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ABSTRACT
Early identification of dysgraphia in children is crucial for timely
intervention and support. Traditional methods, such as the Brave
Handwriting Kinder (BHK) test, which relies on manual scoring
of handwritten sentences, are both time-consuming and subjective
posing challenges in accurate and efficient diagnosis. In this paper,
an approach for dysgraphia detection by leveraging smart pens
and deep learning techniques is proposed, automatically extracting
visual features from children’s handwriting samples. To validate the
solution, samples of children handwritings have been gathered and
several interviews with domain experts have been conducted. The
approach has been compared with an algorithmic version of the
BHK test and with several elementary school teachers’ interviews.

CCS CONCEPTS
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1 INTRODUCTION
Specific Learning Disorder (SLD) is a broad term that encompasses
difficulties in children’s ability to learn and produce written lan-
guage and to process information in areas such as reading, writing,
and mathematics. Dysgraphia is a type of SLD that specifically 
affects writing abilities. Children with dysgraphia often struggle 
with fine motor control, letter formation, and spacing, leading to 
difficulties in producing legible and coherent written work [6, 12].
The prevalence of SLD and dysgraphia is estimated to be between 
10-30% of the population [10] and it is a common cause of aca-
demic underachievement in school-aged children [2, 14]. Despite 
its high prevalence and significant impact on children’s learning
and development, there is no universally recognized definition or 
diagnosis of dysgraphia, and different diagnostic tests are employed
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Figure 1: Italian BHK text and children writing example.
English translation: "Leo and the uncle, are at the harbor,
they are eating ice cream, with them are, Mia and Rina."

in different countries. This is partly due to the complex and multi-
faceted nature of the disorder and to the difficulty in distinguishing
it from other related conditions such as developmental coordination
disorder [3] and attention deficit hyperactivity disorder [1]. As a
result, it has become critical in the last years to propose automatic
and innovative approaches to assist experts in their diagnosis and
to provide screening tools for early identification. The detection
of dysgraphia is a well-known task in handwriting recognition,
where scholars have proposed several solutions, ranging from algo-
rithmic versions of dysgraphia assessments methods, to machine
learning based techniques. Standardized tests, such as the Brave
Handwriting Kinder (BHK) test which utilize an evaluation grid
for the morphological graphology of children, can be employed
to assess the morphological quality of signs and the spacing of
graphemes (an example of children’s handwriting for the Italian
BHK test is shown in Fig. 1). Some of the criteria considered are
the size of the writing, the misaligned left margin, and the shifting
writing line. Among others, two algorithmic versions of BHKwhere
proposed to analyze handwriting images and to extract scores au-
tomatically: a shorter but effective screening tool based on BHK,
called SOS [15] and a software called TestGraphia [4]. Inspired by
these previous works, a custom BHK algorithmic version has been
developed in this research (described in Section 2) as a baseline for
comparison. Only offline document images are considered in [4],
thus missing all the information related to online handwriting (such
as speed, stroke order, pressure, etc.), as previously demonstrated to
be effective using a commercial digitalization tablet [7, 13]. Taking
inspiration from machine learning statistical methods, in [5? ] the
authors adopted hand-crafted features that require specific feature
extraction algorithms. For instance, in [5], suitable features were
selected using weighted k-nearest neighbor and employed as input
for an AdaBoost classifier, resulting in an accuracy of 79.5% on
nearly balanced data.

Contributions. In this study, the objective is to address the
challenge of detecting dysgraphia in 9-10-years-old children. To
achieve this, the participants have been asked to copy five Italian
sentences. An algorithmic version of the BHK test was created, and
a variety of characteristics were investigated to target both global
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Figure 2:Words [left] and first row [right] after the validation
phase.

and local writing information. To facilitate the research, a tablet
and a smart pen were employed, using the Bamboo Slate device
produced by Wacom1. This device allowed children to experience
the same feeling of writing on a paper. and to record valuable
information such as local and global spatial data, velocity, and
more. To enhance the conducted analysis, a deep learning model
has been used as a visual feature extractor. To validate the proposed
approaches, two datasets comprising 95 samples from primary
school children and 106 samples from adults were collected. The
expertise of a pedagogist and the point of view of a group of primary
school teachers have been taken into account as well, to provide
a consistent labeling and to establish Human Level Performance
(HLP) baselines. The main contributions of this work are as follows:

• A new dataset for dysgraphia detection in children hand-
writings, created within a reproducible setting using a com-
mercial smart pen.

• The use of a deep learning approach to extract visual
features, accompanied by a comprehensive discussion and
comparative analysis of the results against standard assess-
ment methods and HLP baselines.

• The inclusion of teachers’ perspectives in the evalu-
ation process as a crucial step for automatic screening.
Working daily with children makes their point of view a
valuable insights for timely dysgraphia intervention, help-
ing to connect families and pedagogists.

2 METHOD
This section provides a detailed description of the developed al-
gorithmic version of the BHK test (Section 2.1) and the trained
deep learning architecture (Section 2.2). It also covers the pretrain-
ing techniques and image preprocessing methods employed in the
study. The implementation of the methods described can be found
in the GitHub2 repository for reproducibility.

2.1 Algorithmic BHK
The data extraction process utilized the Bamboo Slate fromWacom,
a screen-less tablet that emulates the pen and paper writing expe-
rience, ideal for young children. It captures writing input using a
digital pen and stores the information in a dedicated app, allowing
for easy export in various formats. The tablet records writing as
strokes, represented by continuous paths of digital ink, with each
stroke consisting of spatial coordinates, color, stroke thickness, and
stroke order. The BHK test algorithm analyzes these strokes, group-
ing them into words and rows based on specific spatial thresholds
and relative distances. To ensure accuracy, a validation phase con-
firms the expected number of words in a line. The Bamboo Slate’s
seamless integration of traditional writing with digital recording

1https://www.wacom.com/en-us/getting-started/bamboo-slate-and-bamboo-folio
2https://github.com/AILab-UniFI/dysgraphia-detection

(a) Row writing size (b) Words sizes

(c) Fluctuations (d) Retouched or traced letters

Figure 3: Various handwriting features extracted by the algo-
rithmic BHK.

provides a practical solution for dysgraphia detection. By leverag-
ing the captured strokes and employing the BHK test algorithm,
meaningful word and row elements are obtained, as illustrated in
Figure 2. This approach enables the accurate analysis of dysgraphia-
related patterns and facilitates early identification and intervention
for children with writing difficulties. As can be noticed in Figure 3,
several parameters are selected from the handwriting for further
analysis. As we can see in Figure 3, many parameters are selected
from the writings for further analysis. The most salient features
considered by BHK are: (Fig. 3a) Row size, for each word, the upper
and lower local points are found, interpolated creating upper and
lower lines and the average distances between these two lines takes
into account; (Fig. 3b) Word size, local maximum and minimum,
each word size is calculated by collecting words’ local lower point
[purple] local upper point [yellow]; (Fig. 3c) Fluctuations, as the
relative slope between words and rows; (Fig. 3d) Retouched or traced
letters, by analyzing temporal information of strokes and retouched
elements [red]; and Left margin alignment calculated as the left
slope margin of each line. The slope of the best-fit line indicates
how much the left margin is aligned. This method involves gather-
ing the set of features that the BHK test recognizes, resulting in a
fixed-length feature vector with a total of 58 values, composed by
5 groups of features with 11 components each, corresponding to
the five rows in the text, and 3 global features.

2.2 Deep-learning based approach
To assess the effectiveness of visual features alone in dysgraphia de-
tection, in contrast to methods based on the BHK test, the ResNet18
architecture is employed, a compact variant of the ResNet archi-
tecture [8]. The obtained features were then used for classification.
The results achieved through this approach are discussed in Section
4. The model has been pretrained using the IAM dataset [11], which
consists of 657 writers and 13,353 isolated and labeled text lines,
for the task of handwriting authorship identification. The model
underwent a self-supervised training, employing a Triplet Loss
to discriminate between different authors in the provided train,
validation, and test splits. ResNet18, pretrained on ImageNet, was
fine-tuned on handwriting data changing its head to match the
binary task, necessary to align the model with the characteristics
of dysgraphia, as demonstrated by the results. The new head uses
two MLP, downsizing the hidden features from 512 to 100 and from
100 to "number of classes" dimensions, respectively, with Layer-
Norm and Dropout layers. Additionally, a separate dataset of adult
handwriting samples has been collected to mitigate the limitations
associated with children’s handwriting, such as unbalanced data

https://github.com/AILab-UniFI/dysgraphia-detection
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distribution and dataset size. These considerations are further dis-
cussed in Section 3. The model underwent a second training phase
using the collected adult data for a balanced binary classification
task, specifically aimed at recognizing dominant and non-dominant
hands. In all three data collections, the model learned at line level.
The SVG files generated by the smart pen were processed to extract
five lines from each collected handwriting sample. However, due to
noise present in some SVG files, a few samples from both the adult
and children data could not be accurately processed to produce
their respective BHK features and segmentations. Consequently,
these pages were excluded from the analysis to ensure the overall
data quality, given the already limited sample size. The final dataset
consisted of 92 out of 106 adult handwriting pages and 75 out of 95
children’s pages. Each page was composed of five lines, which were
split and then padded and resized to a predetermined dimension
to retain crucial visual information. Subsequently, the pixel values
of the lines were normalized. Every training used an AdamW opti-
mizer (default parameters) and learning rate equal to 1𝑒−5, with 32
samples per batch.

3 DATASET
To validate the proposed approach for dysgraphia detection, a
dataset consisting of handwriting samples from 95 children has
been gathered, resulting in a total of 475 lines. Additionally, some
handwriting samples were collected from 53 adults, including both
dominant and non-dominant hands, yielding 106 samples and 530
lines. The inclusion of adult handwriting aimed to bridge the gap
between unsupervised pretraining on the IAM dataset [11] and the
binary classification task for dysgraphia detection. The results are
provided in Section 4. Participants were instructed to copy the BHK
test sentences using the Bamboo slate, as shown in Fig. 4. For the
children’s handwriting samples, obtaining ground truth labels has
been challenging. Certificates of dysgraphia were obtained for only
a few children who visited an expert. Out of the total participants,
only ten were officially diagnosed with dysgraphia. However, there

(a) The two authors (gray boxes) have produced two handwritings
using both the dominant and not-dominant hand.

(b) The image on the left show a mutual agreement between the
EXPERT (pedagogist) and the (primary school) TEACHERS votes; on
the contrary, the one on the right has been classified as a negative
sample by the TEACHERS answers.

Figure 4: Adults (a) and children (b) dataset samples.

was limited availability of "official" information for the remaining
children, even though some exhibited symptoms of dysgraphia or
other disorders, such as attention deficit, as also noted by their
teachers. To address this issue and ensure a reliable and consistent
dataset, an alternative labeling method was employed. To establish
the ground truth for the children’s handwriting, this work relied
on the expertise of a pedagogist and a group of primary school
teachers. The pedagogist (referred to as the EXPERT from now
on) provided labels based on her opinion, regarding the presence
or absence of dysgraphia in the samples. To preserve privacy, the
children’s handwriting samples were anonymized 3.

Furthermore, a panel of seven primary school teachers, selected
for their experience with children and their ability to identify prob-
lematic handwriting, participated in the study. Each teacher in-
dependently evaluated the anonymized handwriting samples and
responded to two questions:

• "Would you say the quality of this handwriting is below
average (1), above average (0) or on average (2), based on
your experience?"

• "Would you say this handwriting would require further in-
vestigations (1), it would not (0) or you are not sure (2), based
on your experience?"

The teachers’ responses generated a collection of information for
each handwriting sample, resulting in 665 answers categorized into
nine clusters. A majority voting approach was employed to assign
each sample to a cluster, with the majority agreement among teach-
ers determining the classification. As a result, 24 handwritings were
classified as "generally good" ([0, 0]), 48 as "on average, not requir-
ing further investigation" ([2, 0]), 10 as "on average but may require
further investigation" ([2, 1]), and 13 as "below average and require
further attention" ([1, 1]) (where [x, y] represents the answers to
the first and second questions, respectively). This labeling process
provides a human-level performance baseline, widely used in the
literature, as exemplified in image classification by He et al. [9]. Us-
ing the second value of each cluster as a discriminator (0 or 1), the
dataset comprised 72 handwritings classified as "generally good"
or “not dysgraphic” and 23 handwritings classified as “may require
further investigation” or “dysgraphic”. Notably, the majority of sam-
ples (58 handwritings) were considered “on average”, illustrating
the challenge of distinguishing dysgraphia from non-dysgraphia
classifications based solely on visual features.

4 EXPERIMENTS
In this section, the baselines and performances of the proposed
approach are presented, discussing the achievements and limita-
tions of this work. A series of experiments have been conducted to
explore the potentiality of using a deep learning architecture, such
as ResNet18, in capturing important visual features for dysgraphia
detection. Different training approaches are compared, including
pretraining on the IAM dataset and a combined pretraining with
the additional adult dataset. The performances of each approach
was evaluated using precision, recall and F1, as detailed in Table 1:
the results refer to a 4-fold cross validation on the proposed dataset

3Impossible to retrieve the child from the sample, showing nothing more than the
handwriting only.
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Table 1: Experimental results of dysgraphia detection on the 4-folds cross-validation setting. The “Pretraining” column indicates
whether a pretraining stage was involved and, if so, with which dataset (IAM and adults principal/secondary hand). HLP stands
for “Human Level Performances”. The asterisk (*) indicates cases where nan values were obtained due to division by zero
caused by the absence of true negatives and false negatives.

Method Pretraining Precision Recall F1
BHK + MLP x 0.5* 0.5 ± 0.5 0.5*
Resnet18 x 0.5 1 0.67
Resnet18 IAM 0.5325 ± 0.019 0.7707 ± 0.052 0.6055 ± 0.006
Resnet18 IAM + Adults 0.726 ± 0.069 0.7 ± 0.074 0.688 ± 0.086
HLP x 0.819 ± 0.080 0.802 ± 0.063 0.800 ± 0.061

with different techniques and pretrainings involved. Firstly, to anal-
yse the BHK features extracted and to pose an initial baseline, a
two hidden-layers MLP classifier has been trained. As it is possible
to see from Table 1, the results reveal that the MLP-based approach,
with the BHK features, has shown limited discriminatory power,
achieving a performance similar to random guessing. This could
have been due to the challenges in distinguishing between dys-
graphic and non-dysgraphic samples and / or to the limited set of
features extracted with the proposed BHK algorithm. As a second
step, ResNet18 has been employed to discover how much could
have been achieved with a bigger feature space relying only on
visual artifacts. The version without any pretraining, e.g. ResNet18
with ImageNet weights, could not detecting anything but "dys-
graphic", indicating the need for more informative features. To
further enhancing these preliminary results, two more training
phases have been employed. The ResNet18 pretrained on the IAM
dataset showed an important improvement in performances, since
the predictions do not collapse to one unique class as it can also
be noted by the precision and recall values. Thanks to an addi-
tional pretraining on the adults dataset, the model could achieve
better results, yielding the best F1 score among the different exper-
iments and finding a good balance between precision and recall.
Despite the higher F1 that reduce the gap to HLP of about 8%, a
drawback of 7% could be noticed from the Recall score compared to
only IAM pre-training, probably due to noise introduced by adults
handwritings with no SLD. The HLP scores were evaluated using
the interviews’ results as "predictions", using the same validation
splits: there is still an important margin to be closed within the best
model obtained and the teachers performances. Future works in
this direction are discussed in the next section.

Limitations and Future Works. There are some limitations to
this research that could be used as opportunities for future work:

• the limited dataset size: gathering more and balanced samples
is not an easy task, but it would drastically help for better
results and generalization purposes making multi-lingual
handwritings an opportunity to better prove the importance
of relying only on visual features;

• using only ResNet18: the choice of a small convolutional net-
work has been motivated also by the small dataset. Having
a larger dataset would enable to try other architectures to
compare with, such as visual transformers;

• only adults data as augmentation: exploring more augmen-
tation techniques suitable for dysgraphia would be crucial,
helping to retain important recall performances for the ulti-
mate purpose of screening.

5 CONCLUSIONS
In this work the use of a smart-pen and a visual extractor for early
identification of dysgraphia in children has been described. An
algorithmic versions of the BHK test has been implemented and a
deep-learning architecture was used to tackle the downstream task.
Two datasets of children and adults handwriting were collected
for the experiments, taking into consideration a pedagogist and
teachers expertise. Despite the limited number of samples and the
class unbalance, the proposed pretraining let the model achieve
good results. Finally, limitations of this work have been discussed,
proposing future directions to which this research could be ex-
tended.
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