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Abstract
Freshwater	ecosystems	appear	more	vulnerable	 to	biodiversity	 loss	due	to	several	
anthropogenic	disturbances	and	freshwater	fish	are	particularly	vulnerable	to	these	
impacts.	We	aimed	to	(1)	identify	the	contribution	of	land	use,	spatial	variables,	and	
invasion	degree	in	determining	freshwater	fish	alpha	(i.e.,	species	richness)	and	beta	
(i.e.,	local	contributions	to	beta	diversity,	LCBD)	diversity,	evaluating	also	the	relation-
ship	between	invasion	degree	and	nestedness	(�nes)	and	turnover	(�sim)	components	
of	beta	diversity.	(2)	Investigate	the	relationship	between	alpha	diversity	and	LCBD,	
under	the	hypothesis	that	alpha	diversity	and	LCBD	correlate	negatively	and	(3)	in-
vestigate	 the	 relationship	 between	 species	 contributions	 to	 beta	 diversity	 (SCBD)	
and	species	occurrence,	hypothesizing	that	non-	native	species	show	a	lower	contri-
bution	to	beta	diversity.	The	linear	mixed	models	and	the	partition	of	R2 retained the 
invasion	degree	as	the	most	important	variables	explaining	alpha	and	beta	diversity,	
having	 a	 positive	 relationship	 with	 both	 diversity	 components.	 Furthermore,	 land	
use	related	to	human	 impacts	had	a	positive	 influence	on	alpha	diversity,	whereas	
it	showed	a	negative	effect	on	LCBD.	Regression	model	further	showed	that	 inva-
sion	 degree	 related	 positively	 with	 �sim,	 but	 negatively	 with	 �nes, suggesting that 
non-	native	 species	were	 involved	 in	 the	 replacement	 of	 native	 species	 in	 the	 fish	
community.	Alpha	diversity	and	LCBD	showed	a	weak	positive	correlation,	meaning	
that	sites	with	low	species	richness	have	higher	LCBD.	SCBD	scaled	positively	with	
species	occurrence	highlighting	 that	 rarer	species	contribute	 less	 to	SCBD.	Finally,	
native	and	exotic	species	contributed	similarly	to	beta	diversity.	These	results	sug-
gest	that	invasion	degree	plays	a	central	role	in	shaping	alpha	and	beta	diversity	in	
stream	fish,	more	than	land	use	features	reflecting	habitat	alteration	or	other	geospa-
tial	variables.	Furthermore,	it	is	important	to	evaluate	separately	the	native	and	the	
non-	native	components	of	biotic	communities	to	identify	linkages	between	invasion	
dynamics	and	biodiversity	loss.

K E Y W O R D S
beta	diversity,	biodiversity,	human	impact,	invasive	species,	LCBD,	non-	native	species,	species	
richness
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1  |  INTRODUC TION

Biodiversity	is	not	equally	distributed	on	Earth	but	shows	geograph-
ical	patterns	(Gaston,	2000;	Hillebrand,	2004),	which	are	being	al-
tered	by	global	environmental	changes.	Due	to	its	great	variability,	
understanding	the	distribution	of	biodiversity	has	 important	 impli-
cations	in	conservation	and	management	plans,	in	studying	species'	
niches,	 in	 the	 assessment	 of	 anthropogenic	 impacts	 (e.g.	 climate	
change	and	land	use),	and	in	the	investigation	of	biological	invasion	
dynamics	(see	e.g.	Guisan	&	Thuiller,	2005).

Although	 the	 study	 of	 biodiversity	 changes	 across	 communi-
ties	 is	not	 an	easy	 task	due	 to	 its	 scale-	dependence	 (Chase	et	 al.,	
2018),	 the	most	 common	way	 to	 investigate	 biodiversity	 patterns	
is	 the	study	of	variations	 in	 taxonomical	 species	diversity	 (Colwell	
&	 Coddington,	 1994).	 Three	 different	 levels	 of	 taxonomical	 di-
versity	 can	 be	 distinguished:	 alpha	 (i.e.,	 local	 diversity),	 beta	 (i.e.,	
variation	 of	 community	 composition	 among	 sites),	 and	 gamma	 di-
versity	 (i.e.,	 regional	 diversity;	 Whittaker,	 1960, 1972).	 Several	
measures	were	proposed	to	 investigate	each	 level	of	diversity:	 for	
example,	the	Shannon–	Wiener	index	and	species	richness	(see	e.g.	
Magurran, 2004)	 for	alpha	diversity,	and	the	turnover	and	nested-
ness	 components	 of	 beta	 diversity	 (Baselga,	 2010).	 Alternatively,	
beta	 diversity	 can	be	 characterized	 as	 the	 variance	of	 community	
data,	which	can	be	partitioned	 into	 local	 contributions	 to	beta	di-
versity	 (LCBD)	 and	 species	 contributions	 to	 beta	 diversity	 (SCBD)	
(Legendre	&	De	Cáceres,	2013).	As	LCBD	represents	the	uniqueness	
of	sites	based	on	community	variation,	different	environmental	vari-
ables	such	as	altitude	and	catchment	size	can	determine	LCBD	values	
(Tonkin	et	 al.,	2016).	 SCBD	 is	 associated	with	 species	 characteris-
tics,	such	as	abundance	and	occurrence	(Heino	&	Grönroos,	2017).	
Finally,	the	total	effective	number	of	species	in	the	data	set	can	be	
used	to	assess	gamma	diversity	(see	e.g.	Tuomisto,	2010).

Different	 spatial	 and	 environmental	 factors	 combine	 to	 deter-
mine	global	diversity	patterns.	Worldwide,	species	diversity	varies	
across	latitudinal	gradients	with	more	species	close	to	the	equator	
than the poles and across altitude with a general decrease of spe-
cies	from	low	to	high	altitudes	(Gaston,	2000; Gaston et al., 2008).	
For	example,	most	fish	communities	experience	diversity	loss	with	
increasing altitude due to the increase of environmental harsh-
ness	 and	 decrease	 in	 the	 available	 habitat	 area	 (Jaramillo-	Villa	
et al., 2010).	However,	different	anthropogenic	pressures	can	also	
affect	diversity	patterns,	usually	 leading	to	biodiversity	 loss	either	
in	 terms	of	decreasing	 richness	or	 increasing	community	similarity	
(Butchart	et	al.,	2010;	Ceballos	et	al.,	2015;	Dirzo	et	al.,	2014; Gavioli 
et al., 2019).

Freshwater	 ecosystems,	 which	 host	 a	 large	 number	 of	 en-
demic	 and	 rare	 species	 (Balian	 et	 al.,	 2008; Collen et al., 2014; 
Gleick, 1998),	appear	vulnerable	to	many	anthropogenic	pressures	

like species introduction, flow regulation, land use change, pollu-
tion,	 overexploitation,	 and	 climate	 change	 (Carpenter	 et	 al.,	2011; 
Dudgeon, 2019;	 Olden	 &	 Rooney,	 2006;	 Rahel	 &	 Olden,	 2008; 
Vörösmarty	 et	 al.,	 2010).	 In	 freshwaters,	 non-	native	 species	 are	
responsible	for	the	decline	of	native	fish	species	population	(Costa	
et al., 2021; Crivelli, 1995;	Hermoso	et	al.,	2011),	 and	 fish	species	
are	one	of	the	most	introduced	taxa	worldwide	(Gozlan	et	al.,	2010).	
Despite	the	large	number	of	introduced	fish	species,	only	a	subset	
of	 these	species	can	establish	viable	populations	 in	 the	new	envi-
ronment	 (Jeschke	&	 Strayer,	2005)	 and	 become	 invasive	 (Colautti	
&	 MacIsaac,	 2004; Leprieur et al., 2008).	 The	 main	 mechanisms	
through	 which	 non-	native	 species	 can	 affect	 native	 ones	 include	
predation,	competition,	decreasing	genetic	heterogeneity,	and	hab-
itat	alteration	(e.g.	Ribeiro	&	Leunda,	2012;	Simberloff	et	al.,	2013).	
Non-	native	 fish	 introductions	 can	 drive	 biotic	 homogenization	 of	
communities,	a	process	whereby	communities	become	more	similar	
over	 time	due	 to	 the	 combined	 effects	 of	 native	 species	 loss	 and	
non-	native	species	introductions	(Olden	et	al.,	2010; Rahel, 2000).	
As	a	consequence,	locally	representative	fish	species	(e.g.,	endemic	
species,	 habitat	 specialists)	 are	 replaced	 by	 cosmopolitan	 species	
(Rahel,	2007, 2010).

Recently,	considerable	effort	has	been	put	into	assessing	diver-
sity	changes	(e.g.	in	alpha	and	beta	diversity)	in	freshwater	environ-
ments	(e.g.	Edge	et	al.,	2017;	Giovâni	da	Silva	et	al.,	2018),	however,	
some	 knowledge	 gaps	 remain	 about	 the	 different	 pressures	 on	
diversity,	 since	their	effects	overlap	 in	space	and	time	and	cannot	
be	 easily	 disentangled.	 Despite	 the	 importance	 of	 understanding	
these mechanisms for example for conservation and management 
purpose,	 their	 study	 requires	 data	 sets	 that	 have	 large	 spatial	 ex-
tent	encompassing	different	communitis.	Here,	we	focused	on	the	
Mediterranean	region,	as	it	is	one	of	the	biodiversity	hotspots	identi-
fied	by	Myers	et	al.	(2000),	where	native	biodiversity,	including	sev-
eral	endemic	species,	 is	at	 risk	 from	biological	 invasions	 (Hermoso	
et al., 2011; Marr et al., 2010).	We	 focused	on	 freshwater	 fish	 as	
model	 taxa	 due	 to	 their	 susceptibility	 to	 anthropogenic	 impacts	
(Closs	et	al.,	2015; Dudgeon, 2019).

The	 contributions	 of	 land	 use	 features	 (as	 a	 proxy	 for	 habitat	
exploitation),	 geospatial	 variables,	 and	 invasion	 degree	 (i.e.,	 the	
abundance-	based	share	of	 introduced	species	of	the	total	commu-
nity	at	each	sampling	site)	to	the	freshwater	fish	diversity	patterns	
were	 investigated	using	a	 fine-	scale	 resolution	 fish	data	extended	
throughout	the	Italian	peninsula.

Non-	native	 fish	 species	 have	 negative	 effect	 on	 fish	 diversity	
(e.g.,	Clavero	&	García-	Berthou,	2005);	thus,	we	hypothesized	that	
(H1)	 invasion	degree	 is	 the	 strongest	driver	negatively	 influencing	
alpha	diversity	and	LCBD	in	the	overall	fish	community.	We	also	in-
vestigated	how	invasion	degree	affects	different	beta	diversity	com-
ponents	(turnover	and	nestedness).

T A X O N O M Y  C L A S S I F I C A T I O N
Biodiversity	ecology,	Biogeography,	Community	ecology,	Conservation	ecology,	Global	change	
ecology,	Invasion	ecology,	Spatial	ecology
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    |  3 of 13GAVIOLI et al.

Typically,	alpha	diversity	and	LCBD	have	a	negative	relationship,	
indicating	 that	 sites	 with	 unique	 species	 composition	 harbor	 low	
species	richness	(e.g.	Legendre	&	De	Cáceres,	2013).	However,	such	
relationship varies depending on the region and the spatial extent 
covered	 (Dansereau	et	al.,	2022).	We	 investigated	the	relationship	
between	alpha	diversity	and	LCBD	hypothesizing	 that	 (H2),	 in	 the	
fish	 communities	 in	 Italy,	 sites	 with	 unique	 species	 composition	
(higher	value	of	LCBD)	also	show	 lower	alpha	diversity	due	to	 the	
presence	of	rare	species,	which	contribute	to	higher	value	of	LCBD	
(Giovâni	da	Silva	et	al.,	2018).	Finally,	in	order	to	evaluate	the	differ-
ent	contributions	of	native	and	non-	native	species	to	beta	diversity,	
we	investigated	the	relationship	between	SCBD	and	species	occur-
rence.	We	hypothesized	(H3),	that	non-	native	species	show	a	lower	
contribution	to	beta	diversity	(lower	values	of	SCBD)	compared	to	
native	species,	because	most	non-	native	species	are	cosmopolitan	
having	wide	occurrence	also	regionally	(Rahel,	2000),	thus	contrib-
uting	only	little	to	the	variation	of	the	community	between	regions.

2  |  METHODS

2.1  |  Data collection

Freshwater	 fish	 community	 data	 in	 Italian	watercourses	were	 ob-
tained	from	Milardi	et	al.	(2020)	with	a	total	of	3734	sites,	covering	
most	of	the	Italian	peninsula	and	nearby	islands,	spanning	altitudes	
from	 −4	 m	 to	 2556 m	 above	 sea	 level,	 collected	 through	 official	

monitoring	 programs.	 Fish	 sampling	was	mainly	 performed	 in	 the	
warm	season	by	electrofishing,	combined	with	nets	in	sites	of	higher	
water	 depth	 and	 conductivity	 as	 indicated	 in	 national	 monitoring	
guidelines	(APAT,	2007).	More	details	on	fish	sampling	methodology	
can	be	found	in	Lanzoni	et	al.	(2018)	and	Milardi	et	al.	(2018).

Sampling	 time	 spanned	 the	 years	 1999–	2014;	 however,	 fish	
communities	are	typically	more	or	less	stable	over	such	timescales	
(Korhonen	et	al.,	2010),	and	the	data	were	collected	within	a	rela-
tively	short	timeframe	(typically	within	7 years)	within	each	district	
(Gavioli	et	al.,	2019);	 thus,	 time	presumably	did	not	affect	notably	
our	result.	Furthermore,	non-	native	species	introductions	in	Italy	oc-
curred	long	before	the	sampling	period	(e.g.,	common	carp	Cyprinus 
carpio	was	introduced	in	the	17th	century,	and	North	American	spe-
cies	such	as	brown	bullhead	Ameiurus melas were introduced in the 
early	19th	century).

Fish	 species	 were	 classified	 according	 to	 Kottelat	 and	
Freyhof	(2007),	taking	into	account	recent	taxonomic	determinations	
and	common	names	as	listed	in	FishBase	(Froese	&	Pauly,	2019).

Species	were	categorized	as	native	or	introduced	species	accord-
ing	to	their	biogeographic	origin,	as	established	through	the	current	
scientific	literature	(e.g.	IUCN,	2021).

Based	on	scientific	 literature	 (Bianco,	1987, 1998),	 three	bio-
geographical	districts	separated	from	each	other	by	geographical	
barriers	(i.e.,	mountain	chains	or	sea	stretches)	were	distinguished	
to	 account	 for	 non-	native	 species	 introduction	 (Figure 1):	 the	
Padano-	Veneto	 district	 in	 northern	 Italy	 (PDV,	 2418	 sites,	
~126.000 km2),	which	 includes	the	 largest	river	basin	 in	 Italy	 (i.e.	

F I G U R E  1 Sampling	sites	within	biogeographical	districts	(a)	and	alpha	diversity	(i.e.,	number	of	species)	(b)	of	fish	communities	in	Italian	
inland	waters.	White	areas	in	(b)	represent	zones	for	which	no	fish	data	was	collected.
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the	Po	River	basin),	the	Tosco-	Laziale	district	in	central	and	south-
ern	 Italy	 (TL,	 1146	 sites,	~124.000 km2),	 and	 the	 Islands	 district	
(ISL,	170	sites,	equally	divided	between	the	islands	of	Sardinia	and	
Sicily,	~49.000 km2).

According	to	(Milardi	et	al.,	2020),	species	was	defined	as	intro-
duced when introduction was human mediated. These include spe-
cies	originated	from	outside	of	the	Italian	geographical	barriers	(i.e.	
exotic	 species)	 and	 native	 species	 introduced	 from	one	 district	 to	
new	areas	(i.e.	translocated	species).	Hybrid	specimens	or	uncertain	
species	were	excluded	from	this	study.

2.2  |  Diversity measures

Alpha	 diversity	was	 investigated	 as	 species	 richness,	 and	 it	was	
measured	as	the	number	of	all	 fish	species	present	at	each	sam-
pling	 site	 (Whittaker,	 1972).	 Beta	 diversity	 was	 assessed	 as	 the	
total	 variance	 of	 the	 fish	 community	 matrix	 following	 Legendre	
and	De	Cáceres	 (2013).	This	method	partitions	the	total	beta	di-
versity	(BDtotal)	into	Local	Contributions	to	Beta	Diversity	(LCBD)	
(i.e.,	 site	 contributions)	 and	 into	 Species	 Contributions	 to	 Beta	
Diversity	 (SCBD).	 The	 LCBD	 represents	 the	 uniqueness	 of	 fish	
community	 composition	 across	 sites:	 sites	with	 higher	 values	 of	
LCBD	indicate	an	unusual	species	composition	compared	with	the	
average	community.	The	SCBD	shows	the	degree	of	variation	of	
a	 species	 across	 sites,	 and	 it	 can	be	 considered	as	 a	measure	of	
the	 relative	 importance	 of	 each	 species	 in	 affecting	 beta	 diver-
sity	(Heino	&	Grönroos,	2017;	Legendre	&	De	Cáceres,	2013).	To	
calculate	LCBD	and	SCBD	abundance-	based,	 the	 site	by	 species	
abundance	 matrix	 was	 Hellinger	 transformed	 (Legendre	 &	 De	
Cáceres,	2013).

The	different	components	of	beta	diversity	(total	beta	diversity-	
βsor,	 species	 turnover-	βsim,	 and	 nestedness-	βnes)	 were	 also	 in-
vestigated	 using	 Sorensen	 dissimilarity	 index	 (Baselga,	2010).	 The	
turnover component identifies the degree of species replacement 
between	 sites,	 whereas	 the	 nestedness	 component	 identifies	 the	
variation	 in	 species	 richness.	 Alpha	 diversity,	 LCBD,	 and	 SCBD	
measures	were	calculated	using	“vegan”	(Oksanen	et	al.,	2017)	and	
“adespatial”	 (Dray	et	al.,	2018)	R	packages,	 respectively.	The	nest-
edness	and	turnover	components	of	beta	diversity	were	calculated	
using	“betapart”	R	package	(Baselga	et	al.,	2017).

2.3  |  Invasion degree, geospatial, and land features

For	 each	 sampling	 site,	 invasion	degree	was	 calculated	 as	 a	 of	 in-
troduced	 species	 in	 fish	 communities,	 based	on	 the	abundance	of	
native	 and	 non-	native	 fish	 data	 (see	Milardi	 et	 al.,	2020 for more 
details).	Invasion	degree	expresses	a	corrected	ratio	of	native/non-	
native species, where the correction factors account for each spe-
cies	numerical	abundance	and	species-	specific	body	size.	As	such,	
invasion	degree	is	 independent	of	diversity	measures.	A	high	inva-
sion	degree	equals	to	a	high	share	of	introduced	species	(i.e.	exotic	

and	translocated	species)	and	a	low	share	of	native	species	in	terms	
of	abundance	within	the	fish	community.

Geospatial	 variables	 (i.e.	 latitude,	 longitude,	 and	 altitude)	 and	
land	 use	 features	 for	 each	 sampling	 site's	 watershed	 were	 calcu-
lated	 through	 ArcGIS	 10.1	 software,	 using	 the	 CORINE	 database	
(2012,	 https://www.eea.europa.eu/data-	and-	maps/data/coper	nicus	
-	land-	monit	oring	-	servi	ce-	corine).	 In	 the	 lowland	 areas,	 where	 the	
low	slopes	and	the	human	flow	modification	do	not	permit	an	easy	
definition of watershed areas, the land cover of the whole river 
basin	 or	 of	 the	 administrative	 province	 was	 used.	 CORINE	 land	
cover	classes	were	merged	into	13	categories:	artificial	surface,	non-	
irrigated	arable	land,	irrigated	arable	land,	rice	field,	permanent	crop,	
pasture, heterogeneous agricultural area, forest, natural vegetated 
area, natural cover without vegetation, sand area, freshwater, and 
marine water. Land cover was expressed as the percent cover of 
each	of	these	categories	in	the	watershed	of	each	site	(Table 1).

2.4  |  Data analysis

The	influence	of	invasion	degree,	geospatial,	and	land	features	(i.e.	
explanatory	 variables)	 on	 alpha	 diversity	 and	 LCBD	 (i.e.	 response	
variables)	was	evaluated	through	linear	mixed	models.	Alpha	diver-
sity	was	log-	transformed	and	the	explanatory	variables	were	stand-
ardized	(Philson	et	al.,	2021).

Originally,	we	performed	the	linear	mixed	models	including	the	
river	 basins	 as	 random	 effects	 to	 account	 for	 spatial	 dependence	
(results	 are	 not	 shown	 here).	However,	 due	 to	 the	 higher	 level	 of	
random	effect	 (n =	129)	and	 the	nestedness	of	 river	basins	 inside	
the	biogeographical	districts,	we	decided	to	include	in	linear	mixed	
models	the	biogeographical	districts	(District)	as	a	random	effect	to	
account	 for	 spatial	 dependence.	However,	 results	were	 not	 diver-
gent	between	 the	 inclusion	of	 river	basins	and	District	 as	 random	
effect.	Collinearity	of	explanatory	variables	was	assessed	 through	
the	variance	 inflation	factor	 (VIF).	To	 identify	a	set	of	explanatory	
variables	without	collinearity,	one	variable	is	removed	at	a	time,	the	
VIF	values	were	recalculated,	and	the	procedure	was	repeated	until	
all	VIF	values	were	smaller	than	5	(Zuur	et	al.,	2009).	As	result,	lon-
gitude,	non-	irrigated	arable	 land,	natural	vegetated	area,	and	sand	
area	variables	were	excluded	from	the	models	to	avoid	collinearity	
problems	(VIF > 5).

The	Akaike	 Information	Criterion	 (AIC;	Akaike,	1974)	was	used	
to	select	the	best	model	among	a	set	of	possible	candidate	models.	
The	selection	of	the	best	model	was	based	on	Akaike	weights	(mod-
els	with	large	Akaike	weights	have	strong	support)	and	lowest	AIC	
values	(Snipes	&	Taylor,	2014).

To	estimate	the	variance	explained	by	each	of	the	fixed	and	ran-
dom	effects	of	 the	best	models	 selected,	 the	marginal	 and	condi-
tional R2	values	were	calculated	for	each	linear	mixed	model	(Stoffel	
et al., 2021).	 The	 marginal	 R2 gives an estimate of the variance 
explained	by	each	fixed	effect	 relative	 to	 the	total	variance	 in	 the	
response, whereas the conditional R2 gives an estimate of the vari-
ance	explained	by	fixed	effects	and	random	effects	together,	which	
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better	 reflects	 the	heterogeneity	of	 the	variables.	The	95%	confi-
dence intervals were estimated for the marginal and conditional R2 
using	1000	parametric	bootstrap	iterations	(Stoffel	et	al.,	2021).

Linear	 regression	was	 used	 to	 investigate	 the	 relationship	 be-
tween	 invasion	degree	and	 the	 turnover	 (�sim)	 and	 the	nestedness	
(�nes)	components	of	beta	diversity.	As	�sim �nes components are dis-
tance matrices, the invasion degree was converted into a Euclidean 
distance	matrix	to	perform	the	model	regression.	As	values	of	LCBD	
and	SCBD	vary	between	0	and	1,	beta	 regression	was	used	 to	 in-
vestigate	 the	 relationship	 between	 alpha	 diversity	 and	 LCBD	 and	
between	SCBD	and	the	number	of	sites	occupied	for	each	species	
(i.e.,	species	occurrence)	(Cribari-	Neto	&	Zeileis,	2010).	The	Kruskal–	
Wallis	test	was	used	to	investigate	differences	in	SCDB	values	be-
tween	native	(i.e.	species	occurring	originally	 in	Italian	waters)	and	
exotic	(i.e.	species	originating	from	outside	Italy)	species.

All	 analyses	 were	 performed	 in	 R	 software	 version	 3.4.3	 (R	
Core Team, 2017).	 VIFs	were	 checked	 using	 “car”	 R	 package	 (Fox	
&	Weisberg,	 2020),	 linear	 mixed	 models	 were	 fitted	 through	 the	
“lme4”	R	package	(Bates	et	al.,	2015),	the	model	selection	was	per-
formed	with	 “AICcmodavg”	R	package	 (Mazerolle,	2019),	 the	mar-
ginal and conditional R2 were calculated with “partR2” R package 
(Stoffel	 et	 al.,	2021),	 and	 the	beta	 regression	was	performed	with	
“betareg”	R	package	(Zeileis	et	al.,	2021).

3  |  RESULTS

A	 total	 of	98	different	 fish	 species	 (of	which	36	non-	native)	were	
found	in	Italian	rivers	(Table	S1).	The	highest	values	of	alpha	diversity	
were	found	in	Northwest	Italy,	in	the	Padano-	Veneto	district	(PDV)	

where	alpha	diversity	peaked	at	27	species	sampled	in	a	single	site,	
whereas	the	Island	district	 (ISL)	showed	the	 lowest	alpha	diversity	
values	 (Figure 1).	Native	 and	 non-	native	 species	 diversity	 showed	
different	 distributions,	 but	 both	 with	 hotspots	 in	 Northern	 Italy	
(Figure 2).	BDtotal	was	0.7726	and	LCBD	values	ranged	from	0.00016	
to	 0.00042	 among	 sites.	 According	 to	 beta	 regression,	 LCBD	 and	
alpha	diversity	were	significantly	related	with	a	positive	relationship	
(Pseudo-	R2:	0.017,	p < .001,	Table 2a,	Figure	S1a).

For	alpha	diversity,	four	land	use	features	(artificial	surface,	rice	
field,	forest,	and	freshwater),	two	geospatial	variables	(altitude	and	
latitude),	and	the	invasion	degree	were	identified	as	best	variables	
and	included	in	the	linear	mixed	model	(conditional	R2: 0.482, mar-
ginal R2: 0.389, Table 3a,	Table	S2a).	Alpha	diversity	was	significantly	
negatively	affected	by	 forest	cover	and	altitude,	whereas	 invasion	
degree, artificial surface, rice field, freshwater, and latitude related 
positively	with	alpha	diversity	(Table 3a, Figure 3a,b).

For	LCBD,	five	land	use	features	(artificial	surface,	rice	field,	het-
erogeneous	agricultural	area,	forest,	and	marine	water),	two	geospa-
tial	 variables	 (altitude	 and	 latitude),	 and	 the	 invasion	 degree	were	
included	in	the	linear	mixed	model	as	best	variables	(conditional	R2: 
0.536, marginal R2: 0.266, p < .01,	Table 3b,	Table	S2b).	Only	 inva-
sion	degree	and	marine	water	land	use	were	positively	related	with	
LCBD,	whereas	artificial	 surface,	 rice	 field,	heterogeneous	agricul-
tural area, forest, altitude and latitude showed a negative relation-
ship	with	LCBD	(Table 3b, Figure 3c,d).

In	 the	 alpha	diversity	model	 (Figure 4a),	 the	partitioning	of	R2 
showed	 that	 altitude	 was	 the	 variable	 with	 the	 highest	 value	 of	
conditional and marginal R2	 (conditional	R2:	 0.23	 –		 IC:	 0.14–	0.39,	
marginal R2:	0.14	–		IC:	0.11–	0.17)	followed	by	invasion	degree	(con-
ditional R2:	 0.11	 –		 IC:	 0.01–	0.30,	marginal	R2:	 0.02	 –		 IC:	 0–	0.05),	

TA B L E  1 Abbreviations,	units,	statistics,	and	group	of	each	explanatory	variable.

Explanatory variables Unit Average St.deviation Group

Longitude Dec. degrees 11.242 2.102 Geospatial	variables

Latitude Dec. degrees 44.050 2.045 Geospatial	variables

Altitude m a.s.l 301.815 318.937 Geospatial	variables

Artificial	surface % 7.396 17.712 Land use

Nonirrigated	arable	land % 23.101 32.830 Land use

Permanently	irrigated	land % 0.004 0.186 Land use

Rice fields % 1.796 11.369 Land use

Permanent crops % 3.182 10.984 Land use

Pastures % 1.524 5.904 Land use

Heterogeneous	agricultural	areas % 14.816 21.035 Land use

Forest % 33.514 32.481 Land use

Natural	vegetated	area % 9.531 16.578 Land use

Sand	areas % 0.666 5.061 Land use

Natural	cover	without	vegetation % 2.147 8.228 Land use

Freshwaters % 1.139 7.482 Land use

Marine waters % 1.184 7.952 Land use

Abundance-	based	share	of	introduced	
species

% 22.101 29.618 Invasion	degree
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6 of 13  |     GAVIOLI et al.

forest,	rice	field,	latitude,	artificial	surface,	and	freshwater	variables	
(Table	S3a).

In	the	LCBD	model	(Figure 4b),	the	invasion	degree	showed	the	
highest conditional and marginal R2	(conditional	R2:	0.41	–		IC:	0.19–	
0.66, marginal R2:	0.14	–		IC:	0.08–	0.203),	followed	by	altitude	(con-
ditional R2:	0.30	–		IC:	0.05–	0.60,	marginal	R2:	0.03	–		IC:	0.01–	0.07),	
latitude, marine water, rice field, heterogenous agricultural land, ar-
tificial	surface,	and	forest	variables	(Table	S3b).

Total	 beta	 diversity	was	dominated	by	 turnover	 (�sim)	 reaching	
99.99%	 of	 total	 dissimilarity,	whereas	 nestedness	 (�nes)	 accounted	
only	for	0.01%.	Both	�sim and �nes	were	significantly	related	to	inva-
sion	degree	but	with	opposite	trends:	�sim	was	positively	related	with	

invasion	degree	(R2
adj 0.143, p-	value	<.001)	while	�nes was negative 

related	with	invasion	degree	(R2
adj 0.06, p-	value	<.001).

Species	contributions	to	beta	diversity	was	positively	related	to	
the	number	of	sites	a	species	occupied	(Pseudo	R2:	0.727;	p = <.001; 
Table 2b),	 with	 species	 with	 low	 occurrence	 contributing	 less	 to	
SCBD	(SCBD ≤ 0.0001;	Figure	S1b).	For	example,	 the	Adriatic	stur-
geon	(Accipenser naccarii)	which	occurred	at	two	sites	had	the	SCBD	
value	 of	 0.00004	 (Table	 S1).	 Brown	 trout	 (Salmo trutta	 complex)	
and	Italian	chub	(Squalius squalius)	showed	the	highest	SCBD	values	
(0.19049	and	0.0688,	respectively)	and	occurrence	(1728	and	1703	
sites	out	of	3734	sites,	respectively).	Italian	native	and	exotic	species	
did	not	differ	in	their	SCBD	values	(KW	χ2 = 0.29, df = 1, p > .05).

TA B L E  2 Results	of	beta	regression	analyses	of	(a)	local	contribution	to	beta	diversity	(LCBD)	and	(b)	species	contributions	to	beta	
diversity	(SCBD)	as	response	variables.

a) LCBD Explanatory variables Estimate ES z p- values Pseudo- R2

(Intercept) 2.116 0.00099 −2137.84 <.001 0.017

Alpha	diversity 0.00254 0.00032 8.02 <.001

Alpha	diversity2 −0.00015 0.00002 −7.40 <.001

b) SCBD Explanatory variables Estimate ES df p- values Pseudo- R2

(Intercept) −1.826 0.0256 −71.32 <.001 0.727

Species	occupancy 0.00104 0.00009 11.51 <.001

Species	occupancy2 −0.0000003 0.00000006 −4.574 <.001

F I G U R E  2 Native	(a)	and	non-	native	(b)	alpha	diversity	(i.e.,	number	of	species)	of	fish	communities	in	Italian	inland	waters.	White	areas	
represent	zones	for	which	no	fish	data	was	collected.
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    |  7 of 13GAVIOLI et al.

TA B L E  3 Summary	of	linear	mixed	model	results	for	(a)	alpha	diversity	and	(b)	local	contribution	to	beta	diversity	(LCBD).

Explanatory variables Estimate ES df t p- values

a)	Alpha	diversity (Intercept) 0.664600 0.052190 2 12.734 <.01

Invasion	degree 0.048410 0.003674 3774 13.174 <.001

Latitude 0.038280 0.006567 1688 5.828 <.001

Altitude −0.128400 0.003866 3774 −33.213 <.001

Freshwater 0.009861 0.003483 3774 2.831 <.01

Forest −0.036210 0.004001 3775 −9.049 <.001

Rice field 0.032880 0.003509 3773 9.371 <.001

Artificial	surface 0.015340 0.003625 3773 4.231 <.001

b)	LCBD (Intercept) 0.000281 0.000019 2 14.449 <.001

Invasion	degree 0.000025 0.000001 3772 32.331 <.001

Latitude −0.000007 0.000001 3383 −4.982 <.001

Altitude −0.000012 0.000001 3773 −13.927 <.001

Marine water 0.000003 0.000001 3773 3.835 <.001

Forest −0.000005 0.000001 3773 −5.195 <.001

Heterogeneous	agricultural	area −0.000003 0.000001 3772 −4.563 <.001

Rice field −0.000004 0.000001 3772 −4.774 <.001

Artificial	surface −0.000003 0.000001 3772 −4.193 <.001

Note:	Model	estimates,	standard	error	(ES),	t-	test,	and	p-	values	are	reported	for	each	retained	variable.

F I G U R E  3 Main	drivers	of	alpha	diversity	(a,	b)	and	local	contributions	to	Beta	diversity	–		LCBD	(c,	d)	predicted	by	linear	mixed	
models	(black	lines)	with	95%	confidence	interval	(gray	shading).	Alpha	diversity	was	log-	transformed,	and	the	explanatory	variables	were	
standardized.	Data	points	are	also	shown	with	gray	dots	(n =	3734).	For	model	details	see	Table 3.
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8 of 13  |     GAVIOLI et al.

4  |  DISCUSSION

This	study	examined	the	variation	in	alpha	and	beta	diversity	of	fish	
communities	 in	 Italian	rivers	considering	 land	use,	geospatial	vari-
ables,	and	invasion	degree	effects.	As	hypothesized	(H1),	 invasion	
degree	was	the	strongest	driver	for	beta	diversity	and	the	second	
best	 driver	 of	 alpha	 diversity,	 after	 altitude.	 Alpha	 diversity,	 site	
uniqueness	(i.e.,	LCBD),	and	the	turnover	component	of	beta	diver-
sity	showed	a	positive	relationship	with	 invasion	degree,	whereas	
the	 nestedness	 component	 of	 beta	 diversity	 showed	 a	 negative	
relationship.	 In	 contrast	 to	our	hypothesis	 (H2),	 sites	with	unique	
fish	communities	(i.e.	higher	LCBD	values)	showed	higher	alpha	di-
versity.	The	most	widely	occurring	species	contributed	more	to	site	

uniqueness	(i.e.	SCBD),	both	for	native	and	exotic	species,	disagree-
ing	with	(H3).

4.1  |  Invasion degree

We	 found	 a	 positive	 relationship	 between	 species	 richness	 and	
invasion	 degree	 suggesting	 that	 the	 presence	 of	 non-	native	 spe-
cies	equaled	or	exceeded	species	 loss	within	sites	 (Li	et	al.,	2020).	
However,	 the	 effect	 of	 environmental	 conditions	 cannot	 be	 ruled	
out,	as	environmental	conditions	can	benefit	both	native	and	non-	
native	 species	 increasing	 habitat	 complexity	 and,	 thus,	 provide	
habitats	suitable	for	most	native	and	non-	native	species	(Stohlgren	

F I G U R E  4 Conditional	(black	dots)	and	
marginal	(white	dots)	R2 for predictors of 
alpha	diversity	(a)	and	local	contribution	
to	Beta	diversity	(b).	Bars	represent	the	
confidence	intervals	at	95%	estimated	by	
1000	bootstrap	iterations.
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    |  9 of 13GAVIOLI et al.

et al., 2006),	especially	at	low	invasion	degree	(Takács	et	al.,	2021).	
Furthermore,	it	is	likely	that	a	longer	temporal	scale,	non-	native	spe-
cies	 could	 cause	 the	 loss	 of	 rare	native	 fish	 species	 and	diversity,	
resulting	in	change	at	a	regional	spatial	scale	(Dornelas	et	al.,	2014; 
Moi et al., 2021).

Different	 results	 were	 found	 about	 non-	native	 species	 influ-
ence	on	alpha	and	beta	diversity,	depending,	 for	example,	on	 the	
study	scale,	river	types,	and	diversity	metrics	used	(Li	et	al.,	2020; 
Takács	et	al.,	2021).	At	the	global	level,	non-	native	species	promote	
destabilization	 of	 native	 communities	 (Erős,	 Comte,	 et	 al.,	 2020)	
and	contribute	to	fish	extinction	(Clavero	&	García-	Berthou,	2005).	
However,	up	to	now,	no	fish	extinctions	due	to	non-	native	species	
were	 documented	 at	 national	 level	 in	 Italian	 freshwaters	 (Bianco	
&	Ketmaier,	2015;	 IUCN,	2021),	even	 if	 they	promote	the	decline	
of	 native	 species	 populations	 (e.g.	 Carosi	 et	 al.,	 2017; Castaldelli 
et al., 2013; Giannetto et al., 2012; Milardi et al., 2018).

We	also	 found	 that	 the	 turnover	was	 the	main	component	of	
beta	 diversity	 in	 the	 fish	 communities,	 and	 it	 positively	 related	
to invasion degree. This suggested that the replacement of some 
species	 by	 others	 is	 the	 main	 phenomenon	 occurring	 at	 a	 re-
gional	scale,	and	non-	native	species	were	involved	in	the	process.	
On	 the	 other	 hand,	 the	 replacement	 of	 native	 species	with	 non-	
native	 species	 concurs	with	 the	 increase	of	 similarity	of	 commu-
nities	 and	 thus	homogenizes	 the	biota	 (Kortz	&	Magurran,	2019; 
Rahel, 2002).	Similar	homogenizing	effects	of	exotic	species	were	
previously	found	in	Italy	(Gavioli	et	al.,	2019),	but	species	introduc-
tions	were	found	also	to	decrease	the	functional	diversity	of	host	
communities	(Milardi	et	al.,	2020;	Shuai	et	al.,	2018).	These	results	
could	be	also	assessed	by	considering	only	those	areas	which	have	
been	affected	by	invaders	(e.g.	Milardi	et	al.,	2018)	or	by	comparing	
communities	before	and	after	species	introductions	(Olden,	2006).	
Unfortunately,	due	to	the	historical	species	introductions	that	took	
place	long	time	ago,	we	could	only	analyze	the	introduction	gradi-
ent	over	a	large	number	of	sites.

Surprisingly,	we	found	a	positive	relationship	between	invasion	
degree	and	LCBD	values,	which	suggests	that	invaded	communities	
showed	 unique	 species	 composition.	 However,	 sites	 with	 unique	
species	composition	include	both	species-	rich	sites	having	peculiar	
combinations	of	native	and	non-	native	species	and	degraded	sites	
(Legendre	&	De	Cáceres,	2013).	Such	complexity	of	LCBD	suggests	
that	its	results	should	be	evaluated	using	caution.

4.2  |  Geospatial and land use variables

Among	geospatial	 and	 land	use	variables,	 altitude	had	 the	 strong-
est	influence	on	alpha	and	beta	diversity.	The	decrease	of	fish	alpha	
diversity	along	with	increasing	altitude	was	not	surprising	and	could	
be	linked	to	temperature,	stream	gradient	(e.g.,	change	of	depth	and	
width),	 habitat	 fragmentation,	 or	 availability	 of	 natural	 resources	
(e.g.	Askeyev	et	al.,	2017;	Jaramillo-	Villa	et	al.,	2010),	although	some	
exceptions	have	been	reported	with	an	increase	in	fish	diversity	at	
higher	elevation	in	South	America	(Carvajal-	Quintero	et	al.,	2015).

In	 our	 study,	 the	 fish	 community	 showed	 a	 decrease	 of	 LCBD	
along the altitudinal gradient, suggesting that communities at low 
altitudes	contribute	more	to	beta	diversity	 (i.e.,	are	probably	more	
unique	and	diverse).	Especially	at	 intermediate	altitudes,	the	rivers	
had	 greater	 number	 of	 species	 as	 compared	 to	 fish	 communities	
in	 the	 higher	 mountains,	 possibly	 by	 providing	 more	 habitat	 and	
fewer	 invaded	sites	at	 lower	elevation	 (Gavioli	et	al.,	2019;	Takács	
et al., 2021).	According	to	the	 literature,	LCBD	shows	different	al-
titudinal	 trends	 depending	 on	 the	 taxa	 and	 areas	 considered.	 For	
example,	a	negative	relationship	between	LCBD	and	elevation	was	
found	 in	 the	Thysanoptera	order	 (Dianzinga	et	al.,	2020),	whereas	
a	 unimodal	 relationship	 was	 found	 in	 microbial	 groups	 (Teittinen	
et al., 2016; Yeh et al., 2019).

Many	 species	 show	 a	 latitudinal	 gradient	 of	 diversity,	with	 a	
decrease	from	the	equator	to	the	poles	(Rosenzweig,	1995),	but	in	
our	study,	despite	the	large	latitudinal	gradient	considered,	alpha	
diversity	 showed	 an	 opposite	 latitudinal	 trend	 with	 the	 highest	
richness	 in	 the	northern	 rivers,	where	hotspot	of	diversity	were	
already	revealed	by	Gavioli	et	al.	(2019)	and	Milardi	et	al.	(2020).	
Overall,	 native	 and	 non-	native	 species	 diversity	 showed	 differ-
ent	spatial	distribution	suggesting	a	different	contribution	to	the	
total	 alpha	 diversity.	 This	 highlighted	 the	 importance	 of	 consid-
ering	both	native	and	non-	native	species	status	in	diversity	stud-
ies,	especially	when	biological	 invasions	are	occurring.	However,	
animal	 translocation	by	humans,	habitat	availability,	 and	 thermal	
optima	could	also	contribute	 to	 the	 latitudinal	diversity	gradient	
(Elvira	&	Almodóvar,	2001; Magurran et al., 2011;	Pelayo-	Villamil	
et al., 2015;	Wang	et	al.,	2020).

Land	use	variables	did	not	have	a	negative	effect	on	alpha	diver-
sity,	but	rather	human	presence	(i.e.,	rice	field	and	artificial	surface	
variables)	 showed	a	positive	 influence.	We	 further	 found	a	nega-
tive	effect	of	artificial	surface	and	agricultural	lands	on	LCBD	sug-
gesting	that	human	impact	resulted	in	less	unique	sites	in	terms	of	
species composition. These results are not surprising given also the 
role	of	humans	 in	promoting	 fish	diversity	 changes	 through	habi-
tat	alteration	and	species	introductions	and	translocation	(Anas	&	
Mandrak, 2021; Leprieur et al., 2008;	Rahel	&	Smith,	2018).	Similar	
results	were	also	found	in	fish	communities	of	Brazil	where	human	
modified	areas	were	 found	to	have	a	peculiar	assemblage	of	spe-
cies, increased fish β	diversity	(Leão	et	al.,	2020),	and	also	peculiar	
macroinvertebrate	assemblages	(Hawkins	et	al.,	2015).

4.3  |  Relationship between alpha and beta 
diversity and species contributions to beta diversity

The	relationship	between	alpha	and	beta	diversity	can	have	differ-
ent	 directions	 and	 can	 be	 affected	 by	multiple	 factors	 depending	
on	taxa	and	habitat	type	(e.g.	Giovâni	da	Silva	et	al.,	2018;	Heino	&	
Grönroos,	2017;	Szabo	et	al.,	2019).	In	our	study,	sites	with	unique	
species	composition	had	high	species	richness.	However,	high	alpha	
diversity	and	high	LCBD	values	do	not	necessary	mean	higher	eco-
logical	value	of	a	site.	For	example,	alpha	diversity	does	not	consider	
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10 of 13  |     GAVIOLI et al.

the	native	and	non-	native	status	of	species,	and	endemic	and	rare	
species	 could	 be	 underestimated	 by	 the	 presence	 of	 common	 in-
troduced	 species	 such	 as	 common	 carp	 (C. carpio)	 or	 crucian	 carp	
(Carassius spp.,)	(Gavioli	et	al.,	2019).

Common	and	abundant	species	also	drive	SCBD	values,	which	are	
directly	linked	to	species	occurrence	(Cai	et	al.,	2018;	Giovâni	da	Silva	
et al., 2018;	Heino	&	Grönroos,	2017).	For	example,	the	common	spe-
cies	as	brown	trout	 (Salmo trutta complex)	and	 Italian	chub	 (Squalius 
squalus)	showed	high	SCBD	despite	their	widespread	in	the	study	area.	
Furthermore,	SCBD	values	did	not	differ	between	native	and	exotic	
species, perhaps due to the simplified native and exotic fish communi-
ties,	or	due	to	the	similar	diversity	contribution	between	natives	and	
exotics.	However,	some	exceptions	to	this	result	can	be	found	in	up-
land	rivers	where	native	species	contribute	more	to	diversity	than	ex-
otic	ones	(Gavioli	et	al.,	2019)	because	of	different	response	of	stream	
and	river	communities	to	the	impacts	(Erős,	Czeglédi,	et	al.,	2020).

5  |  CONCLUSIONS

Our	study	provides	novel	evidence	that	invasion	degree	plays	a	cen-
tral	role	in	shaping	alpha	and	beta	diversity	patterns,	and	its	effects	
could	be	stronger	 than	other	anthropogenic	effects.	Although	 the	
presence	of	non-	native	 species	can	 increase	 local	diversity,	 at	 the	
regional	 level,	 fish	 communities	 become	 more	 homogenous	 with	
the	 loss	of	endemic	and	rare	species	 (Pool	&	Olden,	2012).	 In	 this	
scenario, it is crucial to prevent new species introductions and il-
legal	release	of	fish	(Rahel	&	Smith,	2018).	 In	future	studies,	 it	will	
be	 important	to	evaluate	separately	the	native	and	the	non-	native	
components	of	communities	to	 identify	 linkages	between	 invasion	
dynamics	and	diversity	loss	of	native	assemblages.
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