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Abstract
This work proposes a novel methodology for the automatic multi-objective optimisation of sensor paths in structural
health monitoring (SHM) sensor networks using archived multi-objective simulated annealing. Using all of the sensor
paths within a sensor network may not always be beneficial during damage detection. Many sensor paths may experience
significant signal noise, attenuation, and wave mode conversion due to the presence of features, such as stiffeners, and
hence impair the detection accuracy of the overall system. Many paths will also contribute little to the overall coverage
level or damage detection accuracy of the network and can be ignored, reducing complexity. Knowing which paths to
include, and which to exclude, can require significant prior expert knowledge, which may not always be available.
Furthermore, even when expert knowledge is considered, the optimum path selection might not be achieved.
Therefore, this work proposes a novel automatic procedure for optimising the sensor paths of an SHM sensor network
to maximise coverage level, maximise damage detection accuracy and minimise the overall signal noise in the network
due to geometric features. This procedure was tested on a real-world large composite stiffened panel with many geo-
metric features in the form of frames and stiffeners. Compared to using all of the available sensor pairs, the optimised
network exhibits superior performance in terms of detection accuracy and overall noise. It was also found to provide
very similar performance, in terms of coverage level and overall signal noise, to a sensor path network designed based
on prior expert knowledge but provided up to 35% higher damage detection accuracy. As a result, the novel procedure
proposed in this work has the capability to design high-performing SHM sensor path networks for structures with com-
plex geometries but without the need for prior expert knowledge, making SHM more accessible to the engineering
community.
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Introduction

Structural health monitoring (SHM) offers engineers
the opportunity to transition to condition-based main-
tenance practices, whereby maintenance is performed
only if damage is detected by integrated sensors, reduc-
ing overall maintenance costs. Current damage toler-
ance philosophy in the aviation industry requires the
use of conservative safety factors for composite materi-
als due to their susceptibility to low-velocity impact
damage. SHM systems can provide regular and on-
demand health assessment of the structure. Therefore,
the design of a SHM enabled composite structure can
be optimised to improve material utilisation and reduce
the overall weight of the structure.1 The accuracy of the

SHM system is of utmost importance, and high accu-
racy is vital for achieving the high-reliability targets
required in the aviation industry. The implementation
of the SHM system must also consider the costs associ-
ated with its procurement, installation and operation.2
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Since simply increasing the number of sensors can lead
to financially sub-optimal or unfeasible designs.

A key approach to optimising SHM systems is the
optimisation of sensor locations within the system.
This approach has attracted a great deal of interest
among the research community and has lead to signifi-
cant improvements in the damage detectability of
SHM systems.3–14 One of the most notable works on
this topic is a recent review by Ostachowicz et al.,3

which provides a comprehensive overview of the devel-
opment of novel sensor placement optimisation tech-
niques for a wide range of different sensor technologies
and optimisation algorithms based on different perfor-
mance indices. Among the most common performance
indices is the coverage area index, which describes the
coverage area provided by the sensors of an SHM net-
work. One of the most relevant examples of this is by
Thiene et al.,4 where a maximum area coverage (MAC)
approach was developed for optimising the position of
sensors within an SHM network for damage localisa-
tion in composite structures. A genetic algorithm was
used to determine the optimal combination of sensor
locations that maximised the coverage area of the net-
work based on an initial set of possible locations. The
resulting sensor networks were validated via experi-
mental measurements, and they were found to provide
accurate damage localisation. Another relevant exam-
ple is by Salmanpour et al.,5 where a similar approach
to Thiene et al.4 was taken for optimal transducer net-
work placement using a genetic algorithm but was
designed specifically for a delay and sum damage detec-
tion algorithm. The optimisation was carried out using
a fitness function based on coverage area and signal
attenuation. The optimised sensor networks were suc-
cessfully validated using experimental data. Another
example is by Gao et al.,6 where the design of a sensor
network for a composite aircraft tail was optimised to
maximise coverage level. Further examples are pro-
vided by Soman et al.7,8 Another common performance
index is the signal attenuation index, which describes
the level of signal attenuation in the sensor network.
This was also investigated by Thiene et al.4 and by
Salmanpour et al.5 Probability of sensor malfunction
has also been investigated by the research community
as a performance index. Mallardo et al.9 used this
index with a Bayesian inference approach, under the
presence of sensor data uncertainties, to optimise the
positions of sensors for improving impact localisation
accuracy. The reliability and robustness of the pro-
posed approach were validated with experimental
examples. A performance index based on economic cost
was investigated by Mkwananzi et al.,10 who optimised
sensor positions to minimise capital costs and costs
associated with detection errors. As a result of this
optimisation, it was shown that costs associated with

detection errors could be reduced by 40%. Modal char-
acteristics have also been used as performance indexes.
Sun and Buyukozturk14 took an integer optimisation
approach to the optimisation of sensor locations using
modal characteristics. Results indicate that the pro-
posed methodology is efficient and effective in optimi-
sation the locations of the sensors. Ferreira Gomes
et al.11 employed a multi-objective genetic algorithm to
search for the optimal locations of sensors. The objec-
tives were based on information collected by the fisher
information matrix (FIM) and mode shape interpola-
tion, and it was demonstrated that the proposed
method could distribute a small number of sensors on
a structure and guarantee the quality of information
obtained from these sensors. Other examples of the use
of the FIM are De Stefano et al.12 and Shi et al.13

More detailed information on the use of different per-
formance indices for sensor location optimisation can
be seen in a recent review by Barthorpe and Worden.15

In this study, the focus is on SHM systems based on
guided waves. These systems employ surface-mounted
or embedded piezoelectric transducers (PZTs) to gener-
ate and record propagating ultrasonic guided waves
(UGWs) in thin-walled structures and have been
demonstrated to be capable of reliably detecting barely
visible impact damage (BVID) in composites. From
the works mentioned in the previous paragraph, it is
evident that the research community has developed a
number of novel methodologies for optimising the
position of sensors to minimise or maximise various
objective functions, such as damage detection accuracy
or coverage level. However, once this optimisation has
been conducted and the optimum sensor positions
found, the optimum selection of sensor paths to be
included during damage detection has not been stud-
ied. Although counter-intuitive, using all possible sen-
sor paths within a network may not be the optimum
strategy. Many sensor paths may experience significant
signal attenuation, increased noise, and wave mode
conversion due to the presence of features, such as stif-
feners. A-priori expert knowledge of which paths to
include and which to exclude might require significant
expert knowledge, which may not be available in some
situations, such as in the case of complex geometries.
An example of choosing optimal sensor paths based on
a-priori expert knowledge is given by Yue et al.,16 who
developed a manual approach to optimising sensor
paths for maximising impact damage detection in large
composite stiffened panels. The optimal sensor paths
were selected based on prior expert knowledge of SHM
systems. To detect damage, outlier analysis was per-
formed using damage index data extracted from signals
in pristine and damaged composite stiffened panels.
The same path selection approach was also used in
Giannakeas et al.17 for large composite stiffened
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panels. A drawback of the manual optimisation
approach used in these works is that it can require sig-
nificant prior expert knowledge to determine the com-
bination of sensor paths that maximises the coverage
level of the network, maximises damage detection
accuracy and minimises signal noise due to geometric
features. In many situations, this expert knowledge
may not be available, and even when it is available, the
ability to select the optimum combination of sensor
paths is not guaranteed.

It is thus evident that an automatic approach is
needed for selecting the optimal combination of sensor
paths. This approach would require minimal a-priori
expert knowledge and would be capable of providing
the user with a set of optimal solutions that balance a
set of objectives and then automatically provide the
combination of paths needed for this solution.
However, the authors have only been able to find one
relevant example of this in the literature. Verma et al.18

developed an automatic optimisation procedure in
which the paths of 10 wireless sensor nodes were suc-
cessfully automatically optimised to maximise coverage
level and minimise path length. However, the damage
detection accuracy of the sensor network was not con-
sidered as part of the optimisation procedure, and sig-
nal noise in the network due to geometric features was
also not considered. The procedure also did not
involve the use of experimental data, which could limit
its use in real-world applications.

This present paper builds upon previous work by
the authors on the topic of SHM in large composite
stiffened panels.16,17 The main novelty of the present
paper is the development of a novel automatic proce-
dure for optimising the sensor paths in a SHM net-
work. Previous works on sensor path optimisation
have either taken a manual approach to this prob-
lem,16,17 or they have not involved the use of experi-
mental measurements.18 By taking an automatic
approach to this problem, the novel path optimisation
procedure developed in this work would be able to
generate a sensor path network similar in performance
to one generated manually using extensive prior knowl-
edge without actually needing extensive prior knowl-
edge from the user, and while requiring minimal user
intervention. Furthermore, by employing experimental
data and measurements to inform the novel automatic
optimisation procedure, this procedure is provided
with a stronger connection and relevancy to the real
world.

The objectives of the novel automatic sensor path
optimisation procedure developed in this work are:

1. To maximise the damage detection accuracy of the
sensor network. This is based on the damage

detection approach presented by Yue et al.16 and
Giannakeas et al.17

2. To maximise the sensor coverage area of the sensor
network. This is based on the MAC approach
developed by Thiene et al.4

3. To minimise the overall noise present in the sensor
network.

A significant benefit of the proposed optimisation
procedure is that it is scalable to different structures of
varying complexity and can be used with panels of any
material and with any UGW damage detection metho-
dology. The proposed procedure does not change based
on the details of the damage detection methodology.
However, the objectives used in the procedure should
be based on UGW principles for damage detection.

The proposed optimisation procedure is validated
using a large flat aircraft stiffened composite panel.
The experimental measurements collected from the
integrated SHM system are used to drive the path
selection. The performance of the procedure is com-
pared against the case where all sensor pairs are
selected and also against the case where expert knowl-
edge is available.16

The layout of this paper is as follows: The damage
detection methodology is described in the second sec-
tion. The experiment details, and how they link to the
damage detection methodology, are given in the third
section. The novel methodology for sensor path optimi-
sation is developed in the fourth section. Finally, in the
fifth section, the results of the novel optimisation pro-
cedure for a large composite stiffened panel subjected
to impact damage are presented and discussed.

Damage detection methodology

The damage detection approach presented by Yue
et al.16 and Giannakeas et al.17 is used in this study to
extract damage-sensitive features that indicate the exis-
tence of damage. The optimisation algorithm will lever-
age this information to select the sensor paths that
provide the best detection capabilities.

Damage detection is performed by comparing a
baseline measurement that is recorded at the defect-
free state of a structure with a current measurement of
unknown state. This comparison is facilitated through
the introduction of a damage index based on the corre-
lation coefficient. Let B½i, j�(t) and Cm

i, j½ � tð Þ denote the
baseline and current signals recorded for the path
between the ith and jth i, j = 1, . . . ,Nsð Þ sensors. Then
the damage index is:

DIm
½i, j� = 1� corr B½i, j�(t),C

m
½i, j�(t)

h i
where m = 1, . . . ,M

ð1Þ
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where Ns is the total number of sensors and M is the
total number of measurements. It is noted that a win-
dow function has been applied in both B½i, j�(t) and
Cm
½i, j�(t) to consider only the first wavepacket and avoid

contamination from boundary reflections.
The damage index shown in equation (1) utilises the

Pearson correlation coefficient. As a result, this damage
index may sometimes not be a very robust statistical
indicator for damage detection since it mainly captures
non-linear attenuation, which occurs over long propa-
gation paths. Therefore, linear attenuation, which
occurs over short propagation paths, will not be cap-
tured relatively well. This damage index is used in this
work because it has been demonstrated to work well
for damage detection in large composite panels.16,17

The methodology presented in this current work is
intended to be a framework for sensor path optimisa-
tion. Therefore, the user is free to change individual
components of the methodology, such as the choice of
damage index, based on their own preferences or
applications.

During path optimisation, each sensor path in a net-
work appears once. Due to signal reciprocity, a dam-
age index will be computed, for example, for the path
going from sensor 1 to sensor 2 and another for the
path going from sensor 2 to sensor 1. Therefore, the
average damage index for the paths between sensor
k k = 1, 2, . . . ,Ns � 1ð Þ and sensor l l = k + 1, k + 2,ð
. . . ,NsÞ is calculated to generate a single damage index
for each unique path as:

DIm
unique, ½k, l� =

DIm
½k, l� +DIm

½l, k�

� �
2

where m = 1, . . . ,M

ð2Þ

For example, DIm
unique, ½1, 2� = DIm

½1, 2� +DIm
½2, 1�

� �
=2.

Let Np denote the total number of unique sensor
pairs considered in the network. Then, a vector Dm can
be defined for the mth measurement as:

Dm = mm,sm½ � ð3Þ

where mm and sm are respectively the mean and
standard deviation damage features, computed as:

mm =
1

Np

XNs�1

k = 1

XNs

l = k + 1

DIm
unique, ½k, l� ð4Þ

and:

sm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNs�1

k = 1

XNs

l = k + 1

DIm
unique, ½k, l� � mm

� �vuut ð5Þ

Given a reference dataset, D0
r , which is constructed

using pristine measurements, the health of a structure
is assessed by computing the Mahalanobis distance
(MSD) as:

MSDm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm �D0

r

� �T

1S
�1

Dm �D0
r

� �r
ð6Þ

where D0
r and 1S are the mean and covariance

matrices, respectively.
Equation (6), involves fitting a normal distribution to

the reference dataset, D0
r , for the computation of D0

r and

1S. Therefore, the MSDm value of the mth measurement
is its distance from the centre of the normal distribution,
expressed in terms of the standard deviations. A 99.9%
confidence ellipse can be drawn that defines the thresh-
old limit. Measurements that lie outside this confidence
ellipse are identified as damage measurements. While
measurements that lie inside this confidence ellipse are
identified as pristine measurements. The MSDm is used
in the subsequent sections to quantify the accuracy of
the SHM system and drive the selection of the optimum
pairs. For further details on the damage detection
algorithm, the interested reader is referred to Yue et al.16

and Giannakeas et al.17 and the references therein.
It is worth noting the variation of the guided wave

signals with temperature can be very high. This will
introduce large errors in the DI measurements in equa-
tion (1) which will influence the mean and variance
matrices in equation (6). However, during the opera-
tion of SHM systems, there is often a great deal of var-
iation/uncertainty regarding the temperature difference
between baseline and current signals. Therefore, the
presence of this variation in this work is intended to
simulate typical operating conditions of SHM systems.
Furthermore, the effect of temperature was compen-
sated in the signals used, and only the residual of the
compensation is included in the estimation of the mean
and variance matrices.

Experiment details

In this work, a 1.624 3 0.94 m flat composite stiffened
panel16 was used for the collection of guided wave
measurements. The frames of the panel are made of
aluminium while the skin and the omega stiffeners are
manufactured using carbon fibre reinforced polymer
laminates of thermoset M21/194/34%/T800S unidirec-
tional prepreg (Hexcel, GB). The stacking sequence of
the composite is 645=02=90=0½ �s and the total thick-
ness is tlmt = 2:208mm.

The central frame separates the panel into two bays.
12 DuraAct piezoceramic disks are surface mounted at
each bay to monitor the health status of the panel. The
panel geometry and sensor locations are illustrated in
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Figure 1. A National Instrument waveform generator
and a PXI 5105 Oscilloscope (National Instruments,
Austin, TX, USA) are used to actuate and sense the
propagating guided waves. To evaluate the perfor-
mance of the SHM system, guided wave measurements
were recorded at both the pristine and damaged state
of the structure. An INSTRON CREST 9350 drop
tower (Instron, Norwood, MA, USA) with a 20 mm
hemispherical impactor was used to impact the panel
and introduce BVID. Since one of the objectives of this
work is to optimise sensors paths to maximise the dam-
age detection accuracy of an SHM network, the impact
energy was selected to result in interlaminar delamina-
tion, undetectable via visual inspection. The presence
and size of the BVID produced after each impact were
confirmed using a portable C-scan device (Dolph Cam;
Dolphitech, Gjøvik, Norway). Three identical panels
were used, and a total of eight impacts were conducted,
three in bay 1 and five in bay 2. Figures 1 and 2 show
the flat panel used in this work. The locations of the
impacts are shown, as well as C-scan images of the
damage produced by the impacts. All impact events
are summarised in Table 1. These impact energies were
chosen as they are representative of a typical tool drop
impact event.

The actuation and sensing of guided waves is the
specimen is carried out using surface-mounted DuraAct
PZTs that are bonded using Hexcel Redux 312 adhesive
film (Hexcel Corporation, Stamford, CT, USA). A
chirp signal is used during excitation given as:

Vchirp(t) = A0 H(t)� H t � tchirp
� �� �

sin 2p f0t +
f1 � f0

tchirp
t2

	 
	 


ð7Þ

where A0 = 12 V is the input amplitude, H is the
Heaviside function, tchirp = 2 3 10�4s is the duration of

the chirp signal, f0 = 10 kHz is the start frequency and
f1 = 600 kHz is the end frequency. The chirp signal is
used because it allows during post-processing to extract
other excitation waveforms. Here, a Hanning
windowed tone-burst response is extracted using the
reconstruction procedure described in the study by
Michaels et al.19 The tone-burst response is given as:

V (t) = A0 H(t)� H t � n=fcð Þ½ � sin 2pfctð Þ 1� cos 2pfc=nð Þð Þ
ð8Þ

where n = 5 is the number of cycles in the tone burst
and fc = 50 kHz is the central frequency. At fc = 50 kHz,
the A0 wave mode is dominant.20,21 This frequency is
selected because based on the observations in Yue et al.16

and Giannakeas et al.,17 adequate damage detection
accuracy is obtained for the damage types studied here.

A National Instrument waveform generator and a
PXI 5105 Oscilloscope are used for data acquisition
with a sampling frequency of 60 MHz. The total
recording duration of the signals is ttot = 4310�4s while
each measurement is repeated 10 times and averaged
to improve signal-to-noise ratio.

Regarding the measurements discussed in the second
section, each measurement m consists of a complete
interrogation of the sensor network where each PZT acts
in turn as an actuator while the rest as sensors.
Therefore, each measurement consists of a 12 3 12
matrix where each element of the matrix contains the sig-
nal recorded by a sensor pair. In total, 34 measurements
were collected from all panels and temperature settings.

Since the two bays are identical in layout and sym-
metric about the central frame, bay 1 can be mirrored
onto bay 2 to generate a superimposed approximation
of the flat panel. As a result, the optimisation proce-
dure can utilise the signal data from both bays, improv-
ing its reliability. This also means that the optimisation

Figure 1. A diagram of the flat panel showing the locations of the bays, sensors, stiffeners, frames and impacts. The boundaries of
the sensor networks are shown.
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procedure only needs to be carried out on the superim-
posed approximation and not each bay individually.
Once the optimal combination of sensor pairs is deter-
mined, this combination can be used directly with bay
2. However, it will need to be mirrored before it can be
used with bay 1. The superimposed approximation of
the flat panel is illustrated in Figure 3.

An extensive dataset of SHM measurements was
collected from the flat panels. First, the panels were
added to a climatic chamber, and measurements were
collected for temperatures T = 25, 26, 30, 35, 40 and
45�C. The signals recorded at T = 25�C are consid-
ered the baseline signals B½i, j�(t) in equation (1).

Measurements at different temperature settings were

Figure 2. The flat panel used in this work. The locations of the impacts are shown, as well as C-scan images of the damage
produced by the impacts.

Table 1. Details of the three impacts in bay 1 and the five impacts in bay 2.

Name Bay Impact Energy (J) Location

B1 – Imp1 1 1 20 Top flange of stiffener between sensors 2 and 6
B1 – Imp2 1 2 20 Skin between sensors 7 and 8
B1 – Imp3 1 3 35 Bottom flange of stiffener between sensors 9 and 10
B2 – Imp1 2 1 20 Top flange of stiffener between sensors 2 and 6
B2 – Imp2 2 2 20 Skin between sensors 6 and 7
B2 – Imp3 2 3 35 Bottom flange of stiffener between sensors 5 and 6
B2 – Imp4 2 4 30 Bottom flange of stiffener between sensors 5 and 6
B2 – Imp5 2 5 35 Bottom flange of stiffener between sensors 9 and 10
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used to consider the uncertainty in the environmental
and operational conditions. In total, 34 pristine mea-
surements were collected. These measurements were

used for the construction of D0
r and the computation

of D0
r and 1S in equation (6). Subsequently, the

impacts summarised in Table 1 were performed, and
SHM measurements were collected after each event.
All impact measurements were performed at room
temperature. In total, 42 measurements were collected
from the impact events. To facilitate the optimisation
of the network, guided wave signals were recorded
along all possible permutations of the sensors. During
interrogation, each sensor acted in turn as the
actuators while the rest recorded the signals received.
A five-tone, Hanning windowed function was used to
generate the excitation signal with central frequency
fc = 50kHz, and amplitude A = 6 V.

Sensor path network optimisation

If a sensor network contains Ns sensors, then the total
number of possible sensor paths is Np = (Ns � 1)3Ns. In
the simplified approximation of the flat panel network
that contains 12 sensors, the total number of possible
sensor paths is Np = (12� 1)312 = 132. However, each
path should be considered only once during the optimi-
sation. For example, there would be a path going from
sensor 1 to sensor 2 and there will be a path going from
sensor 2 to sensor 1. Therefore, the number of possible
unique paths, Npunique , is:

Npunique =
(Ns � 1)3Ns

2
ð9Þ

where Ns is the number of sensors in a SHM network.
Therefore, for the network considered here, the total
number of unique sensor paths is Npunique =
(12� 1)312=2 = 66. For a sensor network with Npunique

possible unique paths, a 13Npunique

� �
vector Pcomb can

be created to describe all the possible combinations of
unique paths in the network:

Pcomb = p 1, 1½ � p 1, 2½ � . . . p (Ns�1),Ns½ �
� �

ð10Þ

where p½k, l� is the path between sensor
k k = 1, 2, . . . ,Ns � 1ð Þ and sensor l l = k + 1, k + 2,ð
. . . ,NsÞ of the network, and can take either a value of
0 (the path isn’t used) or 1 (the path is used). For exam-
ple, the sensor network shown in Figure 4 is composed
of four sensors. Therefore, there are Npunique =
(4� 1)34=2 = 6 possible unique paths. If every unique
path in the network is used, except for the path
between sensors 1 and 3, as shown in Figure 4, the
vector Pcomb for this example will be:

Pcomb = p½1, 2� p½1, 3� p½1, 4� p½2, 3� p½2, 4� p½3, 4�
� �

= 1 0 1 1 1 1½ �
ð11Þ

For a sensor network consisting of Npunique possible
unique paths, the total number of unique sensor path
combinations is:

Npunique, combs
=
XNpunique

n = 1

Npunique !

n! Npunique � n
� �

!
ð12Þ

For the panel studied here, as shown in Figure 3, there
are 12 sensors, so Ns = 12. Therefore, Npunique = 66 and
Npunique, combs

= 7:38 3 1019. The requirement for the opti-
misation procedure is to find an optimal or near-
optimal sensor path combination out of these
7:38 3 1019 possible unique combinations.

To reduce the computation time needed to investi-
gate this large number of combinations, the optimisa-
tion procedure is split into two stages. In the first
stage, the optimal paths connecting the 10 sensors on
the network boundary are determined using simulated
annealing (SA). This always results in 10 sensor paths
being selected in the first stage. The purpose of this
optimisation is to avoid large coverage gaps by ensur-
ing that the paths along the boundary of the network
are selected.

In the second stage, the optimal paths of the
remaining 56 paths are then determined using a multi-
objective form of SA known as AMOSA.22 This means
that up to 56 paths can be selected in the second stage.
AMOSA is used to create a Pareto front balancing the
three competing objectives described in the first sec-
tion. To help visualise this, an example of an optimised
network at the end of the first and second stages is
shown in Figure 5.

By splitting the procedure into two stages, the num-
ber of possible unique sensor path combinations in the

Figure 3. The superimposed approximation of the flat panel.
Generated by mirroring bay 1 onto bay 2.

Morse et al. 7



first stage is 10! = 3:63 3 106, while in the second stage

it is
P56

n = 1
56!

n! 56�nð Þ! = 7:21 3 1016. Therefore, the maxi-

mum number of combinations to be investigated is

reduced by a factor of over 1000 from 7:38 3 1019 to

7:21 3 1016.

Sensor path network optimisation: Boundary paths

In this section, the paths between the sensors on the
boundary of the network are optimised using SA.
Sensors on the interior of the network will be ignored
in the optimisation procedure outlined in this section.

Simulated annealing. SA is probabilistic tool for global
combinatorial optimisation problems that enables gra-
dual convergence to a global near-optimal solution via
a temperature cooling mechanism, analogous to the
cooling used in the annealing technique in metallurgy
to alter a material’s physical properties.23

In each iteration, SA slightly perturbs the current
solution Sc to create a new solution Sn that is close to

the current solution, it then determines whether the
new solution is better or worse than the current solu-
tion in terms of the objective function E. If it is better,
then the new solution is accepted as the current solu-
tion of the next iteration. If it is worse, then it can still
be accepted based on an acceptance probability PAccept:

PAccept Snð Þ= exp �DE

kT

	 

ð13Þ

where k = 1, and DE = E Snð Þ � E Scð Þ= En � Ec. En is the
objective function of the new solution, Ec is the objec-
tive function of the current solution, and T is the tem-
perature parameter. T in SA is analogous to the
temperature of the metal in the annealing metallurgical
technique, in which a metal is heated to high tempera-
ture and then cooled. Starting from a high initial tem-
perature T0, T is decreased at the end of each iteration
according to a user-defined cooling scheme. The cool-
ing scheme used in this work is:

Tt = aTt�1 ð14Þ

where a = 0:99. In this work, the starting temperature
was selected to be T0 = 1.

When a metal is heated to high temperatures in the
annealing metallurgical technique, the metal’s atoms
are highly mobile and become less mobile as the metal
cools. This behaviour is replicated in SA via the tem-
perature parameter T. It is clear from equation (13)
that PAccept is a function of T, and as T decreases,
PAccept also decreases, which means that new solutions
worse than the current solution are less likely to be
accepted. In practice, this means that SA becomes less
mobile in selecting new solutions as T decreases. PAccept

is also a function of the difference DE between the new
solution Sn and the current solution Sc. As the differ-
ence DE increases, the acceptance probability PAccept

decreases, which means that if the new solution Sn is
significantly worse than the current solution Sc, it is
much less likely to be accepted. All of this combined
means that as T decreases, new solutions that are worse
than the current solution are less likely to be selected,
especially if they are much worse. Therefore, when T is
high, SA is highly mobile in selecting new solutions.
This helps prevent SA from converging to a local
optimum.

In this work, the SA procedure was stopped when
the new solution Sn remained unchanged after 100 con-
secutive iterations, indicating that convergence had
been achieved.

Path optimisation. Ideally, when designing a sensor path
network, the paths along the boundary of the network
should be selected to avoid large gaps in sensor

Figure 4. An example of a sensor path network consisting of
four sensors. Five of the six possible sensor paths are used in
the network.

Figure 5. A example of an optimised network at (a) the end of
the first stage and (b) the end of the second stage.
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coverage. Also, as mentioned earlier, by determining
the optimal boundary paths first, the efficiency of the
overall optimisation procedure can be improved since
the number of possible combinations to consider is
reduced.

In this first optimisation stage, only the optimal
paths between the boundary sensors are determined.
For complex geometries or complex sensor layouts, it
can be difficult for engineers unfamiliar with sensor
networks to identify which sensors are on the bound-
ary of the sensor network. To reduce the reliance of
the proposed method on the experience of the user, the
sensors on the boundary of the sensor network are
automatically determined. Using the coordinates of the
sensors, the convex hull of the sensor network can be
calculated and is shown in Figure 6. This convex hull
can be visualised as the shape enclosed by a rubber
band stretched around the sensor network.

Sensors which lie coincident with the convex hull’s
perimeter are identified as boundary sensors. These are
sensors 1–12, excluding sensors 6 and 7. Before starting
the SA optimisation procedure, a vector containing
these sensors in a randomised order can be created:

Vbnd = 1 2 9 8 12 10 11 4 5 3½ � ð15Þ

The order in which the sensors appear in the vector
Vbnd determines the paths taken. For example, based
on the order of sensors shown in equation (15), the
path from sensor 1 to sensor 2 is selected, the path 2–9
is selected, and so on. Based on the order of sensors in
equation (15), the path 3–1 is also selected. The sensor

path network for Vbnd in equation (15) is shown in
Figure 7 (left). This vector Vbnd is used as the current
solution of the first iteration Sc, 0 in the SA methodol-
ogy described in ‘Simulated annealing’ section. The
new solution Sn, t of iteration t is created by randomly
perturbing the current solution Sc, t. This perturbation
involves randomly picking two sensors from Sc, t and
switching their positions.

When optimising the paths between the boundary
sensors, the combination of sensors appearing in Vbnd

that provides the shortest total path distance should be
selected. This combination corresponds to selecting
paths that ensure coverage of the boundary while mini-
mising the length of individual paths. For instance,
selecting path 1–2 and path 2–3 is preferred compared
to selecting path 1–3 as similar coverage is achieved
while shorter paths are selected. Signal attenuation is
related to the path length and a better signal-to-noise
ratio can be achieved over short distances.16 By intro-
ducing the vector Vbnd, it is ensured that each sensor
will be selected exactly once while by minimising the
total path distance, dtot.Therefore, the optimisation
procedure will select the paths along the boundary of
the network. This problem is analogous to the ‘travel-
ling salesman’ problem.

The total path distance, dtot, is the objective function
E in SA:

E Sð Þ= dtot Sð Þ=
XNbnd

i = 1

d k, l½ � k = S ið Þ l = S jð Þ ð16Þ

where

j =
i + 1, if i + 1<Nbnd

1, otherwise

�
ð17Þ

and Nbnd is the number of sensors on the boundary,
and it is the length of vector Vbnd in equation (15). The
distance between sensor k and sensor l, d½k, l�, is:

d½k, l� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xk � xl)

2 + (yk � yl)
2

q
ð18Þ

For example, d½5, 12� is the distance between sensor 5
and sensor 12. xk , ykð Þ and xl, ylð Þ are the coordinates
of sensors k and l, respectively.

SA was used to determine the optimal paths between
the boundary sensors to minimise dtot. The sensor path
network for the boundary sensors before and after the
optimisation can be seen in Figure 7. A total of 147
iterations were needed to achieve convergence in SA.

It can be seen in Figure 7 that the optimisation pro-
cedure significantly reduced the total path distance.
The total path distance before the optimisation was
dtot = 3:09m, while after the optimisation it was

Figure 6. The convex hull of the sensor network.
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dtot = 1:66 m, a 46% decrease. The final solution found
from SA was:

SFinal = 1 2 3 4 8 12 11 10 9 5½ � ð19Þ

This optimal combination of sensor paths is shown in
Figure 7.

Sensor path network optimisation: Remaining paths

As mentioned in the fourth section, there are a total of
66 unique sensor paths that can be selected in the net-
work. In ‘Sensor path network optimisation: Boundary
path’ section, 10 boundary paths were selected.
Therefore, there are 56 remaining paths that need to be
optimised. The goal of this optimisation procedure is
to determine the optimal combination of remaining
sensor paths to balance the three competing objectives
described in the first section. All sensors 1–12 will be
investigated in the optimisation procedure outlined in
this section.

Since there are multiple objectives involved, the nor-
mal SA approach outlined in ‘Simulated annealing’
section cannot be used since it is for single-objective
optimisation. Therefore, AMOSA,22 a special form of
SA for multi-objective optimisation is used in this
work.

Archived multi-objective simulated annealing. The concept
of Pareto-dominance is often found in multi-objective
optimisation problems which involve competing objec-
tives, whereby improving one objective can lead to a

worsening of one or more other objectives. In these
types of problems, if a solution provides worse out-
comes for all of the objectives compared to other solu-
tions, this solution is said to be Pareto-dominated.
However, if a solution provides better outcomes for
one or more objectives compared to other solutions, it
is said to be Pareto-non-dominated or Pareto-optimal.
AMOSA is a special form of SA for multi-objective
optimisation. As the AMOSA algorithm progresses, it
stores Pareto-optimal solutions in an archive. AMOSA
incorporates the concept of Pareto-dominance using a
parameter named domination. For a given number of
objective functions Ei, the level of domination between
a new solution Sn and an archived solution Sa is:

Ddom Sn, Sað Þ=
Y

i
Ei(Sn)6¼Ei(Sa)

jEi Snð Þ � Ei Sað Þj
Ri

ð20Þ

where Ri is the range of the ith objective function.
As in SA, in every iteration AMOSA slightly per-

turbs the current solution Sc to create a new solution Sn

that is close to the current solution, it then determines
whether the new solution is better or worse than the
current solution in terms of the objective functions Ei.
If it is better, then the new solution is accepted as the
current solution of the next iteration, and it is added to
the archive. If it is worse, then it can still be accepted as
the current solution and accepted into the archive,
based on its nearness to the archive,22 as described by
an acceptance probability PAccept. If the current solu-
tion Sc dominates the new solution Sn, PAccept is:

(a) (b)

Figure 7. The sensor path network (a) before optimisation and (b) after optimisation.
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PAccept(Sn) =
1

1 + exp Ddomavr Snð ÞkTð Þ ð21Þ

where Ddomavr is the average domination between the
new solution Sn and all of the archived solutions and
k = 13106. However, if the new solution Sn dominates
the current solution Sc, PAccept is:

PAccept(Sn) =
1

1 + exp �Ddommin Snð ÞkTð Þ ð22Þ

where Ddommin is the minimum domination between
the new solution Sn and all of the archived solutions.

At the end of each iteration, the temperature para-
meter T is decreased according to a user-defined cool-
ing scheme. The cooling scheme used in this work is:

Tt = aTt�1 ð23Þ

where a = 0:999. In this work, the starting temperature
was selected to be T0 = 13106.

In this work, AMOSA was stopped when the new
solution Sn remained unchanged after 100 consecutive
iterations, indicating that convergence has been
achieved.

Path optimisation. For the path optimisation, AMOSA
involves a number of objective functions Ei (see equa-
tion (20)). For the problem studied here, there are three
objectives, so i = 1, . . . , 3. The definitions of these three
objective functions are described in detail below:

Objective 1: Damage Detection Accuracy. It is neces-
sary to define a parameter to describe the accuracy of
the damage identification. In this work, an MSD ratio,
based on the MSD introduced in equation (6), is
defined to achieve this:

MSDratio

=
MinimumMSDof the damagemeasurements

MaximumMSDof the pristinemeasurements

=
MSDdamage

min

MSDpristine
max

ð24Þ

It is assumed that by maximising the MSD ratio in
equation (24), the damage detection accuracy of the net-
work is also maximised. This is because to maximise the
MSD ratio, it is necessary to maximise MSDdamage

min , and
minimise MSDpristine

max . Maximising MSDdamage
min results in

the damage measurements moving further away from
the pristine measurements, improving detection
reliability. While minimising MSDpristine

max involves mov-
ing the pristine measurements closer together and mak-
ing the 99.9% confidence ellipse smaller, reducing the

likelihood of damage measurements being incorrectly
identified as a pristine measurement. The steps for cal-
culating the MSD ratio are visualised in Figure 8.

Objective 2: Coverage Level. One of the aims of imple-
menting coverage area as an objective is to filter out
unnecessary paths, such as paths that cover an area
that is already covered. For example, if a network
already has paths 1–2, 2–3, 3–4, then adding path 1–4
is unnecessary since it does not provide any additional
information.

In this work, the coverage area of a sensor path is
calculated by drawing an ellipse between the two sen-
sors of the path, as shown in Figure 9.

The semi-major axis a in Figure 9 can be expressed
in terms of the distance d½k, l� between the kth and the
lth sensor:

2a = d k, l½ � =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk � xlð Þ2 + yk � ylð Þ2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x + d2
y

q
ð25Þ

For a composite panel with the same thickness and
material used in this work, it has been demonstrated
that the typical diameter of a detectable BVID is
around 5 cm.16 Therefore, in this current work, the
semi-minor axis b was given a fixed value of 2.5 cm, so
that the width of the ellipse 2b is similar to the typical
size of a detectable BVID.

The coverage area of the path between sensor k and
sensor l shown in Figure 9 is:

A½k, l� = pab ð26Þ

The total coverage provided by the sensor paths of a
network is calculated as a percentage of the area
enclosed by the boundary of the sensor network:

Coverage %ð Þ= 100
Apaths, tot

Aboundary
ð27Þ

where Apaths, tot is the total ellipse area of all the sensor
paths in the network. When two ellipses overlap each
other, their common area is counted only once. The
boundary of the sensor network can be seen in Figure
10. The boundary shown in Figure 10 was determined by
calculating the convex hull of the sensor network, then
an offset was applied to this hull to avoid cutting off any
sensor path ellipses for sensors near the boundary. The
area enclosed by this boundary is Aboundary = 0:21 m2.

From preliminary tests, there was no noticeable dif-
ference in total coverage area when the sensors were
instead placed at the foci of the ellipse. Therefore, for
simplicity, the sensors were placed at the ends of the
ellipse in this work. If the sensors were instead placed
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at the foci of the ellipse, the methodology shown above
would remain unchanged.

Objective 3: Overall Noise in the Network. Some sensor
paths may pass through geometric features, such as
stiffeners or holes, causing their signals to become atte-
nuated, significantly increasing the noise levels in the
signals. This increase in noise could significantly
reduce damage detection accuracy. Therefore, sensor

paths that demonstrate significant levels of noise
should be automatically removed from the sensor
network.

To determine the noise levels of each sensor path,
the damage indices for the pristine measurements,
DIpristineunique , were calculated using equation (2) and plotted
in Figure 11.

It is clear from Figure 11 that there is a much larger
spread in DIpristineunique for the sensor paths that pass over
both stiffeners (highlighted in red in Figure 11). These
are the paths going from sensors 1, 2, 3 and 4 to sen-
sors 9, 10, 11 and 12. Following this, the variance of
DIpristineunique for each path was calculated and plotted in
Figure 12.

It can be seen in Figure 12 that the paths that cross
over both stiffeners give the highest variance in
DIpristineunique , which is intuitive. To more clearly show the
impact of the two stiffeners on the variance, the var-
iance can be mapped onto the sensor network, as
shown in Figure 13.

The damage index variance map in Figure 13 makes
it clear that longer paths and paths that pass over both
stiffeners demonstrate much higher variances in their
damage indices. As a result, there is a great deal of
noise in the pristine damage indices of these paths,

Figure 8. The four steps for calculating the MSD ratio. (a) Step 1: Plot the pristine and damage measurements. (b) Step 2: Fit a
normal distribution to the pristine measurements. (c) Step 3: Calculate MSD

damage
min . (d) Step 4: Calculate MSDpristine

max .

Figure 9. The coverage area of a sensor path between two
sensors is determined using the area of an ellipse connecting
the two sensors.
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making them less reliable for damage detection.
Therefore, when optimising the damage detection accu-
racy of the network, sensor paths with high variance in

DIpristineunique , such as long paths or paths that pass over

both stiffeners, should not be selected. This can be
achieved automatically in the optimisation procedure
by setting an objective of minimising the total noise of
all the sensor paths included in the sensor network.
This total noise can be calculated by summing the val-

ues of var DIpristineunique

� �
shown in Figure 12 for all of the

sensor paths included in the sensor network. For exam-
ple, if the sensor network only included paths 1–9, 2–
10 and 5–12, the total noise would be

var DIpristineunique

� �
½1, 9�

+ var DIpristineunique

� �
½2, 10�

+ var DIpristineunique

� �
½5, 12�

=

0:0134 + 0:0070 + 0:0008 = 0:0212.

Results and discussion

As mentioned in ‘Sensor path network optimisation:
Remaining paths’ section, the three objective functions
used in AMOSA were:

1. To maximise the damage detection accuracy of the
sensor network. This corresponds to maximising
the MSD ratio introduced in ‘Sensor path network
optimisation: Remaining paths’section.

2. To maximise the sensor coverage area of the sensor
network.

3. To minimise the overall noise present in the sensor
network.

The results obtained from AMOSA for these three
objective functions can be seen in Figure 14. Side views
of Figure 14 can be seen in Figures 15 to 17. A total of
10,000 AMOSA iterations were completed, producing
10,000 solutions. Of these, 1148 were non-dominated
solutions, also known as Pareto front solutions, and
8852 were dominated solutions, also known as non-
Pareto front solutions. These solutions are shown as
red and blue markers, respectively, in Figure 14.

In Figure 15, it is clear that as the coverage level
increases, the total noise also increases. This is due to
the fact that longer sensor paths contribute more to
the coverage level but also significantly increase total
noise, as found in ‘Path optimisation’ section.

Figure 16 shows that the damage detection accu-
racy, in the form of the MSD ratio, decreases as the
total noise increases. This is because an increase in total
noise leads to a wider spread of the pristine and dam-
age measurements, therefore increasing MSDpristine

max ,
decreasing MSDdamage

min . This results in a decrease in the
MSD ratio and can result in damage measurements
being incorrectly identified as pristine measurements,
also known as false negatives. The opposite is true at
lower noise levels (\0.05), which gives very high MSD
ratios.

It can be seen in Figure 17 that for coverage levels
below 60%, there is no clear relationship between the
MSD ratio and the coverage level. However, once the
coverage level is above 60%, it is clear that the MSD
ratio decreases as coverage level increases. This is due
to the fact that higher coverage levels are strongly asso-
ciated with higher values of total noise, as shown in
Figure 15, thereby reducing damage detection
accuracy.

Given that there are 1148 Pareto front solutions in
Figure 14, it can be difficult to choose a suitable solu-
tion. To simplify the process of choosing a suitable
solution, the engineer can apply a filter to these solu-
tions by defining suitable ranges for the objective func-
tions. For example, the engineer could define
Coverage.60% as a suitable range for the coverage
level and MSDratio.1:5 as a suitable range for the
MSD ratio. These filter thresholds were selected as
logical constraints to filter some solutions and demon-
strate the solution selection process. The user is free to
define different filter thresholds based on their own
preferences and applications. Using these ranges for
Coverage and the MSD ratio, the 1148 Pareto front
solutions in Figure 14 can be filtered down to the 48
Pareto front solutions shown in Figure 18. From these,
the engineer can more easily select a suitable solution.
Three potentially suitable Pareto front solutions have
been highlighted in Figure 18 by blue circles and
labelled ‘A’, ‘B’ and ‘C’. Solution ‘A’ demonstrates a
high MSD ratio and low total noise but low coverage

Figure 10. The boundary of the sensor network.
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Figure 11. The damage indices of the pristine measurements. The paths that pass over two stiffeners are highlighted. The sensor
network is shown on the right to aid comparisons.

Figure 12. The variance of the damage indices of the pristine measurements. The paths that pass over two stiffeners are
highlighted. The sensor network is shown on the right to aid comparisons.

Figure 13. Damage index variance map for the entire sensor network.
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level, solution ‘C’ demonstrates a high coverage level
but low MSD ratio and high total noise, while solution
‘B’ provides a balance between them.

All three objectives (MSD, coverage and total noise)
should be considered when choosing a solution. The
values of the coverage, MSD ratio, and total noise for
these three solutions can be seen in Table 2 for solu-
tions ‘A’, ‘B’ and ‘C’. The coverage maps for solutions
‘A’, ‘B’ and ‘C’ are shown in Figure 19. The means and
standard deviations of the damage indices for the pris-
tine and damage measurements for solutions ‘A’, ‘B’
and ‘C’ are shown in Figure 20. To see how well solu-
tions ‘A’, ‘B’ and ‘C’ perform against the case where all
of the sensor paths are used and the case where prior

expert knowledge is used to select the sensor paths, the
results for these two cases are given in Table 2, Figure
19 and Figure 20. For the case of prior expert knowl-
edge, the sensor paths selected by Yue et al.16 were
used.

As shown in Figure 19, solution ‘A’ and solution ‘C’
provide the lowest and highest coverage levels, respec-
tively, among the AMOSA solutions considered. The
coverage levels for solution ‘A’ and the solution with
prior expert knowledge are very similar, but there are
some slight differences - unlike the solution where prior
expert knowledge is used, solution ‘A’ uses paths 1–3,
2–4, 6–8 and 10–12, while it doesn’t use path 6–7. The
inclusion or exclusion of these paths does not cause

Figure 14. Results from the multi-objective sensor path optimisation using AMOSA.
AMOSA: archived multi-objective simulated annealing.

Figure 15. Results from the multi-objective sensor path optimisation using AMOSA. Side view of Figure 14, Total noise versus
coverage.
AMOSA: archived multi-objective simulated annealing.
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much difference in coverage but has a significant
impact on the MSD ratio, as seen in Table 2.

As expected, the solution involving all of the sensor
paths provides the highest coverage level since it utilises
the sensor paths that cross over both stiffeners.
Solution ‘A’ does not use any sensor paths crossing two
stiffeners, while solutions ‘B’ and ‘C’ utilise four and
seven, respectively. These paths provide the largest
increase in coverage level among all of the paths, but
they also provide the largest increase in total noise,
which reduces damage detection accuracy, as repre-
sented by the MSD ratio. This is clearly seen in the data

presented in Table 2, where solution ‘A’ provides the
highest MSD ratio and lowest total noise. Compared
to the case where prior expert knowledge is used to
select the sensor paths, solution ‘A’ provides a very
similar coverage level (61.3 vs 60.7 %) and total noise
(0.057 vs 0.054).

The lower total noise from the solution with prior
expert knowledge could be because the performance
index total noise is being used in this work and not
average noise. Therefore, as the number of paths in a
network increases, the total noise also increases. As a
result, a network with less paths can demonstrate a

Figure 16. Results from the multi-objective sensor path optimisation using AMOSA. Side view of Figure 14, MSD ratio versus total
noise.
AMOSA: archived multi-objective simulated annealing.

Figure 17. Results from the multi-objective sensor path optimisation using AMOSA. Side view of Figure 14, MSD ratio versus
coverage.
AMOSA: archived multi-objective simulated annealing.
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lower total noise. Since the solution with prior expert
knowledge has a low number of paths compared to the
other solutions investigated, it follows that it would
also have a low total noise.

The impact on damage identification accuracy from
utilising more sensor paths that cross over both stiffen-
ers is most clearly depicted in Figure 20. It can be seen
in this Figure that it becomes progressively more diffi-
cult to distinguish the damaged measurements from
the pristine measurements as more sensor paths cross-
ing over both stiffeners are used. This is represented by
the MSD ratio, which drops sharply from 6.51 for
solution ‘A’, to 0.04 for the solution where all of the
sensor paths are used.

Solution ‘A’ provides similar performance, in terms
of coverage and total noise, to the other solutions.
However, it also provides significantly higher damage
detection accuracy than the solution where prior expert
knowledge is used – solution ‘A’ gives an MSD ratio of
6.51 compared to an MSD ratio of 4.83 for the solu-
tion where prior expert knowledge is used, an increase
of 35%. This difference can be seen visually in Figure
20– there is less spread in the pristine measurements in

Figure 20(a) compared with Figure 20(e). The confi-
dence interval envelope in Figure 20(a) is also more
narrow than in Figure 20(e). This difference could be
because solution ‘A’ uses a slightly different network
of paths compared to the solution where prior expert
knowledge is used. Unlike the solution where prior
expert knowledge is used, solution ‘A’ uses paths 1–3,
2–4, 6–8 and 10–12, while it doesn’t use paths 6–7.
Paths such as 1–3, 2–4, 6–8 and 10–12 are not typically
considered in SHM networks since if a network con-
tains paths 1–2, 2–3 and 3–4, then adding path 1–3 or
2–4 will not noticeably improve the coverage of the
network.16 However, based on the high MSD ratio of
solution ‘A’, the addition of these paths could signifi-
cantly improve damage detection and the overall per-
formance of the SHM network.

In this work, paths that pass over both stiffeners
demonstrated much higher noise than paths that only
cross one stiffener. Therefore, paths that pass over both
stiffeners are more likely to be removed. This can most
clearly be seen by solution A from AMOSA in Table 2,
which didn’t use any paths that cross both stiffeners.
The removal of these paths is also seen in the solution

Figure 18. Pareto front solutions obtained for the case where the coverage level is above 60% and the MSD ratio is greater than
1.5. Three potentially suitable Pareto front solutions have been highlighted by blue circles and labelled ‘A’, ‘B’ and ‘C’.

Table 2. Values of the objectives for solutions ‘A’, ‘B’, ‘C’ and the case where all sensor paths are used.

Sensor network Number of sensor paths Coverage (%) MSD ratio Total noise

AMOSA solution ‘A’ 44 61.3 6.51 0.057
AMOSA solution ‘B’ 45 63.4 1.80 0.087
AMOSA solution ‘C’ 50 67.1 1.71 0.13
All sensor paths 66 74.0 0.05 0.42
Prior expert knowledge16 41 60.7 4.83 0.054

Higher values of coverage and MSD ratio are better, while lower values of total noise are better.

AMOSA: archived multi-objective simulated annealing.
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based on prior expert knowledge.16 In this solution,
paths that pass over two stiffeners were not used, but
good localisation performance was demonstrated.

A potential improvement to the methodology shown
in this work would be to include an objective describ-
ing the localisation performance of the network. This
objective could be based on probability of detection or
probability of localisation.

Conclusions

This work proposed a novel methodology for the auto-

matic multi-objective optimisation of sensor paths in a

SHM sensor network using SA. Using all of the sensor

paths within a sensor network may not always improve

the performance of the network. In fact, the removal of

some paths may even improve the overall performance

Figure 19. Coverage maps for different sensor networks. The network boundary is shown as a dashed blue line. (a) Solution ‘A’.
(b) Solution ‘B’. (c) Solution ‘C’. (d) All sensor paths. (e) Prior expert knowledge.16
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of a SHM sensor network. For example, the results

obtained in this study indicate that the removal of paths

that demonstrate a high level of overlap with other paths

or paths that cross multiple structural features (e.g. stif-

feners) can improve multiple objectives. The former do

not provide any additional information, while the latter

contain significant noise that affects the detection accu-

racy of the SHM system. Removing these paths leads

also to a reduction in the complexity of the network.
Knowing which paths to include, and which to

exclude, can require significant prior expert knowledge,
especially in the case of structures with complex geome-
tries. Furthermore, paths selected on the basis of the
engineer’s expertise and knowledge do not necessarily
provide an optimal solution, as such an optimal solu-
tion should take into account different and complex

performance measures. Therefore, the automatic multi-
objective optimisation procedure developed in this
work aims to select the paths of an SHM sensor net-
work that maximise coverage level, maximise damage
detection accuracy, and minimise signal noise due to
the presence of geometric features, with minimal user
intervention.

Furthermore, a significant benefit of the proposed
optimisation procedure is that it is scalable to different

structures of varying complexity and can be used with

panels of any material and with any UGW damage

detection methodology. The proposed procedure does

not change based on the details of the damage detec-

tion methodology, but the objectives used in the proce-

dure should be based on UGW principles for damage

detection.

(a) (b)

(c) (d)

(e)

Figure 20. Means and standard deviations of the damage indices for the pristine and damage measurements for different sensor
networks. (a) Solution ‘A’. (b) Solution ‘B’. (c) Solution ‘C’. (d) All sensor paths. (e) Prior expert knowledge.16
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The proposed procedure was tested on a real-world
large composite stiffened panel, with many geometric
features in the form of frames and stiffeners.16 The
panel was subjected to impact damage from eight
impact events. A Pareto front was created using a
multi-objective form of SA known as AMOSA to bal-
ance the three competing objectives. Compared to
selecting all possible paths, the optimised sensor paths
achieve higher damage detection accuracy and lower
signal noise, although the coverage is slightly lower.
Compared to the case where expert knowledge was
used to select the sensor paths, the proposed optimisa-
tion procedure provided a similar coverage level and
total noise but gave 35% higher damage detection
accuracy. These results demonstrate that the novel
automatic optimisation procedure proposed in this
work is capable of providing a sensor path network
whose performance is superior or equal to the perfor-
mance of sensor path networks designed using prior
expert knowledge, with minimal user input.
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