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Magnetic skyrmions are topological swirling spin textures objects that can be
manipulated and employed as information carriers. This is accomplished based
either on their ground-state properties or their thermodynamic properties.
Landauer’s principle establishes an irreversible conversion from information to
physics. The inverse mechanism, the inverse mechanism is proposed for magnetic
topological defects forming in magnetic nanostructures that are regarded as closed
thermodynamic systems confirming Szilard’s and Brillouin’s hypotheses. This
mechanism consists of the creation of bits of information using a thermodynamic
source having a form of negentropy. In this perspective article, the following are
proved for magnetic skyrmions: 1) Landauer’s principle expressed in terms of
negentropy and 2) the generalized second principle of thermodynamics based on
Brillouin’s negentropy principle of information. The thermodynamic entropy is
converted into information entropy at the expense of negentropy, “negative
entropy” corresponding to the loss of thermodynamic entropy from the magnetic
skyrmion itself. A recently proposed practical device enables the verification of points
1) and 2) and allows a full understanding of the interchange between thermodynamics
and information and vice versa regarding skyrmions as information units and showing,
in perspective, the considerable advantages offered by this type of storing and coding
information.
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INTRODUCTION

Magnetic skyrmions are axisymmetric topological solitons of vortex-like character hosted in
ferromagnetic materials. Generally, they are stabilized by an exchange interaction of relativistic
nature called Dzyaloshinskii–Moriya interaction (DMI) [1, 2]. Magnetic skyrmions are characterized
by 1) a skyrmion number S (otherwise called the topological charge), an integer that indicates
how many times magnetic moments within a skyrmion wrap a sphere; 2) helicity number, the phase
appearing in the in-plane spin texture; and 3) a fixed rotation fashion called chirality χ. The skyrmion
number is expressed as S = 1/(4π) ∫ d2ρm·(zm/zx × zm/zy) wherem(ρ) =M(ρ)/Ms is the dimensionless
magnetization vector with M representing the magnetization, ρ = (x, y) the in-plane coordinates, Ms

representing the saturation magnetization, and z/zx and z/zy are first partial derivatives.
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Recently, great efforts have been devoted to the manipulation
of magnetic skyrmions forming inmagnetic nanostructures based
on their ground-state magnetic properties and giving rise to
spintronic applications [1–4]. Very recently, magnetic
skyrmions have been employed as qubits, a new class of
quantum logic elements [5]. It has also been proposed the
employment of magnetic skyrmions as information entropy
carriers suggesting a data communication system based on the
coding of information entropy [6]. This investigation stemmed
from the theoretical and numerical exploration of the
thermodynamic properties of magnetic skyrmions [7–10]. In
this respect, the link between the physical and information
entropies has been a subject matter of several studies [11–15].
On the other hand, the concept of negentropy was introduced
first by Szilard who solved Maxwell’s demon paradox [16, 17],
and then by Brillouin [18–23] who continued Szilard’s and
Shannon’s investigations. After the discovery and formulation
of Landauer’s principle [24–27], in recent decades, great efforts
were made for the full understanding of information erasure and
its relation with thermodynamics and logical computation from a
philosophical, theoretical, and experimental viewpoints [28–47].

In this perspective article, this kind of investigation was
applied to magnetic skyrmions. The aim of this study was
threefold: 1) to show that Landauer’s limit is expressed in
terms of variation of negentropy for a Néel skyrmion; 2) to
show that the generalized second principle of thermodynamics
based on Brillouin’s negentropy principle can be applied to a Néel
skyrmion; and 3) to explain the interplay between information
and negentropy and vice versa of a Néel skyrmion [6, 8]. This
discussion could open the route in prospect for a new way of
storing and coding information by using magnetic topological
defects.

NEGENTROPY AND LANDAUER’S LIMIT
FOR A MAGNETIC SKYRMION

A Néel skyrmion (or hedgehog skyrmion) forming in magnetic
nanostructures as a result of the interfacial DMI is characterized by
the magnetization texture m � χ sin θ ρ̂ + cos θ ẑ in a cylindrical
reference frame (ρ, φ, z) where χ = ±1 is the chirality (+1 outwardly
magnetization, −1 inwardly magnetization), and θ is the polar
angle with 0 ≤ θ ≤ π. Figure 1A shows an outwardly Néel skyrmion
(χ = +1) with a negative polarity (θ = π) and skyrmion
number S = −1 subjected to an external magnetic field H along
the + z direction, while Figure 1B displays an inwardly Néel

skyrmion (χ = −1) with a positive polarity (θ = 0) and skyrmion
number S = +1 subjected to an external magnetic fieldH along the
− z direction. In the following discussion, the Néel skyrmion
texture shown in Figure 1A was taken into account to be
consistent with the results of micromagnetic simulations carried
out on a Néel skyrmion with χ = +1, negative polarity, and S = −1
[7]. However, note that this choice is purely arbitrary and the same
conclusion would be drawn taking into account the Néel skyrmion
with χ = −1, a positive polarity, and S = +1.

The skyrmion energy was calculated from the microscopic
micromagnetic Hamiltonian as a spatial integral of the skyrmion
energy density within the thin-film limit including exchange,
interfacial DMI, magnetostatic and perpendicular anisotropy
contributions, and external magnetic field interaction [7–9].
Within this model, the exchange interaction among spins
forming the magnetic skyrmion was rigorously taken into
account. It was found that, in the vicinity of the absolute
energy minimum at the equilibrium skyrmion diameter D0sky,
the skyrmion energy can be fitted by means of a parabolic curve
for any temperature T and bias field amplitude H in the region of
skyrmion metastability (0 ≤ T ≤ 300 K for μ0 H > 5 mT and 0 ≤
T ≤ 200 K for μ0H = 0 mT) [7]. Importantly, D0sky strictly
depends on the parameters of the microscopic Hamiltonian.
In this respect, the determination of the skyrmion size for an
isolated skyrmion by computing the skyrmion radius (both
equilibrium and average) has recently been proved according
to different analytical theories based on the minimization of the
skyrmion energy with respect to the skyrmion radius [9, 48, 49].
In particular, it has been shown that both the average skyrmion
size and the wall width separating the core from the outer domain
of the skyrmion can be accurately computed [48]. This
investigation has been generalized by studying the magnetic
skyrmion’s size and spin profile in a condensed phase forming
a skyrmion crystal at high skyrmion density [49]. In this latter
case, it has been demonstrated that the dependence of skyrmion
size on magnetic parameters is different compared to isolated
skyrmions or to skyrmion stripes forming at low skyrmion
density.

According to micromagnetic simulations, it was observed that
the value of the Néel skyrmion diameters obeys a distribution
analogous to Maxwell–Boltzmann (MB) of the molecules of an
ideal gas at any T and for any H in the region of metastability [7].
Exploiting this physical analogy with ideal gases, an analytical MB
distribution for a 3D skyrmion diameter population [7, 9] was
proposed, and it was found an excellent agreement between the
micromagnetic and the analytical results [7]. This analogy was

FIGURE 1 | Pictorial representation of a Néel magnetic skyrmion in two magnetization textures. (A) Perpendicularly magnetized ferromagnet hosting an outwardly
(chirality χ � +1) Néel magnetic skyrmion with polarity p = −1. (B) Perpendicularly magnetized ferromagnet hosting an inwardly (chirality χ � −1) Néel magnetic skyrmion
with polarity p = +1. H lies along the z-axis [positive direction in (A) and negative direction in (B)].
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also extended to the 2D skyrmion diameter distribution [8]. From
the analogy with the 3D MB distribution of an ideal gas, the
Gaussian distribution at the thermodynamic equilibrium at a
given T and H for both 3D and 2D skyrmion diameter
distribution can be written in the form

f0(Dsky) � Cav e−
a

kBT
(Δ〈Dsky〉)2 , (1)

where Cav is the normalization constant (in m-2), kB is the
Boltzmann constant, a is a coefficient proportional to the
skyrmion energy curvature, Δ<Dsky> = Dsky − < Dsky >, Dsky

the skyrmion diameter, and <Dsky> the average skyrmion
diameter with <Dsky> = <Dsky (T)>.

Owing to thementioned analogy, it is useful to relate the diameter
distribution depending on T and H to skyrmion’s thermodynamic
entropy as occurs for the thermodynamic entropy of an ideal gas.
Regarding this, it is important to note that the main source of
entropy for domains forming in ferromagnets is represented by spin
waves (or magnons). Recently, it has been found that the source of
entropy and free energy for a domain and a domain wall (DW) in a
magnetic nanowire is due to thermally activated magnons [50]. In
this system, it has been demonstrated that the larger domain wall
entropy is due to the increase in the magnon density of states at low
energy, and the driving force allowing DW propagation under a
temperature gradient towards the hotter region is the
thermodynamic entropy itself. Under this condition, the system
evolves toward a state that lowers its free energy by exploiting DW’s
larger entropy [50]. The DW movement toward a hotter region
driven by thermal gradients has also been proved in
antiferromagnets and can be understood by means of the
minimization of the free energy [51]. Also, the main source of
the configurational entropy of a classical Néel magnetic skyrmion
has been attributed to the thermal-breathing mode, a type of spin
wave as observed in micromagnetic simulations [7].

The configurational entropy at thermodynamic equilibrium
related to a classical Néel magnetic skyrmion diameter
distribution was computed, at each T and H, as the
Gibbs–Boltzmann’s statistical thermodynamic entropy, a
quantity proportional to the statistical average H0 = <lnf0>,
the Boltzmann order function at thermodynamic equilibrium,
namely as S = −kB H0 with S = S(T) [7–9]. This entropy is the
generalization of the Boltzmann entropy when the microstates of
the statistical ensemble are not equiprobable. For a 2D skyrmion
diameter population, after performing the statistical average H0

within the continuous limit, it takes the form [8]

S � −kBπ∫
∞

0

dDskyDskyf0(Dsky) ln(f01(Dsky)). (2)

Here, f01 (Dsky) = f0<Asky> with <Asky> ≈1/4 π <Dsky>2 the
average skyrmion area and S > 0 (in J/K). The Gaussian
distribution f0 is the one that realizes the largest
thermodynamic entropy according to the maximum entropy
principle. In turn, <Dsky (T)> ≈ D0sky [1+ kB T/(2a D0sky

2)]
with D0sky = D0sky(T) defined as the diameter at which the
total skyrmion energy attains its absolute minimum. In turn,
the value of D0sky strictly depends on the magnetic parameters

appearing as coefficients in the micromagnetic Hamiltonian
such as the exchange stiffness constant A, the interfacial
Dzyaloshinskii–Moriya parameter D, the uniaxial
perpendicular anisotropy constant Ku, and on the external
magnetic field amplitude H. The statistical thermodynamic
entropy is also referred to as thermal entropy [52, 53] and is
an increasing monotonic function of T.

The information entropy (expressed in terms of the number
of bits) was calculated according to Jaynes’s information
framework [11–15] and taking into account Eq. 2. The use
of continuous variables was suggested by Jayne in [13, 14] and
was applied to the definition of information entropy in the
continuum case [15]. The information entropy (in bits) was
determined as the 2D statistical average of the information
content I (Dsky) = −log2 (f01 (Dsky)) (2 is the logarithm basis)
[6] and can be rewritten in the form

HI � π∫
∞

0

dDskyDskyf0(Dsky)I(Dsky), (3)

with HI > 0.
Landauer’s limit is derived starting from the configurational

entropy and the corresponding information entropy. To create
bits of information, S must decrease passing from an initial
temperature Ti to a final temperature Tf with Tf < Ti. Starting
from Eq. 1 and using some logarithm rules, the entropy variation
ΔS = S (T = Tf) − S (T = Ti) with S (T = Tf) < S (T = Ti) such that
ΔS < 0 can be written in a compact form as

ΔS � kBπ
⎡⎢⎢⎢⎢⎢⎣∫
∞

0

dDskyDsky ln(f01(T � Ti)f0(T�Ti)

f01(T � Tf )f0(T�Tf ))⎤⎥⎥⎥⎥⎥⎦, (4)

where the dependence of f01 and f0 on Dsky is omitted.
Analogously, the variation of the information entropy coded
by the magnetic skyrmion, ΔHI = HI (T = Tf) − HI (T = Ti)
with Tf > Ti (the temperature Tf appearing in HI corresponds to
the temperature Ti appearing in S and vice versa) and HI (T = Tf)
> HI (T = Ti) such that ΔHI >0 takes the form

ΔHI � π⎡⎢⎢⎢⎢⎢⎣∫
∞

0

dDskyDsky log2(f01(T � Ti)f0(T�Ti)

f01(T � Tf )f0(T�Tf ))⎤⎥⎥⎥⎥⎥⎦. (5)

It is useful to introduce the corresponding thermodynamic
variation of information entropy by defining SI = kB HI. By
comparing Eqs 4, 5 and taking into account that SI = kB HI,
Landauer’s limit can be derived. Indeed, substituting ln (f01) =
log2 (f01) ln2 in Eq. 2 and comparing Eq. 2 with Eq. 3, one gets,
via ΔSI = kB ΔHI, ΔS = −ΔSI ln2. The creation of 1 bit of
information leads to a variation ΔHI = 1 bit and to an
increment ΔSI = kB (units of 1 bit) yielding

ΔS � −kB ln 2. (6)
Therefore, Landauer’s limit corresponds to the lower limit of

the entropy lost in an observation as a result of the creation of 1
bit. In the present case, the thermodynamic entropy was lowered
to create 1 bit of information and the minimum energy,
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E � −kBT ln 2, (7)
was subtracted from the system. The amount of energy is the
minimal workW = − kB T ln 2 (W < 0) that must be extracted to
create 1 bit of information, as established by Landauer’s
principle. This is a different case with respect to that was
considered by Landauer for which the logical irreversibility
implies the thermodynamic irreversibility. The information
coding by a magnetic skyrmion can be regarded as a
thermodynamically reversible process. By introducing the
negentropy, the entropic equivalent of degradation of energy
[18], namely N = −S (N <0 and S >0) and ΔN = −ΔS >0 being
ΔN = N (T = Tf) − N (T = Ti), N (T = Tf) < 0 and N (T = Ti) < 0
but N (T = Tf) > N (T = Ti) we get

ΔN � kB ln 2. (8)
Therefore, Landauer’s limit can be regarded as the negentropy

acquired by the system.

THE BRILLOUIN’S NEGENTROPY SECOND
PRINCIPLE OF THERMODYNAMICS FOR A
MAGNETIC SKYRMION
According to the second principle of thermodynamics, a
magnetic system moves towards a state with a larger entropy
or lower free energy [50]. The magnetic skyrmion’s Helmholtz
free energy, viz. F = <E > − T S with <E > = <E (T)> the average
skyrmion energy, in the absence of an external magnetic field,
diminishes with increasing T and attains a minimum at the upper
limit of the region of metastability at T = 300 K. With the
magnetic parameters used (see the following section), F ≈ 5.5
10–20 J at T = 150 K [9] corresponds to 1 bit of information.

Here, the generalized second principle of thermodynamics for
a closed thermodynamic system such as a magnetic skyrmion in
terms of Brillouin’s negentropy principle ΔStot = ΔS − ΔSI ≥ 0 is
discussed [18]. Therefore, the total entropy Stot of a magnetic
skyrmion does not decrease. In particular, ΔStot = Stot f − Stot i is

the total entropy variation from the initial state i to the final state
f, and ΔS = Sf −Si >0 is the variation of the thermal entropy from
the initial state to the final state (by the convention of an opposite
sign with respect to that in Eq. 4), while ΔSI = SIf −SIi > 0 is the
increment of information entropy in thermodynamic units owing
to the creation of bits of information. By introducing the
negentropy variation ΔN = −ΔS < 0, the generalized second
principle of thermodynamics is expressed in terms of Brillouin’s
negentropy

Δ(N + SI)≤ 0. (9)
Eq. 9 expresses thermodynamic reversibility when Δ(N + SI) =

0, viz. ΔN = −ΔSI but it does not state that physical reversibility
necessarily implies logical reversibility.

NEW PERSPECTIVES IN INFORMATION
THEORY: THE SKYRMION UNIT

In this section, new perspectives in information theory based on
the use of the magnetic skyrmion as a unit of information entropy
are outlined [6, 8].

The Role of the Sender and the Receiver in a
Data Communication System
In a data communication system, it is crucial to understand how
the information from the sender allows an amount of negentropy
N to get converted into information entropy HI. This occurs
because the sender sends to the magnetic skyrmion a binary input
of amplitude 2n where n is the number of bits of information
entropy. This binary input might be regarded in a way similar to a
light input interacting with matter (e.g., a laser source), and
this interaction with the skyrmion allows rewriting its
thermodynamic configuration and its corresponding entropy.
For example, for n = 2 bits, there are g = 4 binary
configurations [6] that refer to an average skyrmion diameter
< Dsky> and to the average entropy S according, for instance, to

FIGURE 2 | (A) Sketch of the ferromagnetic nanostructure (film) hosting a Néel magnetic skyrmion (outwardly magnetized and negative p = −1) regarded as a
closed thermodynamic system. The infinitesimal reversible exchange of entropy dS (δQ is the infinitesimal absorbed heat) between the thermal bath and the film at
temperature T and between the film and the skyrmion is indicated. dN is the infinitesimal skyrmion negentropy, and dHl is the infinitesimal information entropy. (B) The
sampling of the skyrmions’ diameter distribution at T = 300 K and μ0H � 0mT via the assignment of the 4-bit configurations 00, 01, 10, and 11 to the skyrmion
diameters, Dsky

1, Dsky
2, Dsky

3, and Dsky
4, respectively. For the parameters used [6], Hl ≈ 2 bits and the number of bit configurations is 4.
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the sampling: 00→Dsky
1, 01→Dsky

2, 10→Dsky
3, 11→Dsky

4 with
Dsky

j (j = 1,2,3,4). This means that the jth binary configuration
fixes the thermodynamic configuration corresponding to the jth
entropy density s(Dj

sky) � −kBf0(Dj
sky) ln(f01(Dj

sky)). This is
accomplished by viewing the sender involved in a “writing”
operation linking the jth binary configuration to the jth
entropy density s(Dj

sky). The general effect of these subsequent
reading operations is accounted in the calculation of a statistical
average corresponding to S. The entropy cost of this operation is
ΔN = − ΔS < 0 (dN = −dS), an entropy source employed as a
reservoir for increasing the information entropy which causes a
variation ΔSI > 0 (dSI > 0) that, in bit units, is ΔHI > 0 (dHI > 0)
(see Figure 2A). If the process is reversibleΔN = −ΔSI, while if it is
irreversible ΔN < −ΔSI (Eq. 9). Figure 2B shows the
binary–thermodynamic correspondence in terms of signal
sampling for a 2D MB population of magnetic skyrmion

diameters of the form dn
dDsky

� CskyDskye
− a
kBT

(Dsky−D0sky)2 at T =

300 K and μ0H = 0 mT with dn/dDsky, the number of
diameters ranging between Dsky and Dsky + dDsky, Csky the
normalization constant (in m−2). In the numerical calculations
performed for ferromagnetic dot/heavy metal systems (e.g., Co/
Pt), we employed the following geometric and magnetic
parameters: dot radius R = 200 nm and Co thickness t = 0.8
nm,Ms (T = 0 K) = 6.0 × 105 A/m, A (T = 0 K) = 2.0 × 10−11 J/m,
D (T = 0 K) = 3.0 × 10−6 J/m2, and Ku (T = 0 K) = 0.6 × 106 J/m3

[6–9, 54]. A, D, and Ku were scaled from their zero temperature
values at non-zero temperature by using scaling laws [54]. For the
parameters used, a = 0.71 × 10−5 J/m2, D0sky = 81.28 nm, and
n ≈2. The coded information is read by the receiver as a sequence
of 4 binary configurations (00, 01, 10, 11), the binary
interpretation of the negentropy resulting from the
information entropy. The receiver consists of a binary
sensor made by binary inputs enabling to read the discrete
signal corresponding to a sequence of binary configurations
assigned to a given entropy density. This coding has the
considerable advantage to potentially create more bits for
an equal number of skyrmions. The employment of 4
magnetic skyrmions heated at room temperature could lead

to the coding of 1 byte of information which represents a unit
of computer information and g = 256 binary configurations.

CONCLUSION

In this study, the interplay between thermodynamics and
information occurring in easily manipulated magnetic
skyrmions forming in magnetic nanostructures was discussed.
It has been proved that Landauer’s limit for a magnetic skyrmion
can be expressed in terms of negentropy variation. It has been
shown that the interchange between thermodynamic entropy and
information entropy to create bits of information occurs by using
a reservoir of negentropy that fulfills Brillouin’s negentropy
second principle of thermodynamics. This type of coding
information based on the information entropy could be
employed in prospect for improving data transmission.
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