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1 INTRODUCTION

1.1 Goal of the paper

In this paper, we pursue our investigation on geometric estimates for the following sharp
fractional Poincaré constant

𝜆𝑠1(Ω) ∶= inf
𝑢∈𝐶∞

0
(Ω)⧵{0}

[𝑢]2
𝑊𝑠,2(ℝ2)‖𝑢‖2
𝐿2(Ω)

, (1.1)

on planar open sets Ω ⊆ ℝ2. Here the parameter 0 < 𝑠 < 1 represents a fractional order of
differentiation and the quantity [ ⋅ ]𝑊𝑠,2(ℝ2) is given by

[𝑢]𝑊𝑠,2(ℝ2) =

(¨
ℝ2×ℝ2

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|2+2 𝑠 𝑑𝑥 𝑑𝑦

) 1
2

, for every 𝑢 ∈ 𝐶∞0 (ℝ
2).

All functions in 𝐶∞
0
(Ω) are considered as elements of 𝐶∞

0
(ℝ2), by extending them to be zero out-

side Ω. The infimum in (1.1) can be equivalently performed on the space 𝑊𝑠,2
0
(Ω). The latter is

defined as the closure of 𝐶∞
0
(Ω) in the fractional Sobolev–Slobodeckiı̆ space

𝑊𝑠,2(ℝ2) =
{
𝑢 ∈ 𝐿2(ℝ2) ∶ [𝑢]𝑊𝑠,2(ℝ2) < +∞

}
,

endowed with its natural norm. Whenever the infimum (1.1) becomes a minimum on this
larger space 𝑊𝑠,2

0
(Ω), the quantity 𝜆𝑠

1
(Ω) will be called first eigenvalue of the fractional

Dirichlet–Laplacian of order 𝑠 on Ω.
The constant 𝜆𝑠

1
(Ω) can be seen as a fractional counterpart of

𝜆1(Ω) ∶= inf
𝑢∈𝐶∞

0
(Ω)⧵{0}

‖∇𝑢‖2
𝐿2(Ω)‖𝑢‖2
𝐿2(Ω)

,
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 3 of 45

which coincides with the bottom of the spectrum of the more familiar Dirichlet–Laplacian onΩ.
The link between 𝜆𝑠

1
and 𝜆1 can be made more precise by recalling that

lim
𝑠↗1

(1 − 𝑠) [𝑢]2
𝑊𝑠,2(ℝ2)

= 𝐶 ‖∇𝑢‖2
𝐿2(Ω)

, for every 𝑢 ∈ 𝐶∞0 (Ω),

for some universal constant 𝐶 > 0, see [8] or [14, chapter 3].
The present paper is a continuation of our previous work [6], to which we refer for more back-

ground material. In particular, we still focus on getting lower bounds on 𝜆𝑠
1
(Ω), in terms of the

inradius of Ω, which is defined by

𝑟Ω ∶= sup
{
𝑟 > 0 ∶ ∃𝑥0 ∈ Ω such that 𝐵𝑟(𝑥0) ⊆ Ω

}
,

where 𝐵𝑟(𝑥0) is the open disk of center 𝑥0 and radius 𝑟.
In [6, Theorem 1.1], extending a classical result of Makai [21] and Hayman [18] valid for 𝜆1 (see

also [2, 3] and [4]), we showed that we have

𝜆𝑠1(Ω) ⩾ 𝑠

(
1

𝑟Ω

)2 𝑠
,

for every simply connected open set Ω ⊆ ℝ2 with finite inradius and for every 1∕2 < 𝑠 < 1. Here
the constant 𝑠 depends on 𝑠 only and it has the following asymptotic behaviors†

𝑠 ∼ (2 𝑠 − 1) for 𝑠 ↘ 1

2
and 𝑠 ∼

1

1 − 𝑠
for 𝑠 ↗ 1.

Moreover, we showed by means of a counterexample, that for 0 < 𝑠 ⩽ 1∕2 such a lower bound is
not possible (see [6, Theorem 1.3]).
In the present paper, we considerably extend this result, by considering open connected planar

sets having nontrivial topology. More precisely, we will work with the following class of sets:

Definition. Let us indicate by (ℝ2)∗ the one-point compactification of ℝ2, that is, the compact
space obtained by adding to ℝ2 the point at infinity. We say that an open connected set Ω ⊆ ℝ2

is multiply connected of order 𝑘 if its complement in (ℝ2)∗ has 𝑘 connected components. When
𝑘 = 1, we will simply say that Ω is simply connected.

We thus seek for an estimate of the type

𝜆𝑠1(Ω) ⩾ 𝑠,𝑘

(
1

𝑟Ω

)2 𝑠
,

for open multiply connected sets of order 𝑘 in the plane. In light of the simply connected case
recalled above, we can directly restrict our analysis to the case 1∕2 < 𝑠 < 1 only.

†Here, the writing “𝑓 ∼ g for 𝑥 → 𝑥0” has to be intended in the following sense

0 < lim inf
𝑥→𝑥0

𝑓(𝑥)

g(𝑥)
⩽ lim sup

𝑥→𝑥0

𝑓(𝑥)

g(𝑥)
< +∞.
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4 of 45 BIANCHI and BRASCO

1.2 The Croke–Osserman–Taylor inequality

For the classical case of 𝜆1, the first lower bound of this type is due to Osserman. Notably, [23,
Theorem, p. 546] shows that

𝜆1(Ω) ⩾ min
{
1

4
,
1

𝑘2

}(
1

𝑟Ω

)2
,

for every Ω ⊆ ℝ2 open multiply connected set of order 𝑘. The proof by Osserman is based on a
refinement of the so-called Cheeger’s inequality, in conjunction with Bonnesen-type inequalities.
It turns out that the estimate by Osserman does not display the sharp dependence on the topol-

ogy of the sets, that is, the term 1∕𝑘2 is suboptimal, as 𝑘 diverges to ∞. Indeed, the result by
Osserman has been improved by Taylor in [30, Theorem 2], showing that

𝜆1(Ω) ⩾
𝐶

𝑘

(
1

𝑟Ω

)2
,

for some constant𝐶 > 0 that is not made explicit in [30]. The dependence on 𝑘 is now optimal, for
𝑘 going to∞. The proof by Taylor is quite sophisticated and completely different fromOsserman’s
one: it is based on estimating the first eigenvalue of the Laplacian with mixed boundary condi-
tions (i.e., Dirichlet and Neumann) of a set, in terms of the capacity of the “Dirichlet region”. Such
an estimate is achieved by means of heat kernel estimates. This method is connected with Tay-
lor’s work [31] on the scattering length of a positive potential, which acts as a perturbation of the
Laplacian (see also [28] for a generalization to the case of the fractional Laplacian). We will come
back in a moment on Taylor’s proof, as our main result will be based on the same arguments.
An improvement of Taylor’s estimate has been given by Croke, who gives the explicit lower

bound

𝜆1(Ω) ⩾
1

2 𝑘

(
1

𝑟Ω

)2
,

for 𝑘 ⩾ 2 (see [12, Theorem]). The proof by Croke is more elementary and based on refining
Osserman’s argument.
Finally, for completeness we mention [17, Theorem 3] by Graversen and Rao, which proves the

following lower bound

𝜆1(Ω) ⩾
𝐶𝑘

𝑟2
Ω

, where 𝐶𝑘 =

⎧⎪⎨⎪⎩
1∕4, if 𝑘 = 1,

𝐴

𝑘 log 𝑘
, if 𝑘 ⩾ 2,

for some 𝐴 > 0 (see [17, Theorem 3]). Their result is slightly worse when compared with the ones
by Croke and Taylor. We notice that the proof in [17] uses techniques from the theory of Brownian
motion, which are quite close to the ideas by Taylor.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 5 of 45

1.3 Main results

Our goal is to generalize the Croke–Osserman–Taylor result to the setting of fractional Sobolev
spaces. We also want to discuss the optimality of the estimate we obtain, with respect to the
parameters 𝑘 and 𝑠.

Theorem 1.1 (Main Theorem). Let 1∕2 < 𝑠 < 1, there exists a constant 𝜗𝑠 > 0 such that for every
Ω ⊆ ℝ2 open multiply connected set of order 𝑘 ∈ ℕ ⧵ {0}, we have

𝜆𝑠1(Ω) ⩾
𝜗𝑠
𝑘𝑠

(
1

𝑟Ω

)2 𝑠
. (1.2)

Moreover, the constant 𝜗𝑠 has the following asymptotic behaviors

𝜗𝑠 ∼ (2 𝑠 − 1) for 𝑠 ↘ 1

2
and 𝜗𝑠 ∼

1

1 − 𝑠
for 𝑠 ↗ 1.

The next result shows that the estimate (1.2) is sharp, apart from the evaluation of the absolute
constant†.

Theorem 1.2 (Optimality). The following facts hold.

(1) For everyΩ ⊆ ℝ2 open set, we have

lim sup
𝑠↗1

(1 − 𝑠) 𝜆𝑠1(Ω) ⩽
1

2
𝜆1(Ω).

Thus, the estimate (1.2) is sharp in its dependence on 𝑠 ↗ 1. In particular, by taking the limit as
𝑠 goes to 1 in (1.2), we get the classical Croke–Osserman–Taylor inequality, possibly with a worse
constant.

(2) Let 1∕2 < 𝑠 < 1, there exists a sequence {Ω𝑘}𝑘∈ℕ⧵{0} ⊆ ℝ2 of open sets such that Ω𝑘 is multiply
connected of order 𝑘

𝑟Ω𝑘
⩽ 𝐶 and lim sup

𝑘→∞
𝑘𝑠 𝜆𝑠1(Ω𝑘) < +∞.

Thus, the estimate (1.2) is sharp in its dependence on 𝑘 → ∞.
(3) For every 𝑘 ∈ ℕ ⧵ {0}, there exists Θ𝑘 ⊆ ℝ2 an open multiply connected set of order 𝑘, such that

𝑟Θ𝑘
< +∞ and lim sup

𝑠↘1
2

𝜆𝑠
1
(Θ𝑘)

2 𝑠 − 1
< +∞.

Thus, the estimate (1.2) is sharp in its dependence on 𝑠 ↘ 1∕2.

1.4 Comments on the proofs

As anticipated above, the statement of Theorem 1.1 contains our previous result [6, Theorem 1.1]
as a particular case. Indeed, the latter was concerned with simply connected sets, that is, with

† This is a quotation from Taylor’s paper, see [30, p. 452].
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6 of 45 BIANCHI and BRASCO

the case 𝑘 = 1. However, the proof given here is completely different: the elegant and elementary
argument used in [6], taken from [18], crucially exploited the simple connectedness andwould not
work here. Actually, a much more sophisticated argument is needed now. We also point out that
it seems extremely complicated to adapt the proof by Osserman (and Croke), because a genuine
Cheeger’s inequality is still missing in the fractional case.
The general strategy for proving Theorem 1.1 will be the same as in [30]. However, even if we

closely follow Taylor’s ideas, some important modifications are needed and new technical diffi-
culties arise. In addition, we tried to simplify and/or expand some of the arguments contained in
[30]. We now expose the overall strategy of the proof and highlight the main changes needed to
cope with the fractional case.

(1) At first, we tile the whole plane ℝ2 by a family of squares {𝑖,𝑗}(𝑖,𝑗)∈ℤ2 . By observing that for
every 𝑢 ∈ 𝐶∞

0
(Ω), we have

[𝑢]2
𝑊𝑠,2(ℝ2)

⩾
∑

(𝑖,𝑗)∈ℤ2

¨
𝑖,𝑗×𝑖,𝑗

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|2+2 𝑠 𝑑𝑥 𝑑𝑦,

we can reduce the problem to proving a “regional” fractional Poincaré inequality on squares
such that 𝑖,𝑗 ∩ Ω ≠ ∅. Of course, the main difficulty lies in getting such an inequality with
an explicit constant, which only depends on the geometry (i.e., on 𝑟Ω) and topology (i.e., on
𝑘) of the open set Ω.

(2) This type of Poincaré inequality is possible only if 𝑢 ∈ 𝐶∞
0
(Ω) vanishes on “sufficiently large

portions” of 𝑖,𝑗 , for every square 𝑖,𝑗 intersecting Ω. Here “largeness” has to be intended in
the sense of fractional Sobolev capacity. Thus, the first important step of this strategy is to prove
aMaz’ya-type Poincaré inequality on a square, for functions vanishing on a compact subset Σ
of positive fractional capacity (see Proposition 4.3). The constant in such an inequality can be
estimated from below in terms of the capacity of the “Dirichlet region” Σ.

(3) The second step consists in converting the previous analytic estimate into a geometric one. In
other words, we have to bound from below the fractional capacity of the “Dirichlet region” Σ
in terms of some of its geometric features. This can be done by using orthogonal projections,
which enable a dimensional reduction argument. In the two-dimensional setting, this permits
to estimate the fractional capacity of Σ in terms of the length of its orthogonal projection
on a line. Such an estimate is possible as soon as points have positive fractional capacity in
dimension 1. This happens precisely if and only if 𝑠 > 1∕2.

(4) The previous two points clarify that, in order to conclude the proof, we need to know that in
each square𝑖,𝑗 intersectingΩ, there is a “Dirichlet region” Σ𝑖,𝑗 having at least an orthogonal
projection “large enough,” that is, with a length bounded from below in terms of 𝑟Ω and 𝑘, in
a uniform way.
Here we crucially rely on a topological argument by Taylor, that we have called “Taylor’s

fatness lemma” (see Lemma 2.1). In a nutshell, it asserts that any multiply connected planar
set Ω with finite inradius has a “locally uniformly fat” complement. This means that, if we
choose the size of 𝑖,𝑗 sufficiently large (in terms of 𝑟Ω and 𝑘), then this square must contain
a portion of ℝ2 ⧵ Ω that has an orthogonal projection with

length ≃
√
𝑘 𝑟Ω,

in a universal fashion, that is, no matter the location of the square.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 7 of 45

Differently from Taylor’s paper, we work here with a variational definition of (fractional) capacity
(see, for example, [1, 25, 26, 32]), which appears more natural and well-adapted to the problem.
This permits to prove the Poincaré inequality at point (2) above in an elementary way, by avoiding
both the heat kernel estimate and the reference to an eigenvalue with mixed boundary conditions
used in [30]. Both points would have been problematic (or at least complicated) in the fractional
setting. Also, we point out that our proof of the Maz’ya-type Poincaré inequality is genuinely
nonlinear in nature.
As for point (3): with respect to [30], we expand the explanations and try to make the geometric

estimates as much quantitative as possible. There is in addition a technical difficulty linked to the
fractional case: in the classical case treated by Taylor, one essential ingredient of the dimensional
reduction argument is the following simple algebraic fact

|𝜕𝜔𝑢|2 ⩽ |∇𝑢|2, for every 𝜔 ∈ 𝕊𝑁−1.

In the fractional case, there is no direct analogue of this simple formula. Nevertheless, it is possible
to give a sort of fractional counterpart of this property (see Proposition 3.3), but the proof is by
far less straightforward: in order to prove it, we find it useful to resort to some real interpolation
techniques (see also [9, appendix B]). These permit to “localize the nonlocality,” in a sense. We
think this part to be interesting in itself.
The “fatness lemma” of point (4) would be just a topological fact and could be directly recycled

in the fractional case. However, in [30] this is not explicitly stated in the form that can be found
below. Here as well, we tried to add some details and precisions.We believe that the final outcome
should be useful to have a better understanding of Taylor’s proof.
Finally, in all the estimates presented above, a great effort is needed in order to obtain the correct

asymptotic behavior of 𝑠 ↦ 𝜗𝑠 claimed in Theorem 1.1. In particular, getting the sharp asymptotic
behavior for 𝑠 ↘ 1∕2 requires a very careful analysis. Accordingly, proving that the setΘ𝑘 in The-
orem 1.2 provides the sharp decay rate at 0 needs quite refined (though elementary) estimates. We
point out that this part is new already for the simply connected case, previously considered in [6].

1.5 Plan of the paper

All the needed notations are settled in Section 2. Here, we also state and prove Taylor’s fatness
lemma. Section 3 contains some technical facts on fractional Sobolev spaces that are useful for
our main result, though hard to trace back in the literature. The uninterested reader may skip this
part on a first reading.We then introduce the relevant notion of fractional capacity in Section 4 and
prove the main building blocks for obtaining the fractional Croke–Osserman–Taylor inequality.
Sections 5 and 6 contain the proofs of Theorems 1.1 and 1.2, respectively. Finally, the paper is
concluded by two appendices (Appendices A and B).

2 PRELIMINARIES

2.1 Notation

For every 𝛼 ∈ ℝ, we denote its integer part by⌊
𝛼
⌋
= max

{
𝑛 ∈ ℤ ∶ 𝛼 ⩾ 𝑛

}
.
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8 of 45 BIANCHI and BRASCO

We recall that

𝛼 − 1 ⩽
⌊
𝛼
⌋
⩽ 𝛼, for every 𝛼 ∈ ℝ. (2.1)

For 𝑟 > 0 and 𝑥0 ∈ ℝ𝑁 , we will indicate

𝐵𝑟(𝑥0) =
{
𝑥 ∈ ℝ𝑁 ∶ |𝑥 − 𝑥0| < 𝑟

}
,

and

𝑄𝑟(𝑥0) =

𝑁∏
𝑖=1

(𝑥𝑖0 − 𝑟, 𝑥𝑖0 + 𝑟), where 𝑥0 = (𝑥10, … , 𝑥𝑁0 ).

When the center 𝑥0 coincides with the origin, we will simply write 𝐵𝑟 and 𝑄𝑟, respectively. We
will indicate by 𝜔𝑁 the 𝑁-dimensional Lebesgue measure of 𝐵1.
For completeness, we also recall the following classical definition from point-set topology.

Definition. Let 𝐾 ⊆ ℝ𝑁 , we say that 𝐾 is a continuum if it is a nonempty compact and
connected set.

For every 𝜔 ∈ 𝕊𝑁−1, we will indicate by

⟨𝜔⟩⊥ =
{
𝑥 ∈ ℝ𝑁 ∶ ⟨𝑥, 𝜔⟩ = 0

}
,

the orthogonal space to 𝜔. We will also set

Π𝜔 ∶ ℝ𝑁 → ⟨𝜔⟩⊥
𝑥 ↦ 𝑥 − ⟨𝑥, 𝜔⟩𝜔, (2.2)

that is, this is the orthogonal projection on ⟨𝜔⟩⊥. In particular, for 𝑁 = 2, if we indicate by 𝐞1 =
(1, 0) and 𝐞2 = (0, 1) the normal vectors of the canonical basis, we get that

Π𝐞1
(𝑥1, 𝑥2) = (0, 𝑥2), Π𝐞2

(𝑥1, 𝑥2) = (𝑥1, 0), for every (𝑥1, 𝑥2) ∈ ℝ2.

For𝑚 ∈ ℕ ⧵ {0}, we will indicate by𝑚 the𝑚-dimensional Hausdorff measure.
Finally, for 𝑢 ∈ 𝐿1

loc
(ℝ𝑁) and a bounded measurable set 𝐸 ⊆ ℝ𝑁 with positive measure, we set

av(𝑢; 𝐸) ∶=

 
𝐸
𝑢 𝑑𝑥 =

1|𝐸|
ˆ
𝐸
𝑢 𝑑𝑥,

the integral average of 𝑢 over 𝐸.

2.2 Fatness of the complement of a multiply connected set

As explained in the introduction, the following geometric fact will be a crucial ingredient of our
main result.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 9 of 45

F IGURE 1 The construction of disks and squares in the proof of Lemma 2.1, for the cases 𝑘 = 1, 𝑘 = 2 or
𝑘 = 3 (i.e., 𝛿 = 2). Each disk contains at least a point belonging to ℝ2 ⧵ Ω. The reliable squares are those for which
such a point can be “connected” to the boundary of the “cell” containing it, with a continuum lying outside of Ω.

Lemma2.1 (Taylor’s fatness lemma). Let 𝑘 ∈ ℕ ⧵ {0} and letΩ ⊆ ℝ2 be an openmultiply connected
set of order 𝑘, with finite inradius. Let be an open square with side length 10 (⌊√𝑘⌋ + 1) 𝑟Ω, whose
sides are parallel to the coordinate axes. Then there exists a compact set Σ ⊆  ⧵ Ω such that

max
{
1(Π𝐞1

(Σ)), 1(Π𝐞2
(Σ))
}
⩾

√
𝑘

4
𝑟Ω. (2.3)

Proof. Let us set 𝛿 = ⌊√𝑘⌋ + 1, for notational simplicity. By dilating and translating, there is no
loss of generality in assuming 𝑟Ω = 1 and

 = 𝑄5𝛿(0) = (−5 𝛿, 5 𝛿) × (−5 𝛿, 5 𝛿).

We can suppose that ∩ Ω ≠ ∅, otherwise the proof is trivial: it would be sufficient to take Σ = 

to get the desired conclusion.
We then fix the following set of 4 𝛿2 centers

𝑃𝑗,𝑚 =
(
−5𝛿 +

5

2
+ 5 𝑗, 5 𝛿 −

5

2
− 5𝑚

)
, for 𝑗,𝑚 = 0,… , 2 𝛿 − 1,

and take accordingly the two family of squares and disks (Figures 1 and 2), given by

𝐵3
2

(𝑃𝑗,𝑚) ⊆ 𝑄5
2
(𝑃𝑗,𝑚), for 𝑗,𝑚 = 0,… , 2 𝛿 − 1.

We observe that by construction we have

dist
(
𝐵3

2

(𝑃𝑗,𝑚), 𝜕𝑄5
2
(𝑃𝑗,𝑚)

)
= 1, for every 𝑗,𝑚 = 0,… , 2 𝛿 − 1. (2.4)

As 𝑟Ω = 1, our open set Ω can not entirely contain an open disk with radius larger than 1. Thus,
we have that each disk 𝐵3∕2(𝑃𝑗,𝑚) must intersect the complement ℝ2 ⧵ Ω. Let us select a point
𝑋𝑗,𝑚 ∈ 𝐵3∕2(𝑃𝑗,𝑚) ⧵ Ω. We will say that a square 𝑄5∕2(𝑃𝑗,𝑚) is:
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10 of 45 BIANCHI and BRASCO

F IGURE 2 A zooming on a reliable square 𝑄5∕2(𝑃𝑗,𝑚). The bold line corresponds to a continuum that
connects the point 𝑋𝑗,𝑚 to the boundary of the “cell,” lying outside of Ω.

∙ unreliable if for every continuum 𝐾 ⊆ 𝑄5
2
(𝑃𝑗,𝑚) ⧵ Ω such that 𝑋𝑗,𝑚 ∈ 𝐾, we have

𝐾 ∩ 𝜕𝑄5
2
(𝑃𝑗,𝑚) = ∅;

∙ reliable if there exists a continuum 𝐾𝑗,𝑚 ⊆ 𝑄5
2
(𝑃𝑗,𝑚) ⧵ Ω such that 𝑋𝑗,𝑚 ∈ 𝐾𝑗,𝑚 and

𝐾𝑗,𝑚 ∩ 𝜕𝑄5
2
(𝑃𝑗,𝑚) ≠ ∅.

We observe that every unreliable square must contain at least a connected component of (ℝ2)∗ ⧵

Ω. Thus, by definition of multiply connected set of order 𝑘, the unreliable squares can be at most
𝑘. Thus, if we set

 =
{
(𝑗,𝑚) ∶ 𝑄5

2
(𝑃𝑗,𝑚) is reliable

}
,

we get†

# ⩾ 4 𝛿2 − 𝑘 = 4
(⌊√𝑘⌋ + 1

)2
− 𝑘 ⩾ 3

(⌊√𝑘⌋ + 1
)2

= 3 𝛿2.

That is, our square  contains at least 3 𝛿2 reliable squares. We want to work with these squares
and their continua 𝐾𝑗,𝑚 defined above. By construction, we have

𝐾𝑗,𝑚 ⊆  ⧵ Ω.

We are ready to construct the compact set Σ of the statement: this is given by‡

Σ =
⋃

(𝑗,𝑚)∈

𝐾𝑗,𝑚.

†We denote by # the cardinality of a discrete set.
‡We notice that this union is not necessarily a disjoint one.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 11 of 45

We need to show that its projections along the coordinate axes satisfy (2.3). At this aim, we first
observe that 𝐾𝑗,𝑚 is a connected set, containing both the point 𝑋𝑗,𝑚 ∈ 𝐵3∕2(𝑃𝑗,𝑚) and a point
𝑌𝑗,𝑚 ∈ 𝜕𝑄5∕2(𝑃𝑗,𝑚). By recalling (2.4), we have that

|𝑋𝑗,𝑚 − 𝑌𝑗,𝑚| ⩾ 1.

Moreover, we have that at least one of the two quantities

|Π𝐞1
(𝑋𝑗,𝑚) − Π𝐞1

(𝑌𝑗,𝑚)| or |Π𝐞2
(𝑋𝑗,𝑚) − Π𝐞2

(𝑌𝑗,𝑚)|,
is larger than or equal to 1 (recall that all the squares involved have sides parallel to the coordinate
axes). By using this fact, together with the fact that both projections

Π𝐞𝑖

(
𝐾𝑗,𝑚
)
, for 𝑖 = 1, 2,

coincide with a segment containing both Π𝐞𝑖
(𝑋𝑗,𝑚) and Π𝐞𝑖

(𝑌𝑗,𝑚), we can finally assure that at
least one of the two projections of𝐾𝑗,𝑚 has a length larger than or equal to 1. To conclude, we need
to take care of the possible overlaps in these projections. Let us denote by 𝐽1, 𝐽2 ∈ ℕ the following
numbers

𝐽𝑖 = #
{
𝐾𝑗,𝑚 ∶ 1(Π𝐞𝑖

(𝐾𝑗,𝑚)) ⩾ 1
}
, for 𝑖 = 1, 2.

According to the previous discussion, we have

𝐽1 + 𝐽2 ⩾ 3 𝛿2 and thus in particular max{𝐽1, 𝐽2} ⩾ 𝛿2.

Without loss of generality, we can suppose that 𝐽2 ⩾ 𝐽1. This implies that there are at least 𝛿2
“good” projections, that is, projections with length at least 1, on the first coordinate axis. We need
to estimate the number of such projections, modulo possible overlaps: observe that for every fixed
𝑚 ∈ {0,… , 2 𝛿 − 1}, the array of squares

𝑄𝑚,0(𝑃𝑚,0), … , 𝑄𝑚,2 𝛿−1(𝑃𝑚,2 𝛿−1),

all have the same projection on the first coordinate axis. Thus, the number of distinct projections
is at least

𝛿2

2 𝛿
=
𝛿

2
.

As a technical and annoying fact, we record that this could fail to be a natural number. However,
if we set

Λ𝑘 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, for 𝑘 ∈ {1, 2, 3},

⌊√𝑘⌋
2

, for 𝑘 ⩾ 4 such that ⌊√𝑘⌋ is even,
⌊√𝑘⌋ − 1

2
, for 𝑘 ⩾ 4 such that ⌊√𝑘⌋ is odd,
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12 of 45 BIANCHI and BRASCO

we have

𝛿

2
⩾ Λ𝑘.

Thus, we have at least Λ𝑘 distinct projections on the first coordinate axis, each having length at
least 1. This in turn yields

1(Π𝐞2
(Σ)) ⩾ Λ𝑘.

Finally, by observing that Λ𝑘 ⩾
√
𝑘∕4, we get the claimed conclusion. □

2.3 Functional spaces

We need some definitions from the theory of fractional Sobolev spaces. We refer the reader to [13,
14] for a brief introduction to these spaces, as well as for further references.
Let 0 < 𝑠 < 1 and 1 < 𝑝 < ∞, for a measurable set 𝐸 ⊆ ℝ𝑁 we recall the definition of Sobolev–

Slobodeckiı̆ seminorm

[𝑢]𝑊𝑠,𝑝(𝐸) ∶=

(¨
𝐸×𝐸

|𝑢(𝑥) − 𝑢(𝑦)|𝑝|𝑥 − 𝑦|𝑁+𝑠 𝑝 𝑑𝑥 𝑑𝑦

) 1
𝑝

, for 𝑢 ∈ 𝐿1
loc
(𝐸).

Accordingly, we consider

𝑊𝑠,𝑝(𝐸) =
{
𝑢 ∈ 𝐿𝑝(𝐸) ∶ [𝑢]𝑊𝑠,𝑝(𝐸) < +∞

}
,

endowed with the norm

‖𝑢‖𝑊𝑠,𝑝(𝐸) = ‖𝑢‖𝐿𝑝(𝐸) + [𝑢]𝑊𝑠,𝑝(𝐸), for every 𝑢 ∈ 𝑊𝑠,𝑝(𝐸).

Occasionally, we will need these definitions for 𝑝 = ∞. For 0 < 𝑠 < 1, we set

𝑊𝑠,∞(𝐸) =
{
𝑢 ∈ 𝐿∞(𝐸) ∶ [𝑢]𝑊𝑠,∞(𝐸) < +∞

}
,

where

[𝑢]𝑊𝑠,∞(𝐸) ∶= sup
𝑥,𝑦∈𝐸,𝑥≠𝑦

|𝑢(𝑥) − 𝑢(𝑦)||𝑥 − 𝑦|𝑠 .

When 𝐸 ⊆ ℝ𝑁 is an open set, we will also consider the classical Sobolev space

𝑊1,𝑝(𝐸) =
{
𝑢 ∈ 𝐿𝑝(𝐸) ∶ [𝑢]𝑊1,𝑝(𝐸) < +∞

}
,

where we used the symbol

[𝑢]𝑊1,𝑝(𝐸) ∶= ‖∇𝑢‖𝐿𝑝(𝐸), for every 𝑢 ∈ 𝑊1,𝑝(𝐸).
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 13 of 45

The space𝑊1,𝑝(𝐸) will be endowed with the norm

‖𝑢‖𝑊1,𝑝(𝐸) = ‖𝑢‖𝐿𝑝(𝐸) + [𝑢]𝑊1,𝑝(𝐸), for every 𝑢 ∈ 𝑊1,𝑝(𝐸).

In the case 𝑝 = ∞, the definition of this space does not need any further precision. Finally, for 0 <
𝑠 ⩽ 1 and 1 < 𝑝 ⩽ ∞, the symbol𝑊𝑠,𝑝

0
(Ω)will denote the closure of𝐶∞

0
(Ω) in the space𝑊𝑠,𝑝(ℝ𝑁).

By𝑊𝑠,𝑝

loc
(ℝ𝑁), we mean the collection of functions that are in𝑊𝑠,𝑝(𝐵𝑅), for every 𝑅 > 0.

3 SOME FACTS FROM THE THEORY OF FRACTIONAL SOBOLEV
SPACES

Unless otherwise stated, all the results of this section are valid in every dimension 𝑁 ⩾ 1.
We start with the following generalization of [6, Lemma 2.2]. The main focus is on the precise

form of the estimates.

Proposition 3.1. Let 𝑟 > 0 and 𝑥0 ∈ ℝ𝑁 , there exists a linear extension operator

𝑟 ∶ 𝐿
1(𝐵𝑟(𝑥0)) → 𝐿1

loc
(ℝ𝑁),

with the following property:
for 0 < 𝑠 ⩽ 1 and 1 < 𝑝 ⩽ ∞ it maps 𝑊𝑠,𝑝(𝐵𝑟(𝑥0)) to 𝑊

𝑠,𝑝

loc
(ℝ𝑁). Moreover, for every 𝑢 ∈

𝑊𝑠,𝑝(𝐵𝑟(𝑥0)) and every 𝑅 > 𝑟 we have†

[𝑟[𝑢]]𝑊𝑠,𝑝(𝐵𝑅(𝑥0))
⩽ 4

1
𝑝

(
𝑅

𝑟

) 4𝑁
𝑝
[𝑢]𝑊𝑠,𝑝(𝐵𝑟(𝑥0))

, (3.1)

and

‖‖‖𝑟[𝑢]‖‖‖𝐿𝑝(𝐵𝑅(𝑥0)) ⩽ 2
1
𝑝

(
𝑅

𝑟

) 2𝑁
𝑝 ‖𝑢‖𝐿𝑝(𝐵𝑟(𝑥0)). (3.2)

Proof. We first prove the result at scale 1, that is, when 𝑟 = 1. Then we will show how to get the
general result, by an easy scaling argument.
Case 𝑟 = 1. For 0 < 𝑠 < 1 and 𝑝 = 2, this is exactly [6, Lemma 2.2]. We also observe that the

very same proof applies to the case 1 < 𝑝 ⩽ ∞, thus we omit the straightforward modifications.
We now come to the case 𝑠 = 1 and 1 < 𝑝 < ∞. We take 𝑢 ∈ 𝑊1,𝑝(𝐵1(𝑥0)), thus by [14, Propo-

sition 3.1] we have 𝑢 ∈ 𝑊𝑠,𝑝(𝐵1(𝑥0)) for every 0 < 𝑠 < 1, as well. From the previous step, we know
that

(1 − 𝑠)
1
𝑝 [1[𝑢]]𝑊𝑠,𝑝(𝐵𝑅(𝑥0))

⩽ 4
1
𝑝 𝑅

4𝑁
𝑝 (1 − 𝑠)

1
𝑝 [𝑢]𝑊𝑠,𝑝(𝐵1(𝑥0))

.

By using [8, Theorem 2], we get the desired result by taking the limit as 𝑠 goes to 1, that is

[1[𝑢]]𝑊1,𝑝(𝐵𝑅(𝑥0))
⩽ 4

1
𝑝 𝑅

4𝑁
𝑝 [𝑢]𝑊1,𝑝(𝐵1(𝑥0))

.

† In the case 𝑝 = ∞, we use the convention 1∕∞ = 0.
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14 of 45 BIANCHI and BRASCO

Finally, the case 𝑝 = ∞ can be obtained from the last formula in display, by taking the limit as 𝑝
goes to∞.
Case 𝑟 ≠ 1. At first, we need a notation. For every 𝜏 > 0, we indicate by

𝜏(𝑥) = 𝜏 (𝑥 − 𝑥0) + 𝑥0, for every 𝑥 ∈ ℝ𝑁.

Then the operator 𝑟 can be simply defined as

𝑟[𝑢] ∶= (1[𝑢◦𝑟])◦ 1
𝑟

.

In other words, given a function 𝑢 ∈ 𝐿1(𝐵𝑟(𝑥0)), we first scale it to a function defined on 𝐵1(𝑥0),
then extend it with 1 and finally scale back this extension. Observe that for 𝑥 ∈ 𝐵𝑟(𝑥0), we have

𝑟[𝑢](𝑥) = 1[𝑢◦𝑟]
(𝑥 − 𝑥0

𝑟
+ 𝑥0

)
= 𝑢
(
𝑟

(𝑥 − 𝑥0
𝑟

+ 𝑥0

))
= 𝑢(𝑥).

By using the scaling properties of the norms involved, it is easy to see that this operator has the
desired properties. □

By combining Proposition 3.1 with Lemma A.1 in Appendix A, we can get a universal linear
extension operator for any 𝐾 ⊆ ℝ𝑁 open bounded convex set. The control on the relevant con-
stants is quite precise and useful for our scopes. In what follows, for every 𝑥0 ∈ 𝐾, we introduce
the following geometric quantities

𝑑𝐾(𝑥0) = min
𝑥∈𝜕𝐾
|𝑥 − 𝑥0|, 𝐷𝐾(𝑥0) = max

𝑥∈𝜕𝐾
|𝑥 − 𝑥0|.

Corollary 3.2. Let𝐾 ⊆ ℝ𝑁 be an open bounded convex set and𝑥0 ∈ 𝐾, there exists a linear extension
operator

𝐾 ∶ 𝐿1(𝐾) → 𝐿1
loc
(ℝ𝑁),

with the following property:
for 0 < 𝑠 ⩽ 1 and 1 < 𝑝 ⩽ ∞ it maps𝑊𝑠,𝑝(𝐾) to𝑊𝑠,𝑝

loc
(ℝ𝑁). Moreover, for every 𝑢 ∈ 𝑊𝑠,𝑝(𝐾) and

every 𝑅 > 1 we have

[𝐾(𝑢)]𝑊𝑠,𝑝(𝐾𝑅(𝑥0))
⩽
(
4 ⋅ 63𝑁+𝑠 𝑝

) 1
𝑝 𝑅

4𝑁
𝑝

(
𝐷𝐾(𝑥0)

𝑑𝐾(𝑥0)

) 6𝑁
𝑝
+2 𝑠

[𝑢]𝑊𝑠,𝑝(𝐾), (3.3)

and

‖𝐾(𝑢)‖𝐿𝑝(𝐾𝑅(𝑥0)) ⩽ (2 ⋅ 6𝑁) 1𝑝 𝑅 2𝑁
𝑝

(
𝐷𝐾(𝑥0)

𝑑𝐾(𝑥0)

) 2𝑁
𝑝 ‖𝑢‖𝐿𝑝(𝐾), (3.4)

where

𝐾𝑅(𝑥0) ∶= 𝑅 (𝐾 − 𝑥0) + 𝑥0 =
{
𝑅 (𝑥 − 𝑥0) + 𝑥0 ∶ 𝑥 ∈ 𝐾

}
.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 15 of 45

F IGURE 3 The two quantities 𝑅𝜔(𝑥) and 𝑟𝜔(𝑥).

Proof. The operator 𝐾 is constructed as follows: by indicating with Φ𝐾,𝑥0
∶ ℝ𝑁 → ℝ𝑁 the bi-

Lipschitz homeomorphism of Lemma A.1, for every 𝑢 ∈ 𝐿1
loc
(𝐾), we define

𝐾[𝑢] ∶=
(
1[𝑢◦Φ

−1
𝐾,𝑥0

]
)
◦Φ𝐾,𝑥0

,

where 1 is the operator of Proposition 3.1. In otherwords, we transplant𝑢 to the unit ball centered
at 𝑥0, then we extend this function to the whole ℝ𝑁 by means of 1 and finally compose the
resulting function with Φ𝐾,𝑥0

.
By construction, it is clear that 𝐾 is linear and such that

𝐾[𝑢](𝑥) = 𝑢(𝑥), for 𝑥 ∈ 𝐾.

The continuity estimates (3.3) and (3.4) can now be proved from the corresponding estimates for
1, by using the properties of Φ𝐾,𝑥0

and Φ−1
𝐾,𝑥0

, encoded by Lemma A.1. We leave the details to the
reader. □

In what follows, given a ball 𝐵𝑟(𝑥0) ⊆ ℝ𝑁 , a point 𝑥 ∈ 𝐵𝑟(𝑥0) and a direction 𝜔 ∈ 𝕊𝑁−1, we set

𝑅𝜔(𝑥) = sup
{
𝜚 ∈ ℝ ∶ 𝑥 + 𝜚𝜔 ∈ 𝐵𝑟(𝑥0)

}
,

and

𝑟𝜔(𝑥) = inf
{
𝜚 ∈ ℝ ∶ 𝑥 + 𝜚𝜔 ∈ 𝐵𝑟(𝑥0)

}
,

see Figure 3. The following result is interesting in itself.

Proposition 3.3 (Directional fractional derivatives). Let 0 < 𝑠 < 1 and 𝑟 > 0, for every 𝑢 ∈

𝐶1(𝐵𝑟(𝑥0)) and every 𝜔 ∈ 𝕊𝑁−1, we have

ˆ
𝐵𝑟(𝑥0)

(ˆ 𝑅𝜔(𝑥)

𝑟𝜔(𝑥)

|𝑢(𝑥) − 𝑢(𝑥 + 𝜚 𝜔)|2|𝜚|1+2 𝑠 𝑑𝜚

)
𝑑𝑥 ⩽  [𝑢]2

𝑊𝑠,2(𝐵𝑟(𝑥0))
, (3.5)

for some = (𝑁) > 0.
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16 of 45 BIANCHI and BRASCO

Proof. Without loss of generality, we can assume that 𝑥0 coincides with the origin. We use
Proposition 3.1 and estimate (3.1) with 𝑅 = 4 𝑟, so to get

¨
𝐵𝑟×𝐵𝑟

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑥 𝑑𝑦 ⩾
1

𝐶

¨
𝐵4𝑟×𝐵4𝑟

|𝑟[𝑢](𝑥) − 𝑟[𝑢](𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑥 𝑑𝑦

⩾
1

𝐶

ˆ
𝐵𝑟

(ˆ
𝐵2𝑟(𝑥)

|𝑟[𝑢](𝑥) − 𝑟[𝑢](𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑦

)
𝑑𝑥

=
1

𝐶

¨
𝐵𝑟×𝐵2𝑟

|𝑟[𝑢](𝑥) − 𝑟[𝑢](𝑥 + ℎ)|2|ℎ|𝑁+2 𝑠 𝑑𝑥 𝑑ℎ,

(3.6)

where 𝐶 only depends on the dimension 𝑁. In the last identity, we used the change of variable
𝑦 = 𝑥 + ℎ.
From now on, we will write 𝑢 in place of 𝑟[𝑢], for notational simplicity. We then introduce the

following 𝐾-functional

(𝑡, 𝑢) = min
𝑣∈𝑊1,2(𝐵𝑟)

[‖𝑢 − 𝑣‖𝐿2(𝐵𝑟) + 𝑡 [𝑣]𝑊1,2(𝐵𝑟)

]
, for 𝑡 ∈ [0, 2𝑟]. (3.7)

We claim that the following two estimates hold: there exist two constants 𝐴1,𝐴2 > 0 depending
on the dimension 𝑁 only, such that

ˆ 2𝑟

0

(
(𝑡, 𝑢)

𝑡𝑠

)2
𝑑𝑡

𝑡
⩽ 𝐴1

¨
𝐵𝑟×𝐵2𝑟

|𝑢(𝑥) − 𝑢(𝑥 + ℎ)|2|ℎ|𝑁+2 𝑠 𝑑𝑥 𝑑ℎ, (3.8)

and
ˆ
𝐵𝑟

(ˆ 2𝑟

−2𝑟

|𝑢(𝑥) − 𝑢(𝑥 + 𝜚 𝜔)|2|𝜚|1+2 𝑠 𝑑𝜚

)
𝑑𝑥 ⩽ 𝐴2

ˆ 2𝑟

0

(
(𝑡, 𝑢)

𝑡𝑠

)2
𝑑𝑡

𝑡
, for every 𝜔 ∈ 𝕊𝑁−1. (3.9)

Observe that by joining (3.6), (3.8) and (3.9), we would get

¨
𝐵𝑟×𝐵𝑟

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑥 𝑑𝑦 ⩾
1

𝐶 ⋅ 𝐴1 ⋅ 𝐴2

ˆ
𝐵𝑟

(ˆ 2𝑟

−2𝑟

|𝑢(𝑥) − 𝑢(𝑥 + 𝜚 𝜔)|2|𝜚|1+2 𝑠 𝑑𝜚

)
𝑑𝑥,

and thus the desired conclusion (3.5) would follow, once observed that 𝑅𝜔(𝑥) ⩽ 2 𝑟 and 𝑟𝜔(𝑥) ⩾
−2 𝑟, together with the fact that 𝑢 = 𝑢 on 𝐵𝑟. Thus, we are left with establishing the validity of
both (3.8) and (3.9).
To prove (3.8), we proceed exactly as in the proof of [11, Proposition 4.5], up to some necessary

modifications. At first, it is useful to define

𝑈(ℎ) =

(ˆ
𝐵𝑟

|𝑢(𝑥 + ℎ) − 𝑢(𝑥)|2 𝑑𝑥) 1
2

, ℎ ∈ 𝐵2𝑟.

Thus, by definition, the right-hand side of (3.8) can be rewritten as

¨
𝐵𝑟×𝐵2𝑟

|𝑢(𝑥) − 𝑢(𝑥 + ℎ)|2|ℎ|𝑁+2 𝑠 𝑑𝑥 𝑑ℎ =

ˆ
𝐵2𝑟

𝑈(ℎ)2|ℎ|𝑁+2 𝑠 𝑑ℎ.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 17 of 45

We also define

𝑈(𝜚) =

 
𝜕𝐵𝜚

𝑈 𝑑𝑁−1, for 0 < 𝜚 ⩽ 2𝑟.

By Jensen’s inequality, we obtain

ˆ 2𝑟

0
𝑈
2 𝑑𝜚

𝜚1+2 𝑠
⩽

1

𝑁 𝜔𝑁

ˆ 2𝑟

0

(ˆ
𝜕𝐵𝜚

𝑈2 𝑑𝑁−1

)
𝑑𝜚

𝜚𝑁+2 𝑠

=
1

𝑁 𝜔𝑁

ˆ
𝐵2𝑟

𝑈(ℎ)2|ℎ|𝑁+2 𝑠 𝑑ℎ = 1

𝑁 𝜔𝑁

¨
𝐵𝑟×𝐵2𝑟

|𝑢(𝑥) − 𝑢(𝑥 + ℎ)|2|ℎ|𝑁+2 𝑠 𝑑𝑥 𝑑ℎ.

(3.10)

We now take the compactly supported Lipschitz function

𝜓(𝑥) =
𝑁 + 1

𝜔𝑁
(1 − |𝑥|)+,

where ( ⋅ )+ stands for the positive part. Observe that 𝜓 has unit 𝐿1 norm, by construction. We
then define the rescaled function

𝜓𝑡(𝑥) =
1

𝑡𝑁
𝜓
(
𝑥

𝑡

)
, for 0 < 𝑡 ⩽ 2𝑟,

which is supported on 𝐵𝑡. By observing that 𝜓𝑡 ∗ 𝑢 ∈ 𝑊1,2(𝐵𝑟), from the definition of (𝑡, 𝑢) we
have

(𝑡, 𝑢) ⩽ ‖𝑢 − 𝜓𝑡 ∗ 𝑢‖𝐿2(𝐵𝑟) + 𝑡 [𝜓𝑡 ∗ 𝑢]𝑊1,2(𝐵𝑟)
.

We estimate the two norms in the right-hand side separately: for the first one, by Minkowski’s
inequality and Fubini’s theorem, we obtain

‖𝑢 − 𝜓𝑡 ∗ 𝑢‖𝐿2(𝐵𝑟) = ‖‖‖‖‖
ˆ
𝐵𝑡

[𝑢(⋅) − 𝑢(⋅ − 𝑦)] 𝜓𝑡(𝑦) 𝑑𝑦
‖‖‖‖‖𝐿2(𝐵𝑟)

⩽

ˆ
𝐵𝑡

(ˆ
𝐵𝑟

|𝑢(𝑥) − 𝑢(𝑥 − 𝑦)|2 𝑑𝑥) 1
2

𝜓𝑡(𝑦) 𝑑𝑦

=

ˆ
𝐵𝑡

𝑈(−𝑦) 𝜓𝑡(𝑦) 𝑑𝑦 ⩽
𝑁 + 1

𝜔𝑁 𝑡
𝑁

ˆ
𝐵𝑡

𝑈(−𝑦) 𝑑𝑦

=
𝑁 (𝑁 + 1)

𝑡𝑁

ˆ 𝑡

0
𝑈 𝜚𝑁−1 𝑑𝜚 ⩽

𝑁 (𝑁 + 1)

𝑡

ˆ 𝑡

0
𝑈 𝑑𝜚.

In the first identity, we used that 𝑢 = 𝑢 in 𝐵𝑟, in the last inequality we used that 𝜚𝑁−1 ⩽ 𝑡𝑁−1. For
the second norm, we first observe that the Divergence Theorem gives

ˆ
𝐵𝑡

∇𝜓𝑡(𝑦) 𝑑𝑦 = 0,
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18 of 45 BIANCHI and BRASCO

thus we can write

∇𝜓𝑡 ∗ 𝑢 = (∇𝜓𝑡) ∗ 𝑢 =

ˆ
𝐵𝑡

∇𝜓𝑡(𝑦) [𝑢(𝑥 − 𝑦) − 𝑢(𝑥)] 𝑑𝑦.

Thus, again Minkowski’s inequality yields

[𝜓𝑡 ∗ 𝑢]𝑊1,2(𝐵𝑟)
=
‖‖‖‖‖
ˆ
𝐵𝑡

∇𝜓𝑡(𝑦) [𝑢(⋅ − 𝑦) − 𝑢(⋅)] 𝑑𝑦
‖‖‖‖‖𝐿2(𝐵𝑟)

⩽

ˆ
𝐵𝑡

(ˆ
𝐵𝑟

|𝑢(𝑥 − 𝑦) − 𝑢(𝑥)|2 𝑑𝑥) 1
2 |∇𝜓𝑡(𝑦)|𝑑𝑦

⩽
𝑁 + 1

𝜔𝑁 𝑡
𝑁+1

ˆ
𝐵𝑡

𝑈(−𝑦) 𝑑𝑦 ⩽
𝑁 (𝑁 + 1)

𝑡2

ˆ 𝑡

0
𝑈 𝑑𝜚.

In conclusion, we have obtained

(𝑡, 𝑢) ⩽
2𝑁 (𝑁 + 1)

𝑡

ˆ 𝑡

0
𝑈 𝑑𝜚, for every 0 < 𝑡 ⩽ 2 𝑟. (3.11)

By raising to the power 2, dividing by 𝑡2 𝑠+1 and integrating, the previous estimate yields

ˆ 2𝑟

0

(
(𝑡, 𝑢)

𝑡𝑠

)2
𝑑𝑡

𝑡
⩽ (2𝑁 (𝑁 + 1))2

ˆ 2𝑟

0

(
1

𝑡

ˆ 𝑡

0
𝑈 𝑑𝜚

)2
𝑑𝑡

𝑡1+2 𝑠
.

If we now use the one-dimensional Hardy inequality (see [29, Teorema 1]) for the function 𝑡 ↦´ 𝑡
0 𝑈 𝑑𝜚, we get

ˆ 2𝑟

0

(
(𝑡, 𝑢)

𝑡𝑠

)2
𝑑𝑡

𝑡
⩽

(
2𝑁 (𝑁 + 1)

𝑠 + 1

)2 ˆ 2 𝑟

0
𝑈
2 𝑑𝑡

𝑡1+2 𝑠

⩽
4𝑁 (𝑁 + 1)2

𝜔𝑁

¨
𝐵𝑟×𝐵2𝑟

|𝑢(𝑥) − 𝑢(𝑥 + ℎ)|2|ℎ|𝑁+2 𝑠 𝑑𝑥 𝑑ℎ,

where we used (3.10) in the second inequality. This proves (3.8), as desired.
The proof of (3.9) is similar to that of [9, Proposition B.1], but some technical modifications

are needed, here as well. We take 0 < |𝜚| ⩽ 2 𝑟, by definition of the 𝐾−functional there exists
𝑣𝜚 ∈ 𝑊1,2(𝐵𝑟) such that

‖𝑢 − 𝑣𝜚‖𝐿2(𝐵𝑟) + |𝜚| ‖∇𝑣𝜚‖𝐿2(𝐵𝑟) = (|𝜚|, 𝑢). (3.12)

For notational simplicity, we simply write 𝑣 in place of 𝑣𝜚. We also denote by 𝑣 the extension of 𝑣
given by 𝑟[𝑣]. For 𝜔 ∈ 𝕊𝑁−1 and |𝜚| ⩽ 2 𝑟, we get†

† In the second inequality, we use that for every 𝜔 ∈ 𝕊𝑁−1 and every |𝜚| ⩽ 2𝑟, we have(ˆ
𝐵𝑟

|𝑣(𝑥 + 𝜚 𝜔) − 𝑣(𝑥)|2 𝑑𝑥) 1
2

⩽ |𝜚| (ˆ
𝐵3𝑟

|𝜕𝜔𝑣|2 𝑑𝑥) 1
2

.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 19 of 45

(ˆ
𝐵𝑟

|𝑢(𝑥 + 𝜚 𝜔) − 𝑢(𝑥)|2 𝑑𝑥) 1
2

⩽

(ˆ
𝐵𝑟

|𝑢(𝑥 + 𝜚 𝜔) − 𝑣(𝑥 + 𝜚 𝜔) − 𝑢(𝑥) + 𝑣(𝑥)|2 𝑑𝑥) 1
2

+

(ˆ
𝐵𝑟

|𝑣(𝑥 + 𝜚 𝜔) − 𝑣(𝑥)|2 𝑑𝑥) 1
2

⩽ 2 ‖𝑢 − 𝑣‖𝐿2(𝐵3𝑟) + |𝜚| ‖𝜕𝜔𝑣‖𝐿2(𝐵3𝑟)
⩽ 2
(‖𝑢 − 𝑣‖𝐿2(𝐵3𝑟) + |𝜚| ‖∇𝑣‖𝐿2(𝐵3𝑟)).

In the last estimate, we used the pointwise inequality |𝜕𝜔𝑣| ⩽ |∇𝑣| and the trivial estimate |𝜚| ⩽
2 |𝜚|. We can now use the properties of our extension operator 𝑟, in order to replace the norms
over 𝐵3𝑟 with those on 𝐵𝑟. By Proposition 3.1, we have

‖𝑢 − 𝑣‖𝐿2(𝐵3𝑟) = ‖𝑟[𝑢] − 𝑟[𝑣]‖𝐿2(𝐵3𝑟) = ‖𝑟[𝑢 − 𝑣]‖𝐿2(𝐵3𝑟) ⩽√2 ⋅ 3𝑁 ‖𝑢 − 𝑣‖𝐿2(𝐵𝑟),
and also

‖∇𝑣‖𝐿2(𝐵3𝑟) = [𝑟[𝑣]]𝑊1,2(𝐵3𝑟)
⩽ 2 ⋅ 9𝑁 [𝑣]𝑊1,2(𝐵𝑟)

.

This leads to (ˆ
𝐵𝑟

|𝑢̃(𝑥 + 𝜚 𝜔) − 𝑢̃(𝑥)|2 dx) 1
2

⩽ 𝐶
(‖𝑢 − 𝑣‖𝐿2(𝐵𝑟) + |𝜚| [𝑣]𝑊1,2(𝐵𝑟)

)
.

By combining this estimate with (3.12), we then obtain for 0 < |𝜚| ⩽ 2𝑟

ˆ
𝐵𝑟

|𝑢̃(𝑥 + 𝜚 𝜔) − 𝑢̃(𝑥)|2|𝜚|1+2 𝑠 dx ⩽ 𝐶2 |𝜚|−1−2 𝑠(|𝜚|, 𝑢)2.
If we now integrate with respect to 𝜚 we get (3.9), as desired. The proof is now over. □

As a straightforward consequence of Proposition 3.3, we also get the following result (see also
[5, Lemma A.4]).

Corollary 3.4. Let 0 < 𝑠 < 1, for every 𝑢 ∈ 𝐶∞
0
(ℝ𝑁) and every 𝜔 ∈ 𝕊𝑁−1, we have

ˆ
ℝ𝑁

(ˆ
ℝ

|𝑢(𝑥) − 𝑢(𝑥 + 𝜚 𝜔)|2|𝜚|1+2 𝑠 𝑑𝜚

)
𝑑𝑥 ⩽  [𝑢]2

𝑊𝑠,2(ℝ𝑁)
, (3.13)

for the same constant = (𝑁) > 0 appearing in (3.5).

The next result can be found in [22] and [24, Corollary 1]. In the latter, the estimate is slightly
worse in its dependence on 𝑠, while in the former the result is not explicitly stated, but it must be
extrapolated from the proof of [22, Corollary 1, p. 524]. For these reasons, we prefer to provide a full
proof, which in any case is different from those of the aforementioned references. As before, we
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20 of 45 BIANCHI and BRASCO

state and prove it for smooth functions, for simplicity: it can then be extended to𝑊𝑠,2 functions,
by using standard density results (see, for example, [20, Theorem 6.70]).

Lemma3.5 (Fractional Poincaré–Wirtinger inequality). Let 0 < 𝑠 < 1, for every 𝑢 ∈ 𝐶1(𝐵𝑟(𝑥0))we
have

‖‖‖𝑢 − av(𝑢; 𝐵𝑟(𝑥0))
‖‖‖2𝐿2(𝐵𝑟(𝑥0)) ⩽  (1 − 𝑠) 𝑟2 𝑠 [𝑢]2

𝑊𝑠,2(𝐵𝑟(𝑥0))
,

for some = (𝑁) > 0.

Proof. We can suppose that 𝑥0 = 0, without loss of generality. We use real interpolation
techniques, as in the previous result. By combining (3.6) and (3.8), we have

[𝑢]2
𝑊𝑠,2(𝐵𝑟)

≥
1

𝐶

ˆ 2 𝑟

0

(
(𝑡, 𝑢)

𝑡𝑠

)2 dt
𝑡
, (3.14)

where 𝐶 depends on the dimension 𝑁 only and (𝑡, 𝑢) is still defined by (3.7). We now take 0 <
𝑡 ⩽ 2 𝑟 and 𝑣 ∈ 𝑊1,2(𝐵𝑟), by the triangle inequality we get

𝑡 ‖𝑢 − av(𝑢; 𝐵𝑟)‖𝐿2(𝐵𝑟) ⩽ 𝑡 ‖𝑢 − 𝑣‖𝐿2(𝐵𝑟) + 𝑡 ‖𝑣 − av(𝑣; 𝐵𝑟)‖𝐿2(𝐵𝑟) + 𝑡 ‖av(𝑣; 𝐵𝑟) − av(𝑢; 𝐵𝑟)‖𝐿2(𝐵𝑟)
⩽ 2 𝑟

(‖𝑢 − 𝑣‖𝐿2(𝐵𝑟) + ‖av(𝑣; 𝐵𝑟) − av(𝑢; 𝐵𝑟)‖𝐿2(𝐵𝑟))
+ 𝑡 ‖𝑣 − av(𝑣; 𝐵𝑟)‖𝐿2(𝐵𝑟).

By using Jensen’s inequality, we have

‖av(𝑣; 𝐵𝑟) − av(𝑢; 𝐵𝑟)‖𝐿2(𝐵𝑟) ⩽ ‖𝑢 − 𝑣‖𝐿2(𝐵𝑟),
while by using the classical Poincaré–Wirtinger inequality we have

‖𝑣 − av(𝑣; 𝐵𝑟)‖𝐿2(𝐵𝑟) ⩽ 𝑟

𝜇
[𝑣]𝑊1,2(𝐵𝑟)

,

for some 𝜇 = 𝜇(𝑁) > 0. By keeping all these estimates together, we obtain

𝑡 ‖𝑢 − av(𝑢; 𝐵𝑟)‖𝐿2(𝐵𝑟) ⩽ 4 𝑟 ‖𝑢 − 𝑣‖𝐿2(𝐵𝑟) + 𝑡 𝑟

𝜇
[𝑣]𝑊1,2(𝐵𝑟)

⩽ 𝐶 𝑟
(‖𝑢 − 𝑣‖𝐿2(𝐵𝑟) + 𝑡 [𝑣]𝑊1,2(𝐵𝑟)

)
,

where 𝐶 = max{4, 1∕𝜇} depends on 𝑁 only. If we now take the infimum over 𝑣 ∈ 𝑊1,2(𝐵𝑟), we
get

𝑡 ‖𝑢 − av(𝑢; 𝐵𝑟)‖𝐿2(𝐵𝑟) ⩽ 𝐶 𝑟(𝑡, 𝑢), for 0 < 𝑡 ⩽ 2 𝑟.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12814 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 21 of 45

By raising to the power 2, dividing by 𝑡2 𝑠+1 and integrating over (0, 2 𝑟), this yields

‖𝑢 − av(𝑢; 𝐵𝑟)‖2𝐿2(𝐵𝑟) (2 𝑟)2−2 𝑠2 (1 − 𝑠)
⩽ 𝐶2 𝑟2

ˆ 2 𝑟

0

(
(𝑡, 𝑢)

𝑡𝑠

)2
𝑑𝑡

𝑡
.

By using this estimate in (3.14), we finally get the desired conclusion. □

We conclude this section with a particular case of the well-known fractional Morrey-type
embedding in the space of continuous functions (see, for example, [19, Corollary 7.9.4]). For our
scopes, we need a precise “quantitative” behavior of the relevant constant, as 𝑠 goes to 1 or 1∕2.
Here we take 𝑁 = 1.

Theorem 3.6 (Fractional Morrey–Sobolev inequality). For every 1∕2 < 𝑠 < 1, there exists a
constant𝔪𝑠 > 0 depending on 𝑠 only, such that

𝔪𝑠 [𝑢]
2

𝑊
𝑠− 1

2
,∞
(ℝ)

⩽ [𝑢]2
𝑊𝑠,2(ℝ)

, for every 𝑢 ∈ 𝐶∞0 (ℝ). (3.15)

In particular, if 𝑎 < 𝑏 we have

𝔪𝑠 ‖𝑢‖2𝐿∞((𝑎,𝑏)) ⩽ (𝑏 − 𝑎)2 𝑠−1 [𝑢]2
𝑊𝑠,2(ℝ)

, for every 𝑢 ∈ 𝐶∞0 ((𝑎, 𝑏)). (3.16)

Moreover, the constant𝔪𝑠 has the following asymptotic behaviors

𝔪𝑠 ∼ 2 𝑠 − 1, as 𝑠 ↘ 1∕2, and 𝔪𝑠 ∼
1

1 − 𝑠
, as 𝑠 ↗ 1.

Proof. We first observe that (3.16) is an easy consequence of (3.15). Indeed, for every𝑢 ∈ 𝐶∞
0
((𝑎, 𝑏))

and every 𝑥 ∈ (𝑎, 𝑏), by (3.15) we would get

|𝑢(𝑥)|2 = |𝑢(𝑥) − 𝑢(𝑎)|2 ⩽ 1

𝔪𝑠

(𝑥 − 𝑎)2 𝑠−1 [𝑢]2
𝑊𝑠,2(ℝ)

⩽
1

𝔪𝑠

(𝑏 − 𝑎)2 𝑠−1 [𝑢]2
𝑊𝑠,2(ℝ)

,

as desired.
To establish (3.15), let us take 𝜑 ∈ 𝐶∞

0
(ℝ). We indicate by [𝜑] its Fourier transform, defined by

[𝜑](𝜉) =
1√
2𝜋

ˆ
ℝ

𝜑(𝑡) 𝑒−𝑖 𝑡 𝜉 𝑑𝑡, for 𝜉 ∈ ℝ.

From the inversion formula (see [19, chapter VII, section 1]), we can write

𝜑(𝑡) =
1√
2𝜋

ˆ
ℝ

[𝜑](𝜉) 𝑒𝑖 𝑡 𝜉 𝑑𝜉, for 𝑡 ∈ ℝ.

Thus, for every 𝑡, 𝜏 ∈ ℝ we get

|𝜑(𝑡) − 𝜑(𝜏)| ⩽ 1√
2𝜋

ˆ
ℝ

|||[𝜑](𝜉)||| |𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|𝑑𝜉
⩽

1√
2𝜋

(ˆ
ℝ

|𝜉|2 𝑠 |||[𝜑](𝜉)|||2 𝑑𝜉
) 1

2
(ˆ

ℝ

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉

) 1
2

.

(3.17)
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22 of 45 BIANCHI and BRASCO

We now recall that by [19, chapter VII, section 9], we have
ˆ
ℝ

|𝜉|2 𝑠 |||[𝜑](𝜉)|||2 𝑑𝜉 = 2𝜋𝐴𝑠 [𝜑]
2
𝑊𝑠,2(ℝ)

,

with the constant 𝐴𝑠 given by

𝐴𝑠 =

(ˆ
ℝ

|𝑒𝑖 𝑡 − 1|2|𝑡|1+2 𝑠 𝑑𝑡

)−1
,

which satisfies

𝐴𝑠 ∼ 1 − 𝑠, for 𝑠 ↗ 1 and 𝐴𝑠 ∼ 𝑠 for 𝑠 ↘ 0.

From (3.17), we obtain

|𝜑(𝑡) − 𝜑(𝜏)| ⩽√𝐴𝑠

(ˆ
ℝ

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉

) 1
2

[𝜑]𝑊𝑠,2(ℝ). (3.18)

To conclude, we are only left with handling the integral on the right-hand side. For every 𝛼 > 0,
we split this integral as follows

ˆ
ℝ

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉 =

ˆ
{|𝜉|⩽𝛼}

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉 +

ˆ
{|𝜉|>𝛼}

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉.

To estimate the low frequencies, we use the 1-Lipschitz character of 𝜗 ↦ 𝑒𝑖 𝜗 to infer that

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉| ⩽ |𝑡 − 𝜏| |𝜉|.
The high frequencies are dealt with by using that

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉| ⩽ |𝑒𝑖 𝑡 𝜉| + |𝑒𝑖 𝜏 𝜉| = 2.

These lead to
ˆ
ℝ

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉 ⩽ 2 |𝑡 − 𝜏|2 ˆ 𝛼

0
𝜉2−2 𝑠 𝑑𝜉 + 8

ˆ +∞

𝛼
𝜉−2 𝑠 𝑑𝜉

=
2

3 − 2 𝑠
|𝑡 − 𝜏|2 𝛼3−2 𝑠 + 8

2 𝑠 − 1

1

𝛼2 𝑠−1
,

which is valid for every 𝛼 > 0. We can now optimize this estimate with respect to 𝛼: indeed, the
quantity on the right-hand side is minimal for† 𝛼 = 𝛼0 = 2∕|𝑡 − 𝜏|. With such a choice, we get

ˆ
ℝ

|𝑒𝑖 𝑡 𝜉 − 𝑒𝑖 𝜏 𝜉|2|𝜉|2 𝑠 𝑑𝜉 ⩽ 42−𝑠
2

(3 − 2 𝑠) (2 𝑠 − 1)
|𝑡 − 𝜏|2 𝑠−1.

†We can obviously suppose that 𝑡 ≠ 𝜏, otherwise there is nothing to prove.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 23 of 45

By inserting this estimate in (3.18), we finally get (3.15) with

𝔪𝑠 =
(3 − 2 𝑠) (2 𝑠 − 1)

2 ⋅ 42−𝑠 𝐴𝑠

,

which has the claimed asymptotic behavior. □

Remark 3.7. We point out the reference [27], which keeps track of the dependence on 𝑠 in the
one-dimensional fractional Morrey estimate, as this parameter goes to the borderline situation
𝑠 = 1∕2 (see [27, Corollary 26]). However, the asymptotic behavior detected in this reference is
suboptimal. Moreover, the asymptotic behavior as 𝑠 goes to 1 is not taken into account. For these
reasons, the estimates of [27] are not suitable for our needing.

4 BASICS OF FRACTIONAL CAPACITY

We start with the definition of fractional capacity.

Definition. Let Σ ⊆ ℝ𝑁 be a compact set and let Ω ⊆ ℝ𝑁 be an open set such that Σ ⋐ Ω. For
0 < 𝑠 < 1, we define the fractional capacity of Σ of order 𝑠 relative to Ω as the quantity

c̃ap𝑠(Σ;Ω) = inf
𝑢∈𝐶∞

0
(Ω)

{
[𝑢]2

𝑊𝑠,2(ℝ𝑁)
∶ 𝑢 ⩾ 1Σ

}
.

Here 1Σ denotes the characteristic function of Σ.

Remark 4.1. By standard approximation arguments based on convolutions, it is easy to see that
in the definition of c̃ap𝑠(Σ;Ω) we can replace 𝐶∞0 (Ω) with Lipschitz functions having compact
support in Ω. We leave the details to the reader.

As a straightforward consequence of both the definition and the Morrey-type inequality, we
have an explicit lower bound for the fractional capacity of a point. As simple as it is, this will play
a crucial role in our main result.

Lemma 4.2 (One-dimensional capacity of a point). Let 1∕2 < 𝑠 < 1 and 𝑥0 ∈ (𝑎, 𝑏). Then

c̃ap𝑠({𝑥0}; (𝑎, 𝑏)) ⩾ (𝑏 − 𝑎)1−2 𝑠 𝔪𝑠,

where𝔪𝑠 is the same constant as in Theorem 3.6.

Proof. Let us take 𝑢 ∈ 𝐶∞
0
((𝑎, 𝑏)) such that 𝑢(𝑥0) ⩾ 1. Hence, from (3.16), we get

1 ⩽ |𝑢(𝑥0)|2 ⩽ (𝑏 − 𝑎)2 𝑠−1

𝔪𝑠

[𝑢]2
𝑊𝑠,2(ℝ)

.

The thesis follows by taking the infimum over the admissible functions 𝑢. □
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24 of 45 BIANCHI and BRASCO

F IGURE 4 The geometric configuration of Proposition 4.3: we have a smooth function defined on the
square, which vanishes on the dashed neighborhood of the vertical line (i.e., the set Σ). The relative fractional
capacity of Σ is computed with respect to the surrounding disk.

4.1 AMaz’ya-type Poincaré inequality

We will need the following fractional Poincaré inequality for functions on a cube, which vanish
in a neighborhood of a set with positive fractional capacity (see Figure 4). This is analogous to
the result of [30, Theorem A], but we will follow the approach of [22, chapter 14], which is more
suitable for our framework. In particular, we will not explicitly relate this result to eigenvalues
with mixed boundary conditions, differently from [30].

Proposition 4.3. Let 0 < 𝑠 < 1 and let Σ ⊆ 𝑄𝑟(𝑥0) ⊆ ℝ𝑁 be a compact set. For every 𝑅 >
√
𝑁 𝑟,

there exists a constant 𝜙(𝑁, 𝑅∕𝑟) > 0 such that the following Poincaré inequality holds

[𝑢]2
𝑊𝑠,2(𝑄𝑟(𝑥0))

⩾
[
𝑠

𝑟𝑁
𝜙
(
𝑁,

𝑅

𝑟

)]
c̃ap𝑠(Σ; 𝐵𝑅(𝑥0)) ‖𝑢‖2𝐿2(𝑄𝑟(𝑥0)), (4.1)

for every 𝑢 ∈ 𝐶∞(𝑄𝑟(𝑥0)) with dist(supp(𝑢), Σ) > 0. Moreover, we have

lim
𝑡→+∞

𝜙(𝑁, 𝑡) = lim
𝑡↘
√
𝑁

𝜙(𝑁, 𝑡) = 0.

Proof. The proof is lengthy, though elementary. Without loss of generality, we can assume 𝑥0 = 0.
Let 𝑢 ∈ 𝐶∞(𝑄𝑟) be as in the statement, we can additionally assume that

 
𝑄𝑟

|𝑢|2 𝑑𝑥 = 1, (4.2)

still without loss of generality. We now use the extension operator 𝐾 of Corollary 3.2, with the
choices

𝐾 = 𝑄𝑟 and 𝑥0 = 0, so that
𝐷𝐾(𝑥0)

𝑑𝐾(𝑥0)
=
√
𝑁.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 25 of 45

In order not to overburden the presentation, we will use the symbol 𝑢 in place of 𝐾[𝑢]. By the
properties of our extension operator, we get in particular that 𝑢 is locally Lipschitz continuous
and from (3.3) with 𝑝 = 2 we also have

[𝑢]𝑊𝑠,2(𝐵𝑅)
⩽ [𝑢]𝑊𝑠,2(𝑄𝑅)

⩽ 𝐶𝑁

(
𝑅

𝑟

)2𝑁
[𝑢]𝑊𝑠,2(𝑄𝑟)

. (4.3)

Without loss of generality, we can further suppose that

av(𝑢; 𝐵𝑅) ⩾ 0. (4.4)

We take a Lipschitz cut-off function 𝜂 such that

0 ⩽ 𝜂 ⩽ 1, 𝜂 ≡ 1 in 𝐵√
𝑁 𝑟
, 𝜂 ≡ 0 in ℝ𝑁 ⧵ 𝐵𝑅+

√
𝑁 𝑟

2

, |∇𝜂| ⩽ 2

𝑅 −
√
𝑁 𝑟

and we define 𝜓 = (1 − 𝑢) 𝜂. By recalling Remark 4.1, we have that 𝜓 is an admissible trial
function for the variational problem defining c̃ap𝑠(Σ; 𝐵𝑅). By using this fact and some algebraic
manipulations, we get√

c̃ap𝑠(Σ; 𝐵𝑅) ⩽ [𝜓]𝑊𝑠,2(ℝ𝑁)

=

(
[𝜓]2

𝑊𝑠,2(𝐵𝑅)
+ 2

ˆ
𝐵𝑅

|𝜓(𝑥)|2(ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠
)
𝑑𝑥

) 1
2

⩽ [𝜓]𝑊𝑠,2(𝐵𝑅)
+
√
2

(ˆ
𝐵𝑅

|𝜓(𝑥)|2(ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠
)
𝑑𝑥

) 1
2

.

(4.5)

In turn, by using the definition of 𝜓 and Minkowki’s inequality, we have

[𝜓]𝑊𝑠,2(𝐵𝑅)
⩽

(ˆ
𝐵𝑅

|𝜂(𝑥)|2(ˆ
𝐵𝑅

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑦

)
𝑑𝑥

) 1
2

+

(ˆ
𝐵𝑅

|1 − 𝑢(𝑦)|2(ˆ
𝐵𝑅

|𝜂(𝑥) − 𝜂(𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑥

)
𝑑𝑦

) 1
2

⩽ [𝑢]𝑊𝑠,2(𝐵𝑅)
+ ‖1 − 𝑢‖𝐿2(𝐵𝑅)√ 𝐶

𝑠 (1 − 𝑠)
‖∇𝜂‖𝑠

𝐿∞(𝐵𝑅)
‖𝜂‖1−𝑠

𝐿∞(𝐵𝑅)
,

for some 𝐶 = 𝐶(𝑁) > 0. In the last inequality, we used that for every Lipschitz function 𝜑 with
compact support, we have

sup
𝑥∈ℝ𝑁

ˆ
ℝ𝑁

|𝜑(𝑥) − 𝜑(𝑦)|2|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑦 ⩽
𝐶

𝑠 (1 − 𝑠)
‖∇𝜑‖2 𝑠

𝐿∞(ℝ𝑁)
‖𝜑‖2 (1−𝑠)

𝐿∞(ℝ𝑁)
,
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26 of 45 BIANCHI and BRASCO

see [7, Lemma 2.6]. If we now use (4.3) to bound the seminorm of 𝑢 and the properties of 𝜂, from
(4.5) we get

√
c̃ap𝑠(Σ; 𝐵𝑅) ⩽ 𝐶𝑁

(
𝑅

𝑟

)2𝑁
[𝑢]𝑊𝑠,2(𝑄𝑟)

+
2

(𝑅 −
√
𝑁 𝑟)𝑠

√
𝐶

𝑠 (1 − 𝑠)
‖1 − 𝑢‖𝐿2(𝐵𝑅)

+
√
2

(ˆ
𝐵𝑅

|𝜓(𝑥)|2(ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠
)
𝑑𝑥

) 1
2

.

(4.6)

To handle the last term,we recall that𝜓 identically vanishes outside𝐵
(𝑅+
√
𝑁 𝑟)∕2

. Thus, we actually
have
ˆ
𝐵𝑅

|𝜓(𝑥)|2(ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠
)
=

ˆ
𝐵
𝑅+
√
𝑁 𝑟

2

|𝜂(𝑥)|2 |1 − 𝑢(𝑥)|2(ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠
)
𝑑𝑥

⩽

ˆ
𝐵
𝑅+
√
𝑁 𝑟

2

|1 − 𝑢(𝑥)|2(ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠
)
𝑑𝑥.

We now observe that, for every 𝑥 ∈ 𝐵
(𝑅+
√
𝑁 𝑟)∕2

and 𝑦 ∉ 𝐵𝑅 we have

|𝑥 − 𝑦| ⩾ |𝑦| − |𝑥| ⩾ |𝑦| − 𝑅 +
√
𝑁 𝑟

2
⩾ |𝑦| − 𝑅 +

√
𝑁 𝑟

2𝑅
|𝑦| = (𝑅 −√𝑁 𝑟

2𝑅

)|𝑦|.
Thus, for every 𝑥 ∈ 𝐵

(𝑅+
√
𝑁 𝑟)∕2

, we get

ˆ
ℝ𝑁⧵𝐵𝑅

𝑑𝑦|𝑥 − 𝑦|𝑁+2 𝑠 𝑑𝑦 ⩽ 𝑁 𝜔𝑁
2 𝑠

(
2 𝑅

𝑅 −
√
𝑁 𝑟

)𝑁+2 𝑠
1

𝑅2 𝑠
.

By collecting the previous estimates, we obtain from (4.6)

√
c̃ap𝑠(Σ; 𝐵𝑅) ⩽ 𝐶𝑁

(
𝑅

𝑟

)2𝑁
[𝑢]𝑊𝑠,2(𝑄𝑟)

+
2

(𝑅 −
√
𝑁 𝑟)𝑠

√
𝐶

𝑠 (1 − 𝑠)
‖1 − 𝑢‖𝐿2(𝐵𝑅)

+

√
𝑁𝜔𝑁
𝑠

(
2 𝑅

𝑅 −
√
𝑁 𝑟

)𝑁
2
+𝑠

1

𝑅𝑠
‖1 − 𝑢‖𝐿2(𝐵

𝑅+
√
𝑁 𝑟

2

).

We need to estimate the 𝐿2 norm of 1 − 𝑢. For this, we use the triangle inequality

‖1 − 𝑢‖𝐿2(𝐵
𝑅+
√
𝑁 𝑟

2

) ⩽ ‖1 − 𝑢‖𝐿2(𝐵𝑅) ⩽ ‖1 − av(𝑢; 𝐵𝑅)‖𝐿2(𝐵𝑅) + ‖av(𝑢; 𝐵𝑅) − 𝑢‖𝐿2(𝐵𝑅) ∶= 1 + 2,

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12814 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 27 of 45

so that √
c̃ap𝑠(Σ; 𝐵𝑅) ⩽ 𝐶𝑁

(
𝑅

𝑟

)2𝑁
[𝑢]𝑊𝑠,2(𝑄𝑟)

+
2

(𝑅 −
√
𝑁 𝑟)𝑠

√
2𝐶

𝑠 (1 − 𝑠)
(1 + 2)

+

√
𝑁𝜔𝑁
𝑠

(
2 𝑅

𝑅 −
√
𝑁 𝑟

)𝑁
2
+𝑠

1

𝑅𝑠
(1 + 2).

(4.7)

In turn, the term1 can be bounded by2. Indeed, by observing that the integrand of1 is constant
and using the normalization (4.2), we get

1 =
√|𝐵𝑅| |1 − av(𝑢; 𝐵𝑅)| =

√|𝐵𝑅||𝑄𝑟| |||‖𝑢‖𝐿2(𝑄𝑟) − ‖av(𝑢; 𝐵𝑅)‖𝐿2(𝑄𝑟)|||
⩽

√|𝐵𝑅||𝑄𝑟| ‖‖𝑢 − av(𝑢; 𝐵𝑅)
‖‖𝐿2(𝑄𝑟) ⩽

√|𝐵𝑅||𝑄𝑟| 2.
Observe that we also used the condition (4.4) in the second identity. As for the integral 2, by
Lemma 3.5 we directly get

2 ⩽
√
 (1 − 𝑠) 𝑅𝑠 [𝑢]𝑊𝑠,2(𝐵𝑅)

.

Then the last term can be estimated by (4.3), again. By inserting these estimates in (4.7) we
eventually conclude the proof. □

4.2 A geometric lower bound in the plane

In dimension 𝑁 = 2 and for 𝑠 > 1∕2, by exploiting the fact that points on the line have positive
relative fractional capacity (see Lemma 4.2), it is possible to give a geometric lower bound for the
term

c̃ap𝑠(Σ; 𝐵𝑅(𝑥0)),

appearing in (4.1). We will follow the idea of [22, chapter 3, section 1.2, Proposition 1], which is
quite close to that used by Taylor, even if the latter worked with a different notion of capacity
coming from Potential Theory. The proof will also crucially exploits the result on “directional”
fractional derivatives (Proposition 3.3 and Corollary 3.4). We still use the symbol Π𝜔 defined in
(2.2).

Proposition 4.4. Let 𝑁 = 2, 1∕2 < 𝑠 < 1 and let Σ ⋐ 𝐵𝑟(𝑥0) be a compact set. For every direction
𝜔 ∈ 𝕊1, it holds that

c̃ap𝑠(Σ; 𝐵𝑟(𝑥0)) ≥
𝔪𝑠


(2𝑟)1−2 𝑠1(Π𝜔(Σ)).

Here is the same constant as in Proposition 3.3 and𝔪𝑠 is the same constant as in Theorem 3.6.
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28 of 45 BIANCHI and BRASCO

Proof. We observe that we can assume 1(Π𝜔(Σ)) > 0, otherwise there is nothing to prove. We
may suppose as always that 𝑥0 = 0, without loss of generality.
We start by noticing that every 𝑥 ∈ ℝ2 can be written as

𝑥 = 𝑥′ + 𝑡 𝜔, with 𝑥′ ∈ Π𝜔(ℝ
2) and 𝑡 ∈ ℝ.

We also set

𝑅𝜔(𝑥
′) = sup

{
𝜚 ∈ ℝ ∶ 𝑥′ + 𝜚 𝜔 ∈ 𝐵𝑟

}
and 𝑟𝜔(𝑥

′) = inf
{
𝜚 ∈ ℝ ∶ 𝑥′ + 𝜚 𝜔 ∈ 𝐵𝑟

}
.

We take 𝑢 ∈ 𝐶∞
0
(𝐵𝑟) such that 𝑢 ⩾ 1Σ. By using Corollary 3.4 and Fubini’s theorem, we can infer

[𝑢]2
𝑊𝑠,2(ℝ2)

≥
1



ˆ
ℝ2

(ˆ
ℝ

|𝑢(𝑥) − 𝑢(𝑥 + 𝜚 𝜔)|2|𝜚|1+2 𝑠 𝑑𝜚

)
dx

=
1



ˆ
Π𝜔(ℝ

2)

( ˆ ˆ
ℝ×ℝ

|𝑢(𝑥′ + 𝑡 𝜔) − 𝑢(𝑥′ + 𝑡 𝜔 + 𝜚𝜔)|2|𝜚|1+2 𝑠 dt𝑑𝜚
)
𝑑1(𝑥′)

≥
1



ˆ
Π𝜔(Σ)

[𝑢(𝑥′ + ⋅𝜔)]2
𝑊𝑠,2(ℝ)

𝑑1(𝑥′).

(4.8)

Recalling that 𝑢 ⩾ 1 on Σ, it follows that for every 𝑥′ ∈ Π𝜔(Σ) there exists 𝑡0 such that 𝑢(𝑥′ +
𝑡0 𝜔) ⩾ 1. Hence, by using the trial function

𝜓𝑥′ = 𝑢(𝑥′ + ⋅𝜔) ∈ 𝐶∞0 ((𝑟𝜔(𝑥
′), 𝑅𝜔(𝑥

′))),

we have

[𝑢(𝑥′ + ⋅𝜔)]2
𝑊𝑠,2(ℝ)

= [𝜓𝑥′]
2
𝑊𝑠,2(ℝ)

⩾ c̃ap𝑠
(
{𝑡0}; (𝑟𝜔(𝑥

′), 𝑅𝜔(𝑥
′)
)
, for 𝑥′ ∈ Π𝜔(Σ),

by the very definition of capacity. In turn, by applying Lemma 4.2 in the right-hand side above,
we get

[𝑢(𝑥′ + ⋅𝜔)]2
𝑊𝑠,2(ℝ)

≥ 𝔪𝑠

(
𝑅𝜔(𝑥

′) − 𝑟𝜔(𝑥
′)
)1−2 𝑠

≥ 𝔪𝑠(2𝑟)
1−2 𝑠.

To get a lower bound for the last term, we set 𝓁 = dist(Σ, 𝜕𝐵𝑟) > 0. Then in particular we have

𝑅𝜔(𝑥
′) − 𝑟𝜔(𝑥

′) ⩾
√
𝑟2 − (𝑟 − 𝓁)2 ⩾

√
𝑟 𝓁, for every 𝑥′ ∈ Π𝜔(Σ).

By spending this information in (4.8), we can obtain

[𝑢]2
𝑊𝑠,2(𝐵𝑟)

≥
𝔪𝑠


(2𝑟)1−2 𝑠1(Π𝜔(Σ)).

The thesis follows by taking the infimum over the admissible trial functions 𝑢. □
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 29 of 45

5 PROOF OF THEOREM 1.1

Without loss of generality, we can assume 𝑟Ω = 1. As in the proof of Lemma 2.1, we consider the
natural number 𝛿 = ⌊√𝑘⌋ + 1 and take the family of squares {𝑖,𝑗}(𝑖,𝑗)∈ℤ2 ⊆ ℝ2 given by

𝑖,𝑗 ∶= 𝑄5𝛿(10 𝛿 𝑖, 10 𝛿 𝑗), for (𝑖, 𝑗) ∈ ℤ2.

We observe that they form a tiling of the whole plane, more precisely they are pairwise disjoint
and the union of their closures covers the whole ℝ2. We also introduce the set of indexes

ℤ2
Ω
=
{
(𝑖, 𝑗) ∈ ℤ2 ∶ 𝑖,𝑗 ∩ Ω ≠ ∅

}
,

and for every (𝑖, 𝑗) ∈ ℤ2
Ω
, we indicate by Σ𝑖,𝑗 ⊆ 𝑖,𝑗 ⧵ Ω the compact set provided by Lemma 2.1.

By using the tiling properties of these squares, for a function 𝑢 ∈ 𝐶∞
0
(Ω) we have

[𝑢]2
𝑊𝑠,2(ℝ2)

=
∑

(𝑖,𝑗)∈ℤ2

ˆ ˆ
𝑖,𝑗×ℝ

2

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|2+2 𝑠 dx dy

≥
∑

(𝑖,𝑗)∈ℤ2

ˆ ˆ
𝑖,𝑗×𝑖,𝑗

|𝑢(𝑥) − 𝑢(𝑦)|2|𝑥 − 𝑦|2+2 𝑠 dx dy =
∑

(𝑖,𝑗)∈ℤ2
Ω

[𝑢]2
𝑊𝑠,2(𝑖,𝑗)

.

For every (𝑖, 𝑗) ∈ ℤ2
Ω
, we can use the fractional Poincaré inequality of Proposition 4.3, with the

choices

𝑟 = 5 𝛿 and 𝑅 = 2 𝑟 = 10 𝛿.

By setting for brevity 𝑖,𝑗 ∶= 𝐵10 𝛿(10 𝛿 𝑖, 10 𝛿𝑗), this leads to

[𝑢]2
𝑊𝑠,2(𝑖,𝑗)

⩾
[

1

50 𝛿2
𝜙(2, 2)

]
c̃ap𝑠
(
Σ𝑖,𝑗;𝑖,𝑗

) ‖𝑢‖2
𝐿2(𝑖𝑗)

, for every (𝑖, 𝑗) ∈ ℤ2
Ω
,

where we also used that 𝑠 > 1∕2. We now have to estimate from below the relative fractional
capacity of each compact set Σ𝑖,𝑗 . By combining Lemma 2.1 and Proposition 4.4, we have

c̃ap𝑠(Σ𝑖,𝑗;𝑖,𝑗) ≥ (20)1−2 𝑠
𝔪𝑠


𝛿1−2 𝑠 max

{
1(Π𝐞1

(Σ𝑖,𝑗)), 
1(Π𝐞2

(Σ𝑖,𝑗))
}

≥ (20)1−2 𝑠
𝔪𝑠

4
𝛿1−2 𝑠

√
𝑘.

By collecting the estimates above, we obtain

[𝑢]2
𝑊𝑠,2(ℝ2)

≥ (20)1−2 𝑠
𝔪𝑠 𝜙(2, 2)

200

√
𝑘 𝛿−1−2 𝑠

∑
(𝑖,𝑗)∈ℤ2

Ω

‖𝑢‖2
𝐿2(ij)

= (20)1−2 𝑠
𝔪𝑠 𝜙(2, 2)

200

√
𝑘 𝛿−1−2 𝑠 ‖𝑢‖2

𝐿2(Ω)
,

(5.1)
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30 of 45 BIANCHI and BRASCO

where the last identity follows by the tiling property of the family {𝑖𝑗}𝑖,𝑗 . By recalling the
definition of 𝛿 and using (2.1), we get

√
𝑘 𝛿−1−2 𝑠 ⩾

√
𝑘
(√

𝑘 + 1
)−1−2 𝑠

⩾
1

21+2 𝑠
1

𝑘𝑠
.

By the arbitrariness of 𝑢 ∈ 𝐶∞
0
(Ω), from (5.1) we get the claimed lower bound on 𝜆𝑠

1
(Ω), with

𝜗𝑠 =
(20)1−2 𝑠

21+2 𝑠
𝔪𝑠 𝜙(2, 2)

200
.

Finally, the claimed asymptotic behavior of𝜗𝑠 simply follows from its definition and the properties
of𝔪𝑠, encoded in Theorem 3.6.

6 PROOF OF THEOREM 1.2

6.1 Proof of point (1)

This is a straightforward consequence of the Bourgain–Brezis–Mironescu formula. Indeed, for
every Ω ⊆ ℝ2 open set, let 𝑢 ∈ 𝐶∞

0
(Ω) ⧵ {0}. Then by [14, Corollary 3.20] we have

lim
𝑠↗1

(1 − 𝑠) [𝑢]2
𝑊𝑠,2(ℝ2)

=
𝜋

2

ˆ
Ω
|∇𝑢|2 dx.

This implies that

limsup
𝑠↗1

(1 − 𝑠) 𝜆𝑠1(Ω) ⩽ lim
𝑠↗1

(1 − 𝑠) [𝑢]2
𝑊𝑠,2(ℝ𝑁)‖𝑢‖2

𝐿2(Ω)

=
𝜋

2

´
Ω |∇𝑢|2 dx‖𝑢‖2

𝐿2(Ω)

.

By taking the infimum over 𝐶∞
0
(Ω) ⧵ {0}, we get

limsup
𝑠↗1

(1 − 𝑠) 𝜆𝑠1(Ω) ⩽
𝜋

2
𝜆1(Ω),

as claimed. Thus, by multiplying both sides of (1.2) by the factor (1 − 𝑠), using the previous prop-
erty and the asymptotic behavior of𝜗𝑠, we get back the classical Croke–Osserman–Taylor estimate,
in the limit as 𝑠 goes to 1.

6.2 Proof of point (2)

We need at first the following

Lemma 6.1. Let 0 < 𝑠 < 1 and letΩ ⊆ ℝ2 be an open set. Then for every {𝑥0, … , 𝑥𝑚} ⊆ Ω, we have

𝜆𝑠1(Ω ⧵ {𝑥0, … , 𝑥𝑚}) = 𝜆𝑠1(Ω).
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 31 of 45

Proof. We may suppose that the points {𝑥0, … , 𝑥𝑚} are distinct. We first observe that

𝜆𝑠1(Ω ⧵ {𝑥0, … , 𝑥𝑚}) ⩾ 𝜆𝑠1(Ω),

as Ω ⧵ {𝑥0, … , 𝑥𝑚} ⊆ Ω. To prove the converse inequality, we set

𝜀0 =
1

4
min

𝑖,𝑗∈{0,𝑚}

{|𝑥𝑖 − 𝑥𝑗| ∶ 𝑖 ≠ 𝑗
}
.

Then we take a cut-off function 𝜂 ∈ 𝐶∞
0
(𝐵1) such that

𝜂 ≡ 1 in 𝐵1
2

, 0 ⩽ 𝜂 ⩽ 1, |∇𝜂| ⩽ 𝐶,

and define for every 0 < 𝜀 < 𝜀0

Ψ𝜀(𝑥) =

𝑚∑
𝑖=0

𝜂
(𝑥 − 𝑥𝑖

𝜀

)
.

We now take 𝑢 ∈ 𝐶∞
0
(Ω) ⧵ {0} and observe that 𝑢 (1 − Ψ𝜀) is a feasible trial function for the vari-

ational problem that defines 𝜆𝑠
1
(Ω ⧵ {𝑥0, … , 𝑥𝑚}). Thus, by using Minkowski’s inequality, we get

for every 0 < 𝜀 < 𝜀0√
𝜆𝑠
1
(Ω ⧵ {𝑥0, … , 𝑥𝑚}) ⩽

[𝑢 (1 − Ψ𝜀)]𝑊𝑠,2(ℝ2)‖‖𝑢 (1 − Ψ𝜀)
‖‖𝐿2(Ω)

⩽
[𝑢]𝑊𝑠,2(ℝ2) ‖1 − Ψ𝜀‖𝐿∞(ℝ2) + ‖𝑢‖𝐿∞(ℝ2) [Ψ𝜀]𝑊𝑠,2(ℝ2)‖𝑢 (1 − Ψ𝜀)‖𝐿2(Ω)

=
[𝑢]𝑊𝑠,2(ℝ2) + ‖𝑢‖𝐿∞(ℝ2) [Ψ𝜀]𝑊𝑠,2(ℝ2)‖𝑢 (1 − Ψ𝜀)‖𝐿2(Ω) .

(6.1)

By applying the Dominated Convergence Theorem, we easily get that

lim
𝜀→0
‖𝑢 (1 − Ψ𝜀)‖𝐿2(Ω) = ‖𝑢‖𝐿2(Ω).

As for the second term in the numerator, we observe that by Minkowski’s inequality again, we
have

[Ψ𝜀]𝑊𝑠,2(ℝ2) =

[
𝑚∑
𝑖=0

𝜂
( ⋅ − 𝑥𝑖

𝜀

)]
𝑊𝑠,2(ℝ2)

⩽ (𝑚 + 1) 𝜀1−𝑠 [𝜂]𝑊𝑠,2(ℝ2).

We also used the scaling properties of the fractional seminorm. This in turn implies that

lim
𝜀→0

[Ψ𝜀]𝑊𝑠,2(ℝ2) = 0.
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32 of 45 BIANCHI and BRASCO

Thus, by taking the limit as 𝜀 goes to 0 in (6.1), we end up with

√
𝜆𝑠
1
(Ω ⧵ {𝑥0, … , 𝑥𝑚}) ⩽

[𝑢]𝑊𝑠,2(ℝ2)‖𝑢‖𝐿2(Ω) .
By arbitrariness of 𝑢, we get the desired conclusion. □

Remark 6.2. The previous result is a particular case of the following general fact: removing sets
with zero fractional capacity does not alter the relevant fractional Sobolev space. Consequently,
fractional Poincaré constants are insensitive to removal of these sets. We refer, for example, to [1,
Proposition 2.6 and Corollary 2.7] for this general result.

The sequence {Ω𝑘}𝑘∈ℕ⧵{0,1} is then constructed as follows: for every 𝑘 ∈ ℕ ⧵ {0, 1}, we set

𝑛𝑘 = ⌊√𝑘 − 1⌋ and 𝑚𝑘 = (𝑘 − 1) − 𝑛2
𝑘
.

Then, we take the set

Shell𝑘 = ([0, 𝑛𝑘] × [0, 𝑛𝑘]) ⧵

𝑛𝑘−1⋃
𝑖,𝑗=0

{(
𝑖 +

1

2
, 𝑗 +

1

2

)}
, for 𝑘 ⩾ 2,

which consists of a square with 𝑛2
𝑘
equally spaced points removed. More precisely, we remove the

centers of the squares

[𝑖, 𝑖 + 1] × [𝑗, 𝑗 + 1], for 𝑖, 𝑗 = 0, … , 𝑛𝑘 − 1.

We also introduce the set

Slug𝑘 = ([0,𝑚𝑘] × [−1, 0]) ⧵

𝑚𝑘−1⋃
𝑖=0

{(
𝑖 +

1

2
, −

1

2

)}
,

which consists of an horizontal strip of width 1 and length𝑚𝑘, fromwhichwe removed the centers
of the squares

[𝑖, 𝑖 + 1] × [−1, 0], for 𝑖 = 0, … ,𝑚𝑘 − 1.

Finally, we define the open bounded set

Ω𝑘 = int
(
Shell𝑘 ∪ Slug𝑘

)
, for every 𝑘 ⩾ 2,

that is, the interior points of the union of Shell𝑘 and Slug𝑘 (see Figure 5). By construction, we have
that Ω𝑘 is multiply connected of order 𝑘. Moreover, we have

𝑟Ω𝑘
⩽

√
2

2
, for every 𝑘 ⩾ 2,
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 33 of 45

F IGURE 5 The set Ω𝑘 of Theorem 1.2, point (2), for 𝑘 = 25.

and

Ω𝑘 ⊇ int(Shell𝑘) = ((0, 𝑛𝑘) × (0, 𝑛𝑘)) ⧵

𝑛𝑘−1⋃
𝑖,𝑗=0

{(
𝑖 +

1

2
, 𝑗 +

1

2

)}
.

By using the monotonicity of 𝜆𝑠
1
with respect to set inclusion and Lemma 6.1 for int(Shell𝑘), we

can then infer

𝜆𝑠1(Ω𝑘) ⩽ 𝜆𝑠1((0, 𝑛𝑘) × (0, 𝑛𝑘)) = 𝑛−2 𝑠
𝑘

𝜆𝑠1((0, 1) × (0, 1)).

By recalling the definition of 𝑛𝑘, this finally gives the desired result.

6.3 Proof of point (3)

We divide the proof in various steps, for ease of presentation.
Step 1: Construction of the set. We define

Σ =
⋃
𝑖∈ℤ

Σ(𝑖), where Σ(𝑖) ∶=
{
(𝑥1, 𝑖) ∈ ℝ2 ∶ |𝑥1| ⩾ 1

}
,

and then consider the infinite complement comb

Θ ∶= ℝ2 ⧵ Σ,

as in [6, section 5]. The set Θ𝑘 of the statement is then constructed by simply removing 𝑘 − 1

distinct points from Θ, that is, we set

Θ𝑘 = Θ ⧵ {(0, 𝑖) ∶ 𝑖 = 1, … , 𝑘 − 1},

see Figure 6. By construction, we have that Θ𝑘 is multiply connected of order 𝑘, with finite
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34 of 45 BIANCHI and BRASCO

F IGURE 6 The set Θ𝑘 for 𝑘 = 4 of Theorem 1.2, point (3): it is has been obtained by removing the black dots
from Θ.

inradius. Thus, by Theorem 1.1 we have 𝜆𝑠
1
(Θ𝑘) > 0, for every 𝑠 > 1∕2. We claim that

lim sup
𝑠↘1

2

𝜆𝑠
1
(Θ𝑘)

2 𝑠 − 1
< +∞. (6.2)

Step 2: One-dimensional reduction. Here we need the following result.

Lemma 6.3. Let 0 < 𝑠 < 1 and let 𝐴 ⊆ ℝ be an open set. Then we have

𝜆𝑠1(𝐴 × ℝ) ⩽ 𝛼𝑠 𝜆
𝑠
1(𝐴), where 𝛼𝑠 =

ˆ
ℝ

𝑑𝑡

(1 + 𝑡2)
2+2 𝑠
2

. (6.3)

Proof. We proceed as in the proof of [15, Lemma 2.4]. For every 𝑥 ∈ ℝ2, we will use the nota-
tion 𝑥 = (𝑥1, 𝑥2). We take 𝑢 ∈ 𝐶∞

0
(𝐴) ⧵ {0} and 𝜑 ∈ 𝐶∞

0
(ℝ) ⧵ {0}. We first observe that by Fubini’s

theorem, for the function 𝑣(𝑥1, 𝑥2) = 𝑢(𝑥1) 𝜑(𝑥2) we have

‖𝑢 𝜑‖𝐿2(𝐴×ℝ) = ‖𝑢‖𝐿2(𝐴) ‖𝜑‖𝐿2(ℝ).
We then estimate the fractional seminorm of 𝑣 = 𝑢 𝜑. By Minkowksi’s inequality, we have

[𝑢 𝜑]𝑊𝑠,2(ℝ2) ⩽

(ˆ ˆ
ℝ2×ℝ2

|𝑢(𝑥1)|2 |𝜑(𝑥2) − 𝜑(𝑦2)|2|𝑥 − 𝑦|2+2 𝑠 dx dy

)1∕2

+

(ˆ ˆ
ℝ2×ℝ2

|𝜑(𝑦2)|2 |𝑢(𝑥1) − 𝑢(𝑦1)|2|𝑥 − 𝑦|2+2 𝑠 dx dy

)1∕2
.

By using Fubini’s theorem, we have

ˆ ˆ
ℝ2×ℝ2

|𝑢(𝑥1)|2 |𝜑(𝑥2) − 𝜑(𝑦2)|2|𝑥 − 𝑦|2+2 𝑠 dx dy

=

ˆ
ℝ

|𝑢(𝑥1)|2 ⎛⎜⎜⎝
ˆ ˆ

ℝ×ℝ
|𝜑(𝑥2) − 𝜑(𝑦2)|2 ⎛⎜⎜⎝

ˆ
ℝ

𝑑𝑦1(
(𝑥1 − 𝑦1)

2 + (𝑥2 − 𝑦2)
2
) 2+2 𝑠

2

⎞⎟⎟⎠ 𝑑𝑥2 𝑑𝑦2
⎞⎟⎟⎠ 𝑑𝑥1.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12814 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 35 of 45

By using a change of variable, we get

ˆ
ℝ

𝑑𝑥2(
(𝑥1 − 𝑦1)

2 + (𝑥2 − 𝑦2)
2
) 2+2 𝑠

2

=
𝛼𝑠|𝑥2 − 𝑦2|1+2 𝑠 .

Thus, we obtain

ˆ ˆ
ℝ2×ℝ2

|𝑢(𝑥1)|2 |𝜑(𝑥2) − 𝜑(𝑦2)|2|𝑥 − 𝑦|2+2 𝑠 dx dy = 𝛼𝑠 ‖𝑢‖2𝐿2(𝐴) [𝜑]2𝑊𝑠,2(ℝ)
.

With a similar computation, we also get

ˆ ˆ
ℝ2×ℝ2

|𝜑(𝑦2)|2 |𝑢(𝑥1) − 𝑢(𝑦1)|2|𝑥 − 𝑦|2+2 𝑠 dx dy = 𝛼𝑠 ‖𝜑‖2𝐿2(ℝ) [𝑢]2𝑊𝑠,2(ℝ)
.

Thus, from the variational definition of 𝜆𝑠
1
(𝐴 × ℝ), we get

√
𝜆𝑠
1
(𝐴 × ℝ) ⩽

[𝑢 𝜑]𝑊𝑠,2(ℝ2)‖𝑢 𝜑‖𝐿2(𝐴×ℝ) ⩽√𝛼𝑠 ‖𝑢‖𝐿2(𝐴) [𝜑]𝑊𝑠,2(ℝ) + ‖𝜑‖𝐿2(ℝ) [𝑢]𝑊𝑠,2(ℝ)‖𝑢‖𝐿2(𝐴) ‖𝜑‖𝐿2(ℝ)
=
√
𝛼𝑠

(
[𝜑]𝑊𝑠,2(ℝ)‖𝜑‖𝐿2(ℝ) + [𝑢]𝑊𝑠,2(ℝ)‖𝑢‖𝐿2(𝐴)

)
.

By taking the infimum over 𝑢 and 𝜑, recalling that 𝜆𝑠
1
(ℝ) = 0, we get the desired conclusion □

In particular, from the previous result with 𝐴 = ℝ ⧵ ℤ, we get that

𝜆𝑠1(Θ𝑘) ⩽ 𝜆𝑠1(ℝ × (ℝ ⧵ ℤ)) ⩽ 𝛼𝑠 𝜆
𝑠
1(ℝ ⧵ ℤ).

In the first inequality, we used that

ℝ × (ℝ ⧵ ℤ) ⊆ Θ𝑘.

From its definition (6.3), it is easy to see that 𝛼𝑠 various continuously with respect to 𝑠 ∈ (0, 1).
Thus, in order to prove (6.2), it will be sufficient to establish that

lim sup
𝑠↘1

2

𝜆𝑠
1
(ℝ ⧵ ℤ)

2 𝑠 − 1
< +∞. (6.4)

Step 3: Choice of the trial functions. To prove (6.4), we will need to carefully construct a suit-
able family of 𝑠-depending trial functions, which provides an upper bound on 𝜆𝑠

1
(ℝ ⧵ ℤ) with the

correct asymptotic behavior. For every

𝑛 ∈ ℕ ⧵ {0}, 𝑠 > 1∕2 and 0 < 𝜀 <
1

10
,

we consider the trial function 𝑢𝑛 𝜑𝑛,𝑠,𝜀, where:
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36 of 45 BIANCHI and BRASCO

∙ 𝑢𝑛 ∈ 𝐶∞
0
((−𝑛, 𝑛)) has the form

𝑢𝑛(𝑥) = 𝑢
(
𝑥

𝑛

)
,

for some 𝑢 ∈ 𝐶∞
0
((−1, 1)) such that ‖𝑢‖𝐿2((−1,1)) = 1;

∙ themultiple funnel-type cut-off function 𝜑𝑛,𝑠,𝜀 ∈ 𝑊𝑠,2
loc
(ℝ) ∩ 𝐿∞(ℝ) has the form

𝜑𝑛,𝑠,𝜀 = 1 −

𝑛∑
𝑗=−𝑛

𝜁𝑠

(
𝑥 − 𝑗

𝜀

)
,

where 𝜁𝑠 is the function given by

𝜁𝑠(𝑥) =
(
1 − |𝑥|2 𝑠−1)

+
.

Thanks to [7, Lemma 2.7], we see that

𝑢𝑛 𝜑𝑛,𝑠,𝜀 ∈ 𝑊𝑠,2
0
((−𝑛, 𝑛)) ⊆ 𝑊𝑠,2

0
(ℝ ⧵ ℤ).

Thus, it is a feasible trial function. By using again Minkowski’s inequality, this yields

√
𝜆𝑠
1
(ℝ ⧵ ℤ) ⩽

[𝑢𝑛]𝑊𝑠,2(ℝ) + ‖𝑢𝑛‖𝐿∞((−𝑛,𝑛)) [𝜑𝑛,𝜀,𝑠]𝑊𝑠,2(ℝ)‖𝑢𝑛 𝜑𝑛,𝜀,𝑠‖𝐿2((−𝑛,𝑛)) .

Step 4: Estimate of the quotient. Let us start by handling the terms at the numerator. We consider
at first the terms containing 𝑢𝑛, which are simpler. By recalling the definition of 𝑢𝑛, we have

[𝑢𝑛]𝑊𝑠,2(ℝ) = 𝑛
1
2
−𝑠 [𝑢]𝑊𝑠,2(ℝ).

The last term can be estimated by using the interpolation inequality [10, Corollary 2.2], which
gives

[𝑢]𝑊𝑠,2(ℝ) ⩽

√
𝐶

𝑠 (1 − 𝑠)
‖𝑢‖1−𝑠

𝐿2((−1,1))
‖𝑢′‖𝑠

𝐿2((−1,1))
,

for some 𝐶 > 0 independent of 𝑠. This guarantees that we have

[𝑢𝑛]𝑊𝑠,2(ℝ) ⩽ 𝑛
1
2
−𝑠

√
𝐶

𝑠 (1 − 𝑠)
‖𝑢′‖𝑠

𝐿2((−1,1))
. (6.5)

The term with the 𝐿∞ norm is easy to handle, as we simply have

‖𝑢𝑛‖𝐿∞((−𝑛,𝑛)) = ‖𝑢‖𝐿∞((−1,1)). (6.6)
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 37 of 45

The term containing the cut-off is the most delicate one. To estimate it, we observe that

𝑛∑
𝑗=−𝑛

𝜁𝑠

(
𝑥 − 𝑗

𝜀

)
= max

𝑗=−𝑛,…,𝑛
𝜁𝑠

(
𝑥 − 𝑗

𝜀

)
,

thanks to the fact that all the functions involved in the sum have disjoint support. We can then
use the submodularity of the Sobolev–Slobodeckiı̆ seminorm (see [16, Theorem 3.2 and Remark
3.3]) and obtain

[𝜑𝑛,𝜀,𝑠]𝑊𝑠,2(ℝ)
=

[
𝑛∑

𝑗=−𝑛

𝜁𝑠

(
⋅ − 𝑗

𝜀

)]
𝑊𝑠,2(ℝ)

=

[
max

𝑗=−𝑛,…,𝑛
𝜁𝑠

(
⋅ − 𝑗

𝜀

)]
𝑊𝑠,2(ℝ)

⩽

(
𝑛∑

𝑗=−𝑛

[
𝜁𝑠

(
⋅ − 𝑗

𝜀

)]2
𝑊𝑠,2(ℝ)

) 1
2

=
√
2 𝑛 + 1 𝜀

1
2
−𝑠 [𝜁𝑠]𝑊𝑠,2(ℝ).

To conclude, the key fact is a very precise asymptotic estimate of the last term, as 𝑠 goes to 1∕2.
This is contained in Lemma B.1 in Appendix B, which permits to infer

[𝜑𝑛,𝜀,𝑠]𝑊𝑠,2(ℝ) ⩽ 𝐶
√
2 𝑛 + 1 𝜀

1
2
−𝑠
√
2 𝑠 − 1, for 1

2
< 𝑠 <

3

4
, (6.7)

with 𝐶 > 0 not depending on 𝑠.
We now pass to examine the denominator. In this case, we have

‖𝑢𝑛 𝜑𝑛,𝜀,𝑠‖𝐿2((−𝑛,𝑛)) = 𝑛
1
2

⎛⎜⎜⎝
ˆ 1

−1
|𝑢(𝑦)|2(1 − 𝑛∑

𝑗=−𝑛

𝜁𝑠

(
𝑛 𝑦 − 𝑗

𝜀

))2
𝑑𝑦
⎞⎟⎟⎠
1
2

⩾ 𝑛
1
2 ‖𝑢‖𝐿2(𝐴𝜀), (6.8)

where

𝐴𝜀 = (−1, 1) ⧵

𝑛⋃
𝑗=−𝑛

(
𝑗 − 𝜀

𝑛
,
𝑗 + 𝜀

𝑛

)
.

Step 5: Conclusion. By collecting the estimates (6.5), (6.6), (6.7), and (6.8), we obtain

√
𝜆𝑠
1
(ℝ ⧵ ℤ)

2 𝑠 − 1
⩽

𝑛
1
2
−𝑠

√
𝐶

𝑠 (1 − 𝑠)
‖𝑢′‖𝑠

𝐿2((−1,1))
+ 𝐶 ‖𝑢‖𝐿∞((−1,1))√2 𝑛 + 1 𝜀

1
2
−𝑠
√
2 𝑠 − 1

𝑛
1
2

√
2 𝑠 − 1 ‖𝑢‖𝐿2(𝐴𝜀)

⩽

√
𝐶

𝑠 (1 − 𝑠)

‖𝑢′‖𝑠
𝐿2((−1,1))‖𝑢‖𝐿2(𝐴𝜀) 𝑛−𝑠√

2 𝑠 − 1
+ 𝐶
‖𝑢‖𝐿∞((−1,1))‖𝑢‖𝐿2(𝐴𝜀)

√
3 𝜀

1
2
−𝑠.
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38 of 45 BIANCHI and BRASCO

It is now important to make a good choice of the parameters 𝑛 and 𝜀: we take them to be

𝜀 =
(
1

10

) 1
2 𝑠−1 and 𝑛 =

(⌊
1

2 𝑠 − 1

⌋
+ 1
)2
.

Observe that with these choices, we have

lim
𝑠↘1

2

𝜀 = 0 and 𝜀
1
2
−𝑠 =

√
10,

and

lim
𝑠↘1

2

𝑛−𝑠√
2 𝑠 − 1

⩽ lim
𝑠↘1

2

(2 𝑠 − 1)2 𝑠−
1
2 = 0,

where we also used (2.1). Moreover, by using the Dominated Convergence Theorem, we also have

lim
𝑠↘1

2

‖𝑢‖𝐿2(𝐴𝜀) = ‖𝑢‖𝐿2((−1,1)) = 1.

These facts finally enable us to conclude that

lim sup
𝑠↘1

2

√
𝜆𝑠
1
(ℝ ⧵ ℤ)

2 𝑠 − 1
⩽
√
30𝐶 ‖𝑢‖𝐿∞((−1,1)) < +∞.

The proof is now over.

APPENDIX A: A BI-LIPSCHITZ HOMEOMORPHISM
In what follows, for every open bounded set 𝐾 ⊆ ℝ𝑁 and every 𝑥0 ∈ 𝐾, we define

𝑑𝐾(𝑥0) = min
𝑥∈𝜕𝐾
|𝑥 − 𝑥0|, 𝐷𝐾(𝑥0) = max

𝑥∈𝜕𝐾
|𝑥 − 𝑥0|.

Lemma A.1. Let 𝐾 ⊆ ℝ𝑁 be an open bounded convex set and 𝑥0 ∈ 𝐾. There exists a bi-Lipschitz
homeomorphism Φ𝐾,𝑥0

∶ ℝ𝑁 → ℝ𝑁 with the following properties:

∙ Φ𝐾,𝑥0
(𝑥0) = 𝑥0 and Φ𝐾,𝑥0

(𝑟 (𝐾 − 𝑥0) + 𝑥0) = 𝐵𝑟(𝑥0), for every 𝑟 > 0;
∙ Φ𝐾,𝑥0

is 𝐿𝐾-Lipschitz with

𝐿𝐾 =
2

𝑑𝐾(𝑥0)
;

∙ Φ−1
𝐾,𝑥0

is𝑀𝐾-Lipschitz with

𝑀𝐾 = 𝐷𝐾(𝑥0)

(
2 +

𝐷𝐾(𝑥0)

𝑑𝐾(𝑥0)

)
.
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 39 of 45

Moreover, we have (
1

𝑀𝐾

)𝑁
⩽ |det∇Φ𝐾,𝑥0

(𝑥)| ⩽ (𝐿𝐾)
𝑁, for a. e. 𝑥 ∈ ℝ𝑁. (A.1)

and (
1

𝐿𝐾

)𝑁
⩽ |det∇Φ−1

𝐾,𝑥0
(𝑥)| ⩽ (𝑀𝐾)

𝑁, for a. e. 𝑥 ∈ ℝ𝑁. (A.2)

Proof. For notational simplicity, we omit to indicate the subscript 𝑥0 everywhere.We recall at first
the definition of theMinkowski functional of 𝐾 centered at 𝑥0, that is,

𝑗𝐾(𝑥) = inf
{
𝜆 > 0 ∶ 𝑥 ∈ 𝜆 (𝐾 − 𝑥0) + 𝑥0

}
.

We recall that this is a Lipschitz function, which verifies the following homogeneity property

𝑗𝐾(𝑡 (𝑥 − 𝑥0) + 𝑥0) = 𝑡 𝑗𝐾(𝑥), for every 𝑥 ∈ ℝ𝑁, 𝑡 > 0. (A.3)

We also observe that by construction it holds

𝑗𝐾(𝑥) < 𝑟 if and only if 𝑥 ∈ 𝑟 (𝐾 − 𝑥0) + 𝑥0,

and that

𝑗𝐾(𝑥) = 𝑟 if and only if 𝑥 ∈ 𝑟 (𝜕𝐾 − 𝑥0) + 𝑥0.

Moreover, 𝑗𝐾 satisfies

|𝑗𝐾(𝑥) − 𝑗𝐾(𝑦)| ⩽ 1

𝑑𝐾(𝑥0)
|𝑥 − 𝑦|, for every 𝑥, 𝑦 ∈ ℝ𝑁. (A.4)

Last, but not least, we have the following lower bound

𝑗𝐾(𝑥) = |𝑥 − 𝑥0| 𝑗𝐾( 𝑥 − 𝑥0|𝑥 − 𝑥0| + 𝑥0

)
⩾
|𝑥 − 𝑥0|
𝐷𝐾(𝑥0)

, for every 𝑥 ∈ ℝ𝑁. (A.5)

Then we define Φ𝐾 as follows

Φ𝐾(𝑥0) = 𝑥0, Φ𝐾(𝑥) =
𝑥 − 𝑥0|𝑥 − 𝑥0| 𝑗𝐾(𝑥) + 𝑥0, if 𝑥 ∈ ℝ𝑁 ⧵ {𝑥0}.

Thanks to the properties of the Minkowski functional, we have that Φ𝐾 is injective. To verify that
Φ𝐾 is bijective, let us take 𝑦 ∈ ℝ𝑁 ⧵ {𝑥0}. We then define

𝑥 =
|𝑦 − 𝑥0|
𝑗𝐾(𝑦)

(𝑦 − 𝑥0) + 𝑥0, (A.6)
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40 of 45 BIANCHI and BRASCO

we claim that Φ𝐾(𝑥) = 𝑦. Indeed, by construction we have

Φ𝐾(𝑥) =
𝑥 − 𝑥0|𝑥 − 𝑥0| 𝑗𝐾(𝑥) + 𝑥0 =

𝑦 − 𝑥0|𝑦 − 𝑥0| 𝑗𝐾
(|𝑦 − 𝑥0|

𝑗𝐾(𝑦)
(𝑦 − 𝑥0) + 𝑥0

)
+ 𝑥0.

From property (A.3), we get

Φ𝐾(𝑥) =
𝑦 − 𝑥0|𝑦 − 𝑥0| 𝑗𝐾

(|𝑦 − 𝑥0|
𝑗𝐾(𝑦)

(𝑦 − 𝑥0) + 𝑥0

)
+ 𝑥0 =

𝑦 − 𝑥0|𝑦 − 𝑥0| 𝑗𝐾(𝑦) |𝑦 − 𝑥0|
𝑗𝐾(𝑦)

+ 𝑥0 = 𝑦,

as desired. This shows that Φ𝐾 is bijective and from (A.6) we get

Φ−1
𝐾 (𝑦) =

|𝑦 − 𝑥0|
𝑗𝐾(𝑦)

(𝑦 − 𝑥0) + 𝑥0, for 𝑦 ∈ ℝ𝑁 ⧵ {𝑥0}.

Thanks to the properties of the Minkowski functional, it is easily seen that

Φ𝐾(𝑟 (𝐾 − 𝑥0) + 𝑥0) = 𝐵𝑟(𝑥0), for every 𝑟 > 0.

We now claim that both Φ𝐾 and its inverse are Lipschitz continuous. We start with Φ𝐾 : we take
𝑥, 𝑦 ∈ ℝ𝑁 ⧵ {𝑥0} and, without loss of generality, we can suppose that |𝑦 − 𝑥0| ⩽ |𝑥 − 𝑥0|. By the
triangle inequality, we get

|Φ𝐾(𝑥) − Φ𝐾(𝑦)| ⩽ 𝑗𝐾(𝑦)
|||| 𝑥 − 𝑥0|𝑥 − 𝑥0| − 𝑦 − 𝑥0|𝑦 − 𝑥0| |||| + |𝑗𝐾(𝑥) − 𝑗𝐾(𝑦)|

⩽ 𝑗𝐾(𝑦)
|𝑥 − 𝑦|√|𝑥 − 𝑥0| |𝑦 − 𝑥0| + |𝑗𝐾(𝑥) − 𝑗𝐾(𝑦)|, (A.7)

where we used that

|||| 𝑥 − 𝑥0|𝑥 − 𝑥0| − 𝑦 − 𝑥0|𝑦 − 𝑥0| ||||
2

= 2 − 2
⟨𝑥 − 𝑥0, 𝑦 − 𝑥0⟩|𝑥 − 𝑥0| |𝑦 − 𝑥0|

⩽
|𝑥 − 𝑥0|2 + |𝑦 − 𝑥0|2|𝑥 − 𝑥0| |𝑦 − 𝑥0| − 2

⟨𝑥 − 𝑥0, 𝑦 − 𝑥0⟩|𝑥 − 𝑥0| |𝑦 − 𝑥0| = |𝑥 − 𝑦|2|𝑥 − 𝑥0| |𝑦 − 𝑥0| ,
thanks to Young’s inequality. By using (A.4), the fact that 𝑗𝐾(𝑥0) = 0 and the assumption |𝑦 −
𝑥0| ⩽ |𝑥 − 𝑥0|, we get from (A.7)

|Φ𝐾(𝑥) − Φ𝐾(𝑦)| ⩽ 1

𝑑𝐾(𝑥0)

[|𝑦 − 𝑥0| |𝑥 − 𝑦|√|𝑥 − 𝑥0| |𝑦 − 𝑥0| + |𝑥 − 𝑦|] ⩽ 2

𝑑𝐾(𝑥0)
|𝑥 − 𝑦|.

This proves the claimed Lipschitz regularity of Φ𝐾 .
We now turn our attention to the inverse function Φ−1

𝐾
. We proceed in a similar way: we take

𝑥, 𝑦 ∈ ℝ𝑁 ⧵ {𝑥0} and we can suppose that |𝑦 − 𝑥0| ⩽ |𝑥 − 𝑥0|. Then by the triangle inequality
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LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 41 of 45

|Φ−1
𝐾 (𝑥) − Φ−1

𝐾 (𝑦)| ⩽ 1

𝑗𝐾(𝑥)

||||𝑥 − 𝑥0| (𝑥 − 𝑥0) − |𝑦 − 𝑥0| (𝑦 − 𝑥0)
|||

+ |𝑦 − 𝑥0|2 ||||| 1

𝑗𝐾(𝑥)
−

1

𝑗𝐾(𝑦)

|||||.
By using (A.5) and observing that||||𝑥 − 𝑥0| (𝑥 − 𝑥0) − |𝑦 − 𝑥0| (𝑦 − 𝑥0)

||| ⩽ (|𝑥 − 𝑥0| + |𝑦 − 𝑥0|) |𝑥 − 𝑦 ⩽ 2 |𝑥 − 𝑥0| |𝑥 − 𝑦|,
we get that

|Φ−1
𝐾 (𝑥) − Φ−1

𝐾 (𝑦)| ⩽ 2 |𝑥 − 𝑥0|
𝑗𝐾(𝑥)

|𝑥 − 𝑦| + |𝑦 − 𝑥0|2
𝑗𝐾(𝑥) 𝑗𝐾(𝑦)

|𝑗𝐾(𝑥) − 𝑗𝐾(𝑦)|
⩽ 2𝐷𝐾(𝑥0) |𝑥 − 𝑦| + 𝐷𝐾(𝑥0)

2 |𝑦 − 𝑥0|2|𝑥 − 𝑥0| |𝑦 − 𝑥0| |𝑥 − 𝑦|
𝑑𝐾(𝑥0)

⩽ 2𝐷𝐾(𝑥0) |𝑥 − 𝑦| + 𝐷𝐾(𝑥0)
2 |𝑥 − 𝑦|
𝑑𝐾(𝑥0)

= 𝐷𝐾(𝑥0)

(
2 +

𝐷𝐾(𝑥0)

𝑑𝐾(𝑥0)

) |𝑥 − 𝑦|.
This gives the desired Lipschitz estimate for Φ−1

𝐾
, as well.

Finally, the two-sided estimates (A.1) and (A.2) are a standard consequence of the Lipschitz
estimates on Φ𝐾 and Φ−1

𝐾
, in conjunction with the Area Formula for Lipschitz functions and

Rademacher’s theorem. □

APPENDIX B: A SPECIAL CUT-OFF FUNCTION
Lemma B.1. Let 1∕2 < 𝑠 < 1 and let

𝜁𝑠(𝑥) =
(
1 − |𝑥|2 𝑠−1)

+
, for 𝑥 ∈ ℝ.

Then we have

[𝜁𝑠]𝑊𝑠,2(ℝ) ⩽ 𝐶

√
2 𝑠 − 1√
1 − 𝑠

, (B.1)

with a constant 𝐶 > 0 independent of 𝑠 ∈ (1∕2, 1).

Proof. We decompose the seminorm as follows

[𝜁𝑠]
2
𝑊𝑠,2(ℝ)

=

¨
(−1,1)×(−1,1)

||||𝑥|2 𝑠−1 − |𝑦|2 𝑠−1|||2|𝑥 − 𝑦|1+2 𝑠 𝑑𝑥 𝑑𝑦

+
1

𝑠

ˆ 1

−1

|||1 − |𝑥|2 𝑠−1|||2
(1 − 𝑥)2 𝑠

𝑑𝑥 +
1

𝑠

ˆ 1

−1

|||1 − |𝑥|2 𝑠−1|||2
(1 + 𝑥)2 𝑠

𝑑𝑥 = 1 + 2 + 3.

(B.2)
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42 of 45 BIANCHI and BRASCO

To prove (B.1), we will prove that

𝑖 ⩽ 𝐶
2 𝑠 − 1

1 − 𝑠
, for 𝑖 = 1, 2, 3. (B.3)

For the first term 1, we observe that by using the symmetry of the set and of the integrand, we
have

1 ⩽ 4

¨
(0,1)×(0,1)

||||𝑥|2 𝑠−1 − |𝑦|2 𝑠−1|||2|𝑥 − 𝑦|1+2 𝑠 𝑑𝑥 𝑑𝑦.

By using [7, Remark 4.2, formula (4.3)] with the choice 𝛽 = 2 𝑠 − 1 there, we can estimate the last
double integral as follows

1 ⩽ 4

¨
(0,1)×(0,1)

||||𝑥|2 𝑠−1 − |𝑦|2 𝑠−1|||2|𝑥 − 𝑦|1+2 𝑠 𝑑𝑥 𝑑𝑦 ⩽

(ˆ 1

0

|1 − 𝜏2 𝑠−1|2|1 − 𝜏|1+2 𝑠 (1 + 𝜏1−2 𝑠
)
𝑑𝜏

)
4

2 𝑠 − 1
.

We then write

ˆ 1

0

|1 − 𝜏2 𝑠−1|2|1 − 𝜏|1+2 𝑠 (1 + 𝜏1−2 𝑠
)
𝑑𝜏 =

ˆ 1
2

0

|1 − 𝜏2 𝑠−1|2|1 − 𝜏|1+2 𝑠 (1 + 𝜏1−2 𝑠
)
𝑑𝜏

+

ˆ 1

1
2

|1 − 𝜏2 𝑠−1|2|1 − 𝜏|1+2 𝑠 (1 + 𝜏1−2 𝑠
)
𝑑𝜏

⩽ 𝐶

ˆ 1
2

0
|1 − 𝜏2 𝑠−1|2 (1 + 𝜏1−2 𝑠

)
𝑑𝜏

+ 𝐶

ˆ 1

1
2

|1 − 𝜏2 𝑠−1|2|1 − 𝜏|1+2 𝑠 𝑑𝜏 =∶ 1,1 + 1,2.

The constant 𝐶 > 0 can be taken independent of 𝑠. We start by estimating 1,2, which is simpler:
we use the following pointwise inequality

𝑎𝛼 − 𝑏𝛼 ⩽ 𝛼 𝑏𝛼−1 (𝑎 − 𝑏), for 0 < 𝑏 ⩽ 𝑎, 0 < 𝛼 < 1,

which just follows from concavity of the map 𝜏 ↦ 𝜏𝛼. This gives

1,2 ⩽ 𝐶 41−𝑠 (2 𝑠 − 1)2
ˆ 1

1
2

(1 − 𝜏)1−2 𝑠 𝑑𝜏 =
𝐶

2 (1 − 𝑠)
(2 𝑠 − 1)2,

as desired. We now come to 1,1, which is the most subtle. We have to distinguish two cases:
1∕2 < 𝑠 < 3∕4 and 3∕4 ⩽ 𝑠 < 1. In the first case, we set for simplicity

𝑓𝜏(𝑠) = 𝜏2 𝑠−1, for 𝜏 > 0, 𝑠 >
1

2
.
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Then we have

||||𝑓𝜏(𝑠) − 𝑓𝜏

(
1

2

)|||| = |||||
ˆ 𝑠

1
2

𝑓′𝜏(𝑡) 𝑑𝑡
|||||,

that is for 0 < 𝜏 ⩽ 1∕2

|1 − 𝜏2 𝑠−1| = 2 | log 𝜏| |||||
ˆ 𝑠

1
2

𝜏2 𝑡−1 𝑑𝑡
||||| ⩽ 2 (− log 𝜏)

(
𝑠 −

1

2

)
= (− log 𝜏) (2 𝑠 − 1).

Thus, we get for 1∕2 < 𝑠 < 3∕4

1,1 ⩽ 𝐶 (2 𝑠 − 1)2
ˆ 1

2

0
(− log 𝜏)2 (1 + 𝜏1−2 𝑠) 𝑑𝜏 ⩽ 2𝐶 (2 𝑠 − 1)2

ˆ 1
2

0
(− log 𝜏)2

𝑑𝜏√
𝜏
. (B.4)

This gives the desired estimate for 1∕2 < 𝑠 < 3∕4, as the last integral is finite and independent of
𝑠. On the other hand, for 3∕4 ⩽ 𝑠 < 1, we can simply estimate

1,1 ⩽ 𝐶

ˆ 1
2

0
(1 + 𝜏1−2 𝑠) 𝑑𝜏 ⩽ 2𝐶

ˆ 1
2

0
𝜏1−2 𝑠 𝑑𝜏 =

𝐶

1 − 𝑠

(
1

2

)2−2 𝑠
⩽

1

1 − 𝑠
. (B.5)

In particular, we get from (B.4) and (B.5)

1,1 ⩽ 𝐶
(2 𝑠 − 1)2

1 − 𝑠
, for 1

2
< 𝑠 < 1,

possibly for a different 𝐶 > 0, still independent of 𝑠. By collecting the estimates for 1,1 and 1,2,
we thus get (B.1) for 1.
We now consider 2 and 3. We only estimate the first one, as the estimate for the second one

is similar. For 𝑠 > 1∕2, we have

1

𝑠

ˆ 1

−1

|||1 − |𝑥|2 𝑠−1|||2
(1 − 𝑥)2 𝑠

𝑑𝑥 ⩽ 2

ˆ 1

0

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥 + 2

ˆ 0

−1

(1 − |𝑥|2 𝑠−1)2
(1 − 𝑥)2 𝑠

𝑑𝑥

⩽ 2

ˆ 1

0

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥 + 2

ˆ 0

−1
(1 − |𝑥|2 𝑠−1)2 𝑑𝑥

= 2

ˆ 1

1
2

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥 + 2

ˆ 1
2

0

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥

+ 2

ˆ 1

0
(1 − 𝑥2 𝑠−1)2 𝑑𝑥

⩽ 2

ˆ 1

1
2

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥 + 2 ⋅ 4𝑠

ˆ 1
2

0
(1 − 𝑥2 𝑠−1)2 𝑑𝑥
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+ 2

ˆ 1

0
(1 − 𝑥2 𝑠−1)2 𝑑𝑥

⩽ 2

ˆ 1

1
2

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥 + 2 (4𝑠 + 1)

ˆ 1

0
(1 − 𝑥2 𝑠−1) 𝑑𝑥.

By computing the last integral, this gives in particular

1

𝑠

ˆ 1

−1

|||1 − |𝑥|2 𝑠−1|||2
(1 − 𝑥)2 𝑠

𝑑𝑥 ⩽ 2

ˆ 1

1
2

(1 − 𝑥2 𝑠−1)2

(1 − 𝑥)2 𝑠
𝑑𝑥 + (4𝑠 + 1)

2 𝑠 − 1

𝑠
.

At this point, the integral in the right-hand side can be estimated as we did for 1,2 above. By
proceeding as before, we get (B.3) for 2 (and thus for 3), as well. □

ACKNOWLEDGEMENTS
We thank Francesco Bozzola, Eleonora Cinti, Stefano Francaviglia, and Francesca Prinari for
some useful discussions. We also thank Rodrigo Bañuelos for pointing out the reference [28].
We are grateful to Davide Brasco for helping us with Figure 5. The results of this paper have been
announced during the mini-workshop “A Geometric Fairytale full of Spectral Gaps and Random
Fruit ,” held at the Mathematisches Forschungsinstitut Oberwolfach in December 2022, as well
as during the meeting “PDEs in Cogne: a friendly meeting in the snow ,” held in Cogne in January
2023. We wish to thank the organizers for the kind invitations and the nice working atmosphere
provided during the stayings.
FrancescaBianchi is amember of theGruppoNazionale per l’AnalisiMatematica, la Probabilità

e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Both
authors have been financially supported by the Fondo di Ateneo per la Ricerca FAR 2020 of the
University of Ferrara.

JOURNAL INFORMATION
The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. L. Abatangelo, V. Felli, and B. Noris, On simple eigenvalues of the fractional Laplacian under removal of small

fractional capacity sets, Commun. Contemp. Math. 22 (2020), 1950071, 32 pp.
2. A. Ancona,On strong barriers and inequality ofHardy for domains inℝ𝑛 , J. Lond.Math. Soc. 34 (1986), 274–290.
3. R. Bañuelos and T. Carroll, An improvement of the Osserman constant for the bass note of a drum, Stochastic

analysis (Ithaca, NY, 1993), Proc. Sympos. PureMath., vol. 57, Amer. Math. Soc., Providence, RI, 1995, pp. 3–10.
4. R. Bañuelos andT. Carroll,Brownianmotion and the fundamental frequency of a drum, DukeMath. J. 75 (1994),

575–602.
5. F. Bethuel and F. Demengel, Extensions for Sobolev mappings betweenmanifolds, Calc. Var. Partial Differential

Equations 3 (1995), 475–491.
6. F. Bianchi and L. Brasco, The fractionalMakai–Hayman inequality, Ann.Mat. Pura Appl. (4) 201 (2022), 2471–

2504.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12814 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LOWER BOUNDWITH TOPOLOGICAL CONSTRAINTS 45 of 45

7. F. Bianchi, L. Brasco, and A. C. Zagati, On the sharp Hardy inequality in Sobolev–Slobodeckiı̆ spaces. https://
arxiv.org/abs/2209.03012, 2022.

8. J. Bourgain,H. Brezis, andP.Mironescu,Another look at Sobolev spaces, Optimal control andpartial differential
equations, IOS, Amsterdam, 2001, pp. 439–455.

9. L. Brasco, E. Cinti, and S. Vita, A quantitative stability estimate for the fractional Faber–Krahn inequality, J.
Funct. Anal. 279 (2020), 108560, 49 pp.

10. L. Brasco, E. Parini, and M. Squassina, Stability of variational eigenvalues for the fractional 𝑝-Laplacian,
Discrete Contin. Dyn. Syst. 36 (2016), 1813–1845.

11. L. Brasco and A. Salort, A note on homogeneous Sobolev spaces of fractional order, Ann. Mat. Pura Appl. (4)
198 (2019), 1295–1330.

12. C. B. Croke, The first eigenvalue of the Laplacian for plane domains, Proc. Amer. Math. Soc. 81 (1981), 304–305.
13. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math.

136, 521–573.
14. D. E. Edmunds andW. D. Evans, Fractional Sobolev spaces and inequalities, Cambridge Tracts inMathematics,

vol. 230, Cambridge University Press, Cambridge, 2023.
15. R. L. Frank and R. Seiringer, Sharp fractional Hardy inequalities in half-spaces, Around the research of

Vladimir Maz’ya. I, Int. Math. Ser. (New York), vol. 11, Springer, New York, 2010, pp. 161–167.
16. N. Gigli and S. Mosconi, The abstract Lewy–Stampacchia inequality and applications, J. Math. Pures Appl. 104

(2015), 258–275.
17. S. E. Graversen andM. Rao, Brownian motion and eigenvalues for the Dirichlet Laplacian, Math. Z. 203 (1990),

699–708.
18. W. K. Hayman, Some bounds for principal frequency, Applicable Anal. 7 (1977/78), 247–254.
19. L. Hörmander, The analysis of linear partial differential operators I. Distribution theory and Fourier analysis.

Reprint of the second (1990) edition. Classics in Mathematics, Springer, Berlin, 2003.
20. G. Leoni, A first course in fractional Sobolev spaces, Graduate Studies in Mathematics, vol. 229, Amer. Math.

Soc., Providence, RI, 2023.
21. E. Makai, A lower estimation of the principal frequencies of simply connected membranes, Acta Math. Acad. Sci.

Hungar. 16 (1965), 319–323.
22. V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations. Second, revised, and aug-

mented edition. Grundlehren derMathematischenWissenschaften (Fundamental Principles ofMathematical
Sciences), vol. 342, Springer, Heidelberg, 2011.

23. R. Osserman, A note on Hayman’s theorem on the bass note of a drum, Comment. Math. Helvetici 52 (1977),
545–555.

24. A. C. Ponce, An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc. (JEMS) 6 (2004), 1–15.
25. A. Ritorto,Optimal partition problems for the fractional Laplacian, Ann.Mat. PuraAppl. (4) 197 (2018), 501–516.
26. S. Shi and J. Xiao, On fractional capacities relative to bounded open Lipschitz sets, Potential Anal. 45 (2016),

261–298.
27. J. Simon, Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces

on an interval, Ann. Mat. Pura Appl. (4) 157 (1990), 117–148.
28. B. Siudeja, Scattering length for stable processes, Illinois J. Math. 52 (2008), 667–680.
29. G. Talenti, Sopra una diseguaglianza integrale, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 167–188.
30. M. E. Taylor, Estimate on the fundamental frequency of a drum, Duke Math. J. 46 (1979), 447–453.
31. M. E. Taylor, Scattering length and perturbations of −Δ by positive potentials, J. Math. Anal. Appl. 53 (1976),

291–312.
32. M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary

conditions on open sets, Potential Anal. 42 (2015), 499–547.

 14697750, 2024, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12814 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://arxiv.org/abs/2209.03012
https://arxiv.org/abs/2209.03012

	An optimal lower bound in fractional spectral geometry for planar sets with topological constraints
	Abstract
	1 | INTRODUCTION
	1.1 | Goal of the paper
	1.2 | The Croke-Osserman-Taylor inequality
	1.3 | Main results
	1.4 | Comments on the proofs
	1.5 | Plan of the paper

	2 | PRELIMINARIES
	2.1 | Notation
	2.2 | Fatness of the complement of a multiply connected set
	2.3 | Functional spaces

	3 | SOME FACTS FROM THE THEORY OF FRACTIONAL SOBOLEV SPACES
	4 | BASICS OF FRACTIONAL CAPACITY
	4.1 | A Maz’ya-type Poincaré inequality
	4.2 | A geometric lower bound in the plane

	5 | PROOF OF THEOREM 1.1
	6 | PROOF OF THEOREM 1.2
	6.1 | Proof of point (1)
	6.2 | Proof of point (2)
	6.3 | Proof of point (3)

	APPENDIX A: A BI-LIPSCHITZ HOMEOMORPHISM
	APPENDIX B: A SPECIAL CUT-OFF FUNCTION
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


