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Abstract

This paper considers efficiency improvements in a partially linear panel data model that accounts for possible nonlinear
effects of common covariates and allows for cross-sectional dependence arising simultaneously from unobserved
common factors and spatial dependence. A generalized least squares-type estimator is proposed by taking into account
this dependence structure. Also, possible gains in terms of the rate of convergence are studied. A Monte Carlo study
is carried out to investigate the proposed estimators’ finite sample performance. Further, an empirical application is
conducted to assess the impact of the carbon price linked to the European Union Emission Trading System on carbon
dioxide emissions.

Keywords: Climate policy effects, Cross-sectional dependence, European Union Emissions Trading System Partially
linear models, Semiparametric efficient estimators.
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1. Introduction

Nonparametric and semiparametric panel data models traditionally assume independence across individuals. How-
ever, economic agents (regions, states, or countries, among others) are typically interdependent due to externalities,
spillovers, or common shocks. Therefore, ignoring this type of dependence, typically known as cross-sectional de-
pendence (CSD), may be inappropriate as standard estimation procedures can lead to inefficient and even inconsistent
estimators, as shown in [26, 43] and the references therein. Recently, the question of how to characterize CSD has
received considerable attention, emerging two prominent (non-exclusive) strands in the literature.

On the one hand, the multifactor error approach states that the correlation structure can be characterized by the
presence of a finite number of unobserved common factors that affect all individuals with different intensities. A
prominent approach within this strand of the literature is the common correlated effect estimator (CCE) introduced by
[39], which has also been extended to a fully nonparametric regression setting by [27, 50], for example.

On the other hand, the spatial econometric approach assumes that the correlation structure can be modeled through
a pre-specified spatial weight matrix that may depend on either the geographic locations of the cross-sectional units or
more general economic variables. In this case, the question of efficiency improvements using the correlation structure
emerges naturally, independently of whether the dependence is allowed in either time or cross-sectional dimension
(or both). For example, [33, 45] assume an unknown structure of the CSD and shown that a simple Nadaraya-Watson
estimator is dominated by a Generalized Least Squares (GLS)-type one in efficiency terms, under some conditions on
the rate at which the cross-sectional dimension, N, is allowed to growth with the time series length, 7.

While these two approaches are developed separately, several empirical problems have led researchers to pay
more attention to the development of consistent estimation procedures in the presence of both types of dependence.
In a fully parametric setting with both heterogeneous and homogeneous slope parameters, [42] considers both types
of CSD. However, these types of results are scarce in the nonparametric literature. Recently, [48] extends the CCE
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approach to consistently estimate the parameters of interest in a partially linear panel data model. This model treats the
common observed variables in a nonparametric way and accounts for both the presence of unknown common factors
and spatial dependence. Nevertheless, different results in terms of efficiency are obtained for the heterogeneous and
homogeneous cases. When the slope parameters are heterogeneous, it is shown that the asymptotic variance does not
depend on the spatial correlation structure of the model. Unfortunately, this is not the case in the homogeneous slope
parameters case. Under this latter setting, the asymptotic variance of the resulting estimator depends on the particular
specification of the correlation structure, so it is possible to obtain more efficient estimators.

The above results suggest the possibility of achieving efficiency gains in such semiparametric specifications. This
is precisely the focus of our paper: proposing a GLS-type estimation technique that delivers more efficient estimators
for a partially linear model. This model features homogeneous slope parameters, heterogeneous smooth functions for
the common observed variables, and accounts for both types of CSD. According to our theoretical results, efficiency
gains will not only affect the inference analysis, but can also lead to a substantially different estimate of the shape of
the unknown curve and the parameter estimates.

This noteworthy result is further corroborated by a simulation exercise and an empirical illustrative example
where a macroeconomic panel dataset is exploited to assess the impact of the European Union Emissions Trading
System (EU ETS) on CO, emissions. To do so, we propose a partially linear Environmental Kuznets Curve (EKC)
specification (see [6, 36], among others) where the key policy variable, which is invariant across units, is the price of
carbon linked to the European market of allowances. Since there is a high degree of uncertainty surrounding the shape
(and sign) of this policy effect and there are no ex-ante theoretical or empirical reasons to impose a specific parametric
relation between CO, emissions and the price of polluting, a nonparametric relationship between these two variables
is adopted. Furthermore, following the postulates in the EKC literature, the rest of the covariates are specified through
a fully parametric model. Additionally, unobservable common factors, which could affect individual countries in a
heterogeneous manner [35], as well as spatial dependence [46] are also introduced simultaneously.

The rest of the paper is organized as follows. Section 2 introduces the model and the estimation method. Section
3 refers to the efficient estimation techniques. Section 4 presents some Monte Carlo simulations to analyze the finite
sample performance of the proposed estimators, while Section 5 applies that methodology to evaluate the effect of the
EU ETS on CO, emissions. Section 6 concludes the paper. All mathematical proofs are relegated to the Appendix.

2. Econometric model and estimation procedures

Let y;; be the response variable for the cross-sectional unit i at time . We consider the following partially linear
panel data model with both unobserved common factors and spatially correlated errors,

yit = a:—dt+x;ﬁ+m,(zt)+'y;rﬁ+6”, ie{la--'sNL tE{l,...,T}, (1)

where x;; is a p X 1 vector of individual-specific explanatory variables and d; = (dy;,...,d,)" is a n X 1 vector that
could contain deterministic terms or commonly observed variables that enter linearly in the model. We allow for the
presence of observed continuous common stochastic covariates (common policy effects), z; € R?, that enter through a
nonparametric heterogeneous function (i.e., m;(-)) in the model. Further, f; is a r X 1 vector of unobserved common
factors that are allowed to simultaneously affect all cross-section units, albeit with different intensities measured with
the factor loadings, vy;, and €; is the idiosyncratic error term. In addition, 8 and m;(-) are unknown objects that need to
be estimated. Through the paper, we assume that, if an intercept term exists, it is included in d;. If this is the case, in
order to identify m;(-), we need to impose the following condition: E[m;(z,)] = O for each i.

In general, as it is noted in [39, 50], among others, the unobserved common factors, f;, are allowed to be correlated
with the observed data (x;, z;, d;). The covariates x;, are control variables that are determined in the system and z, can
be political variables that are common among the cross-sectional units [2] and are not determined in the system. These
variables can be technological, institutional, environmental, or health factors. The x;;’s variables are determined in the
system according to the following fairly general specification:

Xt = A,Tdr +8i(z) + r,Tft + Vig, 2)

where A; and I'; are n X p and r X p factor loadings matrices with fixed components, respectively, v;, is a p X 1 vector of
individual-specific components of x;,, and g;(z;) is a px1 vector of unknown smooth functions. The spatial dependence
is introduced by assuming that the idiosyncratic error term, €;, is conditionally correlated and heteroscedastic.
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The econometric model introduced in (1) and (2) can be motivated from various perspectives. One rationale for
such a specification is that in several circumstances such as wage, cost, or production functions, parametric specifica-
tions for the main explanatory variables are well established and build on economic theory. However, there is generally
a high degree of uncertainty surrounding the way in which common observed variables may affect the cross-sectional
units. For example, allowing for flexible forms may be suitable when focusing on the effect of real common shocks
on productivity or economic growth or when estimating the effects of oil prices on wages, employment, or production
activity [24, 30]. In our empirical application, we will consider an extended EKC model where y;; stands for CO,
emissions per capita, the vector x; contains standard explanatory variables in the EKC (such as GDP per capita, its
square, and research and development activities), and the common observed variable z, is the carbon price linked to
the European market of allowances that is allowed to have a nonlinear heterogeneous effect among countries [2].

To estimate 8 and m;(-), [48] make an extension of the CCE approach of [39] from fully parametric to partially
linear models and proposes to approximate the unobserved factors, f;, by a suitable proxy that does not depend on
an initial estimate of 8 and m;(-). In particular, in its Online Appendix A it is shown that f; can be approximated by
the cross-sectional averages of the observed variables (y;, x;) assuming: i) rank(I™) = » < (1 + p) for sufficiently
large N, where T* = E(y;,T}) = (. ); i) N SV vy, 5 0 and N1 £V, & > 0 for each #; and iii) N™' 3V, g:(z,)
and N7! Zﬁl m;(z,) are twice-continuously differentiable in the neighborhood of z €int(Z), where Z is the support of
7. Following this approach and let y,, = N~! Z?i \yir and X4, = N7! Zfi | Xir, W€ propose to approximate f; by some
linear function of A, = (y4,, X, d;) that is a £ X 1 vector of observable proxies for f; with £ = (1 + p + n) plus a term
0,(1). Hence, the following augmented regression model is considered

yie = x,B+mi(z)+6] 4 +ey, i€{l,....,N}, refl,...,T} 3)

where e;; = €, + 0,(1) is the error term and J; is a £ X 1 vector of nuisance parameters.

Let Z, be a T X (1 + ¢) matrix whose #-th element is Z,, = [1, (z; — z)"] for z being a fixed point and Ky, (z) be a
T x T diagonal matrix as Ky, (z) = diag{Ku,(21 — 2). ..., Kn,(zr — 2)}, where H; is a g X g symmetric and positive
definite matrix and K(-) is a nonnegative product kernel function such that, for each u, Ky, (u) = |H,; I~! f: L k(H l‘lu )

where u = (uy,...,u,)" and k(-) is a univariate kernel function. Assuming that Z] Ky, (z)Z; is invertible, in [48] is
shown that, for i € {1,..., N}, the following nonparametric estimator can be proposed for m;(-),

~ T[T -7

iz, Hy) = ] {ZT K, @Z) ZT Ky, (@) (Vi = Xif = AS) “
where Y;. = (yi1,...,yir)" isa T x 1 vector, X;. = (x;1,...,x7)" and A = (4y,...,47)" are T X p and T X ¢ matrices,

respectively, and ¢; is a (1 + ¢g) X 1 vector having 1 in the first entry and O in all other entries.

Nevertheless, m;(z, H;) is an infeasible estimator since it depends on the unknown parameters (5;, 3). To overcome
it, we propose to rewrite (4) in matrix notation by denoting m;(Z, H|) = S[Y;. — X;8 — A6;], where S isa T x T
smoothing matrix that only depends on the values of z; and whose definition is apparent from (4). Hence, plugging
the resulting expression in (3) we get the following regression model

Y, = X3+ A6; + e, ®)

where Y = (I — S)Y;, X;. = (Ir — S)Xi., and A = (Ir — S)A. Also, ey;. = (€1, ..., €0 r)" isaT x 1 vector whose th
element iseg;; = e;; + O, {tr(H%)}. Then, by assuming that Zfi | XT Mz X;. and ATMX A are invertible matrices, where

1 P
Mz =Ir-A (ATA) AT and Mz = Ir - X;. (XlTX,) X are T x T projection matrices, and following the procedure
in [48], we obtain

N TN
5 - (Somr] Somn ®

i=1 i=1
i H) = (27K OZ) 20K Q) (Y~ XiB - AT), @
mzH) = o {ZZTKHl (Z)ZZ}i1 Z Ku, @) (?A - XuB - Ag)’ ®
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where 6 = N™! ZZ]E‘ for o; = (;\\TMZ_K)_I ;\\TMZ_?,'.. Also, X, = (%L,...,)‘CXT)T isa T x p matrix and Y, =
(Jag»---»¥ar) isa T x 1 vector. If d; contains a constant term, we need to impose some identification conditions to
obtain unique estimators for both m;(-) and m(-) = E[m;(-)]. More precisely, to identify m;(-) we impose the condition
E[mi(z,)] = 0, so the proposed estimator for m;(z,) is m!(z;; Hy) = mi(z;; Hy) — E[m;(z;; H,)), whereas to identify m(-)
we impose Zﬁ 1 @i = 0 and the proposed estimator for m(z;) is (8).

The asymptotic properties of the estimators derived in (6)—(8) have been already obtained in [48] in a different con-
text where the spatial dependence follows a rather restricted form. However, a more general form for the correlation
structure is allowed in this paper by assuming that the conditional variance-covariance matrix of the idiosyncratic error
term is an unknown smooth function of the common observable variable, z;. Hence, to obtain the limiting behavior of
these estimators under this more general setting, we need to introduce the following definitions and assumptions.

Let p, (z) be the pdf of z,, Z be the support of z,, and D = (d,,...,dr)" be a T x N matrix. Denote X;. = X;. —Bx(2),
A=A-Brz),F=F-8p(2,D =D-8Bp@), and X = X® — By(z), where Bx(2) = E(Xilz = 2)p-,(2),
BAR) = E(Al = 9p,(2). Br(z) = E[Flz = 2lp,,(2). Bo(@) = ElDl = 2lp-, @), and Byon(2) = EIX ™z, = zlp.,(2).
We define Mg = Iy — G(G'G)"'GT as a T x T projection matrix, where G = (D, F)is a T X (N + r) matrix.

Assumption 1. Fort € {1,...,T}andi € {1,...,N}, E(€;]z; = z) = 0. Further, for ¢ = s, E(s,eﬂz,) =Qn(z)isa
N X N matrix, and for ¢ # s, E (e.,eIi z,,zs) =0. Let Q(Z) = diageq1... 11 {Qn (2)} and Qy (z) = {w,j (z,)}l_ P The
functions w;;(z) have uniformly bounded derivative of second order at z, where z € int(Z), and Q (Z) is nonsingular.

Assumption 2. The (n+ r+ g) x 1 vector of common components (d;, f,", z] )" is covariance stationary with absolute
summable autocovariances, distributed independently of the individual-specific errors, €; and v;, for all i and .

Assumption 3. The individual-specific errors €; and v, are distributed independently for all 7, j, # and #’, and for each
i, v;; follows a linear stationary process with absolute summable autocovariances given by v;; = 372, S ;79; -, where,
for each i, ¢;; is a p X 1 vector of serially uncorrelated random variables with mean zero, I, variance matrix, and finite

fourth-order cumulants. For each i, the coefficient matrices S ;; satisfy the condition E (vi,v;) =Y SiaS ,TT =2, <
C < oo, where %,, is a p X p positive definite matrix such that sup; ||Z,,]|» < oo and C is some positive constant.

Assumption 4. The unobserved factor loadings (y;, I';) are bounded, i.e., ||y;ll» < C and ||[|], < C, for all i.
Assumption 5. LetT™ = E(y;,T;) = (y,I), rank(I™) = r < (p + 1).

Assumption 6. The following p X p matrices (NT)~! Zf\; 1 ZTMX)Z and (NT)~! Zf\i | )?ITMGJ?, exist and are non-
singular. They also have finite second-order moments.

Assumption 7. The probability density function of z;, p,(-), is continuous and bounded away from zero. Also, p_,(-),
gi(+), m;(+), and m(-) have bounded derivatives of order two in a neighborhood of z € int(Z).

Assumption 8. All second-order derivatives of E(4,|z,), E(Xa/|z,), and E(y4,|z;) are bounded and uniformly continuous
at z, where z € int(Z).

Assumption 9. K(u) = 7:1 k(u,) is a product kernel, and the univariate kernel function k(-) is compactly supported
and bounded such that [ k@u)du = 1, [wk(wdu = p(K), and [ K*(u)du = R(K), where j(K) # 0 and R(K) # 0
are scalars. All odd-order moments of k vanish, that is f u’l1 s u;’k(u)du = 0, for all non-negative integers 11,...,1,

such that their sum is odd.

Assumption 10. Let cy, = tr(H}) + (InT/T|H;|)'/%. The bandwidth matrix H; is symmetric and positive definite,
where each element of H, tends to zero. As (N,T) — oo, NCIZLI1 - 0, \/NTC%I,1 — 0, NT|H| - oo, and T|H;| — .

Assumption 11. For some ¢ > 0, E[|e;|?*™|z; = z] exists and is bounded.

For the sake of generality, w;;(z) is considered in Assumption 1 as an unknown smooth function that needs to be
estimated. Assumptions 2-5 are rather common conditions concerning the individual-specific errors of x;;, common
factors, and rank condition (see [39, 42] for further details). Assumption 6 is required to identify 8. In addition, As-
sumptions 7-8 are standard smoothness and boundedness conditions on the density function and moment functionals.

4



Assumptions 9-10 are kernel and bandwidth conditions quite common in the local linear literature, and Assumption
11 is required for the Lyapunov condition. Note that the kernel function having a compact support in Assumption 9 is
imposed for the sake of brevity and can be removed at the cost of lengthy proofs. Specifically, this assumption implies
that the product kernel satisfies f wTK(w)dv = pp(K)I, and f K?(v)dv = RY(K), where I, is a g X g identity matrix,
and the Gaussian kernel is allowed.

Theorem 1. Suppose that Assumptions 1-10 hold, Eand S; are consistent estimators for B and 6;, respectively. If it is
further assumed that \/TC%II — 0and VT/N - 0, as (N, T) — o,

WIG-p 5 N(0.0'w0™),

where ¥ = limy.7—o(NT)"'E {S('T (v e M) Q@) (I ® M) 5('} and Q = limyr—(NTY"' S, E (XT M5X,.) are
p X p matrices, and XisaNT x p matrix.

The proof of this theorem is done in the Appendix. Theorem 1 shows that ,’B\is a root-NT consistent estimator
of B in the presence of unobserved common factors. Nevertheless, the asymptotic variance depends on the particular
specification of (Z). Therefore, an alternative estimator with better asymptotic properties in terms of variance-
reduction can be obtained by considering this correlation structure.

Theorem 2. Suppose that Assumptions 1-11 hold and that VT|H, Itr(le) = 0(1), as (N, T) — oo, then

NT\Hy| |mi(z; Hy) — mi(2) — l,uZ(K)tr {H%Wm,(z)}] i) N(O,

wii(Z)Rq(K))
2

Pz ()
where H,,,(+) is the Hessian matrix of m;(-).

The proof of Theorem 2 follows directly from the proof of Theorem 2.1 in [47]. In Theorem 2 it is shown
that m1;(-; H;) is asymptotically normal and exhibits a rate of convergence of order VT|H,|, regardless of the rank
condition (see Assumption 5) holds. Nevertheless, n;(z; H;) completely ignores the information that characterizes the
idiosyncratic error term (see Assumption 1).

Theorem 3. Suppose that Assumptions 1-11 hold and that |T|H, Iv]"\,] (z)tr(le) =0(1), as (N,T) — oo, then

VTIH vy (2)

where vy(z) = N_zl;,E(E.tE_ﬂZ, = 2y is a scalar term and Hz () is the Hessian matrix of m(-).

d

SR R

’ Pz (2)

In Theorem 3 is shown that %('; H,) is asymptotically normal, but the rate of convergence is different concerning
the one obtained for m;(-; Hy). It shows a new element, vy(z), which reflects the strengthening of the spatial correlation
and heteroscedasticity and depends directly on the particular specification of Q (Z). Then, more efficient estimators
could be obtained by considering the information in Q (Z). Furthermore, unlike the parametric estimator, the rate of
convergence of this nonparametric estimator depends on the rate of increase of vy(z), if any. Therefore, under weak
spatial dependence, vy(z) = O(N~!), the rate of convergence is of order (NT|H, ™', whereas it is (T|H;[)""/? under
strong spatial dependence, i.e., vy(z) = O (1). Note that the proof of this theorem is done following a similar proof
scheme as the corresponding for Theorem 2.2 in [49] in a different context, and it is therefore omitted.

3. Efficient estimation techniques

In this section, we propose alternative GLS-type estimators that are more efficient than those presented in (6)
and (8). We will show that the efficiency gains not only affect the inference analysis, but can also lead to a different
estimate of the shape of the unknown curve and the parameter estimates. Specifically, efficiency improvements are
achieved by considering the potential CSD incorporated in Assumption 1.
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Let V4 be a T X (T — ¢) orthonormal eigenvector matrix of M that corresponds to the eigenvalues of one. We
propose to premultiply both sides of the regression model (5) by V% . By stacking the resulting observations over NT

we can denote Y and ep as NT x 1 vectors whose ith elements are ?, and ey ;., respectively, and XisaNT x p matrix
whose ith elements is X;.. Hence, the resulting regression model is of the form

Y =X'B+e¢", ©)

where Y* = (IN ® VK)T Y and ¢* = (IN ® VK)T (T,\e are NT X 1 vectors, ® is the Kronecker product, and X* =
T, . . .
(IN ® VX) X is a NT x p matrix. Using the fact that Q.. = Var(e*|Z) = (IN ® V%) Q(2) (IN ® VX) and VXV% = Mz,
we propose to premultiply (9) by Q;l/ ? to obtain
Q 12y

(4

_ -2y —1/2
=Q. X p+Q. e,
and the resulting Generalized Least Squares (GLS) estimator for § is

— 1 —

Bows = (X7 (Ive M) Q7' (@) (Iv e M3) X} X7 (Iy © M5) 7' @) (Iy © M) Y. (10)
However, this GLS estimator is again infeasible since it depends on Q (Z) that is generally unknown. To overcome
Zthl KZZ (z = Z)Et?I

Zthl K;;z(zt -2)

Qn(z) = (11)

where K*(+) is a nonnegative kernel function as the defined in (4), H; is a ¢ X ¢ symmetric and positive definite matrix,
ande; = (ey,...,eny)' is a N X 1 vector of residuals defined as’e;; = y; — x;,E— mi(z;; Hy) —?S:.T/l,. Note that H,
satisfies different conditions from H; and will thus be chosen differently. Therefore, replacing Q2 (Z) by ﬁ(Z) in (10)
we get the Feasible Generalized Least Square Estimator,

Brows = (X7 (Iy® M3) Q'@ (v 0 Mz) X} X7 (Iy © M5) 07 @) (Iy © M) ¥ (12)

Focusing now on the nonparametric estimator for (), we rewrite the model to estimate in matrix form obtaining
Y= XiB— A = iym(z) + Uy, (13)

where Y, = (yis,...,yn)" and U, = (uyy, ..., une) " are N x 1 vectors, for uj, = €; + [m;(z;) — m(z,)] + 0p(1), whereas
X, and A are N X p and N X ¢ matrices, respectively. Following [33] and [49], among others, and by imposing the
identification condition @ 1y = 1 to identify m(-), we premultiply (13) by a given N X 1 weight vector @ obtaining

@ (Y= X — AL) =m(z) + @ U, (14)

Note that if d; contains a constant term, we follow [49] and impose the following identification conditions
w'iy = 1 and w'a = 0, where @ = (@y,...,ay)". To estimate this regression model we choose @ to minimize

optimization problem we obtain
-1
@"(2) = {R Py @] @y @ (15)

Replacing (15) into (14) and following a similar procedure as in the previous section, the following GLS weighted
local-least squares estimator for m(-) is proposed

= T T -1 T v
moLs (@ Hy, @) = 0 (2] K, (2] Z] Kn, ()Y@, (16)

where Y is a T X N matrix whose it-th element is such as Vir = Yir — x;ﬁ — A/ 6;. Finally, using the definition of u; and
applying Assumption 1 we obtain Var(u;|z) = ¢;;(2) = w;j(z) — {mi(z) — ﬁ(z)}2 +o,(1),fori, jefl,...,N}.
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Since 8, d;, and @ are unknown elements this estimator is unfeasible. However, following a similar procedure as
in (11), withu;, = y; — x;ﬁ - 617/1; — m(z;; Hy) instead of ey, it is possible to obtain a consistent estimator for ®y(z),
i.e., ®y(z). Therefore, the resulting FGLS weighted local-least squares estimator for 7(:) is

= sl T T -1 T =__
MrcLs (@ Hi, ) = ( {Z] K, DZ.) Z] Ku, (Y, a7
where Y is a T X N matrix whose it-th element is ,7:-, =y — xiTtE— AT6; and

w = {1;61_\/] (Z)ZN}_I 6;;1 (@n.

To obtain the asymptotic properties of the GLS estimators in (10) and (16), the following additional conditions are
required.

P T ~ — T —~
Assumption 12. (NT)"'E {XT (v @ M) @7 @) (Iv ® M) x} and (NT)"'E {XT (v @ Mp)" @' @) (1 © M) x}
are p X p matrices that exist and are non-singular. They also have finite second-order moments.

Assumption 13. K*(u) = 321 k*(u,) is a product kernel where the univariate kernel function k*() is even and
uniformly bounded with bounded support. Moreover, k*(-) is integrable on the bounded support.

Assumption 14. The bandwidth matrix H, is symmetric and positive definite, where each element of H, tends to
zero. As (N, T) — oo, T|H| — oo, T|H,|* = o(|H,|), and N*/T|H;| + Ntr(H3)/tr(H}) — 0.

Assumption 15. p(-) and ﬂm(d are consistent estimators of p(-) and Hz(-), respectively, where H,,,(-) = 0m(-)/0z0z7",
and it holds

-0 = 0p(I0x I Byt - Qv ).

(Ha@F - (Fad) = 0, (12 @I [ - 2w ).

Assumptions 1 and 13 together help to ensure that the bias of each element of the estimators of Q (z) are O, {tr(H%)}.
Assumption 14 shows the relationship between H;, H,, N, and T. They are necessary to show the consistency of these
efficient estimators. Assumption 15 is required to establish the asymptotic theory of the efficient estimators without
involving too much technicality and simplify the proofs.

Assumption 16. Let X% = (X, ..., Xy.)@ be a T X d matrix, the matrices 7~'Z] K, (2)X® and T~'Z] Hy, (z)A exist.
Assumption 17. For some ¢ > 0, E[|u;|**9|z; = z] exists and is bounded.

. 2
Assumption 18. As N — oo, |03/ @)|| + N {1} @3 @} 13 ®@32@uy = 0,(1).

Furthermore, to obtain an efficient estimator of the unknown function, Assumption 1 imposes the smoothness of
the covariance function. Assumption 17 is necessary to check the Lyapunov condition for the CLT. Finally, Assump-
tion 18 was discussed in detail in [45] where it was found that a sufficient (but not necessary) condition for the second
term on the left-hand side to be bounded is that the largest eigenvalue of ®y(z) is bounded.

Theorem 4. Suppose that Assumptions 1-5, 7-10, and 12 hold, the GLS estimator of B is consistent. If it is further
assumed that \/T/N — 0as (N, T) — oo,

‘/IW(EGLS —ﬁ) 5 N(O, Q;),

—_ T ~
where Qg = limy 7 (NT)™ E {XT (v e Mg) @' @) (v ® Mg) X}.



Theorem 5. Suppose that Assumptions 1-5, 7-10, 13-14, and 16-17 hold and denote vg\}ﬂ)(z) = {IIT,(I),"\,1 (z)lN}il. If it is

Sfurther assumed +|T|H,| {vﬁf)(z)}iltr(H%) =0()as (N, T) — oo,

q

1]~ K R1(K
T (0 ) l[mms(z,ﬂl,w)—m(z)—“ . )tr{H%Wm@}] 4 N(o, p((z))).

Theorem 4 shows that there exists an efficiency gain in ’B\GLS with respect toﬁ On its part, for N and T sufficiently
large, in Theorem 5 is proved that the distribution of %GLS (z, Hy, @) will be asymptotically normal if N and T are of
the same order of magnitude (i.e., if T/N — «, where « is a positive finite constant) and the rate of convergence will
depend on the rate of increase, if any, of vgflﬂ)(z). Further, the efficiency improvement of this new estimation procedure
is corroborated if vﬁ\?)(z) < vn(2) (see [33, 45] for further details).

To finish the asymptotic analysis of the proposed estimators we must show that both parametric and nonparametric
FGLS estimators (see (12) and (17)) are asymptotically equivalent to their GLS counterparts (see (10) and (16)).

Theorem 6. Suppose that Assumptions 1-5, 7-10, and 14 hold. If it is further assumed that TN — 0 as (N, T) — oo,

— — 1
BrcLs — PeLs = OP( \/ﬁ)

Theorem 7. Suppose that Assumptions 1-5, 7-10, and 13-18 hold. As (N, T) — oo,

) 12
= = {N Z)} 2
mrgrs (2, H, @) — m(z, Hy, @) = o, W*‘W(Hl) .
1

Theorems 6-7 show the asymptotlc equivalence between the GLS and FGLS estimators. Note that they are crucial
results to prove that ﬂpGLS and mpgs(z, Hy, @) have the same 11m1t1ng distribution as ,BGLS and mgrs (z, Hy, @), re-
spectively. Furthermore, to prove Theorem 7 we need to assume ;, 1(z)l;\/ > N/||®n(2)|l, where ||®y(z)|| denotes the

square root of the largest eigenvalue of ®y(z) " ®y(z). Therefore, we can conclude that the variance rate of ﬁ(z, H,, @)
is (NT|H; )", whether ||®x(2)|| remains bounded.

4. Monte Carlo simulation

To analyze the finite sample performance of the proposed estimators, in the following we report the results of
several 31mulat10n studies to compare the behavior of the three proposed estimators for m(-), namely m( H) (initial

estimator), mGLS( H,) (infeasible improved estimator), and mFGLS( H,) (feasible improved estimator). Taking as
benchmark [42], for all experiments we consider the following DGP based on Eq. (1)-(2):

Vi = @dip+ X B+ miz) + Viifie + Vaifo + €,

Xir = anidy + apidos + gii(z) + ynifue + ¥iifs + Vi
fori e {l,...,N},t€{l,...,T}, £ = 1,2. Hence, there are two individual-specific regressors (i.e., x; = (x1i1, X2i1) "),
three observed common factors (z;, dy;, da;), and three unobserved common factors ( fi;, f>;, f3:). For p € {0,0.2,0.5, 0.8}
andr € {-49,...,0,1,...,T}, the observed common factors are generated as stationary AR(1) process:

dy =1, dy=pyn)+ua, ug~IIDN@O,1-p?), dy_s0=0,
2t = PZe-1) + Uy, Uy ~ IIDN(0.5,1/16), z_50 =0,

and the unobserved common factors and individual-specific errors of x;; are generated as stationary AR(1) process:

fie = pfie-y + g e~ IIDN(O, 1= p?),
Viig = puiviie-ny + vies v~ TIDN (0,1 =} ), py, ~ IIDU(0.05,0.95),
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where € € {1,2,3}, fi_so = 0, and vj;_5o = 0. Furthermore, the factor loadings of the observed common effects do
not change across replications and are generated as follows: (a1, ..., aw-1) ~ IIDU(0, 1) and (a11;, a21i, ai2i, a2i) ~
IIDN(0.514,0.514), where 14 = (1, 1,1, 1)7, I is the 4 X 4 identity matrix, and ay = — Z?i‘ll u;. Note that the first 50
observations of z;,v1;, Vair, fir» for, and f5, are discarded.

The loading coefficients of unobserved common factors in the y;, and x;; are generated as follows:

T _ Yili 0 Y13i N N(OS,OS) 0 N(0,0S)
L (m 0 m») I1DN ( N(0,0.5 0 N(0.5,05) )

where y;; ~ IIDN(1,0.2) and y;, ~ IIDN(1,0.2), so the rank condition is satisfied. Further, the heterogeneous
unknown functions are generated such as m;(z,) = (1/(1 + z,z)) +v;, g1i(z) = (1 + z,z) + vy, and g7;(z,) = sin(2z,) + vy;,
where (v;, vy, v2;) ~ IIDN(0, 1) are fixed across simulations. The idiosyncratic errors €;; of y;; are generated according
to €; = bi(z)n, + \/(ﬁeo,-,, where b;(z;) = b;z, with b; being generated as independent N(0, 10) variates, kept fixed
across replications, whereas (17;, €);;) are generated as independent Gaussian AR(1), with innovations having unit
variance and using the p’s value as the autoregressive coefficient.

The points at which the functions are estimated and the second stage bandwidth choice, are in line with those of
[33, 48]. In other words, the one-dimensional regressor was generated to have mean 0.5 and variance 1/16, so the
bulk of observations lie in the interval [0, 1]. In addition, we set the first stage bandwidth H; = A1, to be 1.2 times
the second stage one H, = hyl, (i.e., hy = 1.2hy) because of the need for oversmoothing in the first stage, and three
bandwidth values are used (i.e., i € {0.1,0.3,0.5}). Note that even though (7; = 1.2h;) does not imply oversmoothing
asymptotically, in finite sample applications it effectively oversmooths.

In each DGP, we consider the pairs (N, T) € {(125,75), (150, 100), (175, 125)}, and use the Epanechnikov kernel
functions. For the evaluation of the performance of the slope estimators we use the averaged bias and standard
deviation (Sd) for the slope parameters. We use 1, 000 replications and report the results in Table 1 for 8;. The results
for 3, are quite similar and will not be reported for brevity, but they are available upon request.

Table 1 shows the very good performance of the parametric estimators. All of them display very small bias and
their average standard deviation decline steadily with increases in N or 7' and decreases of p, and they do not seem to
be very sensitive to the bandwidth selection. Furthermore, the estimator’s efficiency is improved by taking the spatial
dependence of the error term and the heterogeneity into account and EF presents the best results.

The performance of the nonparametric estimators proposed in this paper is assessed via the square-root of the
averaged squared errors of the different estimators (RASE). For 1000 simulations and, under different strengths of
cross-sectional dependence (i.e., p), Fig. 1 shows the boxplots of the RASE. To show the efficiency gain of the
proposed estimators and facilitate the comparison between them we compute the Mean Squared Error (MSE) for the
regression functions at three evaluation points (i.e., z; = 0.25, z = 0.5, and z3 = 0.75). Table 2 reports the relative
Monte Carlo MSE of n:1GLS (-; Hy) and %FGLS(-; H)) to %(-; H)).

Analyzing the results for the nonparametric estimators summarized in Fig. 1 it can be pointed out that the non-
parametric procedure proposed in this paper is robust to the bandwidth selection. Another important finding is that
an increase in the sample size leads to a decrease in the RASEs of the nonparametric estimators. In addition, as was
expected from the results in Section 3, the GLS and FGLS nonparametric estimators that take into account the infor-
mation contained in the error term (i.e., the spatial dependence and unobserved common factors) give smaller RASEs
than the initial estimator in all the cases considered, although the GLS estimator performs the best.

Finally, we analyze the results in Table 2 for the relative MSEs under different sample sizes, different values of
p, and fixed points (i.e., z € {0.25,0.5,0.75}). For a fixed point, increases in the sample size lead to decreases in the
relative MSEs that shrink to zero and the figures when p = 0 and p = 0.8 are very close. Also, the estimators are
not very sensitive to the bandwidth choice since there is a slight reduction of the relative MSEs when the bandwidth
increases. Furthermore, when the sample size, p, and z are fixed, all the ratios are lower to 1 which means that
the improved estimators are more efficient than the initial estimator. Therefore, it is corroborated that taking the
unobserved common factors and spatial dependence into account improves the estimator’s efficiency.



Table 1: Simulation results for the Bias (x100) and Sd of the parametric estimators for 8 that are computed as Bias = ng 1 Z;(i()l(] (Ep - ) and

—~ =12 = —
Sd = {n6 1 Zé(iolo(ﬂ‘p - ﬁ)z} , Where 8 = n 1 2;2010 By and ng = 1,000. These expressions are used for the three parametric estimators considered

in this study: E(initial estimator), E(; (infeasible improved estimator), and /Ai’p (feasible improved estimator).

N=125,T=75 N=150,T=100 N=175,T=125

o h, Bias Sd Bias Sd Bias Sd
0 0.1 B 0.295 0.092 0.178 0.080 -0.301 0.060
EG 0.070 0.008 0.022 0.006 0.019 0.005
EF 0.291 0.090 0.176 0.079 -0.298 0.059
0.3 E 0.187 0.092 0.159 0.078 -0.329 0.060
EG 0.034 0.007 0.023 0.005 0.011 0.004
EF 0.186 0.090 0.155 0.077 -0.322 0.059
0.5 ﬁ 0.164 0.092 0.219 0.078 -0.314 0.060
EG 0.032 0.006 0.021 0.005 0.011 0.004
EF 0.164 0.089 0.213 0.076 -0.305 0.058
0.2 0.1 E -0.213 0.100 -0.290 0.079 -0.089 0.062
EG 0.012 0.008 0.007 0.007 -0.003 0.005
Ep -0.209 0.098 -0.287 0.078 -0.087 0.062
0.3 E -0.178 0.096 -0.276 0.078 -0.029 0.062
EG -0.002 0.007 0.016 0.006 0.005 0.005
EF -0.176 0.093 -0.271 0.077 -0.028 0.061
0.5 ﬁ -0.201 0.095 -0.306 0.078 -0.033 0.062
ﬁ(; -0.005 0.007 0.015 0.006 0.007 0.005
EF -0.195 0.092 -0.305 0.076 -0.036 0.061
0.5 0.1 E -0.165 0.130 -0.213 0.104 0.251 0.087
EG -0.016 0.010 0.028 0.008 -0.044 0.006
Ep -0.165 0.128 -0.208 0.102 0.249 0.086
0.3 E -0.277 0.123 -0.236 0.104 0.309 0.085
EG -0.034 0.009 0.029 0.007 -0.034 0.006
Ep -0.273 0.120 -0.229 0.102 0.303 0.084
0.5 E -0.422 0.122 -0.204 0.104 0.288 0.086
EG -0.035 0.009 0.031 0.007 -0.034 0.005
EF -0.410 0.118 -0.194 0.100 0.280 0.083
0.8 0.1 ,E 1.114 0.231 -0.134 0.220 0.252 0.087
EG 0.040 0.016 -0.058 0.013 -0.044 0.006
EF 1.076 0.225 -0.135 0.216 0.249 0.086
0.3 E 1.222 0.229 -0.041 0.213 0.309 0.085
EG 0.024 0.013 -0.047 0.011 -0.034 0.006
EF 1.169 0.219 -0.046 0.205 0.303 0.084
0.5 E 1.231 0.229 -0.107 0.213 0.288 0.086
EG 0.014 0.013 -0.052 0.010 -0.034 0.005
ﬁp 1.157 0.216 -0.110 0.201 0.280 0.083

5. Climate policy analysis: assessing the effects of EU ETS on CO, emissions

5.1. Brief Overview of EU ETS studies

Over the past few decades, growing concern about environmental degradation has prompted major economies
to take action against global warming and climate change trough agreements like the Kyoto Protocol and the 2015
Paris Agreement. Reducing greenhouse gas emissions is a key goal for signatory countries with the EU ETS as the
cornerstone of the European Union’s strategy to decarbonize the economy and mitigate climate change [9].

The literature exploring the effects of carbon pricing on economic and environmental performance has evolved
over decades, with a primary focus on green taxation [1]. The other pillar of carbon pricing is the EU ETS, which
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Fig. 1: Boxplots of RASE for the nonparametric estimators in 1,000 simulations where m, m_fgls, and m_gls are the initial estimator, feasible
improved estimator, and infeasible estimator, respectively, and three sample sizes are considered (i.e., nl € {125,75}, n2 € {150,100}, and
n3 € {175, 125}).

has been widely studied since its launch in 2005. Research has explored its impact on economic and environmen-
tal indicators, identifying three main research areas. The first one focuses on innovation activities, often exploiting
firm-level data [13]. The second one examines economic performance, analyzing productivity, GDP, and investment,
with notable contributions from [9, 14, 32, 34], among others. Lastly, the third one centers on environmental out-
comes, particularly CO, emissions, with recent studies such as those by [17] highlighting mitigation effects, and [38]
observing the decoupling of emissions from economic growth.

However, despite the interesting findings in prior studies, many of their conclusions have been drawn at the firm
level. To offer fresh insights, we opt for a country-based macroeconomic perspective as in [29].

5.2. Model specification
Let us consider an augmented EKC specification such as

COojt = a/,Tdt + Bi1gdpi +B28dl7i21 + B3r&d;; + m; (z) + %Tft + €ir, (18)

fori e {l,...,N}and r € {l,...,T}, where coy; refers to the level of CO, emissions per capita of country i at time
t, gdp;, stands for GDP per capita, and r&d;, is considered as a proxy for the level of technology [6, 52, 53] and it is
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Table 2: Relative MSE: MS E(ig.s (z; H))/MS E(ii(z; Hy)) and MS EGiipgrs (z; H1))/MS EGi(z; Hy)), where MSE ((z)) = Bias® (()) +
Var (7(z)). This expression is used for the three nonparametric estimators considered in this paper, i.e., m(z; H)), mgrs (z; H1 ), and mpgrs (z; Hy).

I I
z hy 0 02 05 0.8 0 0.2 0.5 0.8

N=125,T=75
0.25 0.1 0.065 0.063 0.077 0.132 0.172 0.183 0.238 0.526
03 0.058 0.055 0.069 0.126 0.143 0.145 0.190 0.431
0.5 0.045 0.043 0.056 0.107 0.135 0.139 0.186 0.560

0.50 0.1 0.025 0.025 0.037 0.081 0.153 0.163 0.224 0.593
0.3 0.023 0.023 0.034 0.082 0.104 0.115 0.157 0.546
0.5 0.020 0.020 0.031 0.076 0.093 0.105 0.160 0.723
0.75 0.1 0.004 0.003 0.007 0.031 0.216 0.216 0.273 0.865

0.3 0.002 0.002 0.006 0.032 0.100 0.116 0.152 0.684
0.5 0.002 0.002 0.006 0.034 0.083 0.106 0.151 0.833
N=150,T=100
0.25 0.1 0.061 0.063 0.080 0.139 0.141 0.145 0.203 0.389
0.3 0.054 0.056 0.072 0.129 0.114 0.119 0.157 0.333
0.5 0.041 0.043 0.057 0.110 0.109 0.117 0.154 0.382
0.50 0.1 0.024 0.025 0.038 0.086 0.101 0.103 0.154 0.414
0.3 0.022 0.024 0.036 0.084 0.068 0.076 0.120 0.467
0.5 0.020 0.021 0.033 0.079 0.048 0.052 0.080 0.615
0.75 0.1 0.002 0.003 0.006 0.034 0.147 0.136 0.206 0.662
0.3 0.001 0.002 0.006 0.034 0.071 0.071 0.109 0.641

0.5 0.001 0.002 0.007 0.037 0.062 0.067 0.103 0.780
N=175,T=125

0.25 0.1 0.033 0.035 0.044 0.044 0.151 0.155 0.188 0.188

0.3 0.029 0.030 0.039 0.039 0.127 0.123 0.155 0.155

0.5 0.021 0.023 0.030 0.030 0.121 0.121 0.154 0.154
0.50 0.1 0.012 0.013 0.019 0.019 0.092 0.096 0.136 0.136
0.3 0.011 0.012 0.018 0.018 0.068 0.066 0.106 0.106
0.5 0.009 0.010 0.016 0.016 0.035 0.035 0.063 0.063

0.75 0.1 0.001 0.001 0.003 0.003 0.093 0.099 0.135 0.135
0.3 0.001 0.001 0.002 0.002 0.048 0.050 0.081 0.081
0.5 0.001 0.001 0.002 0.002 0.045 0.046 0.081 0.081

also expressed in per capita terms. All variables are expressed in natural logarithms and d; = 1.

Since the aim of this study is to assess the impact of EU ETS on CO, emissions, following [16, 18] we intro-
duce in (18) the environmental policy variable (i.e., the carbon price which arises from the market of allowances).
This variable is introduced as a common stochastic covariate, z;, taken in logarithm form. However, while the EKC
formulation has theoretical bases and is consistent with a huge amount of the literature, a high degree of uncertainty
surrounds the shape (and sign) of the policy effect and there are no ex-ante theoretical or empirical reasons to impose a
specific parametric relation between coy;; and the price of polluting, z,. Indeed, the aggregate effect of EU ETS carbon
pricing on coy;; could be the result of economic mechanisms that involve composite and rather complex negative and
positive effects on emissions. On the one side, negative effects on emission can be due to several reasons: The EU
ETS cap itself, the abatement-oriented induced innovation effect of targeted high emissions industrial sectors [12, 13],
or the diffusion and adoption of those innovations throughout the economy by inter sector links and value chains. On
the other side, positive effects can be related to the scale effect of production, which might also be more pronounced
through the competitiveness effect of process and product innovations that are generated by the policy. A positive
effect on emission can be also due to a carbon rebound effect that may happen if carbon policies improve energy
efficiency, which leads to an energy rebound effect, and in turn, it may produce a carbon rebound effect as was noted
in [8]. On these grounds, we opt to introduce z, through a nonparametric function and it is expected that both common
price and unobserved common factors, f;, may produce a heterogeneous effect across units due to country-specific
economic or technological features. The rest of the components of the model have been already defined in Section 2.
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Finally, it is worth noting that more flexible specifications, such as fully nonparametric models [36, 37] or models
with heterogeneous slopes [35], could be of interest in principle. However, moderate sample sizes like that in the
present paper and often encountered in macroeconomic data, pose significant challenges. Fully nonparametric models,
for instance, suffer from the curse of dimensionality problem, while heterogeneous panel data models are theoretically
justified only for large T and often underperform compared to homogeneous estimators [7].

5.3. Data, variables and preliminary analysis

Our data is derived from official sources and covers EU27 countries plus the UK, Iceland, and Norway over the
period 2005-2019. GDP expressed in Purchasing Power Parity (PPP), population, and R&D (GERD) are derived from
EUROSTAT. The CO; series is provided by EUROSTAT as well. We opt for CO, series accounted by EUROSTAT
because it includes all the emitting sectors and indirect CO, emissions and is reported in thousands of tonnes. The
key policy variable z, which is invariant across units, is the price of carbon (in logarithms), linked to the European
Market of Allowances (EUA). Data on EUA are obtained from both the International Carbon Action Partnership
(https://icapcarbonaction.com/en/ets-prices) and Sendeco (https://www.sendeco2.com/it/prezzi-co2). Data on ETS
auctions are registered daily and the annual carbon price used is the average auction price in the primary market of all
the transactions registered in a given year.

The EU ETS was launched in 2005. In 2005, the price was about 18 €per tonne. The initial phase, a 3-year pilot
program (2005-2007), aimed to create a functional market structure. During this period, the system targeted CO,
emissions from power generators and energy-intensive industries, allocating most allowances to businesses without
charge. This phase, characterized as a period of ’learning by doing’, laid the foundation for the subsequent phases of
the EU ETS. Phase 1 of the EU ETS successfully established a carbon emissions price, albeit experiencing volatility,
as highlighted by [19], notably marked by a significant decline in carbon prices in 2007. The second phase, initiated
in 2008, was marked by high market expectations, likely stemming from anticipation surrounding the 2009 United
Nations Climate Change Conference, possibly contributing to the price increase observed in 2008. However, the
outcomes of the conference did not convey the policy outcomes that were expected. These unsatisfactory outcomes,
coupled with the global economic recession following the 2008 financial crisis, are mirrored in the decline of carbon
prices, signaling a period of uncertain climate policy commitments worldwide. Subsequently, between 2014 and
2016, promising signs of economic recovery emerged. This progress was further reinforced by the pivotal 2015 Paris
Agreement, outlining global commitments to reduce carbon emissions. This significant policy development likely led
to an increase in CO, prices within the EU, as documented by [10, 20]. The 2.6% GDP growth in 2017, resulting
from enhanced policy commitments following the Paris Agreement in 2015, may explain the rise in prices observed
from 2017 to 2019, when the price reached its maximum level of 24.2 €in 2019.

Before discussing the estimation results, it is worth noting that the stationarity of the observed covariate, z;, is
fundamental for valid estimation. When examining the logarithm of the carbon price, it exhibits a rather smooth time
pattern over the period except for a negative break observed in 2007. Additionally, the series displays a constant
dispersion around its mean. To check formally the stationarity of z,, we conducted a series of statistical tests (i.e.,
traditional unit root tests, including the Augmented Dickey-Fuller (ADF), Phillips-Perron, Breitung’s nonparametric
test, and Bierens HOAC tests). However, given the potential size distortion issues associated with unit root tests
on time series data of moderate sample sizes, we supplemented these tests by simulating p-values using an AR(1)
Gaussian model and employing the wild bootstrap method with 2000 replications. Also, the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) and Bierens-Guo tests are considered to test the null hypothesis of stationarity against the
alternative of a unit root (see [48] for detailed references). All the above tests indicate that z, exhibits stationarity.

Finally, the dependent variable in (18), co,;, exhibits a decreasing evolution over time, evolving around a linear
trend for most of the countries under consideration. It is also found to be stationary according to the PANIC [3] and
PANICCA [44] panel unit roots tests (detailed results are available upon request).

5.4. Estimation results

Building upon the discussion established in the previous subsections, we compute the quantities of interest in
model (18) using the estimators for S that were proposed in this paper. To assess the sensitivity of the empirical
results related to the functional form of the policy variable (carbon price), estimators of a fully parametric model
are presented in Table 3, columns (i)-(iii). Furthermore, in Table 3, columns (iv)-(v), we provide the semiparametric
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Table 3: Fully parametric and semiparametric results. Columns (i)-(iii): CCEP Pesaran [39]; Columns (iv) and (v): first-stage and second-stage
semiparametric estimator. Absolute t-statistics in parentheses and p-value in square brackets. ***, **_ * are the significance level at 1%, 5%, 10%,
respectively. The bandwidth term has been chosen following the Silverman’s rule of thumb. Diagnostics: CD: CD test by Pesaran [40] and Pesaran
[41]. CD,,: averaged weighted CD test by Juodis and Reese [28]. Averaging reduces the test’s reliance on a specific set of random weights. a:
bias-corrected version of a given by equation (13) in Bailey et al. [4]. *95% level confidence bands.

Parametric Semiparametric
® (i) (iii) @iv) (v)
gdpi -0.606 -0.607 -0.607 -3.402* -2.386*
(0.465) (0.465) (0.465) (1.873) (8.649)
gdp;, -0.113 -0.113 -0.113 -0.515™ -0.373**
(0.638) (0.638) (0.637 (2.114) (9.733)
r&d; -0.321 -0.321 -0.321" -0.387* -0.288*
(3.831) (3.826) (3.822) (4.342) (9.529)
% 1.32e-04 -1.81e-04
(0.021) (0.007)
z 9.70e-05
(0.012)
CD 3.14 3.11 3.11 3.55 1.49
[0.002] [0.002] [0.002] [0.00] [0.14]
CD, 241 241 241 4.31 0.51
[0.016] [0.016] [0.016] [0.00] [0.61]
a 0.80 0.80 0.80 0.78 0.59
@ o5 0.71 0.71 0.71 0.68 043
Ty o5 0.90 0.90 0.90 0.88 0.76

estimates for the parameters of interest. Finally, in Fig. 2 we represent the curve estimates for the effect of the policy
variable.

In column (i), a fully parametric model that does not contain the carbon price is considered. Subsequently, in
column (if), a linear effect of the carbon price is introduced by including z as an additional regressor. In column (iii),
the potential nonlinear effect of the carbon price is estimated by employing a second-order polynomial function. All
these specifications are estimated using the CCEP estimator proposed in [39] by controlling for unobserved individual
effects, i.e., by setting d, = 1. Lastly, columns (iv)-(v) present the results from the estimators proposed in this paper. In
column (iv) the estimates for 8 are obtained using expression (6) and in column (v) we represent the efficient estimates
(FGLS) of the 8 that have been computed using expression (12) from Section 3.

According to the estimation results, the fully parametric specifications yield negative and nonsignificant estimates
for the coefficients associated with both GDP and GDP?. Considering that our sample covers EU countries in very
recent years, the finding of a negative elasticity concerning per capita GDP, which decreases in magnitude with the
rise of this variable, aligns with the original idea behind the EKC. This result is consistent with a substantial body of
literature as in [15], but the statistical insignificance of the GDP variable is an unexpected result.

As far as the effect of the technology variable is concerned, when the policy variable z; is omitted, the estimated
elasticity of R&D expenditures is significant and about —0.32 and this result does not change when the carbon price
variable is included. The literature, which is surveyed in [31], is heterogeneous in terms of the adopted proxy and
results. While R&D expenditures is a common proxy for technology [23] and is often employed as in [22], alternative
proxies such as energy intensity [6] and process or product innovation [18] are occasionally employed. While the
conventional expectation is that technology would lead to a reduction in emissions, the results from the literature are
mixed and sometimes show positive estimates. Finally, as far as the EU ETS policy variable is concerned, it is not
statistically significant for the different fully parametric specifications and we do not observe conclusive results.

In summary, the fully parametric specifications in columns (7)-(iii) yield unexpected results that should be re-
assessed by employing the proposed semiparametric estimators. This is because allowing for a nonparametric function
m;(-) instead of imposing a parametric specification for the policy variable may be important to avoid a misspecifica-
tion error that might lead to inconsistent estimators, not only for the estimated policy effect but also with respect the
impact of the standard EKC covariates. Moreover, efficiency improvements resulting from exploiting the correlation
structure of the error term can significantly impact both the inference and estimation.
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Fig. 2: Estimated relation CO, - EU ETS carbon price, where the left panel represents the initial estimator /ﬁ\(-) and the right panel represents the
FGLS estimated curve, mrgrs (). The thick lines denote the estimated curves while dotted lines are the 95% pointwise confidence intervals.

As far as the proposed semiparametric estimators are concerned (i.e., columns (iv) and (v)), the results highlight
the empirical importance of using consistent and efficient estimators for the quantities of interest. Parametric estimates
differ significantly, particularly those related to the GDP variables, with the estimated elasticity of co,;; with respect
to gdp;, increasing significantly in absolute value. Additionally, the standard error estimates from the semiparametric
estimators are smaller than the fully parametric ones, with this efficiency improvement particularly notable for the
efficient estimator. Overall, the parametric results using the efficient estimator (column (v)) appear more consistent
both from the economic and statistical points of view. Both gdp and gdp?> become highly significant, indicating
a statistically significant negative relationship that is the expected result in the EKC framework. Furthermore, by
comparing the nonparametric curve estimates (see Fig. 2) is easily seen the empirical relevance of using more efficient
estimates. When the structure of the spatial correlation is ignored, misleading conclusions are obtained about the effect
of EU ETS on CO,. Indeed, the inefficient curve estimate is very flat compared with the most efficient one, which
exhibits a nonlinear negative shape. Note that the introduction of the spatial correlation structure may affect the shape
of the curve according to equations (8) and (17).

The impact of carbon pricing on CO, emissions can vary depending on a country’s economic specialization, green
technological intensity, and history of environmental policies. It is, therefore, worthwhile to examine the estimated
nonparametric function for some countries (see Fig. 3). Taking three key examples from Europe’s diverse economic
systems, we observe a negative effect in the UK. This aligns with the UK’s more market-oriented capitalism, which
provides a favorable environment for pricing mechanisms. Additionally, the UK was an early adopter of emissions
trading, launching its own market in 2002, earlier than the EU, before the two markets later converged. Germany, on
the other hand, shows a bell-shaped relationship between carbon pricing and emissions. This aligns with the country’s
progress toward green technological leadership over recent decades, supported by increasingly stringent environmen-
tal policies. As a highly industrialized nation, Germany’s innovations may have created a conducive environment for
emissions reduction through industry-driven innovation, in response to the EU ETS policy. In contrast, Spain, with
a relatively more service-based economy, may have experienced less innovation and diffusion in response to carbon
pricing, resulting in a less effective policy. This raises the question, which future research could address, of how
to effectively target non-industrial sectors in climate policies, as these sectors make up the largest share of GDP in
advanced economies.

Finally, it is interesting to investigate the presence of CSD in the residuals. The CD test developed in [41] is a
widely adopted test, which is typically employed as a misspecification test in models that already account for CSD
[5, 21, 28]. This test presents good small-sample properties and recent theoretical works have provided additional
insights that are useful from an empirical perspective. In particular, [40] demonstrates that the null hypothesis of
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Fig. 3: Heterogeneous estimated relation CO, - EU ETS carbon price for Germany, Spain, and United Kingdom. The thick lines denote the
estimated curve obtained using the initial heterogeneous estimator, 772;(-), while dotted lines are the 95% pointwise confidence intervals.

the CD test is weak cross-sectional dependence in the most common cases. More precisely, for T almost fixed and
N — oo, such a null hypothesis is 0 < a < 1/2, where a is the exponent of cross-sectional dependence introduced
in [5]. Moreover, [28] shows that the CD test statistic is biased for any fixed 7 and becomes divergent as T — oo
when the CD test is applied to residuals obtained from a regression model containing common factors. They propose a
modified test statistic, denoted as CD,,, where cross-sectional covariances, which are employed instead of correlations,
are weighted using Rademacher distributed weights.

The CD statistics in Table 3 for specifications (i), (ii), (iii), and (iv) are all highly statistically significant and
strongly reject the null hypothesis. That suggests that the exponent of cross-sectional dependence, a, is in the range
[1/2,1]. Conversely, when considering the efficient semiparametric estimator in column (v), the CD statistic is equal
to 1.49, so the null is not rejected. We then employ the average CD,, test, which confirms the results that are obtained
with the standard CD test. Finally, to quantify the extent of CSD, we compute the bias-corrected version of a. As
in [5], Holm’s approach has been preferred over the Bonferroni procedure. These estimates, along with the 95%
confidence bands, are also reported in Table 3. In the fully parametric specifications, as well as in the semiparametric
inefficient one, the exponent of CSD is estimated to be close to 0.8, with 95% confidence bands lying above 0.5 and
not including unity. It is worth noting that, similar to the findings in [21], residuals obtained from a multifactor error
regression model exhibit a lower degree of CSD compared to the variables incorporated into the model. For these
variables, @ was approximately 1. When finally moving to the semiparametric efficient estimation, it is notable that
‘@ decreases substantially, reducing to 0.59, with the 95% lower confidence band now falling below 0.5. See [5] for a
detailed discussion on identifying a. In summary, these results indicate that employing the efficient semiparametric
estimator significantly reduces residual CSD.

6. Conclusions

In this paper, we have considered efficiency improvements in a partially linear panel data model that accounts for
possible nonlinear effects of common covariates and allows for CSD arising simultaneously from common factors and
spatial dependence. We proposed a GLS-type estimator that accounts for this dependence structure and studied poten-
tial gains in the rate of convergence. A key theoretical finding is that exploiting the correlation structure for efficiency
improvements can notably affect both inference and estimation. This conclusion was supported by both Monte Carlo
simulations and an empirical analysis assessing the impact of carbon pricing within the European Union Emission
Trading System on carbon dioxide emissions. Our empirical findings suggest that the proposed efficient semiparamet-
ric estimator not only yields more meaningful estimates from an economic perspective, but also significantly enhances
inference and reduces residual CSD.
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Appendix

Before proceeding to the analysis of the main asymptotic properties of the proposed estimators, we first present
several lemmas that are used later to prove the main results of the paper. Remember that we denote X;. = X;. — Bx(2),
A =A-8Br@), D =D-8Bp@),G =G - Bs(2), where Bx(2) = E[X;|z = zlp,(2), Ba(2) = ElAlz = zlp,(2),
Bp(z) = E[Dlz; = z]p,(2), B6(2) = E[Glz; = z]p;,(2). Also, we define X = X@ — By (2), X = X — By (2),
X©@ = X@ — By5(2), and X = X@ — By (2), where Bye = E[X@|z, = z], Byw = E[X|z = 2], Byw =
E[X@|z = z], Byw = E[X“)z, = z]. Similar notation for Y@, Y@, Y@ Y@ Also, ¢y, = tr(H?) + (InT/T|Hy])'/2.

Lemma 1. Denote g4; = (€4, + 17;,,8, ?X,)T as an error term. Under Assumptions 1 and 3, for each ¢, we have
(i) E(ea) =0.
(i) Var(gs) = O (N -1 ), under weak dependence and Var(g4,) = O (1) under strong dependence.

q.m. . . .
Proof of Lemma 1: Let — be the convergence in quadratic mean (or mean squared error), the proof of this lemma

is straightforward from the proof of Lemma A1 in [42]. This lemma guarantees that for any value of z, €4, L 0as
N — oo and the degree of spatial dependence of ¢;. will be bounded by vy(z) = N ‘%;QN (2) 1y, where iy isa N x 1
vector of ones. Then, the results of this paper are valid for both types of spatial dependence. O

Lemma 2. Under Assumptions 2, 7-10, as T — co we have

1+ InT
= D |Kn G = 23 = E {Kiy oo = D] = 0, [ \ m]
llzll<cn, =1
Proof of Lemma 2: This lemma can be proved as in Theorem 2 in [25] and it has been omitted for brevity. O

Lemma 3. Under Assumptions 1-5,
() T7'8,24 = O(N7").
() T'FT&y = 0((NT)‘”2) and T™'D7z,. = 0((NT)—1/2).
(i) 7-'VID = O(T"2)and T"'V]F = O(T~'72).
(iv) T7'V]Es = O(N))+ O((NT)™2) and T'€]E4. = O(N) + O (WNT)'2).
Proof of Lemma 3: This lemma can be proved as in Lemma 2 in [39] and it has been omitted for brevity. O

Lemma 4. Let cy, = tr(H?) + (InT/T|H,|)"/?. Under Assumptions 1, 3, and 7-10, as T — oo, we have
() T7'X] Mz X = T™'X] MgX;. + 0, (N') + 0, (NT)™'/2) + O, (cp,) uniformly over i,
(i) 77X Mx(Ir — S)mi(Z) = O,(c%, ) uniformly over i,
(iii) T7'X] Mze: = T™'XT Mgei + 0, (N') + 0, ((NT)™'/2) + 0, (cp,) uniformly over i,
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(iv) T‘IZTMKF =0, (N‘l) +0, ((NT)‘”Z) + O,(cp,) uniformly over i,
where Mgz = Iy — G(GTG)'G™.

Proof of Lemma 4: This lemma is proved following similar reasoning as the proof of (A.12)-(A.14) in [42] and
Lemma 3 in [11] and it has been omitted for brevity. O

Lemma 5. Under Assumptions 2, 7, and 9-10, as T — oo, we have
@) (NT)'XT (Iy ® Mz) Q7'(2) (Iy ® Mz) X = (NT)'X™ (Iy ® Mz) Q' (2) (Iy ® Mz) X + 0,(1),
(i) (NT)'XT (Iy ® Mz) Q7' (2) (Iy ® Mz) = (NT)"'X™ (Iy ® Mz) Q' (2) (Iy ® M) + 0,(1).
Proof of Lemma 5: This lemma is proved in a similar way as in Lemma 3 and it has been omitted for brevity. O

Lemma 6. Let Ryy = O, {tr(H%) + (T|H1|)"} and p,(z) > 0. Under Assumptions 1-10 and 13-14, as T — oo,

max [5(2) ~ 05| = OpRrp). and - [[Q(0) ~ ()| = O, (NRps).

Proof of Lemma 6: Denote by w;;(z) and w;;(z) the (ij)-th element of ﬁN(z) and Qy (z), respectively, we can write

50— o) Y Ky @ — 2 {eiey - wi2)
Wi — Wijj =
j(\Z jZ ,TZIK;Iz(Z,—Z)

=R} +R, (19)

1 T * T * 2 T * [~ —~ T *
where R = 31, K} (2 - 2Menej — wif@Y B, Ky (z—2) and R = 21, Ky (- 2) (@€ — euein) | Sy Ky (20—
z). Hence, Rg.jl.) is the estimation error of the usual Nadaraya-Watson estimator of the conditional expectation of
E(ei€jilz; = z) and, under the assumptions given in the paper, it is straightforward to show that

‘Rjj‘) = 0, |ir(H3) + (TIHa) ™). (20)

If we consider the bound of R, we denote g, = X (A— Qi = (6- ~3)" A, and &, = {mi(z,) — iz H

i gm~— @ B 18)’ &2ir = \0i 1) i and & = {mi(z,) — mi(z,; Hy)).
Hence, ¢;; can be expressed as’e;; = €; + g1ir + g2ir + £ir + 0p(1), where 0,(1) captures possible approximation error for
replacing f; by the proxy’s vector A,. Replacing this decomposition in Rg) we are going to prove

T
RY = T7'% K@ -9l + L+ 0,(D} /() = 0, {r(H) + (TIHD ™}, @
t=1

where p(z) is a nonparametric kernel estimator of p,, (z) such as p(z) = 7~ Zthl Ky (z=2), I = €811t €82t 81ir€jn+

B1ir8l jt + 811182 jit 8oir€ jt + 8282 jr + 8281 jr»and I = firgjr +3i irgjt + ?zngjz + gizf et 5:?1 gt 5;?2 jr t+ :fviz:fvjp Under the
assumptions stated in this paper, it can be proved that p(z) is consistent following [33], so p(z)~' = {p,(2)+ o,,(l)}‘l =
O, (1). Therefore, in order to prove (21) we only need to analyze 7! Z[Tﬂ K,’;Z (z; — 21 + I).

__ Following a similar proof scheme as in Lemma 2 and given the VNT-consistency of B and the VT-consistency of
0;, it is easy to show

T
7! Z Kip, (i = 01y = 0, {(NT)'?} + 0, (T7172). (22)

=1
Considering the bound of the second term of RE?), two leading terms have to be analyzed separately since the other

elements are asymptotically negligible using the consistency results of ,E and 6;. For the first one, we obtain the
following result using Theorems 6 and 10 in [25] and Assumption 14,

1 &, ~ 1
T [:Z] KHZ(Zt — )€ = 0p {t’”(H%) + m} > (23)
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since by the law of iterated expectations (LIE) we get E [T‘l Z,T:] K;z (z, — z)gi,ei,] =0and

2

L. — IR \ > — 2 o {InT 4
E ?;KHZ(ZI—Z)&,Q, < ﬁZE[KHZ(Z,—z)e,»,] > e Hy - mi)] = 0, T {TWI' +tr(Hl)} ,

=1 lzl<er

where 67 = infl<, p,(z) > 0 and ¢y = {(ln HYaTl 2‘;}, for some ¢ > 0. Similarly, it can be proved that the term

T' 3, Ku(z — 2)€2 is bounded by T~' 3, Ku(z: — 2)€2 = 0, (6}2 {ln T/T\H,| + tr(Hf)}). Hence, the proof is done by
replacing these results and (22)-(23) in (21). Plugging (20)-(21) in (19),

max [3;(2) - wij(2)| = Op(Rrn). (24)

1<i,j
Finally, using (24) and let « be a positive constant, as N/T — « it is easy to show

N N 1/2
[6v@ - Qv < [Z D@ - wij(z)}} = O)(NRyp).

i=1 j=1

Lemma 7. Under Assumptions 7, 9, and 10 at z such that p,(z) > 0, as T — oo,

T7'Z] K, (2)Z. = ( Pa(2) 15 (K)H; Dy (2)

UAK)HTD,y(2) Hlﬂz(K)Pz,(Z) ){1 + Op(CH])}.

Proof of Lemma 7: The proof of this Lemma follows directly the proof of Theorem 2.1 in [47] and it has been
omitted for brevity. O

Lemma 8. Let Rry = O, {tr(H%) + (T|H1|)"} and p,(z) > 0. Under Assumptions 1-10 and 13-14, as T — oo,
|@ - @ = 0,(NRra).

Proof of Lemma 8: In order to prove this lemma, ||@ — @]| can be rewritten as

IA

17 -all < [{Fov@ ) B - {Fon@ ) o |

[Fov | [fFov@ i)~ fow@ )| +|(Rev@ ) i (Bx@ ! - @ve ) @5)

Analyzmg each of the above terms separately it is straightforward to show that, using the properties of ®y(z), we
get ||z H oy I(Z)H \/_ N |y (z)”) ( ) Furthermore, using Assumption 18 we can prove

W0 @By () - D ) 03 @y
{0y @} {0y @}

_0 (llfD @Il H(D () — Bx(z )”] [”(DN(Z)—(DN(Z)”]_

[{Fdv@u) "~ oy @) | <

<0, MH%(@ N

{z;,CD,’vl (z)z N

Therefore, using the above results it can be proved that the first element of ”z’ﬁ - w” is bounded by

|3 - onca)|

26
N (26)

l;?ﬁ&l(z)” |{1;,6;,1(z)11v}_1 - {z;,d),’vl(z)z,v}_l' =0,
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On its part, considering the behavior of ||z;, {?(5[-\,1 (2) - cI)]—Vl (Z)}” it can be shown

[ oV @ -0yl = |50 @ @v@ - ov@} oy @) < 7oy @ [Eve - ex)|[@ @)

Op ({lﬁq’&z(z)m}l/z ||6N(Z) - (I)N(Z)||)~

and using the above results it can be shown that the second term of (25) is bounded by

[{Fov@ ] || (@v - on@ )| = [0t @u) | 0, (fRor@m) " [Pr@ - anc

-0, ({l;cpyvl (z)lN}’” @ - on @) = 0 ({05! @uv) " NRr) @7

1/2
given that {z;dJ}‘vl (2) N} . O(1) and following a similar proof scheme as in Lemma 6 it is straightforward to show

that “61\7(2) - <DN(Z)|| = O,(NRry). Hence, plugging (26)-(27) in (25) the proof of the lemma is done. O

Proof of Theorem 1: Plugging (1) into (6) and rearranging terms we get

-1 N

N
= [Z ZTMKZ) D XMy = $)Fy; +miZ) + & + Opler(H)} + 0,(1)] (28)

i=1

given that M5 (I — §)D = 0, since D € A. Note that in (28) it can be seen thatﬁexhibits a direct dependence of the
unobserved common factors (i.e., z, and f;).

Using Lemma 4 in (28), assuming that the rank condition holds, and by the uniform boundedness assumption on
vi, the expression to study is

N

-1
— 1 S = 1 3 T 1
VNTB-p) = (ﬁ ;Xi, Max,».] i Z‘ X Mze. + 0, (T) +0, (W) +0,(VTc,). (29

— =1 — —~
Under Assumption 6 we can prove {(NT) >N XTM(—;X,».} KA Q7!, where Q = limy 7o (NT)™' 3N, E (Xl.TM5X,-.)

and (NT)™! Zi:l XiTMgei. 2 0, so the consistency of this estimator follows almost immediately. Further, assuming
VT /N - 0 and \/Tc%,l — 0as (N, T) — oo, we have

VNTB-p) = [ Zfi ]+op(1>

To obtain the asymptotic normality of ff, we analyze the variance of the above expression and define ‘WIT = )~(ITM5

and "W.t = (’TV Liseone ;VT/ Nt)T as p X T and N X p matrices, respectively. Then, by the LIE, we can prove

N N
Var| VNT (B - :%ZZE [0 W] e, W07
=1 j=1
1 SRS -1 T 1 S 1ppT -1
:WZIZIE W] E(ee lz) W, 0! —W;EQ PPTQ™],

where P is a p T matrix such as P= ["W/TIQ (Z)l/2 ens ’WTTQ (Z)l/z]. Hence, using the above results in (29) we get
WI@B-p 5 N(0.07'¥0™),

where ¥ = limN,T_,m(NT)‘lE [YT (IN ® M(—;)T Q(2) (IN ® ME) )?] given that rearranging terms it is straightforward
to show PPT = X T (I N® M@)T Q2Z) (IN ® Mg) X and the proof of the theorem is done. O
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Proof of Theorem 4: Let D = (dy,...,d7)" and F = (fy,..., fr)" are T x n and T X r matrices, respectively, and
€ = (€1,...,67)T isa T x 1 vector, it can be written ?, =Ur -SHDa;+ X, B+mi(Z)+ Fy;} +¢€. + OP{tr{le}}. Using
the fact that M (Ir — S)D = 0, since D € A, and assuming that the rank condition holds. If we stack the resulting
expression over NT observations and replace ?, in (10), we get

— — =1 —~ r
Bors = (X7 (IveMz)Q'(2)(Ive Mz) X} X (Iy® Mz) Q™' (Z) (Iv ® My) {X,B + Z F,®y +€e+0,(c3, )} ,
=1
(30)
where F, and y, are T X 1 and N X 1 vectors, for ¢ € {1,...,r}, respectively, since it can be proved that, uniformly in

z (NT)IXT (IN ® MK) Q2 (IN ® MK) Ir = S)mi(Z) = 0, (C%ﬂ) by combining the proof scheme for Lemma 3 in
[11] and Lemma A.6 in [51].

As it is quite common in this type of literature, in (30) is observed the direct dependence of Eof the observed and
unobserved common factors (i.e., z; and f;). Using Lemmas 1-5 it is straightforward to show

LxT (IN ® Mg)Q™'(Z) Iy ® Mg) e

NT

Bors —B = NT

{)?T (Iv ® Mg) Q') (In ® Mg) X }
1 1 )
+0, (ﬁ) +0, (ﬁ) +0,(c3)- 31)

_— 1 ~ — -
where Mz = Ir = G (GTG) GlisaTxT projection matrix, G = (D, F) isa T X (n + r) matrix.
Under the assumptions of the theorem we get (N T)‘1}~(T (IN ® ME) Q2 (1 N ® M@) x5 Oy, Where

Qr = Jlim {(NT)'X" (1 M) (@) (1y © Mg)X)..

Hence, using this result in (31) and assuming VT /N — 0 and VNT g, = 0,as (N, T) — oo, we get

b Yo-! _
VNT Bors - B) = 0 {X (IN ® MG) i (IN © MG) 6} +0,(1).

VNT
O
Proof of Theorem 5: Plugging (14) in (16), a Taylor expansion leads to
) _ _ -1 1
VTIH, | {mgLs 2. Hy, @) = m(@)} = NTIHG T 2] K ()Z:) 27 Ku, (2) {5 Om(2) + Rm<z>}
i ~
= NTIH\W {T7'Z] K, (2.} Z] K, ()T, (32)

where Qm(2) = [(z1 — 2T Hm(2)(z1 = 2),.-.. (zr — 2) " Ha(2)(zr — 2], Rm(z) is the residual term of the Taylor expan-
sion, and U™ = (@' U.,...,w Ur)" isa T x 1 vector. Using standard nonparametric techniques it can be proved

—1 P
that ¢ (T‘IZZT Ky, (z)ZZ) Z] Ky, (2)Rm(2) = 0p {tr(le)} and that the asymptotic bias of mgs (z; H, @) is

13 (K)
2

gz KH(z)ZZ}_l ZTKn, (2) {%Qm(z) + Rm(z)} = ir{HiH(2)} + o, {tr(HD) (33)

Let vg\f’)(z) = {l;\—,(D}_vl (z)zN} and consider now the variance term of the right-hand side of (32), by the LIE we get

T\HVar [T Z] Ky, ()U™| = T7'H\E|Z] Ku,QE (U™ U™ |g,) Kn, (2]
_ (vx”)<z>Rq<K>pz,<z>+o<1> O(H) ) i
O(H,|) HY? (RUK)p,, +o(H?) |
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Using Lemma 7 and (34), by the Slutsky theorem, as T — oo,

_1 — RIKW(z
Var [ VT {77 Z] Ky, (2022} Z] K, (z)U(’”)] = % (35)
er <
Finally, the Lyapunov condition can be proved under Assumption 17, so using (33) and (35) the proof of the
Theorem is completed. O
Proof of Theorem 6: Denote ¥y; = X7 (IT ® Mg) Q2 (IT ® M~ )Xand Yyr = (IT M= ) Q2 (IT ® Mg)f

and following a similar reasoning as in the proof of Theorem 5, it is easy to show
” w-1vT o-1 1
Brows —B = ¥ypX (Ir @ Mg)Q™'(2) (Ir @ Mg)e + O ( ) + 0,,( )+ 0, (ct)-

Bos — BB

Y X" (Ir @ Mg) Q7'(2) (Ir ® Mg) e + 0, (%) +0 (NIT) +0,(ct,)-

Using {aya; — bi1by = (a) — by)(ay — b)) + (a; — by)by + bi(az — by)} over the above results and rearranging terms,
(Pah = W) X7 (1r © M) (7' @) - Q'@ (Ir @ M) €

+(Prh = WRE) X7 (I © Mg) Q7' (2) (Ir © Mg) e + W3 X" (I © Mg) {Q7'(2) - Q7' @)} (Ir ® Mg) €

1 1
+0"(ﬁ)+0 (NT)+0 (CHI)
= I, +1g2+1g3+0p(%)+0 (NlT)+0 (c3)- (36)

where the definitions of I , for y = 1,2, 3, should be apparent from the context and they have to be analyzed separately.

Brres — BcLs

Given that @; J(z) and @;;(z) are the (i j)th element of Q 1(Z) and Q (Z), respectively, and using Lemma 6 it is easy
to show ||Q L(z) - l(Z)|| = O,(NRry), as N/T — «k, where « is a positive constant. Therefore, to finish the proof
is enough to show

NT (‘PNT - lI’NT) = 0p(1), (37)
%XT (Ive MG)T Q'@ - Q' @)} Uy ® Mg)e = 0, {(NT)*} 0,(NRrs). (38)

Considering the proof of (37), it has the norm bounded by
||(NT)-1)~(T (veMz)' (@@ - ' @) Iy ® M) )7“ < H(NT)")?T (v ® M) )7” Hﬁ“(Z) - Q“(Z)“
< vy X" (v 0 M) X| [0 @ (8@) - 2@} 07 @) < [T X (1v 0 M) X |22 @) [22) - 22|
= O,(NRrp),

using the fact that (NT)™'X T (IN ® Mé) X = 0,(1), |07 @)|| = 0,(1), I22Z) - AZ)|| = O,(NRry) (see Lemma 6).
Furthermore, following a similar reasoning as in [45] (proof of Theorem 6) and using Assumption 14, it can be proved
that NRry = o {(NT|H1|)“/2 + tr(le)} and the proof of (37) is done.

Similarly, it can be shown that the norm of (38) is bounded by

H(NT)—‘)?T (veMg) (0@ - ' @) (Ive Mg eH
< (NT)™'? “(NT)‘”ZXT (Iv ® Mg) || v @) HQ(Z) o) (Z)H o {(NT)2) 0,(NRrp).
Finally, using (37)-(38) in (36) it is straightforward to show

VNT (Bros = Bos) = Op(1) + O, [ \/g] +0,(VNT<,)

and given that T/N — 0 and VN Tc%,1 — 0, as (N, T) — oo, the proof of the theorem is done. O
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Proof of Theorem 7: To prove this theorem, it can be written

= —_ = -1 = =
rios (@ H1,®) - s @ Huw) = i {2 Kn@Z) ' 20 Kn @ (V5 - Yo, (39)

where Y and Y are T x N matrices whose it-th elements are such as :y:,», =y — x;E— /ltTg, and y;; = yi — x, 8 — 4] 6;,
respectively. Replacing (3) in (39) and rearranging terms, the final expression to analyze is such us

i1 (5 Hi, @) — iows (5 Hy, @) < o]

(40)

where U and X, are T X N matrices and 8 and & are N x £ matrices. From the results in Lemma 7, it is easy to show
IT~'Z] Ky, (D)Z, = O, ((TIH Y 2), whereas considering the behavior of the numerator term in (40), we have

T‘IZZTKHI(z){ Zx -A(6- )}

IA

IT1Z] K, @UI + I~ Z7 K, X1 [[B -

+

17127 K, A5 - 6] )

Using the consistency result obtained previously for,[?, it can be shown “E— ,8” = 0,((N T)~!/2) and, under similar

reasoning, it is straightforward to show “g— (5” = 0,(T~/?). Following a similar reasoning as in [47] and using these
results in (41), we can prove that ||T7'ZT Ky, (2)X|| and [T~ Z] Ky, (2)All are O,((T|H,|)~"/?). Using all these results

in (41) and given that by Lemma 8 we get ||@ — wl| = O,(NRry) as N/T — «, where « is a positive constant, we have
T |77 27 K @Z| |77 27 Ky X [B - B = 0pVRrm), “2)

7 |77 27 K, Q2|77 27 K A |5 - 8] = 0p VR, (43)

Focusing now on the behavior of ||T’IZZT K, (z)U]| and using the Markov’s inequality, it can be proved

0, (|oy>@| (TiH2) ) ] )

T7'Z] Ky, (U = f
W2 Ku Ul [Op(”d)]l\,/z(z)Htr(Hf)(TlHll)_l/z

given that by the LIE,

2

T
- Z Ky, (2 = 2

t=1

T
tr {T2 Z E [K,z,] (z = z)E(u,,uIIzt)]}

t=1

RUK)p, @) oo (087G
B9 oo = op[ a

and E ||T‘1 Zthl Ky (2 — 2)(z — z)u,,”2 =0, (”tl)]lv/z(z)n tr(Hf)/TIHll). Hence, under a similar reasoning as in (42)-
(43) and using Assumption 14 and (44) we have

-1/2
P _ vy (@)
T |77 2T K, @Z| |77 27 Ky (U] = 0, {m + rr(Hf)}. (45)
Finally, plugging (42)—(45) in (40) the proof of the theorem is done. O
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