a (1 + q) × 1 vector having 1 in the first entry and 0 in all other entries.
ertheless, m̃i(z,H1) is an infeasible estimator since it depends on the unknown parameters (δi, β). To overcom
ropose to rewrite (4) in matrix notation by denoting m̃i(Z,H1) = S [Yi· − Xi·β − Λδi], where S is a T ×

ing matrix that only depends on the values of zt and whose definition is apparent from (4). Hence, pluggi
lting expression in (3) we get the following regression model

Ŷi· = X̂i·β + Λ̂δi + ê0,i·, (

= (IT − S )Yi·, X̂i· = (IT − S )Xi·, and Λ̂ = (IT − S )Λ. Also, ê0,i· =
(̂
e0,i1, . . . , ê0,iT

)⊤ is a T × 1 vector whose
t is ê0,it = eit +Op

{
tr(H2

1)
}
. Then, by assuming that

∑N
i=1 X̂⊤i· MΛ̂X̂i· and Λ̂⊤MX̂i

Λ̂ are invertible matrices, whe

T − Λ̂
(
Λ̂⊤Λ̂

)−1
Λ̂⊤ and MX̂i

= IT − X̂i·
(
X̂⊤i· X̂i·

)−1
X̂⊤i· are T ×T projection matrices, and following the procedu

we obtain

β̂ =


N∑

i=1

X̂⊤i· MΛ̂X̂i·


−1 N∑

i=1

X̂⊤i· MΛ̂Ŷi·, (

m̂i(z,H1) = ι⊤1
{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)

(
Yi· − Xi·β̂ − Λδ̂i

)
, (

m̂(z; H1) = ι⊤1
{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)

(
YA − XAβ̂ − Λ̂δ

)
, (

3
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= N−1 ∑N
i=1 δ̂i for δ̂i =

(
Λ̂⊤MX̂i

Λ̂
)−1
Λ̂⊤MX̂i

Ŷi·. Also, XA ≡
(
x⊤A1, . . . , x

⊤
AT

)⊤
is a T × p matrix and YA

. , yAT
)⊤ is a T × 1 vector. If dt contains a constant term, we need to impose some identification conditions

nique estimators for both mi(·) and m(·) = E[mi(·)]. More precisely, to identify mi(·) we impose the conditi
)] = 0, so the proposed estimator for mi(zt) is m̂∗i (zt; H1) = m̂i(zt; H1) − E[m̂i(zt; H1)], whereas to identify m
ose

∑N
i=1 αi = 0 and the proposed estimator for m(zt) is (8).

asymptotic properties of the estimators derived in (6)–(8) have been already obtained in [48] in a different co
ere the spatial dependence follows a rather restricted form. However, a more general form for the correlati
e is allowed in this paper by assuming that the conditional variance-covariance matrix of the idiosyncratic err
an unknown smooth function of the common observable variable, zt. Hence, to obtain the limiting behavior
timators under this more general setting, we need to introduce the following definitions and assumptions.
ρzt (z) be the pdf of zt,Z be the support of zt, and D ≡ (d1, . . . , dT )⊤ be a T ×N matrix. Denote X̃i· = Xi·−BX(
− BΛ(z), F̃ = F − BF(z), D̃ = D − BD(z), and X̃(ϖ) = X(ϖ) − BX(ϖ) (z), where BX(z) = E(Xi·|zt = z)ρzt (
E(Λ|zt = z)ρzt (z), BF(z) = E[F|zt = z]ρzt (z), BD(z) = E[D|zt = z]ρzt (z), and BX(ϖ) (z) = E[X(ϖ)|zt = z]ρzt (

ne MG̃ = IT − G̃(G̃⊤G̃)−1G̃⊤ as a T × T projection matrix, where G̃ = (D̃, F̃) is a T × (N + r) matrix.

ption 1. For t ∈ {1, . . . ,T } and i ∈ {1, . . . ,N}, E(ϵit |zt = z) = 0. Further, for t = s, E
(
ϵ·tϵ⊤·t

∣∣∣ zt

)
= ΩN (zt) i

atrix, and for t , s, E
(
ϵ·tϵ⊤·s

∣∣∣ zt, zs

)
= 0. Let Ω(Z) = diagt∈{1,...,T } {ΩN (zt)} and ΩN (zt) =

{
ωi j (zt)

}
i, j∈{1,...,N}. T

ns ωi j(z) have uniformly bounded derivative of second order at z, where z ∈ int(Z), and Ω (Z) is nonsingula

ption 2. The (n+ r+q)×1 vector of common components (d⊤t , f⊤t , z
⊤
t )⊤ is covariance stationary with absolu

ble autocovariances, distributed independently of the individual-specific errors, ϵit and vit, for all i and t.

ption 3. The individual-specific errors ϵit and v jt′ are distributed independently for all i, j, t and t′, and for ea
lows a linear stationary process with absolute summable autocovariances given by vit =

∑∞
τ=0 S iτϑi,t−τ, whe

i, ϑit is a p× 1 vector of serially uncorrelated random variables with mean zero, Ip variance matrix, and fin
rder cumulants. For each i, the coefficient matrices S iτ satisfy the condition E

(
vitv⊤it

)
=

∑∞
τ=0 S iτS ⊤iτ = Σvi

where Σvi is a p × p positive definite matrix such that supi ∥Σvi∥2 < ∞ and C is some positive constant.

ption 4. The unobserved factor loadings (γi,Γi) are bounded, i.e., ∥γi∥2 < C and ∥Γi∥2 < C, for all i.

ption 5. Let Γ∗ = E(γi,Γi) = (γ,Γ), rank(Γ∗) = r ≤ (p + 1).

ption 6. The following p × p matrices (NT )−1 ∑N
i=1 X̃⊤i· MΛ̂X̃i· and (NT )−1 ∑N

i=1 X̃⊤i· MG̃ X̃i· exist and are no
r. They also have finite second-order moments.

ption 7. The probability density function of zt, ρzt (·), is continuous and bounded away from zero. Also, ρzt (
i(·), and m(·) have bounded derivatives of order two in a neighborhood of z ∈ int(Z).

ption 8. All second-order derivatives of E(λt |zt), E(xAt |zt), and E(yAt |zt) are bounded and uniformly continuo
ere z ∈ int(Z).

ption 9. K(u) =
∏q
ȷ=1 k(u ȷ) is a product kernel, and the univariate kernel function k(·) is compactly support

nded such that
∫

k(u)du = 1,
∫

u2k(u)du = µ2(K), and
∫

k2(u)du = R(K), where µ2(K) , 0 and R(K) ,
ars. All odd-order moments of k vanish, that is

∫
uı11 , . . . , u

ıq
q k(u)du = 0, for all non-negative integers ı1, . . .

at their sum is odd.

ption 10. Let cH1 = tr(H2
1) + (ln T/T |H1|)1/2. The bandwidth matrix H1 is symmetric and positive defini

ach element of H1 tends to zero. As (N,T )→ ∞,
√

Nc2
H1
→ 0,

√
NTc2

H1
→ 0, NT |H1| → ∞, and T |H1| →

ption 11. For some ς > 0, E[|ϵit |(2+ς)|zt = z] exists and is bounded.

the sake of generality, ωi j(z) is considered in Assumption 1 as an unknown smooth function that needs to
ed. Assumptions 2-5 are rather common conditions concerning the individual-specific errors of xit, comm
and rank condition (see [39, 42] for further details). Assumption 6 is required to identify β. In addition, A
ns 7-8 are standard smoothness and boundedness conditions on the density function and moment functiona

4
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tions 9-10 are kernel and bandwidth conditions quite common in the local linear literature, and Assumpti
quired for the Lyapunov condition. Note that the kernel function having a compact support in Assumption 9
d for the sake of brevity and can be removed at the cost of lengthy proofs. Specifically, this assumption impl
product kernel satisfies

∫
vv⊤K(v)dv = µ2(K)Iq and

∫
K2(v)dv = Rq(K), where Iq is a q × q identity matr

Gaussian kernel is allowed.

m 1. Suppose that Assumptions 1-10 hold, β̂ and δ̂i are consistent estimators for β and δi, respectively. If it
assumed that

√
Tc2

H1
→ 0 and

√
T/N → 0, as (N,T )→ ∞,

√
NT (̂β − β) d→ N

(
0,Q−1ΨQ−1

)
,

= limN,T→∞(NT )−1E
{
X̃⊤

(
IN ⊗ MG̃

)⊤
Ω (Z)

(
IN ⊗ MG̃

)
X̃
}

and Q = limN,T→∞(NT )−1 ∑N
i=1 E

(
X̃⊤i· MG̃ X̃i·

)
a

atrices, and X̃ is a NT × p matrix.

proof of this theorem is done in the Appendix. Theorem 1 shows that β̂ is a root-NT consistent estima
the presence of unobserved common factors. Nevertheless, the asymptotic variance depends on the particu
ation of Ω(Z). Therefore, an alternative estimator with better asymptotic properties in terms of varianc
n can be obtained by considering this correlation structure.

m 2. Suppose that Assumptions 1-11 hold and that
√

T |H1|tr(H2
1) = O(1), as (N,T )→ ∞, then

√
T |H1|

[
m̂i(z; H1) − mi(z) − 1

2
µ

q
2(K)tr

{
H2

1Hmi (z)
}] d→ N

(
0,
ωii(z)Rq(K)
ρzt (z)

)
,

mi (·) is the Hessian matrix of mi(·).
proof of Theorem 2 follows directly from the proof of Theorem 2.1 in [47]. In Theorem 2 it is show
·; H1) is asymptotically normal and exhibits a rate of convergence of order

√
T |H1|, regardless of the ra

n (see Assumption 5) holds. Nevertheless, m̂i(z; H1) completely ignores the information that characterizes t
cratic error term (see Assumption 1).

m 3. Suppose that Assumptions 1-11 hold and that
√

T |H1|ν−1
N (z)tr(H2

1) = O(1), as (N,T )→ ∞, then

√
T |H1|ν−1

N (z)
[
m̂(z,H1) − m(z) − 1

2
µ

q
2(K)tr

{
H2

1Hm(z)
}] d→ N

(
0,

Rq(K)
ρzt (z)

)
,

N(z) = N−2ı⊤N E(ϵ·tϵ⊤·t |zt = z)ıN is a scalar term andHm(·) is the Hessian matrix of m(·).

heorem 3 is shown that m̂(·; H1) is asymptotically normal, but the rate of convergence is different concerni
obtained for m̂i(·; H1). It shows a new element, νN(z), which reflects the strengthening of the spatial correlati
eroscedasticity and depends directly on the particular specification of Ω (Z). Then, more efficient estimato
e obtained by considering the information in Ω (Z). Furthermore, unlike the parametric estimator, the rate
ence of this nonparametric estimator depends on the rate of increase of νN(z), if any. Therefore, under we

dependence, νN(z) = O(N−1), the rate of convergence is of order (NT |H1|)−1/2, whereas it is (T |H1|)−1/2 und
patial dependence, i.e., νN(z) = O (1). Note that the proof of this theorem is done following a similar pro
as the corresponding for Theorem 2.2 in [49] in a different context, and it is therefore omitted.

ient estimation techniques

his section, we propose alternative GLS-type estimators that are more efficient than those presented in (
. We will show that the efficiency gains not only affect the inference analysis, but can also lead to a differe
e of the shape of the unknown curve and the parameter estimates. Specifically, efficiency improvements a
d by considering the potential CSD incorporated in Assumption 1.
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V
Λ̂

be a T × (T − ℓ) orthonormal eigenvector matrix of M
Λ̂

that corresponds to the eigenvalues of one. W
to premultiply both sides of the regression model (5) by V⊤

Λ̂
. By stacking the resulting observations over N

denote Ŷ and ê0 as NT × 1 vectors whose ith elements are Ŷi· and ê0,i·, respectively, and X̂ is a NT × p mat
th elements is X̂i·. Hence, the resulting regression model is of the form

Ŷ∗ = X̂∗β + e∗, (

Ŷ∗ =
(
IN ⊗ V

Λ̂

)⊤
Ŷ and e∗ =

(
IN ⊗ V

Λ̂

)⊤
0̂, e are NT × 1 vectors, ⊗ is the Kronecker product, and X̂∗

Λ̂

)⊤
X̂ is a NT × p matrix. Using the fact that Ωe∗ ≡ Var(e∗|Z) =

(
IN ⊗ V⊤

Λ̂

)
Ω (Z)

(
IN ⊗ V

Λ̂

)
and V

Λ̂
V⊤
Λ̂
= M

ose to premultiply (9) by Ω−1/2
e∗ to obtain

Ω
−1/2
e∗ Ŷ∗ = Ω−1/2

e∗ X̂∗β + Ω−1/2
e∗ e∗,

resulting Generalized Least Squares (GLS) estimator for β is

β̂GLS =
{
X̂⊤

(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

)
X̂
}−1

X̂⊤
(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

)
Ŷ . (1

ever, this GLS estimator is again infeasible since it depends on Ω (Z) that is generally unknown. To overcom
ropose the following estimator for Ω̂ (Z) = diagt∈{1,...,T }

{
Ω̂N(zt)

}
with

Ω̂N(z) =

∑T
t=1 K∗H2

(zt − z)̂e·t̂e⊤·t
∑T

t=1 K∗H2
(zt − z)

, (1

∗(·) is a nonnegative kernel function as the defined in (4), H2 is a q×q symmetric and positive definite matr
≡ (̂e1t, . . . , êNt)⊤ is a N × 1 vector of residuals defined as êit = yit − x⊤it β̂ − m̂i(zt; H1) − δ̂⊤i λt. Note that
different conditions from H1 and will thus be chosen differently. Therefore, replacing Ω (Z) by Ω̂(Z) in (1

the Feasible Generalized Least Square Estimator,

β̂FGLS =
{
X̂⊤

(
IN ⊗ M

Λ̂

)
Ω̂−1(Z)

(
IN ⊗ M

Λ̂

)
X̂
}−1

X̂⊤
(
IN ⊗ M

Λ̂

)
Ω̂−1(Z)

(
IN ⊗ M

Λ̂

)
Ŷ . (1

using now on the nonparametric estimator for m(·), we rewrite the model to estimate in matrix form obtaini

Y·t − X·tβ − ∆λt = ıNm(zt) + U·t, (1

·t ≡ (y1t, . . . , yNt)⊤ and U·t ≡ (u1t, . . . , uNt)⊤ are N × 1 vectors, for uit = ϵit + [mi(zt) − m(zt)] + op(1), where
∆ are N × p and N × ℓ matrices, respectively. Following [33] and [49], among others, and by imposing t

cation condition ϖ⊤ıN = 1 to identify m(·), we premultiply (13) by a given N × 1 weight vector ϖ obtaining

ϖ⊤(Y·t − X·tβ − ∆λt) = m(zt) +ϖ⊤U·t. (1

e that if dt contains a constant term, we follow [49] and impose the following identification conditio
1 and ϖ⊤α = 0, where α = (α1, . . . , αN)⊤. To estimate this regression model we choose ϖ to minimi

U·t |zt) = ϖ⊤ΦN(zt)ϖ, subject to ϖ⊤ıN = 1, where ΦN(zt) = E(u·tu⊤·t |zt) = {φi j(zt)}i, j∈{1,...,N}. By solving th
ation problem we obtain

ϖ∗(z) =
{
ı⊤NΦ

−1
N (z)ıN

}−1
Φ−1

N (z)ıN . (1

lacing (15) into (14) and following a similar procedure as in the previous section, the following GLS weight
ast squares estimator for m(·) is proposed

m̂GLS (z; H1, ϖ) = ι⊤1
{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)Ỹϖ, (1

is a T × N matrix whose it-th element is such as ỹit = yit − x⊤it β − λ⊤t δi. Finally, using the definition of uit a
g Assumption 1 we obtain Var(uit |z) ≡ φi j(z) = ωi j(z) − {mi(z) − m(z)}2 + op(1), for i, j ∈ {1, . . . ,N}.
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ce β, δi, and ϖ are unknown elements this estimator is unfeasible. However, following a similar procedure
with ûit = yit − x⊤it β̂ − δ̂⊤i λt − m̂(zt; H1) instead of êit, it is possible to obtain a consistent estimator for ΦN(
(z). Therefore, the resulting FGLS weighted local-least squares estimator for m(·) is

m̂FGLS (z; H1, ϖ̂) = ι⊤1
{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)̂̃Yϖ̂, (1

is a T × N matrix whose it-th element is ̂̃yit = yit − x⊤it β̂ − λ⊤t δ̂i and

ϖ̂ =
{
ı⊤NΦ̂

−1
N (z)ıN

}−1
Φ̂−1

N (z)ıN .

btain the asymptotic properties of the GLS estimators in (10) and (16), the following additional conditions a
d.

ption 12. (NT )−1E
{
X̃⊤

(
IN ⊗ M

Λ̂

)⊤
Ω−1 (Z)

(
IN ⊗ M

Λ̂

)
X̃
}

and (NT )−1E
{
X̃⊤

(
IN ⊗ MG̃

)⊤
Ω−1 (Z)

(
IN ⊗ MG̃

)

p matrices that exist and are non-singular. They also have finite second-order moments.

ption 13. K∗(u) =
∏q
ȷ=1 k∗(u ȷ) is a product kernel where the univariate kernel function k∗(·) is even a

ly bounded with bounded support. Moreover, k∗(·) is integrable on the bounded support.

ption 14. The bandwidth matrix H2 is symmetric and positive definite, where each element of H2 tends
s (N,T )→ ∞, T |H1| → ∞, T |H1|2 = o(|H2|), and N3/T |H1| + Ntr(H2

2)/tr(H2
1)→ 0.

ption 15. ρ̂(·) and Ĥm(·) are consistent estimators of ρ(·) andHm(·), respectively, whereHm(·) = ∂m(·)/∂z∂z
olds

ρz(z) − ρ̂(z) = Op

(
∥ΩN (z)∥−1

∥∥∥∥Ω̂N(z) −ΩN (z)
∥∥∥∥
)
,

{Hm(z)}2 −
{
Ĥm(z)

}2
= Op

(
∥ΩN (z)∥−1

∥∥∥∥Ω̂N(z) −ΩN (z)
∥∥∥∥
)
.

umptions 1 and 13 together help to ensure that the bias of each element of the estimators ofΩ (z) are Op

{
tr(H

tion 14 shows the relationship between H1, H2, N, and T . They are necessary to show the consistency of the
t estimators. Assumption 15 is required to establish the asymptotic theory of the efficient estimators witho
g too much technicality and simplify the proofs.

ption 16. Let Xϖ ≡ (X1·, . . . , XN·)ϖ be a T ×d matrix, the matrices T−1Z⊤z KH1 (z)Xϖ and T−1Z⊤z HH1 (z)Λ exi

ption 17. For some ς > 0, E[|uit |(2+ς)|zt = z] exists and is bounded.

ption 18. As N → ∞,
∥∥∥Φ−1

N (z)
∥∥∥ + N

{
ı⊤NΦ

−1
N (z)ıN

}−2
ı⊤NΦ

−2
N (z)ıN = Op(1).

thermore, to obtain an efficient estimator of the unknown function, Assumption 1 imposes the smoothness
ariance function. Assumption 17 is necessary to check the Lyapunov condition for the CLT. Finally, Assum
was discussed in detail in [45] where it was found that a sufficient (but not necessary) condition for the seco
the left-hand side to be bounded is that the largest eigenvalue of ΦN(z) is bounded.

m 4. Suppose that Assumptions 1-5, 7-10, and 12 hold, the GLS estimator of β is consistent. If it is furth
d that

√
T/N → 0 as (N,T )→ ∞,

√
NT

(̂
βGLS − β

) d→ N
(
0,Q−1

ϖ

)
,

ϖ = limN,T→∞(NT )−1E
{
X̃⊤

(
IN ⊗ MG̃

)⊤
Ω−1 (Z)

(
IN ⊗ MG̃

)
X̃
}
.

7
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m 5. Suppose that Assumptions 1-5, 7-10, 13-14, and 16-17 hold and denote ν(ϖ)
N (z) =

{
ı⊤NΦ

−1
N (z)ıN

}−1
. If it

assumed
√

T |H1|
{
ν(ϖ)

N (z)
}−1

tr(H2
1) = O(1) as (N,T )→ ∞,

√
T |H1|

{
ν(ϖ)

N (z)
}−1

m̂GLS (z,H1, ϖ) − m(z) − µ
q
2(K)
2

tr
{
H2

1Hm(z)
}

d→ N
(
0,

Rq(K)
ρzt (z)

)
.

orem 4 shows that there exists an efficiency gain in β̂GLS with respect to β̂. On its part, for N and T sufficien
Theorem 5 is proved that the distribution of m̂GLS (z,H1, ϖ) will be asymptotically normal if N and T are

e order of magnitude (i.e., if T/N → κ, where κ is a positive finite constant) and the rate of convergence w
on the rate of increase, if any, of ν(ϖ)

N (z). Further, the efficiency improvement of this new estimation procedu
borated if ν(ϖ)

N (z) < νN(z) (see [33, 45] for further details).
nish the asymptotic analysis of the proposed estimators we must show that both parametric and nonparamet
stimators (see (12) and (17)) are asymptotically equivalent to their GLS counterparts (see (10) and (16)).

m 6. Suppose that Assumptions 1-5, 7-10, and 14 hold. If it is further assumed that T/N → 0 as (N,T )→

β̂FGLS − β̂GLS = oP

(
1√
NT

)
.

m 7. Suppose that Assumptions 1-5, 7-10, and 13-18 hold. As (N,T )→ ∞,

m̂FGLS (z,H1, ϖ) − m̂(z,H1, ϖ) = op



{
ν(ϖ)

N (z)
}−1/2

√
NT |H1|

+ tr(H2
1)

 .

orems 6-7 show the asymptotic equivalence between the GLS and FGLS estimators. Note that they are cruc
to prove that β̂FGLS and m̂FGLS (z,H1, ϖ) have the same limiting distribution as β̂GLS and m̂GLS (z,H1, ϖ),
ly. Furthermore, to prove Theorem 7 we need to assume ı⊤NΦ

−1
N (z)ıN ≥ N/∥ΦN(z)∥, where ∥ΦN(z)∥ denotes t

root of the largest eigenvalue of ΦN(z)⊤ΦN(z). Therefore, we can conclude that the variance rate of m̂(z,H1, ϖ
H1|)−1, whether ∥ΦN(z)∥ remains bounded.

te Carlo simulation

analyze the finite sample performance of the proposed estimators, in the following we report the results
simulation studies to compare the behavior of the three proposed estimators for m(·), namely m̂(·; H1) (init
or), m̂GLS (·; H1) (infeasible improved estimator), and m̂FGLS (·; H1) (feasible improved estimator). Taking
ark [42], for all experiments we consider the following DGP based on Eq. (1)-(2):

yit = αid1it + x⊤it β + mi(zt) + γ1i f1t + γ2i f2t + ϵit,

xlit = al1id1t + al2id2t + gli(zt) + γl1i f1t + γl3i f3t + vlit,

{1, . . . ,N}, t ∈ {1, . . . ,T }, ℓ = 1, 2. Hence, there are two individual-specific regressors (i.e., xit = (x1it, x2it)
served common factors (zt, d1t, d2t), and three unobserved common factors ( f1t, f2t, f3t). For ρ ∈ {0, 0.2, 0.5, 0
{−49, . . . , 0, 1, . . . ,T }, the observed common factors are generated as stationary AR(1) process:

d1t = 1, d2t = ρ2(t−1) + udt, udt ∼ IIDN(0, 1 − ρ2), d2,−50 = 0,
zt = ρz(t−1) + ut, ut ∼ IIDN(0.5, 1/16), z−50 = 0,

unobserved common factors and individual-specific errors of xit are generated as stationary AR(1) process:

flt = ρ fl(t−1) + u fl,t, u fl,t ∼ IIDN(0, 1 − ρ2),

vlit = ρvlivli(t−1) + vlit, vilt ∼ IIDN
(
0, 1 − ρ2

vli

)
, ρvli

∼ IIDU(0.05, 0.95),

8
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∈ {1, 2, 3}, fl,−50 = 0, and vli,−50 = 0. Furthermore, the factor loadings of the observed common effects
nge across replications and are generated as follows: (α1, . . . , α(N−1)) ∼ IIDU(0, 1) and (a11i, a21i, a12i, a22i)
.5ı4, 0.5I4), where ı4 = (1, 1, 1, 1)⊤, I4 is the 4 × 4 identity matrix, and αN = −∑N−1

i=1 µi. Note that the first
tions of zt,v1it, v2it, f1t, f2t, and f3t are discarded.
loading coefficients of unobserved common factors in the yit and xit are generated as follows:

Γ⊤i =
(
γ11i 0 γ13i

γ21i 0 γ23i

)
∼ IIDN

(
N(0.5, 0.5) 0 N(0, 0.5)
N(0, 0.5) 0 N(0.5, 0.5)

)
,

i1 ∼ IIDN(1, 0.2) and γi2 ∼ IIDN(1, 0.2), so the rank condition is satisfied. Further, the heterogeneo
n functions are generated such as mi(zt) = (1/(1+ z2

t ))+ υi, g1i(zt) = (1+ z2
t )+ υ1i, and g2i(zt) = sin(2zt)+ υ

υi, υ1i, υ2i) ∼ IIDN(0, 1) are fixed across simulations. The idiosyncratic errors ϵit of yit are generated accordi
bi(zt)ηt +

√
0.5ϵ0it, where bi(zt) = bizt with bi being generated as independent N(0, 10) variates, kept fix

replications, whereas (ηt, ϵ0it) are generated as independent Gaussian AR(1), with innovations having u
e and using the ρ’s value as the autoregressive coefficient.
points at which the functions are estimated and the second stage bandwidth choice, are in line with those

]. In other words, the one-dimensional regressor was generated to have mean 0.5 and variance 1/16, so t
observations lie in the interval [0, 1]. In addition, we set the first stage bandwidth H1 = h1Iq to be 1.2 tim
nd stage one H2 = h2Iq (i.e., h1 = 1.2h2) because of the need for oversmoothing in the first stage, and thr

dth values are used (i.e., h2 ∈ {0.1, 0.3, 0.5}). Note that even though (h1 = 1.2h2) does not imply oversmoothi
otically, in finite sample applications it effectively oversmooths.
ach DGP, we consider the pairs (N,T ) ∈ {(125, 75), (150, 100), (175, 125)}, and use the Epanechnikov kern
ns. For the evaluation of the performance of the slope estimators we use the averaged bias and standa
n (Sd) for the slope parameters. We use 1, 000 replications and report the results in Table 1 for β1. The resu
re quite similar and will not be reported for brevity, but they are available upon request.
le 1 shows the very good performance of the parametric estimators. All of them display very small bias a
erage standard deviation decline steadily with increases in N or T and decreases of ρ, and they do not seem
sensitive to the bandwidth selection. Furthermore, the estimator’s efficiency is improved by taking the spat

ence of the error term and the heterogeneity into account and β̂F presents the best results.
performance of the nonparametric estimators proposed in this paper is assessed via the square-root of t

d squared errors of the different estimators (RASE). For 1000 simulations and, under different strengths
ctional dependence (i.e., ρ), Fig. 1 shows the boxplots of the RASE. To show the efficiency gain of t
d estimators and facilitate the comparison between them we compute the Mean Squared Error (MSE) for t
on functions at three evaluation points (i.e., z1 = 0.25, z2 = 0.5, and z3 = 0.75). Table 2 reports the relati
Carlo MSE of m̂GLS (·; H1) and m̂FGLS (·; H1) to m̂(·; H1).
lyzing the results for the nonparametric estimators summarized in Fig. 1 it can be pointed out that the no
tric procedure proposed in this paper is robust to the bandwidth selection. Another important finding is th
ase in the sample size leads to a decrease in the RASEs of the nonparametric estimators. In addition, as w
d from the results in Section 3, the GLS and FGLS nonparametric estimators that take into account the info
contained in the error term (i.e., the spatial dependence and unobserved common factors) give smaller RAS
initial estimator in all the cases considered, although the GLS estimator performs the best.

ally, we analyze the results in Table 2 for the relative MSEs under different sample sizes, different values
xed points (i.e., z ∈ {0.25, 0.5, 0.75}). For a fixed point, increases in the sample size lead to decreases in t
MSEs that shrink to zero and the figures when ρ = 0 and ρ = 0.8 are very close. Also, the estimators a
sensitive to the bandwidth choice since there is a slight reduction of the relative MSEs when the bandwid

es. Furthermore, when the sample size, ρ, and z are fixed, all the ratios are lower to 1 which means th
roved estimators are more efficient than the initial estimator. Therefore, it is corroborated that taking t

rved common factors and spatial dependence into account improves the estimator’s efficiency.

9
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Simulation results for the Bias (x100) and Sd of the parametric estimators for β1 that are computed as Bias = n−1
0

∑1000
φ=1 (̂βφ − β) a

1 ∑1000
φ=1 (̂βφ − β̂)2

}1/2
, where β̂ = n−1

0
∑1000
φ=1 β̂φ and n0 = 1, 000. These expressions are used for the three parametric estimators conside

dy: β̂ (initial estimator), β̂G (infeasible improved estimator), and β̂F (feasible improved estimator).

N=125,T=75 N=150,T=100 N=175,T=125
ρ h2 Bias Sd Bias Sd Bias Sd
0 0.1 β̂ 0.295 0.092 0.178 0.080 -0.301 0.060

β̂G 0.070 0.008 0.022 0.006 0.019 0.005
β̂F 0.291 0.090 0.176 0.079 -0.298 0.059

0.3 β̂ 0.187 0.092 0.159 0.078 -0.329 0.060
β̂G 0.034 0.007 0.023 0.005 0.011 0.004
β̂F 0.186 0.090 0.155 0.077 -0.322 0.059

0.5 β̂ 0.164 0.092 0.219 0.078 -0.314 0.060
β̂G 0.032 0.006 0.021 0.005 0.011 0.004
β̂F 0.164 0.089 0.213 0.076 -0.305 0.058

0.2 0.1 β̂ -0.213 0.100 -0.290 0.079 -0.089 0.062
β̂G 0.012 0.008 0.007 0.007 -0.003 0.005
β̂F -0.209 0.098 -0.287 0.078 -0.087 0.062

0.3 β̂ -0.178 0.096 -0.276 0.078 -0.029 0.062
β̂G -0.002 0.007 0.016 0.006 0.005 0.005
β̂F -0.176 0.093 -0.271 0.077 -0.028 0.061

0.5 β̂ -0.201 0.095 -0.306 0.078 -0.033 0.062
β̂G -0.005 0.007 0.015 0.006 0.007 0.005
β̂F -0.195 0.092 -0.305 0.076 -0.036 0.061

0.5 0.1 β̂ -0.165 0.130 -0.213 0.104 0.251 0.087
β̂G -0.016 0.010 0.028 0.008 -0.044 0.006
β̂F -0.165 0.128 -0.208 0.102 0.249 0.086

0.3 β̂ -0.277 0.123 -0.236 0.104 0.309 0.085
β̂G -0.034 0.009 0.029 0.007 -0.034 0.006
β̂F -0.273 0.120 -0.229 0.102 0.303 0.084

0.5 β̂ -0.422 0.122 -0.204 0.104 0.288 0.086
β̂G -0.035 0.009 0.031 0.007 -0.034 0.005
β̂F -0.410 0.118 -0.194 0.100 0.280 0.083

0.8 0.1 β̂ 1.114 0.231 -0.134 0.220 0.252 0.087
β̂G 0.040 0.016 -0.058 0.013 -0.044 0.006
β̂F 1.076 0.225 -0.135 0.216 0.249 0.086

0.3 β̂ 1.222 0.229 -0.041 0.213 0.309 0.085
β̂G 0.024 0.013 -0.047 0.011 -0.034 0.006
β̂F 1.169 0.219 -0.046 0.205 0.303 0.084

0.5 β̂ 1.231 0.229 -0.107 0.213 0.288 0.086
β̂G 0.014 0.013 -0.052 0.010 -0.034 0.005
β̂F 1.157 0.216 -0.110 0.201 0.280 0.083

ate policy analysis: assessing the effects of EU ETS on CO2 emissions

ief Overview of EU ETS studies
r the past few decades, growing concern about environmental degradation has prompted major econom
action against global warming and climate change trough agreements like the Kyoto Protocol and the 20
greement. Reducing greenhouse gas emissions is a key goal for signatory countries with the EU ETS as t
tone of the European Union’s strategy to decarbonize the economy and mitigate climate change [9].
literature exploring the effects of carbon pricing on economic and environmental performance has evolv

cades, with a primary focus on green taxation [1]. The other pillar of carbon pricing is the EU ETS, whi

10



Journal Pre-proof

Fig. 1: B ble
improved nd
n3 ∈ {175

has bee n-
tal indi ng
firm-lev nt,
with no ut-
comes, 8]
observi

How rm
level. T

5.2. M
Let

8)

for i ∈ e
t, gdpit is
Jo

ur
na

l P
re

-p
ro

of
oxplots of RASE for the nonparametric estimators in 1,000 simulations where m, m_fgls, and m_gls are the initial estimator, feasi
estimator, and infeasible estimator, respectively, and three sample sizes are considered (i.e., n1 ∈ {125, 75}, n2 ∈ {150, 100}, a
, 125}).

n widely studied since its launch in 2005. Research has explored its impact on economic and environme
cators, identifying three main research areas. The first one focuses on innovation activities, often exploiti
el data [13]. The second one examines economic performance, analyzing productivity, GDP, and investme
table contributions from [9, 14, 32, 34], among others. Lastly, the third one centers on environmental o
particularly CO2 emissions, with recent studies such as those by [17] highlighting mitigation effects, and [3
ng the decoupling of emissions from economic growth.
ever, despite the interesting findings in prior studies, many of their conclusions have been drawn at the fi

o offer fresh insights, we opt for a country-based macroeconomic perspective as in [29].

odel specification
us consider an augmented EKC specification such as

co2it = α
⊤
i dt + β1gdpit + β2gdp2

it + β3r&dit + mi (zt) + γ⊤i ft + ϵit, (1

{1, . . . ,N} and t ∈ {1, . . . ,T }, where co2it refers to the level of CO2 emissions per capita of country i at tim
stands for GDP per capita, and r&dit is considered as a proxy for the level of technology [6, 52, 53] and it

11
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Relative MSE: MS E(m̂GLS (z; H1))/MS E(m̂(z; H1)) and MS E(m̂FGLS (z; H1))/MS E(m̂(z; H1)), where MS E
(
m̂(z)

)
= Bias2 (

m̂(z))
. This expression is used for the three nonparametric estimators considered in this paper, i.e., m̂(z; H1), m̂GLS (z; H1), and m̂FGLS (z; H

ρ ρ

z h2 0 0.2 0.5 0.8 0 0.2 0.5 0.8
N=125,T=75

0.25 0.1 0.065 0.063 0.077 0.132 0.172 0.183 0.238 0.526
0.3 0.058 0.055 0.069 0.126 0.143 0.145 0.190 0.431
0.5 0.045 0.043 0.056 0.107 0.135 0.139 0.186 0.560

0.50 0.1 0.025 0.025 0.037 0.081 0.153 0.163 0.224 0.593
0.3 0.023 0.023 0.034 0.082 0.104 0.115 0.157 0.546
0.5 0.020 0.020 0.031 0.076 0.093 0.105 0.160 0.723

0.75 0.1 0.004 0.003 0.007 0.031 0.216 0.216 0.273 0.865
0.3 0.002 0.002 0.006 0.032 0.100 0.116 0.152 0.684
0.5 0.002 0.002 0.006 0.034 0.083 0.106 0.151 0.833

N=150,T=100
0.25 0.1 0.061 0.063 0.080 0.139 0.141 0.145 0.203 0.389

0.3 0.054 0.056 0.072 0.129 0.114 0.119 0.157 0.333
0.5 0.041 0.043 0.057 0.110 0.109 0.117 0.154 0.382

0.50 0.1 0.024 0.025 0.038 0.086 0.101 0.103 0.154 0.414
0.3 0.022 0.024 0.036 0.084 0.068 0.076 0.120 0.467
0.5 0.020 0.021 0.033 0.079 0.048 0.052 0.080 0.615

0.75 0.1 0.002 0.003 0.006 0.034 0.147 0.136 0.206 0.662
0.3 0.001 0.002 0.006 0.034 0.071 0.071 0.109 0.641
0.5 0.001 0.002 0.007 0.037 0.062 0.067 0.103 0.780

N=175,T=125
0.25 0.1 0.033 0.035 0.044 0.044 0.151 0.155 0.188 0.188

0.3 0.029 0.030 0.039 0.039 0.127 0.123 0.155 0.155
0.5 0.021 0.023 0.030 0.030 0.121 0.121 0.154 0.154

0.50 0.1 0.012 0.013 0.019 0.019 0.092 0.096 0.136 0.136
0.3 0.011 0.012 0.018 0.018 0.068 0.066 0.106 0.106
0.5 0.009 0.010 0.016 0.016 0.035 0.035 0.063 0.063

0.75 0.1 0.001 0.001 0.003 0.003 0.093 0.099 0.135 0.135
0.3 0.001 0.001 0.002 0.002 0.048 0.050 0.081 0.081
0.5 0.001 0.001 0.002 0.002 0.045 0.046 0.081 0.081

ressed in per capita terms. All variables are expressed in natural logarithms and dt = 1.
ce the aim of this study is to assess the impact of EU ETS on CO2 emissions, following [16, 18] we intr
(18) the environmental policy variable (i.e., the carbon price which arises from the market of allowance

riable is introduced as a common stochastic covariate, zt, taken in logarithm form. However, while the EK
tion has theoretical bases and is consistent with a huge amount of the literature, a high degree of uncertain
ds the shape (and sign) of the policy effect and there are no ex-ante theoretical or empirical reasons to impos
parametric relation between co2it and the price of polluting, zt. Indeed, the aggregate effect of EU ETS carb
on co2it could be the result of economic mechanisms that involve composite and rather complex negative a
effects on emissions. On the one side, negative effects on emission can be due to several reasons: The E

p itself, the abatement-oriented induced innovation effect of targeted high emissions industrial sectors [12, 1
iffusion and adoption of those innovations throughout the economy by inter sector links and value chains. O
r side, positive effects can be related to the scale effect of production, which might also be more pronounc
the competitiveness effect of process and product innovations that are generated by the policy. A positi

n emission can be also due to a carbon rebound effect that may happen if carbon policies improve ener
cy, which leads to an energy rebound effect, and in turn, it may produce a carbon rebound effect as was not

n these grounds, we opt to introduce zt through a nonparametric function and it is expected that both comm
d unobserved common factors, ft, may produce a heterogeneous effect across units due to country-speci
ic or technological features. The rest of the components of the model have been already defined in Section
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ally, it is worth noting that more flexible specifications, such as fully nonparametric models [36, 37] or mod
terogeneous slopes [35], could be of interest in principle. However, moderate sample sizes like that in t
paper and often encountered in macroeconomic data, pose significant challenges. Fully nonparametric mode

ance, suffer from the curse of dimensionality problem, while heterogeneous panel data models are theoretica
only for large T and often underperform compared to homogeneous estimators [7].

ta, variables and preliminary analysis

data is derived from official sources and covers EU27 countries plus the UK, Iceland, and Norway over t
005-2019. GDP expressed in Purchasing Power Parity (PPP), population, and R&D (GERD) are derived fro
TAT. The CO2 series is provided by EUROSTAT as well. We opt for CO2 series accounted by EUROSTA
it includes all the emitting sectors and indirect CO2 emissions and is reported in thousands of tonnes. T

icy variable z, which is invariant across units, is the price of carbon (in logarithms), linked to the Europe
of Allowances (EUA). Data on EUA are obtained from both the International Carbon Action Partnersh
/icapcarbonaction.com/en/ets-prices) and Sendeco (https://www.sendeco2.com/it/prezzi-co2). Data on ET
s are registered daily and the annual carbon price used is the average auction price in the primary market of
sactions registered in a given year.
EU ETS was launched in 2005. In 2005, the price was about 18 €per tonne. The initial phase, a 3-year pi
(2005-2007), aimed to create a functional market structure. During this period, the system targeted C

ns from power generators and energy-intensive industries, allocating most allowances to businesses witho
This phase, characterized as a period of ’learning by doing’, laid the foundation for the subsequent phases
ETS. Phase 1 of the EU ETS successfully established a carbon emissions price, albeit experiencing volatili
lighted by [19], notably marked by a significant decline in carbon prices in 2007. The second phase, initiat
, was marked by high market expectations, likely stemming from anticipation surrounding the 2009 Unit
Climate Change Conference, possibly contributing to the price increase observed in 2008. However, t

es of the conference did not convey the policy outcomes that were expected. These unsatisfactory outcom
with the global economic recession following the 2008 financial crisis, are mirrored in the decline of carb

signaling a period of uncertain climate policy commitments worldwide. Subsequently, between 2014 a
romising signs of economic recovery emerged. This progress was further reinforced by the pivotal 2015 Pa
ent, outlining global commitments to reduce carbon emissions. This significant policy development likely l
crease in CO2 prices within the EU, as documented by [10, 20]. The 2.6% GDP growth in 2017, resulti
hanced policy commitments following the Paris Agreement in 2015, may explain the rise in prices observ
17 to 2019, when the price reached its maximum level of 24.2 €in 2019.
ore discussing the estimation results, it is worth noting that the stationarity of the observed covariate, zt,
ental for valid estimation. When examining the logarithm of the carbon price, it exhibits a rather smooth tim
over the period except for a negative break observed in 2007. Additionally, the series displays a consta

ion around its mean. To check formally the stationarity of zt, we conducted a series of statistical tests (i.
nal unit root tests, including the Augmented Dickey-Fuller (ADF), Phillips-Perron, Breitung’s nonparamet
d Bierens HOAC tests). However, given the potential size distortion issues associated with unit root te
series data of moderate sample sizes, we supplemented these tests by simulating p-values using an AR(

n model and employing the wild bootstrap method with 2000 replications. Also, the Kwiatkowski-Phillip
t-Shin (KPSS) and Bierens-Guo tests are considered to test the null hypothesis of stationarity against t
ive of a unit root (see [48] for detailed references). All the above tests indicate that zt exhibits stationarity.
ally, the dependent variable in (18), co2it, exhibits a decreasing evolution over time, evolving around a line
r most of the countries under consideration. It is also found to be stationary according to the PANIC [3] a

CA [44] panel unit roots tests (detailed results are available upon request).

timation results

lding upon the discussion established in the previous subsections, we compute the quantities of interest
(18) using the estimators for β that were proposed in this paper. To assess the sensitivity of the empiric
related to the functional form of the policy variable (carbon price), estimators of a fully parametric mod
ented in Table 3, columns (i)-(iii). Furthermore, in Table 3, columns (iv)-(v), we provide the semiparamet

13
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Fully parametric and semiparametric results. Columns (i)-(iii): CCEP Pesaran [39]; Columns (iv) and (v): first-stage and second-st
metric estimator. Absolute t-statistics in parentheses and p-value in square brackets. ***, **, * are the significance level at 1%, 5%, 10
ely. The bandwidth term has been chosen following the Silverman’s rule of thumb. Diagnostics: CD: CD test by Pesaran [40] and Pesa
w: averaged weighted CD test by Juodis and Reese [28]. Averaging reduces the test’s reliance on a specific set of random weights.

ected version of a given by equation (13) in Bailey et al. [4]. ∗95% level confidence bands.

Parametric Semiparametric
(i) (ii) (iii) (iv) (v)

gdpit -0.606 -0.607 -0.607 -3.402∗ -2.386∗∗∗

(0.465) (0.465) (0.465) (1.873) (8.649)
gdp2

it -0.113 -0.113 -0.113 -0.515∗∗ -0.373∗∗∗

(0.638) (0.638) (0.637 (2.114) (9.733)
r&dit -0.321∗∗∗ -0.321∗∗∗ -0.321∗∗∗ -0.387∗∗∗ -0.288∗∗∗

(3.831) (3.826) (3.822) (4.342) (9.529)
zt 1.32e-04 -1.81e-04

(0.021) (0.007)
z2

t 9.70e-05
(0.012)

CD 3.14 3.11 3.11 3.55 1.49
[0.002] [0.002] [0.002] [0.00] [0.14]

CDw 2.41 2.41 2.41 4.31 0.51
[0.016] [0.016] [0.016] [0.00] [0.61]

â 0.80 0.80 0.80 0.78 0.59
â∗0.025 0.71 0.71 0.71 0.68 0.43
â∗0.975 0.90 0.90 0.90 0.88 0.76

es for the parameters of interest. Finally, in Fig. 2 we represent the curve estimates for the effect of the poli
.
olumn (i), a fully parametric model that does not contain the carbon price is considered. Subsequently,
(ii), a linear effect of the carbon price is introduced by including z as an additional regressor. In column (i
ntial nonlinear effect of the carbon price is estimated by employing a second-order polynomial function. A
ecifications are estimated using the CCEP estimator proposed in [39] by controlling for unobserved individu
i.e., by setting dt = 1. Lastly, columns (iv)-(v) present the results from the estimators proposed in this paper.
(iv) the estimates for β are obtained using expression (6) and in column (v) we represent the efficient estima
of the β that have been computed using expression (12) from Section 3.

ording to the estimation results, the fully parametric specifications yield negative and nonsignificant estima
coefficients associated with both GDP and GDP2. Considering that our sample covers EU countries in ve
ears, the finding of a negative elasticity concerning per capita GDP, which decreases in magnitude with t
his variable, aligns with the original idea behind the EKC. This result is consistent with a substantial body
re as in [15], but the statistical insignificance of the GDP variable is an unexpected result.
far as the effect of the technology variable is concerned, when the policy variable zt is omitted, the estimat
ty of R&D expenditures is significant and about −0.32 and this result does not change when the carbon pri

is included. The literature, which is surveyed in [31], is heterogeneous in terms of the adopted proxy a
While R&D expenditures is a common proxy for technology [23] and is often employed as in [22], alternati
such as energy intensity [6] and process or product innovation [18] are occasionally employed. While t

tional expectation is that technology would lead to a reduction in emissions, the results from the literature a
nd sometimes show positive estimates. Finally, as far as the EU ETS policy variable is concerned, it is n
ally significant for the different fully parametric specifications and we do not observe conclusive results.
ummary, the fully parametric specifications in columns (i)-(iii) yield unexpected results that should be
d by employing the proposed semiparametric estimators. This is because allowing for a nonparametric functi
stead of imposing a parametric specification for the policy variable may be important to avoid a misspecific
or that might lead to inconsistent estimators, not only for the estimated policy effect but also with respect t
of the standard EKC covariates. Moreover, efficiency improvements resulting from exploiting the correlati
e of the error term can significantly impact both the inference and estimation.

14
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stimated relation CO2 - EU ETS carbon price, where the left panel represents the initial estimator m̂(·) and the right panel represents
timated curve, m̂FGLS (·). The thick lines denote the estimated curves while dotted lines are the 95% pointwise confidence intervals.

far as the proposed semiparametric estimators are concerned (i.e., columns (iv) and (v)), the results highlig
irical importance of using consistent and efficient estimators for the quantities of interest. Parametric estima

ignificantly, particularly those related to the GDP variables, with the estimated elasticity of co2it with respe
t increasing significantly in absolute value. Additionally, the standard error estimates from the semiparamet
ors are smaller than the fully parametric ones, with this efficiency improvement particularly notable for t
t estimator. Overall, the parametric results using the efficient estimator (column (v)) appear more consiste
m the economic and statistical points of view. Both gdp and gdp2 become highly significant, indicati

tically significant negative relationship that is the expected result in the EKC framework. Furthermore,
ing the nonparametric curve estimates (see Fig. 2) is easily seen the empirical relevance of using more efficie
es. When the structure of the spatial correlation is ignored, misleading conclusions are obtained about the effe

TS on CO2. Indeed, the inefficient curve estimate is very flat compared with the most efficient one, whi
a nonlinear negative shape. Note that the introduction of the spatial correlation structure may affect the sha

urve according to equations (8) and (17).
impact of carbon pricing on CO2 emissions can vary depending on a country’s economic specialization, gre

ogical intensity, and history of environmental policies. It is, therefore, worthwhile to examine the estimat
metric function for some countries (see Fig. 3). Taking three key examples from Europe’s diverse econom
, we observe a negative effect in the UK. This aligns with the UK’s more market-oriented capitalism, whi
s a favorable environment for pricing mechanisms. Additionally, the UK was an early adopter of emissio
, launching its own market in 2002, earlier than the EU, before the two markets later converged. Germany,
r hand, shows a bell-shaped relationship between carbon pricing and emissions. This aligns with the country
s toward green technological leadership over recent decades, supported by increasingly stringent environme
ies. As a highly industrialized nation, Germany’s innovations may have created a conducive environment f
ns reduction through industry-driven innovation, in response to the EU ETS policy. In contrast, Spain, w
ely more service-based economy, may have experienced less innovation and diffusion in response to carb

, resulting in a less effective policy. This raises the question, which future research could address, of ho
tively target non-industrial sectors in climate policies, as these sectors make up the largest share of GDP
d economies.

ally, it is interesting to investigate the presence of CSD in the residuals. The CD test developed in [41] is
adopted test, which is typically employed as a misspecification test in models that already account for CS
28]. This test presents good small-sample properties and recent theoretical works have provided addition
that are useful from an empirical perspective. In particular, [40] demonstrates that the null hypothesis
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eterogeneous estimated relation CO2 - EU ETS carbon price for Germany, Spain, and United Kingdom. The thick lines denote
curve obtained using the initial heterogeneous estimator, m̂i(·), while dotted lines are the 95% pointwise confidence intervals.

test is weak cross-sectional dependence in the most common cases. More precisely, for T almost fixed a
, such a null hypothesis is 0 ≤ a < 1/2, where a is the exponent of cross-sectional dependence introduc

Moreover, [28] shows that the CD test statistic is biased for any fixed T and becomes divergent as T →
e CD test is applied to residuals obtained from a regression model containing common factors. They propos
d test statistic, denoted as CDw, where cross-sectional covariances, which are employed instead of correlatio
ghted using Rademacher distributed weights.
CD statistics in Table 3 for specifications (i), (ii), (iii), and (iv) are all highly statistically significant a
reject the null hypothesis. That suggests that the exponent of cross-sectional dependence, a, is in the ran

. Conversely, when considering the efficient semiparametric estimator in column (v), the CD statistic is equ
so the null is not rejected. We then employ the average CDw test, which confirms the results that are obtain

e standard CD test. Finally, to quantify the extent of CSD, we compute the bias-corrected version of a.
Holm’s approach has been preferred over the Bonferroni procedure. These estimates, along with the 95
nce bands, are also reported in Table 3. In the fully parametric specifications, as well as in the semiparamet
nt one, the exponent of CSD is estimated to be close to 0.8, with 95% confidence bands lying above 0.5 a
uding unity. It is worth noting that, similar to the findings in [21], residuals obtained from a multifactor err
on model exhibit a lower degree of CSD compared to the variables incorporated into the model. For the
s, â was approximately 1. When finally moving to the semiparametric efficient estimation, it is notable th

ases substantially, reducing to 0.59, with the 95% lower confidence band now falling below 0.5. See [5] fo
discussion on identifying a. In summary, these results indicate that employing the efficient semiparamet

or significantly reduces residual CSD.

clusions

his paper, we have considered efficiency improvements in a partially linear panel data model that accounts f
e nonlinear effects of common covariates and allows for CSD arising simultaneously from common factors a
dependence. We proposed a GLS-type estimator that accounts for this dependence structure and studied pote
s in the rate of convergence. A key theoretical finding is that exploiting the correlation structure for efficien

ements can notably affect both inference and estimation. This conclusion was supported by both Monte Ca
ions and an empirical analysis assessing the impact of carbon pricing within the European Union Emissi
System on carbon dioxide emissions. Our empirical findings suggest that the proposed efficient semiparam
ator not only yields more meaningful estimates from an economic perspective, but also significantly enhanc

ce and reduces residual CSD.
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ix

ore proceeding to the analysis of the main asymptotic properties of the proposed estimators, we first prese
lemmas that are used later to prove the main results of the paper. Remember that we denote X̃i· = Xi· − BX(
− BΛ(z), D̃ = D − BD(z), G̃ = G − BG(z), where BX(z) = E[Xi·|zt = z]ρzt (z), BΛ(z) = E[Λ|zt = z]ρzt (
E[D|zt = z]ρzt (z), BG(z) = E[G|zt = z]ρzt (z). Also, we define X̃(ϖ̂) = X(ϖ̂) − BX(ϖ̂) (z), X̃(ϖ) = X(ϖ) − BX(ϖ) (

X(ω̂) − BX(ω̂) (z), and X̃(ω) = X(ϖ) − BX(ω) (z), where BX(ϖ̂) = E[X(ϖ̂)|zt = z], BX(ϖ) = E[X(ϖ)|zt = z], BX(ω̂)

zt = z], BX(ω) = E[X(ω)|zt = z]. Similar notation for Ỹ (ϖ̂), Ỹ (ϖ), Ỹ (ω̂), Ỹ (ω). Also, cH1 = tr(H2
1) + (ln T/T |H1|)1

1. Denote εAt = (ϵAt + v⊤Atβ, v
⊤
At)
⊤ as an error term. Under Assumptions 1 and 3, for each t, we have

(εAt) = 0.

ar(εAt) = O
(
N−1

)
, under weak dependence and Var(εAt) = O (1) under strong dependence.

f Lemma 1: Let
q.m.→ be the convergence in quadratic mean (or mean squared error), the proof of this lemm

htforward from the proof of Lemma A1 in [42]. This lemma guarantees that for any value of z, ϵAt
q.m.→ 0

and the degree of spatial dependence of ϵi· will be bounded by νN(z) = N−2ı⊤NΩN (z) ıN , where ıN is a N ×
f ones. Then, the results of this paper are valid for both types of spatial dependence.

2. Under Assumptions 2, 7-10, as T → ∞ we have

∑

∥z∥≤cH1

∣∣∣∣∣∣∣
1
T

T∑

t=1

[
KH1 (zt − z)xit − E

{
KH1 (zt − z)xit

}]
∣∣∣∣∣∣∣
= Op



√
ln T

T |H1|

 .

f Lemma 2: This lemma can be proved as in Theorem 2 in [25] and it has been omitted for brevity.

3. Under Assumptions 1-5,

−1ε⊤A·εA· = O
(
N−1

)
.

−1F̃⊤εA· = O
(
(NT )−1/2

)
and T−1D̃⊤εA· = O

(
(NT )−1/2

)
.

−1V⊤i· D̃ = O
(
T−1/2

)
and T−1V⊤i· F̃ = O

(
T−1/2

)
.

−1V⊤i· εA· = O
(
N−1

)
+ O

(
(NT )−1/2

)
and T−1ϵ⊤i· εA· = O

(
N−1

)
+ O

(
(NT )−1/2

)
.

f Lemma 3: This lemma can be proved as in Lemma 2 in [39] and it has been omitted for brevity.

4. Let cH1 = tr(H2
1) + (ln T/T |H1|)1/2. Under Assumptions 1, 3, and 7-10, as T → ∞, we have

−1X̂⊤i· MΛ̂X̂i· = T−1X̃⊤i· MG̃ X̃i· + Op

(
N−1

)
+ Op

(
(NT )−1/2

)
+ Op(cH1 ) uniformly over i,

−1X̂⊤i· MΛ̂(IT − S )mi(Z) = Op(c2
H1

) uniformly over i,

−1X̂⊤i· MΛ̂êi· = T−1X̃⊤i· MG̃ϵi· + Op

(
N−1

)
+ Op

(
(NT )−1/2

)
+ Op(cH1 ) uniformly over i,
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E(ϵitϵ jt |

0)

If w )
}
.
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−1X̂⊤i· MΛ̂F̂ = Op

(
N−1

)
+ Op

(
(NT )−1/2

)
+ Op(cH1 ) uniformly over i,

G̃ = IT − G̃(G̃⊤G̃)−1G̃⊤.

f Lemma 4: This lemma is proved following similar reasoning as the proof of (A.12)–(A.14) in [42] a
3 in [11] and it has been omitted for brevity.

5. Under Assumptions 2, 7, and 9-10, as T → ∞, we have

NT )−1X̂⊤
(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

)
X̂ = (NT )−1X̃⊤

(
IN ⊗ MΛ̃

)
Ω−1(Z)

(
IN ⊗ MΛ̃

)
X̃ + op(1),

NT )−1X̂⊤
(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

)
= (NT )−1X̃⊤

(
IN ⊗ MΛ̃

)
Ω−1(Z)

(
IN ⊗ MΛ̃

)
+ op(1).

f Lemma 5: This lemma is proved in a similar way as in Lemma 3 and it has been omitted for brevity.

6. Let RT H = Op

{
tr(H2

2) + (T |H1|)−1
}

and ρz(z) > 0. Under Assumptions 1-10 and 13-14, as T → ∞,

max
1≤i, j≤N

∣∣∣ω̂i j(z) − ωi j(z)
∣∣∣ = Op(RT H), and

∥∥∥∥Ω̂N(z) −ΩN(z)
∥∥∥∥ = Op(NRT H).

f Lemma 6: Denote by ω̂i j(z) and ωi j(z) the (i j)-th element of Ω̂N(z) and ΩN (z), respectively, we can writ

ω̂i j(z) − ωi j(z) =

∑T
t=1 K∗H2

(zt − z)
{
êit̂e jt − ωi j(z)

}

∑T
t=1 K∗H2

(zt − z)
= R(1)

i j + R(2)
i j , (1

(1)
i j =

∑T
t=1 K∗H2

(zt − z){ϵitϵ jt −ωi j(z)}/∑T
t=1 K∗H2

(zt − z) and R(2)
i j =

∑T
t=1 K∗H2

(zt − z)
{
êit̂e jt − ϵitϵ jt

}
/
∑T

t=1 K∗H2
(z

nce, R(1)
i j is the estimation error of the usual Nadaraya-Watson estimator of the conditional expectation

zt = z) and, under the assumptions given in the paper, it is straightforward to show that
∣∣∣∣R(1)

i j

∣∣∣∣ = Op

{
tr(H2

2) + (T |H2|)−1/2
}
. (2

e consider the bound of R(2)
i j , we denote g̃1it = X⊤it

(̂
β − β

)
, g̃2it =

(
δi − δ̂i

)⊤
λt, and ξ̃it =

{
mi(zt) − m̂i(zt; H1

êit can be expressed as êit = ϵit + g̃1it + g̃2it + ξ̃it + op(1), where op(1) captures possible approximation error f
g ft by the proxy’s vector λt. Replacing this decomposition in R(2)

i j we are going to prove

R(2)
i j = T−1

T∑

t=1

K∗H2
(zt − z)

{
II1 + II2 + op(1)

}
/̂ρ(z) = Op

{
tr(H2

2) + (T |H1|)−1
}
, (2

(z) is a nonparametric kernel estimator of ρzt (z) such as ρ̂(z) = T−1 ∑T
t=1 K∗H2

(zt−z), II1 = ϵitg̃1 jt+ϵitg̃2 jt+g̃1itϵ

+ g̃1itg̃2 jt + g̃2itϵ jt + g̃2itg̃2 jt + g̃2itg̃1 jt, and II2 = ϵitξ̃ jt + g̃1itξ̃ jt + g̃2itξ̃ jt + ξ̃itϵ jt + ξ̃itg̃1 jt + ξ̃itg̃2 jt + ξ̃itξ̃ jt. Under t
tions stated in this paper, it can be proved that ρ̂(z) is consistent following [33], so ρ̂(z)−1 = {ρzt (z)+op(1)}−1

Therefore, in order to prove (21) we only need to analyze T−1 ∑T
t=1 K∗H2

(zt − z)(II1 + II2).
owing a similar proof scheme as in Lemma 2 and given the

√
NT -consistency of β̂ and the

√
T -consistency

easy to show

T−1
T∑

t=1

K∗H2
(zt − z)II1 = op

{
(NT )−1/2

}
+ op

(
T−1/2

)
. (2

ering the bound of the second term of R(2)
i j , two leading terms have to be analyzed separately since the oth

ts are asymptotically negligible using the consistency results of β̂ and δ̂i. For the first one, we obtain t
ng result using Theorems 6 and 10 in [25] and Assumption 14,

1
T

T∑

t=1

K∗H2
(zt − z)̃ξitϵit = op

{
tr(H2

1) +
1√

T |H1|

}
, (2
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the law of iterated expectations (LIE) we get E
[
T−1 ∑T

t=1 K∗H2
(zt − z)̃ξitϵit

]
= 0 and

1

K∗H2
(zt − z)̃ξitϵit


2

≤ 1
T 2

T∑

t=1

E
[
K∗H2

(zt − z)ϵ2it
] ∑

|z|≤cT

∣∣∣m̂i(z; H1) − mi(z)
∣∣∣2 = Op


δ4T

T |H2|
{

ln T
T |H1| + tr(H4

1)
} ,

T = inf |z|≤cT ρzt (z) > 0 and cT =
{
(ln T )1/qT 1/2ς

}
, for some ς > 0. Similarly, it can be proved that the te

KH(zt − z)̃ξ2it is bounded by T−1 ∑
t KH(zt − z)̃ξ2it = Op

(
δ−2

T

{
ln T/T |H1| + tr(H4

1)
})

. Hence, the proof is done
g these results and (22)-(23) in (21). Plugging (20)-(21) in (19),

max
1≤i, j≤N

∣∣∣ω̂i j(z) − ωi j(z)
∣∣∣ = Op(RT H). (2

ally, using (24) and let κ be a positive constant, as N/T → κ it is easy to show

∥∥∥∥Ω̂N(z) −ΩN(z)
∥∥∥∥ ≤


N∑

i=1

N∑

j=1

{
ω̂i j(z) − ωi j(z)

}


1/2

= Op(NRT H).

7. Under Assumptions 7, 9, and 10 at z such that ρz(z) > 0, as T → ∞,

T−1Z⊤z KH1 (z)Zz =

(
ρzt (z) µ

q
2(K)H2

1 Dρ(z)
µ

q
2(K)H2

1 Dρ(z) H2
1µ

q
2(K)ρzt (z)

) {
1 + Op(cH1 )

}
.

f Lemma 7: The proof of this Lemma follows directly the proof of Theorem 2.1 in [47] and it has be
for brevity.

8. Let RT H = Op

{
tr(H2

2) + (T |H1|)−1
}

and ρz(z) > 0. Under Assumptions 1-10 and 13-14, as T → ∞,

∥∥∥ϖ̂ −ϖ
∥∥∥ = Op(NRT H).

f Lemma 8: In order to prove this lemma, ∥ϖ̂ −ϖ∥ can be rewritten as

∥ ≤
∥∥∥∥
{
ı⊤NΦ̂N(z)−1ıN

}−1
Φ̂N(z)−1ıN −

{
ı⊤NΦN(z)−1ıN

}−1
ΦN(z)−1ıN

∥∥∥∥

=
∥∥∥∥ı⊤NΦ̂N(z)−1

∥∥∥∥
∣∣∣∣
{
ı⊤NΦ̂N(z)−1ıN

}−1 −
{
ı⊤NΦN(z)−1ıN

}−1∣∣∣∣ +
∥∥∥∥
(
ı⊤NΦN(z)−1ıN

)−1∥∥∥∥
∥∥∥∥ı⊤N

{
Φ̂N(z)−1 − ΦN(z)−1

}∥∥∥∥ . (2

lyzing each of the above terms separately it is straightforward to show that, using the properties of ΦN(z), w
−1
N (z)

∥∥∥∥ = Op

(√
N

∥∥∥Φ−1
N (z)

∥∥∥
)
= Op

(√
N
)
. Furthermore, using Assumption 18 we can prove

∣∣∣∣
{
ı⊤NΦ̂N(z)ıN

}−1 −
{
ı⊤NΦ

−1
N (z)ıN

}−1∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

ı⊤NΦ̂
−1
N (z)

{
Φ̂−1

N (z) − Φ−1
N (z)

}
Φ−1

N (z)ıN
{
ı⊤NΦ̂

−1
N (z)ıN

} {
ı⊤NΦ

−1
N (z)ıN

}

∣∣∣∣∣∣∣∣

≤ Op


ı⊤NΦ

−2
N (z)ıN

{
ı⊤NΦ

−1
N (z)ıN

}2

∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥

 = Op


∥Φ−1

N (z)∥
N

∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥
 = Op



∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥

N

 .

refore, using the above results it can be proved that the first element of
∥∥∥ϖ̂ −ϖ

∥∥∥ is bounded by

∥∥∥∥ı⊤NΦ̂−1
N (z)

∥∥∥∥
∣∣∣∣
{
ı⊤NΦ̂

−1
N (z)ıN

}−1 −
{
ı⊤NΦ

−1
N (z)ıN

}−1∣∣∣∣ = Op



∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥

√
N

 . (2
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its part, considering the behavior of
∥∥∥∥ı⊤N

{
Φ̂−1

N (z) − Φ−1
N (z)

}∥∥∥∥ it can be shown

ı⊤N
{
Φ̂−1

N (z) − Φ−1
N (z)

}∥∥∥∥ =
∥∥∥∥ı⊤NΦ̂−1

N (z)
{
Φ̂N(z) − ΦN(z)

}
Φ−1

N (z)
∥∥∥∥ ≤

∥∥∥ı⊤NΦ−1
N (z)

∥∥∥
∥∥∥∥Φ̂N(z) − ΦN(z)

∥∥∥∥
∥∥∥∥Φ̂−1

N (z)
∥∥∥∥

= Op

({
ı⊤NΦ

−2
N (z)ıN

}1/2 ∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥
)
.

ng the above results it can be shown that the second term of (25) is bounded by
∥∥∥∥
{
ı⊤NΦN(z)−1ıN

}−1∥∥∥∥
∥∥∥∥ı⊤N

{
Φ̂N(z)−1 − ΦN(z)−1

}∥∥∥∥ =
∥∥∥∥
{
ı⊤NΦ

−1
N (z)ıN

}−1∥∥∥∥ Op

({
ı⊤NΦ

−2
N (z)ıN

}1/2 ∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥
)

= Op

({
ı⊤NΦ

−1
N (z)ıN

}−1/2 ∥∥∥∥Φ̂N(z) − ΦN(z)
∥∥∥∥
)
= Op

({
ı⊤NΦ

−1
N (z)ıN

}−1/2
NRT H

)
, (2

at
{
ı⊤NΦ

−1
N (z)ıN

}1/2
= O(1) and following a similar proof scheme as in Lemma 6 it is straightforward to sho

N(z) − ΦN(z)
∥∥∥∥ = Op(NRT H). Hence, plugging (26)-(27) in (25) the proof of the lemma is done.

f Theorem 1: Plugging (1) into (6) and rearranging terms we get

β̂ − β =


N∑

i=1

X̂⊤i· MΛ̂X̂i·


−1 N∑

i=1

X̂⊤i· MΛ̂(IT − S )[Fγi + mi(Z) + ϵi· + Op{tr(H2)} + op(1)] (2

at M
Λ̂

(IT − S )D = 0, since D ∈ Λ. Note that in (28) it can be seen that β̂ exhibits a direct dependence of t
rved common factors (i.e., zt and ft).
ng Lemma 4 in (28), assuming that the rank condition holds, and by the uniform boundedness assumption
xpression to study is

√
NT (̂β − β) =


1

NT

N∑

i=1

X̃⊤i· MG̃ X̃i·


−1

1√
NT

N∑

i=1

X̃⊤i· MG̃ϵi· + Op


√

T
N

 + Op

(
1√
N

)
+ Op

(√
Tc2

H1

)
. (2

er Assumption 6 we can prove
{
(NT )−1 ∑N

i=1 X̃⊤i· MG̃ X̃i·
}−1 p→ Q−1, where Q = limN,T→∞(NT )−1 ∑N

i=1 E
(
X̃⊤i· M

T )−1 ∑N
i=1 X̃⊤i· MG̃ϵi·

p→ 0, so the consistency of this estimator follows almost immediately. Further, assumi
0 and

√
Tc2

H1
→ 0 as (N,T )→ ∞, we have

√
NT (̂β − β) = Q−1


1√
NT

N∑

i=1

X̃⊤i· MG̃ϵi·

 + op(1).

btain the asymptotic normality of β̂, we analyze the variance of the above expression and define W̃⊤
i· = X̃⊤i· M

·t =
(
W̃1t, . . . ,W̃Nt

)⊤
as p × T and N × p matrices, respectively. Then, by the LIE, we can prove

Var
[√

NT (̂β − β)
]
=

1
NT

N∑

i=1

N∑

j=1

E
[
Q−1W̃⊤

i· ϵi·ϵ j·W̃ j·Q−1
]

=
1

NT

T∑

t=1

T∑

s=1

E
[
Q−1W̃⊤

·t E(ϵ·tϵ·s|zt)W̃·sQ−1
]
=

1
NT

T∑

t=1

E
[
Q−1P̃P̃⊤Q−1

]
,

is a p×T matrix such as P̃ =
[
W̃⊤
·1Ω (Z)1/2 , . . . ,W̃⊤

·TΩ (Z)1/2
]
. Hence, using the above results in (29) we g

√
NT (̂β − β) d→ N

(
0,Q−1ΨQ−1

)
,

= limN,T→∞(NT )−1E
[
X̃⊤

(
IN ⊗ MG̃

)⊤
Ω (Z)

(
IN ⊗ MG̃

)
X̃
]

given that rearranging terms it is straightforwa

P̃P̃⊤ = X̃⊤
(
IN ⊗ MG̃

)⊤
Ω(Z)

(
IN ⊗ MG̃

)
X̃ and the proof of the theorem is done.
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f Theorem 4: Let D ≡ (d1, . . . , dT )⊤ and F ≡ ( f1, . . . , fT )⊤ are T × n and T × r matrices, respectively, a
1, . . . , ϵiT )⊤ is a T × 1 vector, it can be written Ŷi· = (IT − S ){Dαi +Xi·β+mi(Z)+Fγi}+ ϵi· +Op{tr{H2

1}}. Usi
that M

Λ̂
(IT − S )D = 0, since D ∈ Λ, and assuming that the rank condition holds. If we stack the resulti

ion over NT observations and replace Ŷi· in (10), we get

=
{
X̂⊤

(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

)
X̂
}−1

X̂⊤
(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

) Xβ +
r∑

ι=1

Fι ⊗ γι + ϵ + Op

(
c2

H1

(

ι and γι are T × 1 and N × 1 vectors, for ι ∈ {1, . . . , r}, respectively, since it can be proved that, uniformly
−1X̂⊤

(
IN ⊗ M

Λ̂

)
Ω−1(Z)

(
IN ⊗ M

Λ̂

)
(IT − S )mi(Z) = Op

(
c2

H1

)
by combining the proof scheme for Lemma 3

d Lemma A.6 in [51].
it is quite common in this type of literature, in (30) is observed the direct dependence of β̂ of the observed a
rved common factors (i.e., zt and ft). Using Lemmas 1-5 it is straightforward to show

β̂GLS − β =


X̃⊤

(
IN ⊗ MG̃

)
Ω−1(Z)

(
IN ⊗ MG̃

)
X̃

NT



−1
X̃⊤

(
IN ⊗ MG̃

)
Ω−1(Z)

(
IN ⊗ MG̃

)
ϵ

NT

+Op

(
1
N

)
+ Op

(
1

NT

)
+ Op

(
c2

H1

)
, (3

G̃ = IT − G̃
(
G̃⊤G̃

)−1
G̃−1 is a T × T projection matrix, G̃ =

(
D̃, F̃

)
is a T × (n + r) matrix.

er the assumptions of the theorem we get (NT )−1X̃⊤
(
IN ⊗ MG̃

)
Ω−1(Z)

(
IN ⊗ MG̃

)
X̃

p→ Qϖ, where

Qϖ = lim
N,T→∞

{
(NT )−1X̃⊤

(
IN ⊗ MG̃

)
Ω−1(Z)

(
IN ⊗ MG̃

)
X̃
}
.

ce, using this result in (31) and assuming
√

T/N → 0 and
√

NTc2
H1
→ 0, as (N,T )→ ∞, we get

√
NT (̂βGLS − β) = Q−1

ϖ


X̃⊤

(
IN ⊗ MG̃

)
Ω−1(Z)

(
IN ⊗ MG̃

)
ϵ

√
NT


+ op(1).

f Theorem 5: Plugging (14) in (16), a Taylor expansion leads to

√
T |H1|

{
m̂GLS (z,H1, ϖ) − m(z)

}
−

√
T |H1|ι⊤1

{
T−1Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)

{
1
2

Qm(z) + Rm(z)
}

=
√

T |H1|ι⊤1
{
T−1Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)Ũ(ϖ), (3

m(z) =
[
(z1 − z)⊤Hm(z)(z1 − z), . . . , (zT − z)⊤Hm(z)(zT − z)

]⊤, Rm(z) is the residual term of the Taylor expa
d Ũ(ϖ) ≡ (

ϖ⊤U·1, . . . , ϖ⊤U·T
)⊤ is a T × 1 vector. Using standard nonparametric techniques it can be prov

T−1Z⊤z KH1 (z)Zz

)−1
Z⊤z KH1 (z)Rm(z) = op

{
tr(H2

1)
}

and that the asymptotic bias of m̂GLS (z; H1, ϖ) is

ι⊤1
{
T−1Z⊤z KH(z)Zz

}−1
Z⊤z KH1 (z)

{
1
2

Qm(z) + Rm(z)
}
=
µ

q
2(K)
2

tr
{
H2

1Hm(z)
}
+ op

{
tr(H2

1)
}
. (3

ν(ϖ)
N (z) =

{
ı⊤NΦ

−1
N (z)ıN

}
and consider now the variance term of the right-hand side of (32), by the LIE we get

T |H1|Var
[
T−1Z⊤z KH1 (z)Ũ(ϖ)

]
= T−1|H1|E

[
Z⊤z KH1 (z)E

(
Ũ(ϖ)Ũ(ϖ)⊤|zt

)
KH1 (z)Zz

]

=

(
ν(ϖ)

N (z)Rq(K)ρzt (z) + o(1) O(|H1|)
O(|H1|) H2

1ν
(ϖ)
N (z)Rq

2(K)ρzt + o(H2
1)

)
. (3
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ng Lemma 7 and (34), by the Slutsky theorem, as T → ∞,

Var
[ √

T |H1|ι⊤1
{
T−1Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)Ũ(ϖ)

]
=

Rq(K)ν(ϖ)
N (z)

ρzt (z)
. (3

ally, the Lyapunov condition can be proved under Assumption 17, so using (33) and (35) the proof of t
m is completed.

f Theorem 6: Denote Ψ̂NT = X̃⊤
(
IT ⊗ MG̃

)
Ω̂−1(Z)

(
IT ⊗ MG̃

)
X̃ andΨNT = X̃⊤

(
IT ⊗ MG̃

)
Ω−1(Z)

(
IT ⊗ MG

owing a similar reasoning as in the proof of Theorem 5, it is easy to show

β̂FGLS − β = Ψ̂−1
NT X̃⊤

(
IT ⊗ MG̃

)
Ω̂−1(Z)

(
IT ⊗ MG̃

)
ϵ + Op

(
1
N

)
+ Op

(
1

NT

)
+ Op

(
c2

H1

)
,

β̂GLS − β = Ψ−1
NT X̃⊤

(
IT ⊗ MG̃

)
Ω−1(Z)

(
IT ⊗ MG̃

)
ϵ + Op

(
1
N

)
+ Op

(
1

NT

)
+ Op

(
c2

H1

)
.

ng {a1a2 − b1b2 = (a1 − b1)(a2 − b2) + (a1 − b1)b2 + b1(a2 − b2)} over the above results and rearranging term

β̂GLS =
(
Ψ̂−1

NT − Ψ−1
NT

)
X̃⊤

(
IT ⊗ MG̃

) {
Ω̂−1(Z) −Ω−1(Z)

} (
IT ⊗ MG̃

)
ϵ

+
(
Ψ̂−1

NT − Ψ−1
NT

)
X̃⊤

(
IT ⊗ MG̃

)
Ω−1(Z)

(
IT ⊗ MG̃

)
ϵ + Ψ−1

NT X̃⊤
(
IT ⊗ MG̃

) {
Ω̂−1(Z) −Ω−1(Z)

} (
IT ⊗

+Op

(
1
N

)
+ Op

(
1

NT

)
+ Op

(
c2

H1

)

= IIg1 + IIg2 + IIg3 + Op

(
1
N

)
+ Op

(
1

NT

)
+ Op

(
c2

H1

)
,

he definitions of IIg ȷ , for ȷ = 1, 2, 3, should be apparent from the context and they have to be analyzed separate
en that ϖ̂i j(z) andϖi j(z) are the (i j)th element of Ω̂−1(Z) and Ω (Z), respectively, and using Lemma 6 it is ea∥∥∥Ω−1(Z) −Ω−1(Z)

∥∥∥ = Op(NRT H), as N/T → κ, where κ is a positive constant. Therefore, to finish the pro
gh to show

1
NT

(
Ψ̂NT − ΨNT

)
= op(1), (3

1
NT

X̃⊤
(
IN ⊗ MG̃

)⊤ {
Ω−1(Z) −Ω−1(Z)

}
(IN ⊗ MG̃)ϵ = Op

{
(NT )−1/2

}
Op(NRT H). (3

sidering the proof of (37), it has the norm bounded by

T )−1X̃⊤
(
IN ⊗ MG̃

)⊤ {
Ω̂−1(Z) −Ω−1(Z)

} (
IN ⊗ MG̃

)
X̃
∥∥∥∥ ≤

∥∥∥∥(NT )−1X̃⊤
(
IN ⊗ MG̃

)
X̃
∥∥∥∥
∥∥∥∥Ω̂−1(Z) −Ω−1(Z)

∥∥∥∥
∥∥∥∥(NT )−1X̃⊤

(
IN ⊗ MG̃

)
X̃
∥∥∥∥
∥∥∥∥Ω̂−1(Z)

{
Ω̂(Z) −Ω(Z)

}
Ω−1(Z)

∥∥∥∥ ≤
∥∥∥∥(NT )−1X̃⊤

(
IN ⊗ MG̃

)
X̃
∥∥∥∥
∥∥∥Ω−2(Z)

∥∥∥
∥∥∥∥Ω̂(Z) −Ω

Op(NRT H),

e fact that (NT )−1X̃⊤
(
IN ⊗ MG̃

)
X̃ = Op(1),

∥∥∥Ω−1(Z)
∥∥∥ = Op(1), ∥Ω̂(Z) − Ω(Z)∥ = Op(NRT H) (see Lemma

more, following a similar reasoning as in [45] (proof of Theorem 6) and using Assumption 14, it can be prov
T H = o

{
(NT |H1|)−1/2 + tr(H2

1)
}

and the proof of (37) is done.
ilarly, it can be shown that the norm of (38) is bounded by

∥∥∥∥(NT )−1X̃⊤
(
IN ⊗ MG̃

)⊤ {
Ω̂−1(Z) −Ω−1(Z)

} (
IN ⊗ MG̃

)
ϵ
∥∥∥∥

≤ (NT )−1/2
∥∥∥∥(NT )−1/2X̃⊤

(
IN ⊗ MG̃

)
ϵ
∥∥∥∥
∥∥∥Ω−2

N (Z)
∥∥∥
∥∥∥∥Ω̂(Z) −Ω (Z)

∥∥∥∥ = Op

{
(NT )−1/2

}
Op(NRT H).

ally, using (37)-(38) in (36) it is straightforward to show

√
NT

(̂
βFGLS − β̂GLS

)
= Op(1) + Op


√

T
N

 + Op

(√
NTc2

H1

)

en that T/N → 0 and
√

NTc2
H1
→ 0, as (N,T )→ ∞, the proof of the theorem is done.
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f Theorem 7: To prove this theorem, it can be written

m̂FLGS (z; H1, ϖ̂) − m̂GLS (z; H1, ϖ) = ı⊤1
{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)

{̂̃Yϖ̂ − Ỹϖ
}
, (3

and Ỹ are T × N matrices whose it-th elements are such as ̂̃yit = yit − x⊤it β̂ − λ⊤t δ̂i and ỹit = yit − x⊤it β − λ⊤t
ively. Replacing (3) in (39) and rearranging terms, the final expression to analyze is such us

FLGS (z; H1, ϖ̂) − m̂GLS (z; H1, ϖ)
∣∣∣∣ ≤ ı⊤1

∥∥∥∥∥∥∥∥

{
Z⊤z KH1 (z)Zz

}−1
Z⊤z KH1 (z)


U −

p∑

ϱ=1

Xϱ
(̂
βϱ − βϱ

)
− Λ

(̂
δ − δ

)⊤


∥∥∥∥∥∥∥∥

∥∥∥ϖ̂ −

and Xϱ are T × N matrices and δ̂ and δ are N × ℓ matrices. From the results in Lemma 7, it is easy to sho
KH1 (z)Zz∥ = Op

(
(T |H1|)−1/2

)
, whereas considering the behavior of the numerator term in (40), we have

T−1Z⊤z KH1 (z)


U −

p∑

ϱ=1

Xϱ
(̂
βϱ − βϱ

)
− Λ

(̂
δ − δ

)⊤


∥∥∥∥∥∥∥∥
≤ ∥T−1Z⊤z KH1 (z)U∥ + ∥T−1Z⊤z KH1 (z)X∥

∥∥∥∥̂β − β
∥∥∥∥

+ ∥T−1Z⊤z KH1 (z)Λ∥
∥∥∥∥̂δ − δ

∥∥∥∥ . (4

ng the consistency result obtained previously for β̂, it can be shown
∥∥∥∥̂β − β

∥∥∥∥ = Op((NT )−1/2) and, under simi

ng, it is straightforward to show
∥∥∥∥̂δ − δ

∥∥∥∥ = Op(T−1/2). Following a similar reasoning as in [47] and using the

in (41), we can prove that ∥T−1Z⊤z KH1 (z)X∥ and ∥T−1Z⊤z KH1 (z)Λ∥ are Op((T |H1|)−1/2). Using all these resu
and given that by Lemma 8 we get ∥ϖ̂−ϖ∥ = Op(NRT H) as N/T → κ, where κ is a positive constant, we ha

ı⊤1
∥∥∥T−1Z⊤z KH1 (z)Zz

∥∥∥
∥∥∥T−1Z⊤z KH1 (z)X

∥∥∥
∥∥∥∥̂β − β

∥∥∥∥ = op(NRT H), (4

ı⊤1
∥∥∥T−1Z⊤z KH1 (z)Zz

∥∥∥
∥∥∥T−1Z⊤z KH1 (z)Λ

∥∥∥
∥∥∥∥̂δ − δ

∥∥∥∥ = op(NRT H). (4

using now on the behavior of ∥T−1Z⊤z KH1 (z)U∥ and using the Markov’s inequality, it can be proved

∥T−1Z⊤z KH1 (z)U∥ =


Op

(∥∥∥Φ1/2
N (z)

∥∥∥ (T |H1|)−1/2
)

Op

(∥∥∥Φ1/2
N (z)

∥∥∥ tr(H2
1)(T |H1|)−1/2

)
 , (4

at by the LIE,

E

∥∥∥∥∥∥∥
T−1

T∑

t=1

KH1 (zt − z)u·t

∥∥∥∥∥∥∥

2

= tr

T−2
T∑

t=1

E
[
K2

H1
(zt − z)E(u·tu⊤·t |zt)

]

=
Rq(K)ρzt (z)

T |H1|
∥∥∥Φ1/2

N (z)
∥∥∥ = Op



∥∥∥Φ1/2
N (z)

∥∥∥
T |H1|



T−1 ∑T
t=1 KH1 (zt − z)(zt − z)u·t

∥∥∥2
= Op

(∥∥∥Φ1/2
N (z)

∥∥∥ tr(H2
1)/T |H1|

)
. Hence, under a similar reasoning as in (42

d using Assumption 14 and (44) we have

ı⊤1
∥∥∥T−1Z⊤z KH1 (z)Zz

∥∥∥
∥∥∥T−1Z⊤z KH1 (z)U

∥∥∥ = op


ν−1/2

N (z)√
NT |H1|

+ tr(H2
1)

 . (4

ally, plugging (42)–(45) in (40) the proof of the theorem is done.
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Papież, S. Śmiech, K. Frodyma, Does the European Union energy policy support progress in decoupling economic growth from em
s?, Energy Policy 170 (2022) 113247.

H. Pesaran, Estimation and inference in large heterogeneous panels with a multifactor error structure, Econometrica 74 (2006) 967–10
H. Pesaran, Testing weak cross-sectional dependence in large panels, Econometric Reviews 34 (2015) 1089–1117.
H. Pesaran, General diagnostic tests for cross-sectional dependence in panels, Empirical Economics 60 (2021) 13–50.
H. Pesaran, E. Tosetti, Large panels with common factors and spatial correlation, Journal of Econometrics 161 (2011) 182–202.
hillips, D. Sul, Dynamic panel estimation and homogeneity testing under cross section dependence, The Econometrics Journal 6 (20
–259.
eese, J. Westerlund, Panicca: Panic on cross-section averages, Journal of Applied Econometrics 31 (2016) 961–981.
. Robinson, Nonparametric trending regression with cross-sectional dependence, Journal of Econometrics 169 (2012) 4–14.
upasingha, S. J. Goetz, D. L. Debertin, A. Pagoulatos, The environmental Kuznets curve for US counties: A spatial econometric analy

h extensions, Papers in Regional Science 83 (2004) 407–424.
uppert, M. P. Wand, Multivariate locally weighted least squares regression, Annals of Statistics 22 (1994) 1346–1370.

Soberon, A. Musolesi, J. Rodriguez-Poo, A semiparametric panel data model with common factors and spatial dependence, Oxf
letin of Economics and Statistics 86 (2024) 905–927.
Soberon, J. M. Rodriguez-Poo, P. M. Robinson, Nonparametric panel data regression with parametric cross-sectional dependence, T
nometrics Journal 25 (2022) 114–133.
u, S. Jin, Sieve estimation of panel data models with cross section dependence, Journal of Econometrics 169 (2012) 34–47.
u, S. Jin, Profile quasi-maximum likelihood estimation of partially linear spatial autoregressive models, Journal of Econometrics 1

10) 18–23.
Wagner, The environmental Kuznets curve, cointegration and nonlinearity, Journal of Applied Econometrics 30 (2015) 948–967.
Wagner, P. Grabarczyk, S. H. Hong, Fully modified OLS estimation and inference for seemingly unrelated cointegrating polynom
ressions and the environmental Kuznets curve for carbon dioxide emissions, Journal of Econometrics 214 (2020) 216–255.

25



Journal Pre-proof
“Efficient estimation of a partially linear panel data model with cross-sectional dependence” 

 

Au

Al
Fu
Re
M

Jo
ur

na
l P

re
-p

ro
of

thor Statement:  

exandra Soberon: Methodology, Software, Writing-Original draft preparation, Supervision, 
nding acquisition. Juan Manuel Rodriguez-Poo: Conceptualization, Methodology; Writing-
viewing and Editing. Antonio Musolesi: Data curation, Formal análisis. Massimiliano 
azzanti: Data curation, Formal analysis 


	Efficient estimation of a partially linear panel data model with cross-sectional dependence
	CRediT authorship contribution statement


