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ABSTRACT

After a brief introduction to the theory and physical
interpretation of Lagrangian force density in general
sound fields, this article focuses on its stationary average
property providing the general expression of the action-
reaction law for acoustic fields. This fundamental prop-
erty allows to define the tension field of sound, which
turns out to be easily measured as the gradient of the
average potential energy density. The acoustic tension
field has been then analytically calculated and visualized
for quasi-stationary wave fields and divergent spherical
waves. Moreover 2-D graphics comparing the behaviors
of sound energy trajectories and tension fields are here re-
ported.
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and elastic force densities, Visualization of model fields

1. INTRODUCTION

As known from literature [1, p. 241-252], [2], the momen-
tum density vector of any sound field

q (x, t) :=
pv

c2
(1)

where p and v are the pressure and particle velocity solu-
tions of the d’Alembert equation, is related to the wave-
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stress tensor 1 (i.e. the momentum density flux)

W := T ij (x, t) =

=

 ρ0v1v1 − L ρ0v1v2 ρ0v1v3
ρ0v2v1 ρ0v2v2 − L ρ0v2v3
ρ0v3v1 ρ0v3v2 ρ0v3v3 − L


by the continuity equation

∂q

∂t
+∇ ·W = 0 .

Provided that the vector −∇ ·W is interpreted as a force
density f (x, t), the above equation gives the quantitative
expression of the acoustic momentum conservation law.
This can be proved by calculating f (x, t) as the partial
time derivative qt of the momentum density, i.e.

−∇ ·W =
∂q

∂t
=

1

c2
∂ (pv)

∂t
=

1

c2
p
∂v

∂t
+

1

c2
∂p

∂t
v=: f .

(2)
The above formal expression highlights that the force den-
sity is made up of two vector components: one fv (x, t) in
the direction of the particle velocity v and the other one
fp (x, t) in that of its time derivative vt. Note also that
both components of the wave-force field f (x, t) = fp+fv
are expressed at the second order of the concatenated
acoustic fields p and v. In equation (2), vt is nothing but
the usual inertial Euler’s acoustic force per unit mass

∂v

∂t
= −∇p

ρ0
(3)

acting on the air particle, while pt expresses the elas-
tic force of the medium through the following form of

1 L = wk − wp is the Lagrangian density of sound (see (14)
and [2, Eq. 35])
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Hooke’s law
p = −ρ0c

2∇ · r (4)

where r (x, t) = ξi+ ηj+ ζk is the displacement vector
such that rt = v and ρ0c

2 = γP0 is the adiabatic bulk
modulus. Since the divergence of the displacement

∇ · r =
∂ξ

∂x
+

∂η

∂y
+

∂ζ

∂z
=

∆V

V
(5)

accounts for the dilatation of the air particle volume per
unit volume, the explicit expression of pt appearing in (2)
is obtained from (4) as

∂p

∂t
= −ρ0c

2∇ · v . (6)

Finally, by replacing vt and pt from (3) and (6) respec-
tively, into equation (2) one gets the following second or-
der expression of the Lagrangian force density of acoustic
fields

f (x, t) :=
∂q

∂t
= − 1

2ρ0c2
∇p2 − ρ0 (∇ · v)v (7)

in precise agreement with [2, Eq. 59].

1.1 Derivation of the static acoustic tension

A very interesting property of the force density that man-
ifests itself when f (x, t) = qt is averaged over time, is
that it generates a static acoustic tension field whose lo-
cal spatial direction accounts for the disomogeneities of
pressure-velocity fields. This tension acts along spatial
directions determined by the gradient of the average po-
tential energy density of the sound field in such a way that
the action-reaction principle is satisfied (see figure 7).

This property is a simple but not obvious at all, di-
rect consequence of the time averaging process ⟨·⟩ :=

lim
T→∞

1
2T

∫ +T

−T
(·) dt when applied to the force density.

In fact, since ⟨ht⟩ = lim
T→∞

1
2T

∫ +T

−T
(ht) dt =

lim
T→∞

1
2T [h (T )− h (−T )] = 0 for any continuous func-

tion h and ⟨f⟩ =
〈

∂q
∂t

〉
, one has

⟨f⟩ =
〈
∂q

∂t

〉
=


〈

∂qx
∂t

〉
= 0〈

∂qy
∂t

〉
= 0〈

∂qz
∂t

〉
= 0

 = 0

that is

T (x) := −ρ0 ⟨(∇ · v)v⟩ − 1

2ρ0c2
〈
∇p2

〉
≡ 0 . (8)

This clearly means that the acoustic tension T (x) is iden-
tically equal to a null vector all over any stationary sound
field and thus that the two stationary components forces

⟨fp⟩ := − 1

2ρ0c2
〈
∇p2

〉
(9)

⟨fv⟩ := −ρ0 ⟨(∇ · v)v⟩
expressing the elastic and the inertial forces of the medium
at second order of the field variables p and v, are always
equal in magnitude and with opposite spatial directions so
satisfying in the average the action-reaction law in acous-
tics.

2. CALCULATION OF SOUND TENSION IN
MONOCHROMATIC MODEL FIELDS

We provide various examples, starting from the form
of the velocity scalar potential φ (x, t) with dimensions
[φ] = L2T−1. We recall that

v = ∇φ , p = −ρ0
∂φ

∂t
. (10)

2.1 Progressive Plane Wave

The simplest possible example is a monochromatic wave
propagating in the positive direction along the x axis

φ(x, t) = ac cos(k(x− ct)) = ac cosα

where c = ω/k is the sound speed, a is the amplitude of
the velocity potential and α = kx − ωt is the phase. The
velocity of the air particle is given by

v = ∇φ = −aω sinα x̂

and the sound pressure is

p = −ρ0φt = −ρ0c aω sinα .

The instantaneous momentum density is

q =
pv

c2
= ρ0a

2kω sin2 α x̂

so that the force density and its stationary value are

f (x, t) = qt = −ρ0a
2kω2 sin(2α) x̂ , ⟨f⟩ = 0 .

The two components of f (x, t) turn out to be equal at all
times

fp(x, t) = − 1

2ρ0c2
∇p2 = −1

2
ρ0c a

2ω sin(2α) x̂

fv(x, t) = −ρ0 (∇ · v)v = −1

2
ρ0c a

2ω sin(2α) x̂

so that when performing the time average, they are all sep-
arately zero: ⟨f⟩ = ⟨fp⟩ = ⟨fv⟩ = 0.
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2.2 Quasi-stationary Plane Wave

In this case we have two terms contributing to the velocity
scalar potential

φ(x, t) = ac (cosα+R cosβ) ,

where 0 ≤ R ≤ 1 is the reflection coefficient and we
have introduced the shorthand notation α = kx − ωt and
β = kx + ωt + θ accounting for the phases of incident
and reflected waves. The velocity and pressure of the air
particle are respectively given by

v = −aω(sinα+R sinβ) x̂

and
p = −ρ0c aω(sinα−R sinβ) .

The momentum density is

q = ρ0 a
2kω(sin2 α−R2 sin2 β) x̂

and the force density contributions

fv(x, t) = −ρ0a
2kω2 (cosα+R cosβ) (sinα+R sinβ) x̂

and

fp(x, t) = −ρ0a
2kω2 (cosα−R cosβ) (sinα−R sinβ) x̂ .

are not equal at any time but, as expected, upon time aver-
age they are opposite:

⟨fv⟩ = −ρ0a
2kω2 R sin(2kx+ θ) x̂ = −⟨fp⟩ . (11)

2.3 Outgoing Spherical Wave

In this case the sound field has a spherical symmetry and,
by taking into account the boundary conditions of the air
particle velocity at the surface of a small spherical source
centered at the origin, the velocity scalar potential can be
written as

φ (r, t) =
d20bω

(1 + ikd0) r
ei(ωt−k(r−d0)) .

Here kd0 ≪ 1 where d0 is the radius of the pulsing sphere
at rest and b ≪ d0 is the displacement amplitude of its
shell in harmonic motion. The velocity of the air particle
at the shell surface is supposed to be

v (d0) = bωeiωt . (12)

When the same calculations as in previous cases are per-
formed over the field variables

p (r, t) = ℜ (−ρ0φt) = ℜ

(
i
(
ρ0d

2
0bω

2
)

r (1 + ikd0)
· ei(ωt−k(r−d0))

)

v (r, t) = ℜ (φr) = ℜ
(
d20bω

r2
· 1 + ikr

1 + ikd0
· ei(ωt−k(r−d0))

)
one gets from equation (9)

⟨fp⟩ =
1

2

ρ0d
4
0b

2k2ω2

(d20k
2 + 1) r3

= −⟨fv⟩ (13)

so validating in the average the action reaction law for sec-
ond order inertial and elastic force densities.

2.4 Three dimensional quasi-stationary waves

A full 3-D visualization of the mechanism of action-
reaction law in sound fields can be achieved by making
quasi stationary waves to interfere along the three Carte-
sian coordinate axes {x, y, z}. Using the same notation
as introduced in subsection 2.2, a general form of a 3-D
velocity scalar potential can be written as

φ(x, y, z, t) = c
∑

i=x,y,z

ai (cosαi +Ri cosβi)

so finding the following vector components of fv (x, t)
and fp (x, t) along the ortonormal Euclidean basis
ei=x,y,z :

(fv)i = ρ0aik (sinαi +Ri sinβi)
∑

i=x,y,z

aiω
2 (cosαi +Ri cosβi)

and

(fp)i = −aikω (cosαi −Ri cosβi)
∑

i=x,y,z

ρ0aiω (sinαi −Ri sinβi) .

As already mentioned and expicited in the 1-D case (see
(11)) it turns out that also in multidimensional cases

⟨fv (x, t)⟩ = −⟨fp (x, t)⟩ ,

so confirming that

T (x) = ⟨fv (x, t) + fp (x, t)⟩ ≡ 0

as expected from (8).
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3. VISUALIZATION OF TENSION FIELDS

With the aim of making the mechanism of opposing action
of inertial and elastic forces more visible, some graphical
renderings of the previous analyzed case studies will be
given below.

3.1 Diverging spherical wave

Let’s begin from the physically very interesting case of a
progressive 3-D wave with spherical symmetry. Since in
this case the sound source is located at a fixed point in
space with a finite distance r from the observer, the effect
of the source on the radiation is not an option and the in-
teraction source-field must be specified with an appropri-
ate boundary condition (see (12)). The snapshots of pres-
sure and velocity waves fields at time intervals of T/4 are
compared in Fig.1 with the behavior of inertial and elastic
force densities at the same instant. Notice that the phase
difference ∆ϑ between the pressure and velocity waves
nearly vanish in the spatial interval of a single wavelength
λ = 0.334m while the inertial and elastic force densities
act instantaneously, and react strongly against each other
in the first λ/2 where a high reactive field is present, but
always satisfy Eq. (13) in the average.

3.2 Quasi-stationary plane Waves

In this model field the acoustic source causing the air per-
turbation is located at the infinite and the boundary condi-
tion of the reflected wave is given over planes intersecting
orthogonally each coordinate axes of the incident wave,
as detailed respectively in subsections 2.2 and 2.4 for 1-D
and 3-D waves.

3.2.1 One dimensional case

The 1-D case is illustrated in Fig. 2 for R = 1/2 and in
Fig.4 for R = 1 (pure stationary waves). Differently from
Fig.1 representing a standard film of many snapshots, here
the film frames show a time windows T of the p and v
wave fields and force densities, as measured by an array
of sensors spaced λ/6 apart. Indeed, notice that in Fig. 2,
the brown straigth line representing the pressure-velocity
phase difference ∆ϑ (x) = arccos

(
⟨pv⟩

/√
⟨p2⟩ ⟨v2⟩

)
,

is given by a brown straigth line, clearly constant in time,
but appearing at different heights (in arbitrary units) dur-
ing the waves motion. This means that in the case of
a quasi-stationary field, the waves combine locally more
similar to a progressive field or are more like a stationary
one depending on the value of 0 ≤ ∆ϑ ≤ ∆ϑmax ≤ π/2.

For example, in Fig. 3 where R = 0.5, energy reaches a
maximum of coherence every T/4 s when ∆ϑ = 0 and
drifts till to a phase difference ∆ϑmax = 0.927 rad while
always travelling at a constant average speed:

U :=
⟨pv⟩
⟨w⟩

= c

√
1−R2

1 +R2
= 0.6 c

where U (see [3]) is the energy velocity modulus defined
in terms of the sound intensity pv, and the energy density

w = wp + wk :=
1

2

p2

ρ0c2
+

1

2
ρ0v

2. (14)

In the extreme case of a pure stationary wave (R =
1, ∆ϑ (x) = π/2), energy comes in the average to a
perfect stop while oscillating instantaneously within cells
λ/4 wide (actually a mode of vibration of the air as pic-
tured in Fig. 4). In the other extreme case of pure pro-
gressive field (R = 0, ∆ϑ (x) = 0) the energy transport
is operated at the maximum rate equal to c, by pressure
and velocity waves of equal amplitude at frequency ω/2π
and equal sinusoidal inertial and elastic forces at a double
frequency, all always perfectly in phase.

3.2.2 Three dimensional case

The graphical rendering of this case, fully modelized in
2.4, is however visualized here in a 2-D reduced dimen-
sion as reported, for clarity, in Figs 5 and 7 with detailed
captions. It is evident from Fig. 5 that, in agreement with
equation (8), the inertial and elastic tension components
act in the average in opposite directions so defining a com-
mon local line of action for a static tension field. This
local tension line is compared with the direction of en-
ergy velocity at the same location. Notice that no general
relationship between the two directions can be observed.
Only in the case of the field visualized on the left of Fig.
5, where ax = ay, az = 0 and Rx = Ry = 0, the tension
direction is always orthogonal to the energy velocity one,
and moreover, the acoustic tension appears to vanish when
the energy velocity reaches its maximum rate c. This be-
havior is confirmed in Fig. 6 where the corresponding
moduli are shown.

4. CONCLUSIONS

The elastic and inertial force densities of general sound
fields, respectively ⟨fp⟩ and ⟨fv⟩ in (9), have been derived
on the basis of Lagrangian theory of acoustics. These sec-
ond order forces have been physically identified as the two
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Figure 1. Snapshots of pressure and velocity wave profiles of length 10λ, compared with elastic and inertial
force densities of the air, along a ray starting from the harmonically vibrating surface of a spherical source with
d0 = 10−2m and b = 10−7m.

Figure 2. Pressure and ρ0c·velocity signals of a 1-D quasi-stationary wave captured during a period T = 10−3 s
at different locations λ/6 apart, along the distance of 1 wavelegth λ = 0.3434. The underlying behaviors of
elastic and inertial forces are represented by dashed lines with a 2 × 103 gain factor, while the distance of the
brown straight line from the x-axis is proportional to the phase difference between p (t) and v (t).
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Figure 3. Phase difference ∆ϑ (x) between pressure and velocity waves along the propagation distance of 1
wavelength λ = 0.3434 of a quasi-stationary 1-D field with reflection coefficient R = 1/2. Differently from
∆ϑ (x) the energy average velocity U (x) = 0.6 · c m/s is constant all along its trajectory (the x axis) and
depends only on the boundary condition R = 0.5.

vector components of the always vanishing tension field of
sound, expressed by their vector sum. This fundamental
property of sound tension gives a quantitative formulation
of the action-reaction law in acoustics. The instantaneous
action mechanism of the two forces fp and fv has been an-
alyzed and graphically rendered for some canonical fields
modeled in one, two and three spatial dimesions. The pre-
sented case studies highlight, in particular, that the action-
reaction principle holds in acoustics only in the average,
but is satisfied even instantaneously uniquely in the case
of 1-D pure progressive plane wave fields (see subsection
2.1) or along a ray of an outgoing spherical wave many
wavelengths far from the source. Notice in figure 6 that
the spatial interference of 1-D pure progressive waves pro-
duces localized reactivity fringes alternating with purely
active fringes which therefore highlight the existence of
trajectories where the energy flows with purely inertial
free motion.

Interesting applications to room acoustics based on a
theoretical scheme similar to the one given here have been
recently put under experimental investigation [ [4], [5]]
while future works by the present authors will deepen the
field-source energetic interaction to complete the field-
field analysis presented in this paper.

.
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Figure 4. Pressure and ρ0c·velocity signals of a perfect stationary wave (R = 1) visualized as described in Fig.
2. Notice that differently from the quasi-stationary wave case here the phase between pressure and velocity
waves is a constant both in time and space equal to π/2.

Figure 5. Two dimensional representation reduced from the 3D model of 2.4 of the acoustic tension compo-
nents ⟨fp⟩ and ⟨fv⟩ for ax = ay, az = 0 and Rx = Ry = 0 on the left, and Rx = Ry = 0.5 on the right.
The tension field is superposed to the energy velocity field U (x, y, 0) so to making clear that no apparently
remarkable relationship exists between the tension and energy velocity fields directions.
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Figure 6. Comparison between the magnitudes of the c-normalized energy velocity field (in cyan) and of
tension components (in arbitrary units) corresponding to the vector fields at the left side of figure 5.

Figure 7. Directions of acoustic tension static field compared with the isolevels contour plot of the potential
energy density of the quasi-stationary field pictured at the right of figure 5.
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