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In the wake of the 2020 COVID-19 epidemic, much work has been performed on
the development of mathematical models for the simulation of the epidemic and
of disease models generally. Most works follow the susceptible-infected-removed
(SIR) compartmental framework, modeling the epidemic with a system of ordi-
nary differential equations. Alternative formulations using a partial differential
equation (PDE) to incorporate both spatial and temporal resolution have also
been introduced, with their numerical results showing potentially powerful
descriptive and predictive capacity. In the present work, we introduce a new vari-
ation to such models by using delay differential equations (DDEs). The dynamics
of many infectious diseases, including COVID-19, exhibit delays due to incu-
bation periods and related phenomena. Accordingly, DDE models allow for a
natural representation of the problem dynamics, in addition to offering advan-
tages in terms of computational time and modeling, as they eliminate the need
for additional, difficult-to-estimate, compartments (such as exposed individuals)
to incorporate time delays. In the present work, we introduce a DDE epidemic
model in both an ordinary and partial differential equation framework. We
present a series of mathematical results assessing the stability of the formulation.
We then perform several numerical experiments, validating both the mathe-
matical results and establishing model's ability to reproduce measured data on
realistic problems.
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1 INTRODUCTION

The worldwide outbreak of COVID-19 in 2020 has caused unprecedented disruption, leading to massive damage in terms
of both economic cost and human lives. Much of the economic damage in particular has been due to government efforts
designed to retard the spread of the disease, while undoubtedly effective, the cost of such measures is enormous. In recent

Math Meth Appl Sci. 2022;45:4752–4771.wileyonlinelibrary.com/journal/mma© 2022 John Wiley & Sons, Ltd.4752

https://doi.org/10.1002/mma.8068
https://orcid.org/0000-0002-8556-3499
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmma.8068&domain=pdf&date_stamp=2022-01-18


months, much research has focused on the mathematical modeling of the epidemic,1 and of epidemics generally, in the
hope that such models may ultimately prove useful to decision-makers and help to inform more targeted, less-disruptive
interventions.

Many modeling approaches have been proposed, with some combining differential equations and empirical approaches
in order to evaluate the effectiveness of various social-distancing measures.2–6 In order to incorporate spatial variation
across different regions, many of these models discretize various regions along geopolitical (or similar) lines, using a
network structure to represent movement between the populations in different areas.3–5

In contrast to these approaches, in previous studies,7–15 the authors instead modeled the spatial diffusion of the disease
using partial differential equation (PDE) models. The implemented models followed the compartmental framework but
also incorporated nonlinear heterogeneous diffusion terms, giving a reaction-diffusion system of equations. While the
computational cost of such an approach is much higher than an ODE model, different numerical experiments showed that
this approach carries several advantages. Notably, the timing of different dynamics across different areas can be resolved in
a continuous manner, offering a richer description of the spatiotemporal evolution. Indeed, Boscheri et al12 and Bertaglia
and Pareschi13 also included hyperbolic commuting terms, to model nonlocal movement of persons in addition to the
local dynamics governed by the diffusion.

In the following, we propose an alternative formulation of the model introduced in Viguerie et al7 and analyzed fur-
ther and extended in previous studies.8–11 In particular, we seek to model many of the dynamics, and in particular the
incubation period, with a delay differential equation model. Ordinary delay differential equation models have been exten-
sively used for the study of epidemics, as well other types of biological models, such as predator-prey equations.16–21

Delayed models using partial differential equation (PDE) to study epidemics have been discussed and analyzed in pre-
vious works.22–27 Many of these works are restricted to mathematical analysis, though simple numerical tests were also
carried out in Pei et al23 and Zhao et al.27 Moreover, in Buonomo et al,28 information-related delays are investigated, and
in Messina,29 Volterra integral equations are employed in a SIS model. A delay PDE simulation of a realistic problem over
a nontrivial geometry has not, to the authors' knowledge, been carried out.

There are several advantages in using a delay formulation rather than the system shown in Viguerie et al.7 Notably, the
exposed compartment, responsible for the incubation period, may be eliminated without losing the relevant dynamics.
For a PDE model in which problem size is relevant, obtaining the same dynamics with fewer compartments is desirable.
However, we do not expect that the dynamics are exactly the same; we believe in fact that the delay-equation formulation
may better capture the “lag” effect incurred by the introduction of new measures (as seen during the COVID-19 pan-
demic), in which there is a delay of several days between the introduction of a new public health ordinance and when its
effects are fist observed. These lags may also change depending on the epidemic stage, leading to state-dependent delays.
Though we will not examine such a case here, a thorough understanding of the constant-delay case is necessary first and
is the objective of the present work. Such a formulation is also interesting from the mathematical and computational
point of view, and examining such a model is worthwhile, we believe, in and of itself.

This paper is outlined as follows. We begin by recalling the model shown in Viguerie et al,7 along with some of its basic
properties and notation. We will then proceed to introduce the delay-equation formulation of the model for both ordinary
and partial differential equation variants, highlighting important points of difference. Following this introduction, we
will present several mathematical results of the delay-differential equation models including the equilibria solutions and
a stability analysis. We will then perform a series of numerical examples using the ODE and an idealized 1D problem for
the PDE (inspired by Viguerie et al8 and Grave & Coutinho10) to qualitatively analyze the model behavior and confirm the
mathematical results. We finish our numerical tests with a simulation over the Italian region of Lombardy using real data,
in order to validate the model's ability to reproduce real-life data on realistic problems, before concluding with several
suggestions for future research in this area.

2 MODEL

The COVID-19 PDE model presented in Viguerie et al7 and further analyzed and extended in previous studies8–11,14 reads

𝜕ts = 𝛼n − (1 − A∕n) 𝛽isi − (1 − A∕n) 𝛽ese − 𝜇s + ∇ · (n𝜈s∇s) , (1)

𝜕te = (1 − A∕n) 𝛽isi + (1 − A∕n) 𝛽ese − 𝜎e − 𝜙ee − 𝜇e + ∇ · (n𝜈e∇e) , (2)
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𝜕ti = 𝜎e − 𝜙d i − 𝜙ri − 𝜇i + ∇ · (n𝜈i∇i) , (3)

𝜕tr = 𝜙ri + 𝜙ee − 𝜇r + ∇ · (n𝜈r∇r) , (4)

𝜕td = 𝜙d i, (5)
while a similar ODE variant, neglecting diffusion, reads

.s = 𝛼n − 𝛽isi − 𝛽ese − 𝜇s, (6)

ė = 𝛽isi + 𝛽ese − 𝜎e − 𝜙ee − 𝜇e, (7)
.
i = 𝜎e − 𝜙d i − 𝜙ri − 𝜇i, (8)

.r = 𝜙ri + 𝜙ee − 𝜇r, (9)
.
d = 𝜙d i. (10)

The mechanism of the model is diagrammed in Figure 1 and operates in the following way: The susceptible population
s is exposed to the disease by contact with exposed individuals in compartment e or infected patients in compartment i at
rates 𝛽e and 𝛽 i, respectively. After an incubation period 𝜎, exposed individuals develop symptoms and move to the infected
subgroup i. A fraction of symptomatic patients recover at a rate 𝜙r, moving into the recovered subgroup r. However, the
remaining infected patients eventually die at a rate 𝜙d. The model also features asymptomatic transmission, which has
been considered a key driving force in the COVID-19 pandemic. To this end, we include a fraction of the exposed popu-
lation e that directly moves to the recovered subgroup r, without ever entering in the symptomatic infected compartment
i. Note that

n = s + e + i + r (11)
denotes the entire living population.

We briefly make a few additional remarks regarding this model. The first is that this model operates on the principle of
mass-action, with the contact terms 𝛽 i, e non-normalized and hence dependent on local population densities, reflected in
their units of 1/(Time·Persons).8,10,14,30,31 The spatial dependence of contagion is further augmented by the addition of the
Allee term A, which accounts for the tendency of COVID-19 cases to cluster in areas where n>>A. This term has been
used extensively in other settings, with the form used above inspired directly by applications in cancer modeling.32,33 The
Allee term works to reduce transmission in areas where the population density is under a given threshold A, by bringing

FIGURE 1 Flow chart describing the evolution of the various compartments and parameters in the model equations (1)–(5) [Colour figure
can be viewed at wileyonlinelibrary.com]
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the population in the exposed compartment to the susceptible compartment. Consequently, in such areas, the population
in compartments e and i tends to zero, eventually canceling out the transfer term. We observe that as s, i, and e are all
less than n by definition, we do not expect blowup of this term, even for very small n. We note that the Allee term does
not appear in the ODE model (6)–(10). While one may technically include it, the lack of spatial variation in population
density limits its usefulness from the modeling point of view, and conceptually, its inclusion only makes sense in the PDE
model (1)–(5) for this reason. The diffusion terms in (1)–(5) are weighted by living population n, as the model hypothesizes
that diffusion of individuals is not homogeneous, but preferential and directly proportional to the population.

This model was shown in Viguerie et al7 to exhibit reasonably good agreement with measured data for the region of
Lombardy, Italy, with later works9,11,14 showing good agreement in other regions. Further numerical and mathematical
aspects were investigated in Viguerie et al,8 where it was also shown that models of this type can be put in the framework of
continuum mechanics, and interpreted a balance of forces. Although the model demonstrates acceptable agreement with
reality and operates under sound physical assumptions, it relies extensively on unknown data. In particular, the exposed
compartment (which also corresponds to the asymptomatic compartment) e is difficult, if not impossible, to quantify with
accuracy. We therefore propose the following modified model, which uses a delay differential equation (DDE) formulation:

𝜕ts(t) = 𝛼n(t) −
(

1 − A
n(t)

)
𝛽es(t)i(t) −

(
1 − A

n(t)

)
𝛽is(t)i(t − 𝜎)

− 𝜇s(t) + ∇ · (n(t)𝜈s∇s(t)) , (12)

𝜕ti(t) =
(

1 − A
n(t)

)
𝛽es(t)i(t) +

(
1 − A

n(t)

)
𝛽is(t)i(t − 𝜎)

− 𝜙di(t − 𝜎) − 𝜙ri(t − 𝜎) − 𝜇i(t) + ∇ · (n(t)𝜈i∇i(t)) , (13)

𝜕tr(t) = 𝜙ri(t − 𝜎) − 𝜇r(t) + ∇ · (n(t)𝜈r∇r(t)) , (14)

𝜕td(t) = 𝜙di(t − 𝜎). (15)

The corresponding ODE version of (12)–(15) reads

.s(t) = 𝛼n(t) − 𝛽es(t)i(t) − 𝛽is(t)i(t − 𝜎) − 𝜇s(t), (16)
.
i(t) = 𝛽es(t)i(t) + 𝛽is(t)i(t − 𝜎) − 𝜙di(t − 𝜎) − 𝜙ri(t − 𝜎) − 𝜇i(t), (17)

.r(t) = 𝜙ri(t − 𝜎) − 𝜇r(t), (18)
.
d(t) = 𝜙di(t − 𝜎). (19)

We acknowledge a slight abuse of notation as, strictly speaking, 𝜎 is the inverse of the corresponding value in sys-
tem (1)–(5), (6)–(10). In general, the delay may be state-dependent; however, for the current work, we will assume that
they are constant in order to simplify our analysis and computations. Note also that the definition of n is now

n = s + i + r. (20)

As one may observe, the first major difference between the systems (1)–(5) and (12)–(15) is in the influence of the
incubation period. Rather than including the exposed compartment e, the incubation period is incorporated into the
system as a delay term on the infected compartment. A result of this choice is that in (12)–(15), asymptomatic individuals
are no longer specifically accounted for; all infected persons are considered equally. For the specific case of COVID-19,
this may be a more reasonable assumption at this point in time, as testing protocols have improved and larger portions of
asympomatic patients are now detected.34,35

The second major difference between (1)–(5) and (12)–(15) is the evolution of the recovered compartment r and
deceased compartment d. As formulated in (1)–(5), all members of the infected compartment i are equally likely to die or
recover at the same time; it does not make any distinction on these patients based on time of infection. In contrast, the
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recovery and mortality rates in (12)–(14) are delay-dependent, evolving according to the infected population at a previ-
ous point in time. This is a more realistic representation of epidemic dynamics and may be useful when considering the
allocation of public health resources.

2.1 Relationship between the PDE and ODE
The presented delayed PDE model (12)–(15) and ODE model (16)–(19) are related, since they are used to describe the same
phenomenon but differ due to the presence of diffusion and the Allee term A. This spatial information obviously gives
the PDE model a richer descriptive capacity; however, it is also the case that the mathematical analysis and numerical
simulations using the PDE require significantly more effort, both in terms of computational time and the complexity of
the model implementation. For this reason, the question of when the ODE model may provide a reasonable surrogate for
the PDE is an important one.

As our analysis in the following sections will demonstrate, close to the zero equilibrium; that is, when all quantities are
small, the spatial (diffusive) terms, which are quadratic, are negligible and the PDE becomes an ODE with delay terms.
In the case when A = 0, which is considered for example in our 1D simulations, a complete stability analysis of the
equation allows to obtain sharp rigorous stability bounds which emphasize the dependence of stability of the steady state
with respect to the delay. In the case when A is nonzero, such stability bounds can be interpreted in an approximate way.
For reasonably small variations in local population densities, the ODE solution may still well approximate the spatially
integrated PDE solution. Thus, if the spatial transients are not considered important, as may be the case in certain appli-
cations, the ODE model may be a more practical choice than the PDE model for its computational convenience. We will
discuss the relationship between the two models formally in the analysis section.

Moreover, we will qualitatively compare the behavior of the solutions obtained with the two models, in order to illustrate
the theoretical results in the numerical experiments sections.

3 ANALYSIS

In this section, we will analyze the DDE models (12)–(15), (16)–(19) mathematically. In particular, we examine the equi-
librium solutions of (16)–(19) and (12)–(15) for the case A = 0 and their stability properties. We then proceed to analyze
the scalar linear equation associated to (16)–(19), (12)–(15) with A = 0, deriving stability conditions in terms of the phys-
ical parameters. We then examine the general case of (12)–(15) for A≠ 0 and analyze the impact of the Allee term on the
stability behavior.

3.1 Equilibria and their stability
It is straightforward to note that the only equilibrium of (16)–(19) is

(s∗, i∗, d∗, r∗) = (0, 0, 0, 0).

The linearized system is given by
.s(t) = 𝛼n(t) − 𝜇 s(t), (21)

.
i(t) = − (𝜙d + 𝜙r) i(t − 𝜎) − 𝜇 i(t), (22)

.r(t) = 𝜙ri(t − 𝜎) − 𝜇 r(t), (23)

.
d(t) = 𝜙di(t − 𝜎). (24)

By adding Equations 22–24 to 21 and making use of the variable n (as defined in (20)), instead of s, we may replace (21)
with

.n(t) = (𝛼 − 𝜇) n(t) + 𝜇d(t). (25)

Due to the last equation (24) of the DDE system, no contractivity arguments can be used to infer about the asymptotic
stability of the solution.
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FIGURE 2 Asymptotic stability region of
Equation 27 in the (a, b)-plane (right); roots of
the characteristic equation (left) for
a = 0.5, b = −1 [Colour figure can be viewed at
wileyonlinelibrary.com]

3.2 Stability of the scalar linear delay equation
In order to state the stability theorem, we need to consider the scalar equation

.
𝑦(t) = 𝛼𝑦(t) + 𝛽𝑦(t − 𝜏) (26)

with the delay 𝜏 an arbitrary but fixed positive constant.
By the change of variables t = t∕𝜏, a = 𝛼𝜏, b = 𝛽𝜏, we are led to the equation

.
𝑦(t) = a𝑦(t) + b𝑦(t − 1). (27)

The analysis of the characteristic equation,

𝜆 = a + be−𝜆, (28)

which for b≠ 0 possesses infinitely many solutions {𝜆k}∞k=1, gives indications about the asymptotic behavior of the solution
of (27). The general solution is then obtained as a sum of exponentials:

𝑦(t) =
∑

k
cke𝜆kt.

The zeros of (28) are plotted in the left picture of Figure 2 for the case (a, b) = (0.5,−1). Notice that they all lie in the left
half-plane, so that the solution will tend to zero for t→∞ (despite a positive a).

We provide the stability region in the right picture of Figure 2 (see, e.g., Bellen & Zennaro36). Note that if a = 0, then
the zero solution is asymptotically stable for b∈ (−𝜋/2, 0) and equivalently–referring to Equation 26—it is asymptotically
stable if b𝜏 ∈ (−𝜋/2, 0). The transcendental curve bounding the stability region is expressed in parametric form as

(a(𝜙), b(𝜙)) =
(
𝜙 cot(𝜙),− 𝜙

sin(𝜙)

)
, 𝜙 ∈ (0, 𝜋),

which might be expressed as a monotonically increasing function b(a). Asymptotically, the curve approaches the line
b = −a; as 𝜙→ 0, it tends to the point (1,− 1), and at 𝜙 = 𝜋∕2, it crosses the point (0,−𝜋/2).

Theorem 3.1. Assume

(i) 𝛼 −𝜇 < 0 or 𝛼 = 𝜇 = 0;
(ii) 𝜙d + 𝜙r <

𝜋

2𝜎
.
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Then, the zero equilibrium of (21)–(24), (25) is stable.

Proof. Consider first the DDE
.
i(t) = −𝜇 i(t) − (𝜙d + 𝜙r) i(t − 𝜎),

which has the form (26). By non-negativity of 𝜇, we have that if

(𝜙d + 𝜙r)𝜎 <
𝜋

2
,

the characteristic equation has all roots in the negative complex plane so that limt→∞i(t) = 0. Moreover, it can be
shown that the decay is exponential (see Diekmann et al.37).

Next, look at .
d(t) = 𝜙di(t − 𝜎)

from which we obtain boundedness of d as a consequence of the exponential decay of i(·). Similarly, looking at

.r(t) = −𝜇 r(t) + 𝜙ri(t − 𝜎),

we have exponential decay if 𝜇 > 0 and simply boundedness if 𝜇 = 0. Finally, for what concerns the equation

.n(t) = (𝛼 − 𝜇) n(t) + 𝜇d(t),

we conclude in a similar way, which means that if 𝛼 −𝜇 < 0 n(t)→ 0 as t→∞; otherwise, if 𝛼 = 𝜇 = 0, the stability
statement holds trivially.

3.3 Stability of the equilibrium of the PDE
The analysis of the PDE (12)–(15) when A = 0 leads to the same stability Theorem 3.1. This follows immediately from
the fact that, in the linearization of (12), (13), and (14), the terms ∇ · (n(t)𝜈s∇s(t)) and ∇ · (n(t)𝜈i∇i(t)) are quadratic and
hence do not influence the analysis. As a consequence, the linearized system is formally analogous to the one obtained
for the simpler DDE model (16)–(19).

More in detail, looking at the PDE-based model, we have that, at the equilibrium, (s∗, i∗, d∗, r∗) = (0, 0, 0, 0). Neglecting
second-order terms gives the system

𝜕ts(t) = 𝛼n(t) −
(

1 − A
n(t)

)
s(t) (𝛽ei(t) + 𝛽ii(t − 𝜎)) − 𝜇s(t), (29)

𝜕ti(t) =
(

1 − A
n(t)

)
s(t) (𝛽ei(t) + 𝛽ii(t − 𝜎)) − (𝜙di + 𝜙r) i(t − 𝜎) − 𝜇i(t), (30)

𝜕tr(t) = 𝜙ri(t − 𝜎) − 𝜇r(t), (31)

𝜕td(t) = 𝜙di(t − 𝜎). (32)
Observe the following:

(a) If A = 0, we formally reobtain the same system (21)–(24) so that Theorem 3.1 applies unchanged. In fact, in such a
case, we may view the linearized system (21)–(24) as the system (29)–(32) integrated in space.

(b) The case A≠ 0 is more involved.
By adding Equations 30–32 to 29 and making use of the variable n instead of s, we may replace (29) with

𝜕tn(t) = (𝛼 − 𝜇) n(t) + 𝜇d(t).

Since n(t) = s(t) + i(t) + r(t) and s, i and r are non-negative, we have that

𝛿(t) ∶= s(t)
n(t)

∈ [0, 1] ∀t, (33)
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which allows us to rewrite (29)–(32) as

𝜕ts(t) = 𝛼n(t) + A𝛽e𝛿(t)i(t) + A𝛽i𝛿(t)i(t − 𝜎) − 𝜇s(t),
𝜕ti(t) = −A𝛿(t) (𝛽ei(t) + 𝛽ii(t − 𝜎)) − (𝜙d + 𝜙r) i(t − 𝜎) − 𝜇i(t),
𝜕tr(t) = 𝜙ri(t − 𝜎) − 𝜇r(t),
𝜕td(t) = 𝜙di(t − 𝜎). (34)

Looking at the second equation in (34), we recognize a DDE of the form

𝜕ti(t) = a(t)i(t) + b(t)i(t − 𝜎). (35)

A well-known asymptotic stability condition for (35) is given by (see, e.g., Bellen & Zennaro36)

a(t) + |b(t)| < 0 ∀t,

which yields
−𝜇 − A (𝛽e − 𝛽i) 𝛿(t) + 𝜙d + 𝜙r < 0.

In the usual case where 𝛽e≥𝛽 i, we obtain that the condition

−𝜇 + 𝜙d + 𝜙r < 0

implies asymptotic stability (of contractive type) of the solution i independently of the delay 𝜎.
We remark that this is a sufficient and not necessary condition for a stronger type of asymptotic stability, namely,
contractivity, of the solution.
Under this condition, we have that lim

t→∞
i(t) = 0. The analysis of the remaining equations for the variables r, d, and

n is analogous to the one provided in the proof of Theorem 3.1.

Note that if we could treat 𝛿(t) as a constant (see (33)), we would get the same sufficient conditions to asymptotic stability
provided by Theorem 3.1, i.e.,

(i) 𝛼 −𝜇 < 0 or 𝛼 = 𝜇 = 0 or (ii) 𝜙d + 𝜙r <
𝜋

2𝜎
,

thus depending on the delay 𝜎. In a regime where 𝛿(t)∈ [0, 1] does not exhibit big variations, we expect that such
conditions continue to hold true, at least approximately.

3.4 Comments
In some cases, we observe non-physical slightly negative values of the modeled quantities. This is due to the fact that when

𝜈 = 0 and 𝜙d + 𝜙r ≥
1

e𝜎
,

the rightmost roots of the characteristic equation are complex conjugate. This is easily seen observing that the equation
𝜆 = be−𝜆 has no real roots if b < − 1

e
.

Instead, when 𝜙d +𝜙r <
1

e𝜎
, a real root dominates. However, since the oscillations occur when the solution approaches

the steady state in the asymptotically stable regime, we may overlook the potential misbehavior.

Remark 1. If 𝜇 < 0, then the stability bound 𝜙d + 𝜙r <
M
𝜎

can be made larger; that is, M increases as 𝜇 increases
(see Figure 2).

Remark 2. We may understand the bound (ii) of Theorem 3.1 physically as a relationship between the removal rate,
as governed by the parameters 𝜙d and 𝜙r, and the time delay 𝜎. This bound states that, for the equations to be stable,
the rate of recovery and/or mortality from the disease must occur over a time scale sufficiently longer than the time
delay 𝜎 (recall that 𝜙d and 𝜙r have units 1/Time while 𝜎 has units Time).
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Parameter Units Value
𝛽e Persons−1· days−1 9/40
𝛽 i Persons−1· days−1 3/32
𝜙r Days−1 1/32
𝜙e Days−1 1/8
𝜙d Days−1 3/640
𝜇 Days−1 0
𝛼 Days−1 0
𝜈
∗
s Persons−1· days −1 3.75·10−5

𝜈
∗
e Persons−1· days −1 .75·10−3

𝜈
∗
i Persons−1· days −1 .75·10−10

𝜈
∗
r Persons−1· days −1 3.75·10−5

Note: All values have been normalized in space by a
characteristic length scale L, with this normalization
reflected in the units.

TABLE 1 Parameter values for the ODE and 1D simulations

4 NUMERICAL IMPLEMENTATION AND EXPERIMENTS

In this section, we will perform several numerical tests to evaluate various characteristics of the model and its numerical
solution. In particular, we will perform the following experiments:

1. Several examples using the ODE version of the model (16)–(19). Here, we observe the impact of the delay on aspects
of the physical solution, including the effects on contagion and lockdown measures. We also examine the derived
stability bounds and influence of different parameters.

2. A one-dimensional example using the PDE model (12)–(15) based on the simulation performed in Viguerie et al8

and Grave and Coutinho10 for different values of 𝜎 and problem parameters. These examples seek to examine the
solution characteristics in both quantitative and qualitative aspects on an artificial problem which shares many
characteristics with a real-world problem but remains tractable and sufficiently simple to analyze in detail. We also
seek to confirm the correspondence between simulations using the ODE and spatially integrated solutions of the
PDE.

3. A two-dimensional example using the COVID-19 outbreak in Lombardy, Italy, employing the PDE model (12)–(15).
This simulation is similar to the ones carried out in Viguerie et al,7,8 which were well validated against the measured
data at the time of publication. This example is designed to show the viability of the delay-equation formulation in
reproducing real-world data, as well as its performance when compared to non-delay models.

4.1 ODE model
In order to perform the simulations for the ODE model (16)–(19), we employ the Matlab solver DDE23. As initial con-
ditions, we set the total population n = 1,000, and as a historic function, we choose i(t) = 1 for t∈ [− 𝜎, 0]. Assuming
r(0) = 0 and d(0) = 0, we end up with s(0)=n− i. The final time of the simulation is t = 267 days. The parameter values
are reported in Table 1.* To observe the impact of the delay, we run the simulation for different values of 𝜎: 𝜎 = 5,10, 15
and 20 days.

We note that for increasing values of the delay the number of the infections are higher, i.e., in Figure 3 (left), the infection
peak for 𝜎 = 5 (black line) is much lower than the peak for 𝜎 = 20 (magenta line). Furthermore, we observe that the
amplitude of the peak is larger for high values of the delay. On the other hand, if the delay is too high with respect to
the parameters, we could obtain non-physical solutions, as in Figure 3 (left), where the infections becomes negative for
𝜎 = 20. In the following, we will investigate the impact of the government restrictions, i.e., the introduction of lockdowns
and the stability of the model from a numerical point of view.

4.1.1 Effect of lockdowns
Due to the relevance of the pandemic on the dailylife routine, we seek to observe the effect of government restrictions,
i.e., lockdowns, on the evolution of the compartments. To this end, we run two cases, one without lockdowns, in which

*For the ODE model, these values have been normalized by n(0) = 1,000 and, accordingly, have units of Days−1.
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FIGURE 3 Total infected for
𝜙r = 1/32, 𝜙d = 3/640 for different delay
values in the non lockdown (left)
lockdown (right) case [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 4 Total deceased for
𝜙r = 1/32, 𝜙d = 3/640 and for different
delay values in the non lockdown (left)
lockdown (right) case [Colour figure can
be viewed at wileyonlinelibrary.com]

the contact rates 𝛽 are kept constant throughout the simulation, and one with lockdowns, in which we set 𝛽 = 𝛽∕4 at
t = 30 days. In fact, the aim of the lockdown is to reduce the contact rate.

In Figure 3, we show the evolution of the infected compartment in time, for the different values of 𝜎 without (left) and
with (right) restrictions. It is clear that the number of infections increases with the delay even in the lockdown situation, as
expected. However, the lockdown restriction reduces the number of infected people by about 20%. Moreover, we observe
the same effect focusing on the deceased compartment. Indeed, looking at the deaths peak in Figure 4, the deaths peak
is lower in the lockdown situation.

We also observe that, with larger values for the delay, the effect of the lockdown measures is less readily observed. One
may particularly see this in Figure 3 on the right, where the decrease of infections as a result of the lockdown begins very
quickly for 𝜎 = 5 and progressively more slowly for larger values of 𝜎. This is consistent with our expectations.

4.1.2 Stability of the ODE model
We now investigate the numerical stability of the ODE model, and in particular, we seek to examine the validity of the
bound in Theorem 3.1 and verify it numerically. Looking at the deceased compartment, Figure 4 shows that the solution
is stable for 𝜎 = 5,10, 15,20, since we choose the parameters according to the bounds (i)–(ii) of the Theorem 3.1. Indeed,
𝛼 = 𝜇 = 0, 𝜙r = 1∕32, 𝜙d = 3∕640, which means that

1
32

+ 3
640

≈ .0359 <
𝜋

2𝜎

for all our choices of the delay.
On the other hand, modifying the parameters as 𝜙r = 3∕32 and 𝜙d = 1∕80, we get an unstable solution for 𝜎 = 15, as

shown in Figure 5. In fact, for 𝜎 = 15, the oscillations are increasing in time, while for 𝜎 = 10, they are smearing out. This
is also consistent with the analysis, as we may expect oscillations for larger values of 𝜎; however, if the numerical bound
is respected, these oscillations should stabilize and not affect the solution asymptotically.

An interesting behavior that we also observe is that if we choose 𝜙d = 1∕80 and 𝜙r = 28∕320, we obtain a periodic,
non-physical behavior of the solution for 𝜎 = 15, Figure 6. As shown in the figure, we observe oscillations that neither
increase nor decrease, instead demonstrating what appears to be a true periodic regime. Indeed, the with these parameters,
we have

28
320

+ 1
80

≈ 𝜋

2𝜎
.
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FIGURE 5 Total deceased for 𝜙r = 3/32, 𝜙d = 1/80, for different
delay values [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Evolution of susceptible
compartment(top-left), infected
compartment (top-right), recovered
compartment (bottom-left), and
cumulative death (bottom-right) for
different delay values for 𝜙d = 1∕80 and
𝜙r = 28∕320 [Colour figure can be
viewed at wileyonlinelibrary.com]

This suggests that, near the limit of the stability bound, solutions exhibit a periodic behavior. Considering that the oscil-
lations decrease for 𝜙r, 𝜙d sufficiently below the stability bound and increase for 𝜙r, 𝜙d sufficiently large, this behavior is
perhaps to be expected. Whether this is a mere mathematical curiosity or perhaps indicates relevant biological information
is not clear and is potentially a subject of future investigation.

4.2 One-dimensional PDE model
In this example, we follow basic setup inspired by the one-dimensional example introduced in Viguerie et al8 and also
performed in Grave and Coutinho.10 We will examine the behavior of the solution under various conditions, as well as
the validity of the stability bound for the partial differential equation.

4.2.1 Problem setup
For the initial conditions, we set s(x∗, 0) = s0(x∗) and e(x∗, 0)= e0(x∗) as follows:

s0(x∗) = e−(x∗+1)4 + e−
(x∗−.35)2

1e−2 + 1
8

(
e−

(x∗−.62)4

1e−5 + e−
(x∗−.52)4

1e−5 + e−
(x∗−.42)4

1e−5

)
+ 1

4
e−

(x∗−.735)4

1e−5 , (36)
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FIGURE 7 Initial conditions for the 1D PDE model. Qualitatively,
the setup represents a population distribution with one major
population center and one lesser population center, with an initial
outbreak centered in the lesser population center [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 8 Total susceptible for 𝜙r = 1/32, 𝜙d = 3/640. We have
stable and monotonic behavior in this compartment across all
different cases. A lag is observed, as expected, for the different values
of 𝜎 [Colour figure can be viewed at wileyonlinelibrary.com]

i0(x∗) =
1

20
e−

(x∗−.75)4

1e−5 + 1
200

e−
(x∗−.55)4

1e−5 . (37)

These conditions are plotted in Figure 7. Qualitatively, they correspond to a population distribution with one major
population center, one moderate population center, and one lesser population center, with an initial outbreak centered
in the lesser population center.

For the parameters, we use the values shown in Table 1. We discretize in space over the unit interval with Δx = 1/2,000
and advance in time using the BDF2 scheme with Δt = .25. It was demonstrated in Viguerie et al8 that this spatiotemporal
discretization resolves all dynamics satisfactorily. We note also that our choice of time step ensures that we may use
previously computed solutions for our delay terms, and there is no need for interpolation.36

We run the simulation for t = 267 days for 𝜎 = 5, 10, 15, and 20. We seek to examine the effect of 𝜎 on contagion,
but also on the efficacy of public health interventions. To this end, for each value of 𝜎, we run the full time interval both
with and without lockdown measures. For the case with no lockdown, we use the parameters shown in Table 1 over the
entire time interval. For the case with lockdowns, at t = 140, we multiply all diffusive terms 𝜈 by 1/2, simulating restricted
mobility, and contact terms 𝛽 by 1/4, corresponding to measures such as bar closures, mask wearing, etc. We note that
the problem setup is designed to resemble the ODE simulations in the preceding subsection.

4.2.2 Effect of lockdowns
In Figures 8–11, we show the total (i.e., integrated in space) susceptible, infected, recovered, and deceased compartments
in time, respectively, for each value of 𝜎 and lockdown configuration. We see that longer 𝜎 is associated with higher
infective peaks; however, cumulative deaths, long-term, are similar for all 𝜎. This is consistent with our expectations, as
reducing infective peaks does not necessarily correspond to fewer cases overall.
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FIGURE 9 Total infected for 𝜙r = 1/32, 𝜙d = 3/640. A longer 𝜎 is
associated with more infections, but also a more dramatic decrease
in infection after lockdowns are initiated. The impact of lockdowns
in the infected compartment is visible more immediately, with the
lag effect being more pronounced in the deceased compartment. We
also observe clearly the non-physical behavior for 𝜎 = 20 in both
cases, with the infected compartment becoming negative [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Total recovered for 𝜙r = 1/32, 𝜙d = 3/640. Each case
is stable, but we observe nonphysical behavior as the deceased
compartment for 𝜎 = 20, with both cases demonstrating noticeable
non-monotonicity. The smaller amount of recovered individuals in
the lockdown cases is explained by the reduced contagion overall
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Total deceased for 𝜙r = 1/32, 𝜙d = 3/640. We see a
longer 𝜎 leads to more fatalities, as well as delaying the efficacy of
public health measures. However, while the effects of intervention
are delayed, we note that, once visible, their impact occurs more
suddenly. We observe non-physical behavior for 𝜎 = 20, showing that
the model may exhibit non-physical behaviors for larger 𝜎 [Colour
figure can be viewed at wileyonlinelibrary.com]

More interesting is the observed effect of 𝜎 on lockdown efficacy. Referring to Figure 11, the results show that longer
𝜎 leads to a noticeable lag in the delay compartment; indeed, one begins to see a decrease in mortality as a result of the
lockdown at a later date for larger 𝜎. In the plot of the infected compartment in Figure 9, the impact of lockdowns appears
immediate. This is indeed what we expect, as the definition of this compartment includes pre-symptomatic patients; thus,
while the effects are immediate by this definition, other indicators, such as the aforementioned deceased compartment,
will lag in proportion to 𝜎.

GUGLIELMI ET AL.4764

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 12 Total deceased for 𝜙r = 3/56, 𝜙d = 3/320. We see that
with this choice of 𝜙, the equations become noticeably nonphysical
for 𝜎 = 15, with large decreases in the deceased compartment.
However, we nonetheless observe stability for all 𝜎 [Colour figure
can be viewed at wileyonlinelibrary.com]

The delay 𝜎 appears to not only affect the time at which the effect of lockdowns appear, but also the sharpness of such
effects. While for larger 𝜎, the deceased compartment begins to decrease later as compared to smaller values, once this
decrease begins, it occurs much more rapidly. This is particularly visible in the infected compartment shown in Figure 9;
around t = 175, the total number of infections is indeed larger for smaller values of 𝜎.

An important dynamic that we notice for large 𝜎 is the emergence of non-physical behavior, similar to those observed in
the ODE case. This is particularly apparent for the case of 𝜎 = 20, where we observe the infected compartment becoming
negative, and decreases in the recovered and deceased compartments, which should be monotonic. While this behavior
is non-physical, it is not mathematically inconsistent with the model behavior and does not represent instability as such.
Indeed, to guarantee positivity, more stringent conditions on the relationship between 𝜙r, 𝜙d, and 𝜎 are likely required.

4.2.3 Stability of the PDE model
We now examine the validity of the bound (ii) in Theorem 3.1, derived for the ODE model, for the PDE model. As men-
tioned in the analysis section, we expect the results to hold identically in this case. In the preceding, we observe that for
the parameters in Table 1,

1
32

+ 3
640

≈ .0359 <
𝜋

2𝜎

for 𝜎 = 5, 10, 15, 20, thus satisfying the condition for all considered 𝜎. While we see non-physical behaviors for both cases
of 𝜎 = 20, the solution does indeed remain stable. Such behaviors appear to be independent of both time-step size and
time-integration scheme and represent the model behavior. Thus, to guarantee physical behavior, stability is necessary
but not sufficient.

For 𝜙r = 3∕56 and 𝜙d = 3∕320,
3

56
+ 3

320
≈ .0629 <

𝜋

2𝜎
;

again satisfying the stability condition for all 𝜎, we again see further numerical validation of the system stability. As
shown in Figure 12, all values of 𝜎 are stable. 𝜎 = 5 and 𝜎 = 10 both show physical behavior, avoiding oscillations and
large decreases in the deceased compartment. While 𝜎 = 15 is stable, the behavior is clearly nonphysical, and we see
oscillations and decreases in the deceased compartment.

For 𝜙r = 3∕32 and 𝜙d = 1∕80,
3

32
+ 1

80
≈ .1062 <

𝜋

2𝜎

for 𝜎 = 5, 10 but not for 𝜎 = 15. The behavior of 𝜎 = 5 is both physical and stable, and 𝜎 = 10 is stable but nonphysical, as
shown in Figure 13. 𝜎 = 15 violates the stability bound slightly, and we observe unstable behavior, with large increasing
oscillations. This establishes not only the validity of the stability bound, but also its strictness. These results confirm
the analysis, showing that the stability bound (ii) in Theorem 3.1, holds for the PDE model. However, as the results
also show clearly, stability does not imply a physical solution, as one still may observe negative values in the infected
compartment and non-monotonic behavior in the recovered and deceased compartments. For sufficiently small values
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FIGURE 13 Total deceased for 𝜙r = 3/32, 𝜙d = 1/80. We see that
with this choice of 𝜙, the equations are stable and physical for 𝜎 = 5,
nonphysical but stable for 𝜎 = 10, and unstable for 𝜎 = 15, as
predicted by the stability condition [Colour figure can be viewed at
wileyonlinelibrary.com]

of 𝜎 in comparison to 𝜙d, 𝜙r, we observe numerically that one may expect physical behavior in the solution. A positivity
condition, a much stronger condition than stability, is required to guarantee physical solution behavior; this likely depends
on the initial data and is an interesting direction for future work.

4.2.4 Relationship with ODE solutions
In this case, we observe that the ODE provides a good approximation to the space-integrated PDE in 1D. This is expected
from our analysis, as in this case, we have taken A = 0 and the variation in population density, while present, is not
extreme. As mentioned previously, ODE models are obviously much less demanding than PDE models from the point of
view of both implementation and simulation time as well as from analytical/stability analysis point of view. For this rea-
son, if possible, their use may be preferred over PDEs in certain contexts. These simulations confirm that, near equilibria,
for small values of A, and relatively small variation in population density, the ODE may provide a surrogate for the PDE,
if spatial differences are not considered important and one wishes to instead consider the population independently of
space. On the other hand, the PDE model provides more reliable forecast when these factors are important, due to the
presence of the spatial information.

4.3 Lombardy simulation
Our final numerical test models the outbreak of COVID-19 in the region of Lombardy, Italy. This test case was first used
to validate a SEIRD model in Viguerie et al,7 in which the simulation results showed good agreement with the measured
data. It was then examined in further detail in Viguerie et al,8 where other aspects of the problem, including the model
sensitivity to diffusion, were investigated. We will not discuss such aspects of this model here, as the focus of the present
work is on the delay differential equation model. Hence, for a more detailed discussion of the aforementioned results, we
kindly refer the reader to Viguerie et al.7,8

For the spatial discretization, we utilize an unstructured triangular mesh with 41,625 elements. For the temporal dis-
cretization, we use the Backward-Euler method with a time step Δt = .25 days. We solve the nonlinear problem at each
time step using a Picard-style linearization, and the corresponding linear systems are solved using the GMRES algorithm
with a Jacobi-style preconditioner. At all boundaries, we assign no-flux boundary conditions, corresponding to total iso-
lation. The parameter values are reported in Table 2. We note that these differ from those shown in Viguerie et al.;7,8 this
is primarily due to differences resulting from the fact that, in the current delay model, asymptomatic individuals are now
considered within the “infected” compartment.

In Figure 14, we show how the results compare to two formulations of the problem shown in Viguerie et al.:8 the
“baseline” case, which features the same diffusive parameters used here, and the case with doubled diffusion. Note that
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TABLE 2 Parameter values for the 2D Lombardy simulations

Parameter Units Feb 27 to Mar.9 Mar 9–22 Mar 22–28 Mar 28 to May 3 May 3–
𝜎 Days 8 8 8 8 8
𝛽e Persons−1·days−1 3.75·10−4 3.11·10−5 2.0625·10−5 1.5·10−5 2.75·10−5

𝛽 i Persons−1·days−1 3.75·10−4 3.11·10−5 2.0625·10−5 1.5·10−5 2.75·10−5

𝜙r Days−1 3/64 3/64 3/64 3/64 3/64
𝜙d Days−1 3/320 3/320 3/320 3/320 3/320
𝜈s km2· Persons−1·days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

𝜈i km2· Persons−1·days−1 2.175·10−2 1. · 10−2 0.45·10−2 0.325·10−2 1.0625·10−2

𝜈r km2· Persons−1·days−1 4.35·10−2 1.98·10−2 0.9·10−2 0.75·10−2 2.175·10−2

Ā Persons 1.0·103 1.0·103 1.0·103 1.0·103 1.0·103

Note: The values change with date as these correspond to various restrictions (or relaxtions) taken by the government during the epidemic.
We note that these parameters are not normalized in space.

FIGURE 14 Deceased individuals for the Lombardy test case. We
show the delay PDE results together with two other non-delay model
formulations, validated against measured data. We see that the
results exhibit similar qualitative behavior, establishing the potential
of the delay PDE model to produce realistic simulation results in time
and space [Colour figure can be viewed at wileyonlinelibrary.com]

we focus here on the deceased compartment, rather than the infectious compartment, due to the differing definitions
“infected” between the two models. We see similar qualitative behavior to the baseline case, with an R2 correlation coef-
ficient between the of 99.8%. Over the first 40 days, the behavior is nearly identical, with the results beginning to differ
somewhat further in time. The agreement with the baseline case, rather than the high-diffusion case from Viguerie et al,8
suggests that the delay model does not interfere with the diffusive behavior generally.

In Figure 15, we observe the evolution of the epidemic in space. Starting from the top-left and moving clockwise, we
show the density of infected individuals on days 1, 5, 10, and 20. What begins as a small cluster of cases in the south of the
region moves northward, into the region's large cities (Milan, Bergamo, and Brescia). While the initially affected regions
improve rapidly, in the large cities, the epidemic continues to grow. This is consistent with the observed data, and with
the simulations using non-delay models shown in Viguerie et al.7

In order to assess the stability bound, we performed a second numerical simulation. We note that, strictly speaking,
as A is nonzero in this case, the assumptions of the stability bound do not strictly hold. However, in other simulations
(not shown), the qualitative behavior of the model with A = 0 was similar to that shown here, and so, we may expect the
bound to hold heuristically. To better observe the stability behavior, we set 𝛽i, 𝛽e = 3.75 · 10−4 from February 27 to March
4, and 𝛽i, 𝛽e = 3.11 · 10−5 for the remainder of the simulation. We then let† 𝜙r = 1∕8, 𝜙d = 1∕80, 𝜎 = 12. Hence,

1∕8 + 1∕80 = .1375 >
𝜋

2 ∗ 12
.

†The remainder of parameter values are the same as in Table 2
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FIGURE 15 Evolution of the epidemic in
Lombardy using the Delay PDE. Clockwise, from
top left: Days 1, 5, 10, and 20. The outbreak
begins with a clusters of cases in the south of the
region, before moving north into the region's
large cities [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 16 Active infections for the Lombardy simulations in
both the stable and unstable regimes. In the stable regime, we see the
expected behavior; infections remain positive and change in
response to pandemic-arresting measures. In the unstable regime,
we instead see spurious nonphysical oscillations between positive
and negative [Colour figure can be viewed at wileyonlinelibrary.com]

In accordance with the theory, we do not expect stability for this case. Indeed, this is what we observe. In Figure 16, we
plot the total number of active infections for the stable (previously discussed) case, as well as the unstable case. While in
the stable case, we observe the expected behavior, in which infections remain positive and grow or decrease in response
to the pandemic-arresting measures in place, we instead observe large oscillations between positive and negative values
for the unstable case. We show this behavior in time and space in Figure 17, where one sees the oscillations concentrated
in the heavily-affected outbreak zones within the region. The frequency of these oscillations appears to be nonuniform,
and dependent on infection concentration. Whether this provides any important information is, unclear, though it is an
interesting observation and perhaps worthy of some investigation.
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FIGURE 17 The simulation of Lombardy in
the unstable regime, clockwise from left: days 20,
40, 60, 80. We see interesting oscillatory behavior
between positive and negative throughout the
region and the primary infectious zones [Colour
figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSIONS

We have presented a new formulation for epidemic models utilizing delay differential equations in both an ODE and PDE
formulation. We have established stability results for the ODE formulation, which were then confirmed with numerical
experiments. For the PDE model, we observed interesting dynamics regarding the relationship between the delay time
and lockdowns, as well as contagion in general. We further showed, with numerical evidence, that the stability bounds
established for the ODE also hold for the PDE and that, in some situations, the ODE may a reasonable surrogate for the
PDE. We then concluded with a simulation on a realistic problem, in which we showed that the delay PDE can reproduce
reality at a reasonable level, by obtaining results similar to non-delay models shown in other work. We also analyzed
the spatiotemporal behavior of the unstable regime, finding it produced large oscillatory behavior between positive and
negative values within the heavily impacted regions.

There are many worthwhile directions for future work on this model and the area generally. One could consider for
example other compartments, as vaccinated, and/or structure the population on different age classes, i.e., young, adult,
and elderly people, or in a fully continuous manner as done in Murray.30,31 While we provided theoretical and numerical
evidence of stability, we also showed for both the PDE and ODE that stability does not necessarily guarantee physical solu-
tion behavior. A stronger result, such as a positivity condition, is needed to provide such a result. Lastly, we have restricted
ourselves to the constant delay case as a first step, but the most general and realistic models of this type should incor-
porate state-dependent delays. Although such models have many theoretical and numerical difficulties, many epidemics
and other related phenomena exhibit this type of behavior.28,30,31,36,37 Using the proposed model to solve inverse problems,
for example, as the forward model in a procedure to identify a state-dependent delay parameter, is also a planned subject
of future work.
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