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ABSTRACT
In the context of cosmic microwave background (CMB) data analysis, we compare
the efficiency at large scale of two angular power spectrum algorithms, imple-
menting, respectively, the quadratic maximum likelihood (QML) estimator and
the pseudo spectrum (pseudo-C`) estimator. By exploiting 1000 realistic Monte
Carlo (MC) simulations, we find that the QML approach is markedly superior in
the range 2 6 ` 6 100. At the largest angular scales, e.g. ` 6 10, the variance
of the QML is almost 1/3 (1/2) that of the pseudo-C`, when we consider the
WMAP kq85 (kq85 enlarged by 8 degrees) mask, making the pseudo spectrum
estimator a very poor option. Even at multipoles 20 6 ` 6 60, where pseudo-C`

methods are traditionally used to feed the CMB likelihood algorithms, we find
an efficiency loss of about 20%, when we considered the WMAP kq85 mask, and
of about 15% for the kq85 mask enlarged by 8 degrees. This should be taken
into account when claiming accurate results based on pseudo-C` methods. Some
examples concerning typical large scale estimators are provided.

Key words: cosmic microwave background - cosmology: theory - cosmology:
observations - methods: numerical - methods: statistical - methods: data analysis

1 INTRODUCTION

The pattern of the cosmic microwave background (CMB)
anisotropy field can be used to probe cosmology to
high precision, as shown by the Wilkinson Microwave
Anisotropy Probe (WMAP) 9 years results (Hinshaw et
al. 2012) and by the very recent Planck cosmological re-
sults (see Planck Collaboration I (2013) and references
therein). CMB data have given a significant contribution
in setting up the Λ cold dark matter (ΛCDM) cosmo-
logical concordance model. The latter establishes a set of
basic quantities for which CMB observations and other
cosmological and astrophysical data-sets agree1: spatial

? E-mail:molinari@iasfbo.inaf.it
1 See, however, Planck Collaboration XX (2013) for a possible
tension concerning the Ωm estimate from Planck CMB and

galaxy clusters data.

curvature close to zero; ∼ 68.5% of the cosmic density in
the form of Dark Energy; ∼ 26.5% in cold dark matter;
∼ 5% in baryonic matter; and non perfectly scale invari-
ant adiabatic, primordial perturbations compatible with
Gaussianity (Planck Collaboration XVI 2013; Planck Col-
laboration XXIV 2013).

In particular, the largest scales of the temperature
anisotropies map are of great interest because they di-
rectly probe the Early Universe (or Inflationary Phase
of the Universe Starobinsky (1980); Guth (1981); Linde
(1982); Albrecht and Steinhardt (1982)). They correspond
to angular scales larger than the horizon size at decou-
pling as observed today, i.e. θ > 2◦ or, equivalently
` < `dec ∼ 90 (see for example Page et al. (2003)) with
` being the multipole order of the spherical harmonics
expansion

δT (n̂) =
∑
`m

a`m Y`m(n̂) , (1)
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2 D. Molinari et al.

where δT = T (n̂)− T0 is the temperature anisotropy ob-
served in the direction n̂ relative to the CMB average
temperature T0 ' 2.725K (Mather et al. (1999); see also
Fixsen et al. (1996) for a constraint of the CMB black
body shape), and with a`m being the coefficients of the
Spherical Harmonics Y`m(n̂).

The main contribution to the CMB anisotropies at
these large scales is provided by the so called Sachs-Wolfe
effect and by a subdominant integrated Sachs-Wolfe ef-
fect (Sachs and Wolfe 1967) which is different from zero
because of the recent (from a cosmological point of view)
transition to an accelerated phase of the Universe (Kof-
man and Starobinsky 1985) likely associated to a dark
energy (or Cosmological constant) component. In prin-
ciple a stochastic background of primordial gravitational
waves can also give a contribution to the temperature
CMB anisotropies at these largest scales, depending on
the tensor-to-scalar ratio, r, constrained by the current
data (Hinshaw et al. 2012; Planck Collaboration XVI
2013). A firm detection of the primordial gravitational
waves requires CMB B modes polarization measurement
at large scale (Knox and Turner 1994).

From the observational point of view the CMB
anisotropies temperature map, as observed by WMAP 9
year, is cosmic variance dominated, i.e., cosmic variance
exceeds the instrument noise, up to ` = 946, see (Ben-
nett et al. 2012). For Planck data this crossing happens
at ` ∼ 1500 (Planck Collaboration XV 2013). Therefore,
at the largest scales (` < `dec), the effect of instrumen-
tal noise is almost negligible. Keeping this in mind, it is
even more important to employ the most accurate data
analysis tools.

In the current paper we focus on the angular power
spectrum (APS), which is the main observable for diag-
nosis of the CMB map. The method that is capable to
provide APS with no bias and with the minimum vari-
ance, as provided by the Fisher-Cramer-Rao inequality
is the Quadratic Maximum Likelihood (QML) method
(Tegmark 1997; Tegmark and de Oliveira-Costa 2001).
Such an optimal method has the drawback of being com-
putationally expensive and then limited by the num-
ber of pixels. It is currently implemented and applied
at low resolution (see e.g. Gruppuso et al. (2009)). Sev-
eral other strategies for measuring C` at low resolution
have been developed and applied to CMB data with ex-
cellent results. These methods include different sampling
techniques such as Gibbs (Jewell et al. 2004; Wandelt et
al. 2004; Eriksen et al. 2004), adaptive importance (Ben-
abed et al. 2009) and Hamiltonian (Taylor et al. 2007).
At high multipoles (` > 30, Efstathiou (2004)) the so
called pseudo-C` algorithms are usually preferred to oth-
ers techniques. These methods, in fact, implement the es-
timation of power spectral densities from periodograms
(Hauser and Peebles 1974). Basically, they estimate the
Cl through the inverse Harmonical transform of a masked
map that is then deconvolved with geometrical kernels
and corrected with a noise bias term. These techniques,
such as Master (Hivon et al 2002), Cross-Spectra (Saha et
al. 2006; Polenta et al. 2005; Grain et al. 2009), give unbi-
ased estimates of the CMB power spectra and moreover,
it has been shown they work successfully when applied
to real data at high multipoles (Kuo et al 2004; Jones

et al. 2006; Wu et al. 2007; Dunkley et al. 2009). These
estimators are pretty quick and light from a computa-
tional point of view. However, it is well known that at
low multipoles they are not optimal since they provide
power spectra estimates with error bars larger than the
minimum variance. We note that in Efstathiou (2004b)
an hybrid approach has already been proposed, i.e. the
QML at low and the pseudo-C` at high multipoles, where
a recipe for an hybrid covariance is consistently given.
However, in that paper the QML is considered only up to
` = 40 since it is applied to maps with a full width at half
maximum (FWHM) = 3◦.

The aim of the present work is to compare quanti-
tatively the QML and pseudo-C` methods under realistic
assumptions focusing on the largest scales (i.e. low mul-
tipoles) where CMB anomalies are mainly located (Ben-
nett et al 2011; Planck Collaboration XXIII 2013). The
idea is to provide the scientific community with a refer-
ence analysis comparing the heavy QML method and the
light and quick pseudo-C` approach in the range of mul-
tipoles ` < `dec ∼ 90. Here we quantitatively address this
problem through realistic Monte Carlo (MC) simulations.
A similar analysis has been carried out by WMAP team
using the so-called C−1 method employed in Bennett et
al. (2012) that shows an improvement with respect to
the pseudo-C` method mostly located at very low multi-
poles and in the intermediate S/N regime. Moreover, we
evaluate the benefit of considering an optimal APS esti-
mation taking into account some examples of estimators
of anomalies that are commonly used at large scales to
test the consistency of the observations with the ΛCDM
model.

The paper is organized as follows. In Section 2 we
describe the considered implementations of QML and
pseudo-C` codes, called respectively BolPol and cRO-
MAster. In Section 3 the computational requirements for
both the methods are given. Section 4 is devoted to the
detailed description of the comparison and corresponding
results. Examples on how the previous analysis propa-
gates to the APS based estimators, commonly used in lit-
erature for the analysis of the large scales anomalies, are
provided in Section 4.4. Conclusions are drawn in Section
5.

2 DESCRIPTION OF THE CODES

In this section we give a description of the two considered
APS estimators. Specifically we consider cROMAster, as
an implementation of pseudo-C` method and BolPol as
implementation of the QML estimator.

2.1 BolPol

In order to evaluate the APS of full sky and masked sky
maps BolPol code adopts the QML estimator, introduced
in Tegmark (1997). In this section we describe the essence
of this method. Given a CMB temperature map x, the
QML provides estimates C̃` of the TT APS as

Ĉ` =
∑
`′

(F−1)``′
[
xtE`′x− tr(NE`′)

]
, (2)
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A comparison of CMB TT APS Estimators at Large Scales 3

where F``′ is the Fisher matrix, defined as

F``′ =
1

2
tr
[
C−1 ∂C

∂C`
C−1 ∂C

∂C`′

]
, (3)

and the E` matrix is given by

E` =
1

2
C−1 ∂C

∂C`
C−1, (4)

with C = S(C`) + N being the global covariance matrix
(signal plus noise contribution).

Although an initial assumption for a fiducial power
spectrum C` is needed in order to build the signal co-
variance matrix S(C`), it has been proven that the QML
method provides unbiased estimates of the power spec-
trum contained in the map regardless of the initial guess
(Tegmark 1997),

〈Ĉ`〉 = C` , (5)

where the average is taken over the ensemble of realiza-
tions (or, in a practical test, over MC realizations ex-
tracted from C`). On the other hand, the covariance ma-
trix associated to the estimates is given by the inverse of
the Fisher matrix

〈∆Ĉ`∆Ĉ`′〉 = (F−1)``′ , (6)

only when the fiducial spectrum C` = C`. In this case
the inverse of the Fisher matrix provides the minimum
variance. According to the Cramer-Rao inequality, which
sets a limit to the accuracy of an estimator, equation (6)
tells us that the QML has the smallest error bars. The
QML is then an optimal estimator because equations (5)
and (6) are both satisfied.

For a generalization to polarization spectra see
Tegmark and de Oliveira-Costa (2001).

2.2 cROMAster

cROMAster is an implementation of the pseudo-C`

method proposed by Hivon et al (2002), extended to allow
for both auto- and cross-power spectrum estimation (see
Polenta et al. (2005) for a comparison). A given sky map x
can be decomposed in CMB signal and noise as x = s+n,
and we define the masked sky pseudo-spectrum as:

C̃` =
1

2`+ 1

`∑
m=−`

|ã`m|2 = C̃S
` + Ñ` , (7)

where C̃S
` is the pseudo-spectrum of the sky signal, Ñ` is

the pseudo-spectrum of the noise present in the map, and
the pseudo-a`m coefficients are computed as:

ã`m =

∫
dΩx(θ, φ)w(θ, φ)Y ∗

`m(θ, φ) , (8)

where w is the applied mask.
In order to recover the full sky power spectrum, we

employ the following estimator:

Ĉ` = K−1

``
′

(
C̃` − Ñ`

)
(9)

where the mode-mode coupling kernel K−1

``
′ is a geomet-

rical correction that accounts for the loss of orthonor-
mality of the spherical harmonic functions in the cut sky
(see Hivon et al (2002) for more details). In fact, for an

isotropic sky signal that is a realization of a theoretical
power spectrum C`, one can write:

〈Ĉ`〉 = C` . (10)

Hence, equation (9) defines an unbiased estimator pro-
vided that the noise term Ñ` is properly removed, which
is usually done through MC simulations. However, for
current generation high-sensitivity experiments, such as
WMAP and Planck, the noise bias has to be known to bet-
ter than 0.1% accuracy, and therefore the cross-spectrum
approach is preferred (see, e.g. Bennett et al. (2012);
Planck Collaboration XV (2013)). In the latter case, the
pseudo-C` are computed by combining the spherical har-
monic coefficients from two or more maps with uncorre-
lated noise so that the ensemble average of Ñ` is null,
making the cross-spectrum estimator naturally unbiased.

For practical applications, i.e. involving colored noise
properties and arbitrary masks incorporating possible
non-uniform weighting of the data, there is no readily
available exact analytical expression for the covariance
matrix of this estimator. The error bars for pseudo-C`

methods can be roughly approximated as:

∆Ĉ` =

√
2

(2`+ 1)feff
sky

(C` +N`) (11)

where feff
sky is the effective fraction of the sky used for

the analysis which accounts for the weighting scheme of
the pixels. For a given sky coverage, a uniform weighting
scheme produces the largest feff

sky = fsky and is therefore
the optimal choice in the signal dominated regime, which
corresponds to large angular scales. On the other hand, an
inverse noise weighting scheme reduces N` and is the best
choice in the noise dominated regime, i.e. at small angu-
lar scales. A trade off between the two weighting scheme
should be applied in the intermediate regime, and an opti-
mal pseudo-C` method should employ the best weighting
scheme at a given multipole according to the S/N ratio
at that multipole.

In order to derive an accurate estimate of the covari-
ance matrix, the original approach proposed in Hivon et
al (2002) is to rely on signal and noise MC simulations:

Cov
{
Ĉ`, Ĉ`

′
}

= 〈(Ĉ` − 〈Ĉ`〉)(Ĉ`
′ − 〈Ĉ`

′ 〉)〉MC . (12)

This approach has been widely used (see e.g. Jones et
al. (2006); Pryke et al. (2008); Planck Collaboration II
(2013)), and it is also the baseline procedure for cRO-
MAster used for the analysis reported in this paper2.

2 For the sake of completeness, we notice that cROMAster
implements also an approach for error estimation based on

bootstrapping: for a given `, we generate a set of fake ã`m
by resampling the observed a`m with uniform probability, and
these are used to compute a set of fake C̃` to be fed into equa-

tion (12) to estimate the diagonal elements of the matrix. In

order account for the sky cut, only (2`+1)fsky
eff

elements of the

ã`m are averaged to compute the fake C̃`. This is a very fast

procedure based only on real data, and it is especially useful
for testing purposes (i.e. when having a quick look to the data
or checking for instrumental systematic effects). However, it

is not accurate enough for cosmological analysis especially at

c© 2014 RAS, MNRAS 000, 1–9



4 D. Molinari et al.

Estimating off-diagonal elements of the covariance
matrix with high accuracy requires a huge number of
simulations. In fact, assuming that the covariance es-
timate is Wishart distributed, the uncertainty on the
diagonal elements simply scales as

√
(2/Nsim), while

for the off-diagonal elements it scales as
√

1/Nsim ×√
(Cov`` ∗ Cov`′ `′ )/Cov``′ , which is significantly worse

in the presence of small correlations.
Tristram et al. (2005) proposed an analytical approx-

imation involving measured auto- and cross-power spectra
which is accurate only at high multipoles and for large
sky fraction. Planck power spectrum covariance is also
based on an analytical approximation (Planck Collabora-
tion XV 2013), that apart from being rather more com-
plex, involves a fiducial model C` as well as assuming
uncorrelated pixel noise.

3 COMPUTATIONAL REQUIREMENTS

BolPol is a fully parallel implementation of the QML
method, as described in Section 2.1, written in Fortran90.
Since the method works in pixel space the computational
cost rapidly increases as one considers higher resolution
maps of a given sky area. The original code, that has been
applied to WMAP 5 year data in (Gruppuso et al. 2009;
Paci et al. 2010), to WMAP 7 year data in (Gruppuso
et al. 2011; Paci et al. 2013), and to WMAP 9 year data
in (Gruppuso et al. 2013), performs the analysis both in
temperature and polarization. Here we consider a modifi-
cation of such implementation that works only on the tem-
perature sector and can therefore ingest higher resolution
maps than the original code. The following computational
requirements are referred to this version of BolPol which
has been already applied to Planck data (Planck Collab-
oration XV 2013; Planck Collaboration XXIII 2013).

The inversion of the covariance matrix C scales as the
third power of the side of the matrix, i.e. O(N3) being N
the number of observed pixels. The number of operations
is roughly driven, once the inversion of the total covari-
ance matrix is done, by the matrix-matrix multiplications
to build the operators EX

` in equation (4) and by calcu-

lating the Fisher matrix F ``′

XX′ given in equation (3). The
memory, RAM, required to build these matrices is of the
order of O(∆`N2) where ∆` is the range in multipoles of
C−1(∂C/∂CX

` ) (for every X) that are built and kept in
memory during the execution time. This implementation
is memory demanding, but it has the benefit of speeding
up the computations. For a temperature all-sky map of
49152 pixels (resolution parametrized by the HEALPix3

parameter Nside = 644, see Gorski et al. (2005)), the to-
tal amount of RAM needed by BolPol is 19 TB. When
we run the code into massively parallel computer clusters
such as FERMI, at CINECA5, it takes roughly one day

low multipoles and when only a small fraction of the sky is

considered. For this reason, we do not employ it here.
3 http://healpix.jpl.nasa.gov/
4 For the reader who is not familiar with HEALPix library,
we remind that Nside is implicitly defined by Npix = 12N2

side,
where Npix is the total number of pixels in a CMB map.
5 http://www.cineca.it/

using 16384 cores to perform a MC of 1000 maps with
20% of the sky masked. Possible future development and
optimization of the code will lead the QML method to
analyse higher resolution maps, but, at the moment, the
QML method can be applied only to low resolution, i.e.
large angular scales.

On the other side cROMAster is very light and can be
easily run on a common laptop since it works in harmonic
space.

4 COMPARISON

The main idea of the paper is to compare the two afore-
mentioned methods for APS extraction at the largest an-
gular scales under realistic conditions. Our goal is to quan-
titatively find out to what extent it is worth to use a QML
method with respect to a quicker and lighter pseudo-C`

approach.

4.1 Details of the simulations

We consider several cases summarized in Table 1. The
low resolution case, namely case 1 is parametrized by
Nside = 64 and corresponds to the maximum resolution
that BolPol is currently capable to treat. The high res-
olution case, i.e. case 2, with Nside = 256 is analysed
by cROMAster. Of course cROMAster can be run also
at higher resolution but this does not impact the range of
multipoles where we wish to compare the two codes which
essentially is ` < `dec ∼ 90. The noise value of 1µK2 at
Nside = 256 is the typical variance for a Planck-like exper-
iment (Planck Collaboration I 2013). The adopted value
at large scale is still 1µK2, that of course corresponds to
an higher noise. This is done to regularize the numerics
for this case. In practice, even if different, the noise levels
for both cases of Table 1 are negligible and this different
treatment does not impact on the analysis we perform.

Each of the cases of Table 1 is analysed with and
without Galactic masks. For the latter option, we used the
WMAP kq85 temperature mask (Fig. 1a), publicly avail-
able at the LAMBDA website6, and an extended version
of the kq85 that we call “kq85 + 8 deg”(Fig. 1b) where we
have extended the edges of the mask by 8 degrees. The
former mask excludes about 20% of the sky, the latter
about 48%. In the full sky case and in a signal domi-
nated regime, the two codes are algebraically equivalent.
We have checked that this is indeed the case for internal
consistency7. Since a Galactic masking is in practice un-
avoidable in CMB data analysis we do not report on this
unrealistic case.

For case 1 and 2 we analyse 1000 “signal plus noise”
MC simulations where the signal is randomly extracted
through the synfast routine of the HEALPix package
(Gorski et al. 2005), from a ΛCDM Planck best fit model
(Planck Collaboration XV 2013) and the noise from a
Gaussian distribution with variance given by the value
reported in Table 1.

6 http://lambda.gsfc.nasa.gov/
7 Since the codes run at different resolutions, their difference

is driven by the considered smoothing, i.e. FWHM.

c© 2014 RAS, MNRAS 000, 1–9



A comparison of CMB TT APS Estimators at Large Scales 5

Figure 1. The masks used for the analyses in this paper.
(a) WMAP kq85 temperature mask. (b) WMAP kq85 mask

extended by 8 degrees.

Case Res Beam Noise Nsims Code Masks

Nside deg µK2

1 64 0.916 1.0 1000 B,C a,b
2 256 0.573 1.0 1000 C a,b

Table 1. Details of the considered MC simulations. Two cases
are taken into account, each of them consist of 1000 realiza-

tions from the best fit of Planck model (in fact the choice of the
model is irrelevant for our purposes). First column “Case” is

for type of simulations. Second column “Res” is for the resolu-

tion which is expressed in terms of the parameter Nside. Third
column “Beam” is for the adopted FWHM. Fourth column is
for the level of “White noise” which is given in rms2. Fifth col-

umn “Nsims” contains the number of considered simulations.
Sixth column “Code” specifies which code is applied for each

case, where B stands for BolPol and C for cROMAster. Seventh

column “Masks” identify the masks that have been applied to
the simulated maps to perform the analysis: the WMAP kq85

maks (a) and the kq85 enlarged by 8 degrees (b). See the text
for more details.

The averages and variances of the APS of the two
MC simulations are plotted in Fig. 2 where we considered
the WMAP kq85 mask (upper panel) and the kq85 mask
enlarged by 8 degrees (lower panel). These figures are con-
sidered as the validation of the performed extractions8.

8 In fact Fig. 2 might be seen as the validation of both codes

and extractions at the same time. However, an extensive vali-
dation of the codes is already given in (Gruppuso et al. 2009)

and in (Polenta et al. 2005).

Figure 2. Average and variance of the APS of the MC simula-

tions analyzed with BolPol (blue estimates) and cROMAster
(red estimates) obtained masking the sky with the WMAP

kq85 mask (upper panel) and the kq85 enlarged by 8 degrees

(lower panel). See Table 1 for details.

4.2 Figure of Merit

In order to make a detailed comparison between the two
methods, we have to define a suitable estimator. Our ap-
proach is very similar to what is proposed by Efstathiou
(2004).

For each multipole and for each realization of MC
simulations, we compute the APS and build plots as in
Fig. 3. In such a figure each point P = (x, y) has the ab-
scissa x given by the APS obtained with anafast9 in the
ideal case10 (i.e. full sky and no noise) and the ordinate
y that is given by the APS estimated through the BolPol
or cROMAster for the cases of Table 1.

If the codes were “perfect” only the diagonal of this
kind of plots would be populated (see black solid line in
Fig. 3). In fact there are two clouds of points, one for
BolPol estimates, shown in blue, and one for the cRO-
MAster estimates, shown in red. The idea is to measure
the dispersion of the two clouds around the solid black

9 It is an HEALPix routine (Gorski et al. 2005).
10 In such an ideal case anafast provides the true APS of the

maps.

c© 2014 RAS, MNRAS 000, 1–9



6 D. Molinari et al.

Figure 3. All the 1000 APS estimates at multipole ` = 20 for

the masked case of Table 1 when we considered the WMAP
kq85 mask (upper panel) and the kq85 mask enlarged by 8

degrees (lower panel). Blue circles estimates are for BolPol and
red triangles estimates for cROMAster.

line. This defines our estimator aimed at the comparison
of the two codes. The code that shows larger dispersion
has an intrinsic larger variance in the determination of the
APS. In practice, for each single multipole ` we define the
variance D2

` as the mean of the squared distance d` of each
point P from the line y = x, which is the diagonal of the
first quadrant of this Cartesian plane,

D
2[B/C]
` ≡ 〈d`(P [B/C], diagonal)2〉 , (13)

where the labels B/C refer to BolPol and cROMAster and
with 〈...〉 standing for the “ensamble” average. We un-
derline that, in this way, the estimator cancels the uncer-
tainty due to the cosmic variance that is the same for both
the codes and highlight their different intrinsic variance.
Taking the square root of equation (13) we obtain

D
[B/C]
` =

`(`+ 1)

2
√

2π
(〈(C [B/C]

` − CA
` )2〉)1/2 , (14)

where CA
` is the APS computed with anafast in the ideal

case. From equation (14) it is clear that the unit of D
B/C
`

is the same as the one used for the APS, that in our case
is µK2. Equation (14) is what we consider in the next
section to perform the comparison.

Figure 5. D
[C]
`

−D
[B]
`

vs ` when we considered the WMAP

kq85 mask (green) and the kq85 mask enlarged by 8 degrees
(magenta).

4.3 Results

Fig. 4 shows the estimator D`, defined in equation (14),
as a function of the multipole ` for each of the cases of Ta-
ble 1. This plot demonstrates that the intrinsic variance
of BolPol is lower than the intrinsic variance of cROMAs-
ter up to ` ∼ 100. The differences between the two esti-
mators, (D

[C]
` − D[B]

` ) versus ` is shown in Fig. 5. This
makes clear that the difference in the accuracy of the two
methods is higher at lowest multipoles and that it grows
as the number of masked pixel increases. In particular,
when we consider the WMAP kq85 mask (kq85 enlarged
by 8 degrees), the intrinsic dispersion introduced by the
pseudo-C` method is at least a factor of 3 (a factor of 2)
greater than that of the QML estimates for ` 6 10. In the
range 20 6 ` 6 60 the QML is about 20% (15%) more
accurate than the pseudo-C` method.

At higher multipoles, i.e. ` > 100, the larger QML
intrinsic variance displayed in Fig. 4 is entirely due to
the lower resolution at which BolPol is run with respect
to cROMAster. Note however that when the two codes
are run at the same resolution, i.e. Nside = 64, the QML
has always a smaller variance than cROMAster in the
commonly valid multipole domain11, as shown in Fig. 6
when we used the WMAP kq85 mask12. These results
show that the resolution given by Nside = 64 is enough to
have an optimal APS extraction with the QML method in
the range of interest (` < `dec ∼ 90) compared to pseudo-
C` estimates performed on maps at the best resolution
allowed by the observations.

4.4 Applications

We consider here two estimators of anomalies used at
large scales in CMB data analysis to illustrate the ben-

11 cROMAster results are fully reliable only up to `max =
2 ×Nside = 128
12 We obtained the same result when we considered the en-

larged mask.

c© 2014 RAS, MNRAS 000, 1–9



A comparison of CMB TT APS Estimators at Large Scales 7

Figure 4. D` vs multipole ` for each of the cases described in Table 1, when we considered the WMAP kq85 mask (left) and the
kq85 mask enlarged by 8 degrees (right). Solid line for Cromaster, dashed line for BolPol.

Figure 6. D` vs multipole ` as in Fig. 4(left), but with the
codes run at the same resolution (Nside = 64).

efit of applying an optimal APS estimator. The estima-
tor, R, see Kim and Naselsky (2010a) and Gruppuso et
al. (2011) for the TT parity analysis, is R ≡ CTT

+ /CTT
−

where CTT
+/− ≡ 1/(`tot(+/−))

∑+/−
`=2,lmax

`(`+1)/(2π)CTT
`

and `tot(+/−) is the total number of even (+) or odd
(-) multipoles taken into account in the sum. The Vari-
ance estimator, σ2, (e.g. Monteserin et al. (2008), Cruz
et al (2010), Planck Collaboration XXIII (2013), Grup-
puso et al. (2013) and reference therein) is defined by

σ2 = 〈δT 2〉 =
∑`max

`>2
(2`+ 1/(4π))CTT

` .
The variances of these two estimators are affected by

the uncertainties on the APS. In Fig.7 we show the ratio
of the variances of R obtained through the APS extracted
by cROMAster and BolPol for each `max. In the same fig-
ure, we show also the ratio between the variances of σ2

obtained with cROMAster and BolPol. It is clear that
the lower uncertainty given by BolPol leads to a lower
variance for both the two estimators in the range of in-
terest (` 6 `dec ' 90). For the TT Parity estimator the

Variance
Parity

mask KQ85
mask KQ85 + 8 deg

20 40 60 80 100

1.0

1.2

1.4

1.6

1.8

maximum multipole

V
ar

C
R

O
�V

ar
B

O
L

Figure 7. Ratio of the variances (cROMAster over BolPol)

for the Variance (solid line) and the TT Parity (dashed line)
estimators as a function of the multipoles obtained from the

BolPol and cROMAster APS extracted in the previous section

when we considered the WMAP kq85 mask (green) and the
kq85 mask enlarged by 8 degrees (magenta).

average gain in efficiency of about 10% when we use the
WMAP kq85 mask (20% for the kq85 mask enlarged by 8
degrees) with a peak at the lowest scales becoming higher
than 40% for both the masks. In the case of Variance es-
timator, when we consider the WMAP kq85 mask, the
variance obtained from BolPol APS is lower than the one
obtained from the cROMAster APS by a factor of about
15% becoming even higher for very large scales (` 6 40).
When we consider the kq85 mask enlarged by 8 degrees
the gain in accuracy, when we use the QML estimator, is
always about 22%. We also note that since the Variance
estimator strongly depends on very low multipoles where
the APS extractor methods have their larger differences,
its ratio is greater than 1 even at multipoles higher than
`dec.

c© 2014 RAS, MNRAS 000, 1–9
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5 CONCLUSION

Our main result is given by Fig. 4 and 5 where the intrin-
sic variance, see equation (14), of the two APS estimators,
namely BolPol and cROMAster, are compared under re-
alistic conditions. We have found that the QML method
is markedly preferable in the range 2 6 ` 6 100. More-
over, we note that the largest difference between the two
codes is for the lowest multipoles: for ` smaller than ∼ 20
the square root of the intrinsic variance introduced in the
estimates by the pseudo-C` is at least up to three times
(two times) the QML one when we consider the WMAP
kq85 mask (respectively the kq85 mask enlarged by 8 de-
grees). For higher multipoles (i.e. ` > 100) we observe an
opposite behaviour. This stems from the smoothing of the
input maps that in turn it is a consequence of the adopted
resolutions. Note however that when the two codes are
run at the same resolution, i.e. Nside = 64, the QML has
always a smaller variance than cROMAster in the com-
monly valid multipole domain, as shown in Fig. 6.

We have also analysed how the intrinsic variance
of the two APS methods impacts on some typical large
scales anomaly estimators like the TT Parity estimator
and Variance estimator. In conclusion, the use of BolPol
for low resolution map analysis will bring to tighter con-
straints for these kind of estimators.

Therefore we suggest to use the QML estimator and
not the pseudo-C` method in order to perform accurate
analyses that are based on the APS at large angular scales
(at least ` 6 `dec ' 90). This might be of particular inter-
est for studying large scale anomalies in the temperature
anisotropy pattern. In a future work we will extend this
analysis to the polarization field, which is crucial to reveal
the reionization imprints at large scale.
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