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Abstract—The crossbar structure of Resistive-switching ran-
dom access memory (RRAM) arrays enabled the In-Memory
Computing circuits paradigm, since they imply the native ac-
celeration of a crucial operations in this scenario, namely the
Matrix-Vector-Multiplication (MVM). However, RRAM arrays
are affected by several issues materializing in conductance varia-
tions that might cause severe performance degradation. A critical
one is related to the drift of the low conductance states appearing
immediately at the end of program and verify algorithms that are
mandatory for an accurate multi-level conductance operation.
In this work, we analyze the benefits of a new programming
algorithm that embodies Set and Reset switching operations
to achieve better conductance control and lower variability.
Data retention analysis performed with different temperatures
for 168 hours evidence its superior performance with respect
to standard programming approach. Finally, we explored the
benefits of using our methodology at a higher abstraction level,
through the simulation of an Artificial Neural Network for image
recognition task (MNIST dataset). The accuracy achieved shows
higher performance stability over temperature and time.

Index Terms—RRAM, Neural Networks, Reliability, Low Con-
ductance states, Drift

I. INTRODUCTION

THE last decade exposed applications such as Machine
Learning (ML) and Artificial Neural Networks (ANN)

to be of paramount importance in many scenarios (i.e., image
recognition, biomedical analysis, data analytic, etc.) [1], [2]. In
state-of-the-art Von Neumann computing architectures, those
tasks are executed by Central Processing Units (CPU) and
Graphics Processing Units (GPU), although it is ultimately
proved that their performance and energy features are threat-
ened by the constant data shuttling between the information
processing and memory units. A revolution in computing
architecture then materialized in the In-Memory Computing
(IMC) concept, that has risen as one of the most promising
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candidates for next-generation computing thanks to its high
offered throughput, low energy and good scaling [3], [4]. The
technology enabler for IMC architectures has been identified
in high density crossbar arrays based on non-volatile memory
devices (see Fig.1a), among which stands out the resistive-
switching non-volatile memory (RRAM) [5]–[7]. Crosspoint
arrays of RRAM elements are in fact able to achieve mas-
sive parallelism in performing Matrix-Vector-Multiplication
(MVM) through the application of the Ohm’s and Kirchoff’s
physical laws in the analog domain [8]–[11].

However, despite the evident attractive properties, these
devices have physical limitations that can have a tremendous
impact on the performance of many ML and ANN tasks.
Among them, the limited tunability of the conductance levels
in the RRAM devices is one of the most tedious issues
exposed in the accelerators based on this technology. Studies
in literature evidenced that the sources are to be found in
the Device-to-Device (D2D) and the Cycle-to-cycle (C2C)
variations [12], the Random Telegraph Noise (RTN) [13]–
[15], and the conductance drift [16]–[18], which impair the
Multi-Level Conductance (MLC) capability of the RRAM
technology.

An approach to overcome those limitations, relies on the
application of program/verify techniques to accurately set the
RRAM in a desired conductance state [19], although the
stochastic nature of the technology questions their effective-
ness. This calls for algorithms optimization at many levels
[20]. Our approach proposed in [18], addressed both the
short and the long-time scale drift of the low conductance
states by exercising either a ”refresh”-like technique or a
combined Set (the operation to bring the cells to a high
conductive state)/Reset (the operation to bring the cells to a
low conductive state). The latter approach yielded to signifi-
cant improvements in the distribution variability control while
countering the drift.

In this work, we start from the preliminary analysis per-
formed in [18] and extend the discussion towards the as-
sessment of the benefits in using ”drift-safe” programming
algorithms at application level. In an attempt to better under-
stand the reliability of the proposed algorithm with respect to
temperature, we tracked the behavior of the low conductance
states drift during a 168 hours retention experiment performed
at different temperatures up to 125 ◦C. Finally, we project
the results of the electrical characterization performed on 4
kbits RRAM arrays in the context of ANN. We will study the
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Fig. 1. (a) Representations of the crossbar structure (b) Schematic of a
1T1R RRAM device integrated in the 4 kbits array used in this work. (c)
I-V characteristics of a 1T1R RRAM device measured for increasing VG

proving MLC capability.

drift-induced recognition accuracy degradation proving that
our MLC algorithm provides superior results in countering
the phenomenon.

II. RRAM DEVICE AND ARRAY CHARACTERISTICS

The RRAM devices considered in this work are based
on the 1T1R structure depicted in Fig.1b, consisting of a
TiN/Ti/HfO2/TiN stack. The memristive element is formed
by a 150 nm TiN top and bottom electrodes deposited by
magnetron sputtering, a 7 nm Ti layer (under the TiN top
electrode), and an 8 nm HfO2 switching layer grown by
atomic layer deposition (ALD) [21]. Every RRAM cell is
selected by a n-channel MOS, manufactured in 0.25 µm
CMOS technology from IHP Microelectronics. Fig.1c shows
the current-voltage (I-V) characteristics of an RRAM device
in the array for increasing compliance current (IC), suggesting
a controllable multi-level conductance operation by tuning IC
via gate voltage VG. The devices are arranged in a 4 kbits
crossbar array featuring 64 wordlines and 64 bitlines. All the
experiments were performed on quad flat packaged (QFP)
devices.

All the RRAM devices in the array are prepared for
conductance switching through a Forming operation with
the Incremental Step Pulse program and Verify Algorithm
(ISPVA) [19]. The gate voltage VG is set to 1.4 V and the
top electrode voltage VTE is gradually increased from 2 V
to 5 V in steps of 10 mV. The target conductance for the
operation has been chosen as 200 µS to avoid excessive stress
on the RRAM cells. After the Forming, we performed a Reset
operation to bring all the cells to the lowest conductance state,
namely L0 at 25 µS. The Reset use the ISPVA in which the

Fig. 2. Depiction of the ISPVA and IGVVA algorithms applied for Forming,
Set and Reset operations used in this work [18].

Fig. 3. Evidence of the conductance distributions drift in RRAM arrays. The
AS to EA time delay is in the range of ten minutes [18].

bottom electrode voltage VBE is swept from 0.5 V to 2 V
with 100 mV steps. The VG is set to 2.7 V to ensure a high
IC required to disrupt the conductive filament in the RRAM
cell.

III. EXPOSING THE LOW CONDUCTANCE STATES DRIFT

A. Set-based MLC operation

The standard approach used so far to achieve accurate MLC
programming of the 4 kbits RRAM array was through a
controlled Set operation. The Incremental Gate Voltage and
Verify Algorithm (IGVVA) proven superior capabilities in
conductance distribution placement [20]. In this work, the gate
voltage is gradually incremented from 0.5 V to 1.7 V with 10
mV steps, featuring 1 µs pulse duration. Both the rise and the
fall time of the pulses are set to 100 ns. The VTE is chosen to
be 1.2 V, granting reliable Set operation. With such approach,
we obtained eight linearly spaced conductance levels (L1-L8)
between 50 µS and 225 µS. The IGVVA characteristics are
depicted in Fig.2 along with the ISPVA counterpart used for
Forming and Reset operations.

Fig.3 shows that aside from the L0 distribution there is a
significant drift of the L1-L4 distributions occurring in the time
elapsed between the After Switching (AS) point and the End
Algorithm (EA) point. We defined the former time as the time
in which the target conductance is reached by the IGVVA and
the latter one as the moment where the algorithm ends for all
the cells programmed in the array (i.e., the last readout of the
cells). By considering a population under test of 1024 RRAM
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Fig. 4. (a) G-V characteristics measured during the ISPVA Reset. (b) G-V
characteristics measured during the IGVVA Reset [18].

cells for each distribution, we experience an AS to EA delay
time of about ten minutes. Interestingly, we observe that the
L1-L4 conductance levels are the most affected by the drift,
exhibiting a large fraction of the cells (≥ 50% in some cases)
with their conductance falling well below their desired target
Gtrg.

B. MLC with Mixed algorithm: a ”drift-safer” approach

In our previous work [18], we explored different solutions
to cope with the drift issue of the L1-L4 distributions. The first
attempt conceived the application of a Refresh-like technique
[22]: a selective re-application of the IGVVA algorithm was
performed on the cells that show a conductance value falling
below their Gtrg . However, such approach turned out to
be poorly effective since after the second IGVVA round
all the EA distributions returned almost to their preliminary
status. The second attempt explored an alternative algorithm
to achieve L1-L4 distributions. Instead of starting from L0
distribution and apply an IGVVA in Set to reach them, we start
from the L7 distribution and reach L1-L4 through a controlled
Reset operation. We named this approach as Mixed algorithm
since it embodies two different switching operations of the
RRAM cells in the array. In Fig.4, we compared the switching
dynamics from L7 to L1-L4 distributions obtained with an
ISPVA Reset approach with respect to that achieved with an
IGVVA Reset. The latter shows a smoother trend in reaching
the desired Gtrg. This justifies the choice of the IGVVA Reset
approach in the Mixed algorithm. To avoid the over-stress of
the device, we performed experiments with a VBE set to 1.2
V and sweeping VG from 1.5 V to 2.9 V in steps of 10 mV.
An argument could arise in the choice of the IGVVA as Reset
mechanism, since it would lead to improper results ascribed
to the fact that after the operation the transistor might go in
triode region since the current becomes very low, potentially
damaging the RRAM cell. With our RRAM devices this is
unlikely to happen because the VG = 1.5 V lower bound is
high enough. We also explored the possibility of addressing the
minor drift in L5 and L6 conductance levels (see Fig.3) with
the Mixed method. Unfortunately, the results have discouraged
this approach since a higher variability compared with the
standard Set method is experienced, as shown in Fig.5.

Fig. 5. L5-L6 distributions comparison when either Set MLC or Mixed
algorithm is used. Results evidence that for higher conductance levels the
latter method leads to higher σG.

Fig. 6. (a) Drift measured after EA and at the end of a 168 hours
room temperature experiment for L1-L4 distributions obtained through Mixed
algorithm and L5-L8 with Set MLC. (b) Same measurement but with L1-L8
obtained all with Set MLC [18].

C. Preliminary characterization of drift in RRAM arrays

To understand whether the Mixed MLC algorithm for L1-L4
can be beneficial also for long term reliability, we performed
a room temperature data retention test where we progressively
monitored the conductance distributions of the RRAM arrays
in a 168 hours test. The readout times have been fixed to 1,
2, 5, 9, 24, 48, 72, 96 and 168 hours after EA. We added
the L5-L8 distributions to the study reminding that those are
obtained with the standard Set methodology. Fig.6a shows that
at the end of the data retention period the L1-L4 distributions
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Fig. 7. (a) Evolution of the L3 level distribution (error bars indicate the standard deviation σG) obtained with Set MLC during room temperature experiment
in the first 24h. (b) Same measurement but with L3 obtained with the Mixed algorithm.

Fig. 8. Evolution of the G50 parameter of L1-L4 distributions for both MLC approaches. From the left to the right, we can appreciate the behavior of
the distribution at 25◦C, 55◦C and 85◦C. The Mixed approach shows enhanced stability compared to the standard Set MLC, both in terms of time and
temperature.

Fig. 9. Evolution of the σG parameter of L1-L4 distributions for both MLC approaches. With ”trend”, we indicate the mean value of the σG. From the left
to the right, we can appreciate their behavior at 25◦C, 55◦C and 85◦C. The Mixed approach show lower variations compare to the Set method, in both Time
and Temperature.

obtained with the Mixed algorithm interestingly drifts towards
G > Gtrg whereas the L5-L8 distributions obtained with
standard Set drift in the opposite direction (i.e., G < Gtrg). On
the other hand, Fig.6b shows that if L1-L8 are homogeneously
achieved through Set MLC we have always a drift in the
direction of a G < Gtrg. A deeper investigation for the L1-
L4 conductance levels has been performed by analyzing the
evolution of the distributions during the readout times. As
demonstrated in [18], the largest drift is experienced within 1
hour after EA and then progresses for the consecutive readout

times. The largest drift usually occurs between AS and EA
points for both MLC methods, although the Mixed algorithm
lies shows a slight advantage in this. Further, the Mixed
methods shows a reduced progression of the drift over 168
hours, as shown in [18].

IV. TIME AND TEMPERATURE EVOLUTION OF DRIFT

As we can see in Fig.3, the largest drift usually occurs
between AS and EA points. This ”fast” phenomenon proves to
be critical than the drift observed over the short or long term,
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Fig. 10. Evolution of the G50 (left) and σG (right) parameters of L1-L4 distributions for both MLC approaches at 125◦C. Although the G50 behaves in a
manner consistent with what is observed in lower temperatures and there is a clear more stable behavior shown by the Mixed method, it is not immediate to
observe the same evolution for σG.

Fig. 11. Readout of the L1 (left) and L4 (right) conductance distribution obtained with both approaches during temperature experiment at 125◦C.

and we currently have no way to mitigate it. In Fig.7 we can
see how both methods experience the greatest drift between
AS and EA, showing σG values from 1 µS to 5 µS while
for the following hours it gradually increments. We can also
notice that, for the Mixed method, the maximum increment
of σG is more stable in time. Although our goal is not the
characterization of the drift in such a short time scale, this
observation led us to consider in the following studies the
trend of the low conductance state distributions at the EA
time, 24 hours and at the end of the 168 hours experiment.
This will reflect the behavior of the phenomenon immediately
after After Switching (End Algorithm point), in the short term
(from 1 to 24 hours), and in the long term by assessing the
retention capabilities (up to 168h).

In [18], we explored the evolution of the median conduc-
tance G50 and of the σG for L1-L4 levels only at room
temperature (25◦C). In both methods, the G50 stayed almost
constant throughout the entire experiment, evidencing that the
drift for L1-L4 is not a rigid shift, but rather a departure of
some tail cells in the distribution. A different result stood out
from the σG analysis. In general, the distributions obtained
with Mixed algorithm featured a lower σG with respect to
those of the Set MLC, exposing a maximum variability of
11.2 µS with respect to the 19.8 µS of the latter approach.

Encouraged by that, we deepened the study of both al-
gorithms at different temperatures, namely 55◦C, 85◦C, and
125◦C. Figs.8 and 9 show the G50 and σG parameters of L1-
L4 distributions for both methods at different temperatures. We
can easily see how the trend over time of these parameters
reflects what we already experienced at room temperature.
As we can see, although the σG values of the two different
methods tend to have the same trend as the temperature
increases, at 85◦C they remain very distinct from each other.
In addition, it can be noted that as the temperature increases,
the behavior of the G50 remains almost stable for the Mixed
method, while it continues to worsen for the Set MLC method.
This is due to a better control of the Gtrg distribution. This
behavior can also be found for measurements at 125◦C. Fig.10
shows that G50 remains almost stable for the Mixed method
while, for the Set MLC method, we experienced decay of its
value up to two conductance levels below the target one. As
for the σG, the same distinction found in previous experiments
is no longer observable between the two different methods. We
also investigated the evolution of the distribution at 125◦C at
each time check to understand this peculiar behavior. It was
possible to observe how the two proposed methods behave
radically different due to their programming history. Both
programming methods show a tendency to return to the last
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state they were before their programming. The Fig.11 include
the two extreme cases, L1 and L4, for both methods. It is
easy to notice how the distributions obtained through Set MLC
tend to return to the L0 level (25 µS), that is the state obtained
with a Reset procedure before reprogramming the cells to their
targets with this method. Conversely, the distributions obtained
with the Mixed approach tend to return to the L7 level (200
µS), although it remains the one with more stable G50 value,
lower σG, and a more accurate distribution. In the worst case
(L1 for the Mixed method and L4 for the Set), the evolution
show a similar behavior in terms of σG, but with a value of
G50 that continues to be favorable for the Mixed method (see
Fig.10). Although the trend of the G50 remains favorable for
our approach at any temperature, the gradual approach of the
σG of the two methods can cast doubts on the validity of
our solution when the application environment exceed 85◦C.
To confirm that the Mixed approach is still well suitable in
a relevant scenario, we decided to validate it in a practical
simulation environment.

V. ASSESSING THE IMPACT OF DRIFT REDUCTION ON
NEURAL NETWORK PERFORMANCE

To better understand the implications of the conductance
drift caused by the time relaxation and by the temperature,
we simulated an implementation of an ANN. The ANN in
our case study is a two layer fully connected neural network
(FC-NN) trained to classify images of handwritten digits from
the MNIST dataset [23]. Each image of the dataset is reduced
in both color-depth and size, resulting in a black and white,
14×14 pixels image. The neural network has 196 neurons in
the input layer, 20 neurons in the hidden layer, and 10 neurons
in the output layer, each representing a digit between 0 and 9.
The total number of synaptic weights is 3943, and a schematic
representation is depicted in Fig.12a. Each synaptic weight can
be mapped as a conductance value into a 1T1R RRAM device.

Unfortunately, RRAM device can only be programmed
with a small number of discrete positive conductance values,
while the synaptic weights in the traditional neural networks
typically require both positive and negative values, and a
numerical precision in the order of 32 or even 64 bits. The
first limitation can be overcome first by splitting each weight
W into two separate positive values, such as G+ and G−,
and then by mapping the two values into two separate RRAM
cells. Finally, by subtracting the current of the two devices in
the analog domain we obtain the desired value W = G+−G−,
as shown in Fig.12b.

To reduce the numerical precision of the synaptic weights
without drastically decreasing the network ability to classify
input images, a quantization algorithm must be applied. After
training the network with full floating-point precision, we
implemented the iterative training algorithm of Incremental
Network Quantization [24], that allowed us to optimize the
neural network to operate with a reduced number of discrete
levels. The objective of the experiment was to study the
reliability of the newly proposed Mixed algorithm, and how
the increased retention performs in real applications compared
to the traditional Set MLC algorithm, therefore we simulated a

Fig. 12. (a) A 2-layer fully connected NN for recognition of MNIST
characters. (b) Differential configuration of 1T1R RRAM cells for synaptic
weights implementation.

Fig. 13. Evolution of the ANN Accuracy for Set (above) and Mixed (below)
MLC algorithms at 25◦C, 55◦C, 85◦C and 125◦C.

neural network employing only the lowest four programmable
LRS levels (i.e., L1-L4) and the L0 level. By using the
differential approach described earlier, a total of 9 discrete
conductance levels can be obtained, from -100 µS to +100 µS.
We simulated the inference operation by randomly selecting
conductance values from the distributions obtained by the
characterizations performed at different temperatures.

Fig.13 shows the results of the inference accuracy aver-
aged over 100 simulations, demonstrating that the network
implemented with the Mixed algorithm the accuracy it’s not
significantly impacted by time and is more robust against
temperature-induced drift than the network implemented with
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the traditional Set MLC algorithm.

VI. CONCLUSIONS

In this work, we performed a in-depth study of Mixed
programming algorithm to reduce the drift affecting the low
conductance states in MLC RRAM devices. We have per-
formed a thorough temperature characterization from 25◦C to
125◦C, for the duration of 168 hours. During all experiments,
the proposed method allowed the achievement of a better
variability and reliability control, opening the road for a more
stable and accurate MLC operation. This new concept has been
experimentally validated in 4 kbits RRAM arrays manufac-
tured in IHP 0.25µm technology and compared against state-
of-the-art Set MLC. Finally, we validated our approach using
the experimental distributions to map the weight of a Neural
Network for image recognition allowing us to achieve almost
40% higher accuracy compared to the standard programming
methods.
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