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Abstract. - In this paper we provide a new analysis of the system of partial differential equations
describing the radial and vertical equilibria of the plasma in accretion disks. In particular, we show
that the partial differential system can be separated once a definite. oscillatory (or hyperbolic)
form for the radial dependence of the relevant physical quantities is assumed. The system is thus
reduced to an ordinary differential system in the vertical dimensionless coordinate. The resulting
equations can be integrated analytically in the limit of small magnetic pressure. We complete our
analysis with a direct numerical integration of the more general case. The main result is that a
ring-like density profile (i.e., radial oscillations in the mass density) can appear even in the limit
of small magnetic pressure.

Introduction. – The morphology of an accretion disk
around an astrophysical compact object represents one of
the most important open questions of stellar physics [1]. In
fact, while in absence of a significant magnetic field of the
central object the disk configuration is properly described
by the fluid dynamics approach, the situation becomes
puzzling when we deal with a strongly magnetized source,
namely a pulsar, accreting from a less dense companion.
As recently shown by B. Coppi, see [2]- [5], the plasma
nature of the disk implies a significant coupling between
the vertical and the radial equilibrium, as a consequence
of the relevant Lorentz force acting inside the structure.
The existence of such a coupling suggests a deep modi-
fication of the original point of view at the base of our
understanding of the stellar accretion phenomenon; for a
sample of the basic literature in the field, see [6]- [9]. In
fact, the standard approach to the description of a thin
disk relies on the idea that the vertical equilibrium can
be averaged out when the viscoresistive MHD is applied
to the plasma. Such a model seems to satisfactorily re-
produce the coarse-grain phenomenology, but at the price
of introdocing an anomalous resistivity of the disk plasma
(unjustified by direct estimations), see Ref. [10, 11].
The analyses in Refs. [2, 3] demostrate that the details

of the disk equilibria are relevant in establishing an os-
cillatory local structure inside the disk. In particular, in
Ref. [3] it is shown that, for a disk having a sufficiently
strong magnetic pressure, (i. e. a small enough ratio of
the thermostatic pressure to the magnetic one), the mass
density perturbations, due to the internal currents, are
able to induce a ring-like profile. This ideal MHD result
constitutes an opposite point of view with respect to the
idea of a diffusive magnetic field within the disk, as dis-
cussed in Ref. [1]. The striking interest in the details of
the local disk morphology consists in the possibilty that
jets of matter and radiation are emitted by virtue of the
strong magnetic field and the axial symmetry, see for in-
stance Ref. [12].

Here, we provide a novel analysis of the fundamental
partial differential system derived in Refs. [2,3] for the ra-
dial and vertical equilibria in the disk plasma. Our study
is based on a separable solution, able to reduce the coupled
partial differential scheme to a simple ordinary differential
system in the vertical dimensionless coordinate. The sep-
aration is realized by a suitable trigonometric expression
for the radial dependence; the remaining unknowns are
four functions, associated to the vertical dependence of
the magnetic flux function, the mass density corrections
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and eventually to functions related to the different behav-
ior of the thermostatic pressure term.
Indeed it is just the presence of two different radial behav-
iors of the pressure, the main new feature of the present
analysis. We see that the mass density perturbations in-
duced in the plasma are relevant even when the ratio of
the thermostatic to the magnetic pressure is high (differ-
ently from the analyis in [2]. This correction to the mass
distribution has an oscillating character, so that we see
the formation of the ring-like profile even in the parame-
ter region where the relevance of the magnetic field is not
crucial on the background level. This result suggests that
the presence of rings in the disk structure morphology is
a very general feature of the accretion disk structure for
magnetized stars.

The ordinary differential system we derive is analyti-
cally integrated for small values of the ratio of the mag-
netic pressure over the thermostatic one; the solution that
is obtained is a good tool to fix the boundary conditions of
the numerical analysis for the general case. In fact, the an-
alytic solution remains valid for general values of the free
parameters, as far as we restrict ourselves sufficiently close
to the equatorial plane, where the boundary conditions for
the numerical analysis can be given. The main implication
of this link between the analytical and numerical analyses
is that we get a direct relation between the ratio of the
magnetic to thermostatic pressure to the one between the
perturbation wavenumber and the fundamental wavenum-
ber of the plasma structure. Then our solution cannot ex-
plore the very extreme value of the parameters, where the
magnetic pressure completely dominates the equilibrium
configuration. The paper is organized as follows. In Sec.
I, we describe the basic features of the disk. In Sec. II, we
write the equations governing the radial and vertical equi-
librium of the disk. In Sec. III we reduce the fundamental
partial differential system to a system of ordinary differ-
ential equations, and we solve it analytically in the limit
of small magnetic pressure, discussing the appearance of
an oscillatory structure. In Sec. IV we show the results of
the numerical integration, and finally in Sec. V we draw
our conclusions.

Basic Features of the Disk. – The magnetic field,
characterizing the central object, takes the form

~B = −1

r
∂zψ~er +

I

r
~eφ +

1

r
∂rψ~ez , (1)

with ψ = ψ(r , z2) and I = I(ψ , z).
The matter flux associated with the disk morphology is:

ǫ~v = −1

r
∂zΘ~er + ǫω(r , z2)r~eφ +

1

r
∂rΘ~ez , (2)

where ǫ denotes the matter density and Θ(r , z) is an odd
function of z, to deal with a non zero accretion rate, i.e.

Ṁd = −2πr

∫ z0

−z0

ǫvrdz = 4πΘ(r , z0) ≡ 2πI > 0 , (3)

z0(r) ≪ r being the half-width of the thin disk.
The similarity of the magnetic field and matter flux

structure, is due to their common divergenceless nature.
Since in the present analysis we are concentrating our at-
tention on the formation of the ring profile within the disk,
in what follows, we neglect the presence of the functions
I and Θ, which are relevant for the characterization of
the azimuthal equilibrium. In fact, as discussed in [2, 3],
the origin of the oscillatory structure comes out by the
coupling of the vertical and the radial equilibria, when
the internal currents rising in the plasma are taken into
account.

We now develop a local model of the equilibrium, as
settled down around a radius value r = r0, in order to in-
vestigate analytically the effects induced on the disk pro-
file by the electromagnetic reaction of the plasma. To this
end we split the energy density and the pressure contri-
butions as ǫ = ǭ(r0, z

2) + ǫ̂ and p = p̄(r0, z
2) + p̂, respec-

tively. The same way, we express the magnetic surface
function in the form ψ = ψ0(r0) +ψ1(r0 , r− r0 , z

2), with
ψ1 ≪ ψ0. The quantities ǫ̂, p̂ and ψ1 describe the change
of the fundamental plasma functions due to the currents
that emerge within the disk embedded into the external
magnetic field of the central object. In general these cor-
rections are small in amplitude but with a very short scale
of variation. Thus, we are led to address the ”drift order-
ing” for the behavior of the gradient amplitude, i.e. the
first order gradients of the perturbations are of zero-order,
while the second order ones dominate.

As ensured by the corotation theorem [13], the angular
frequency of the disk rotation has to be expressed via the
magnetic flux function as ω(ψ). As a consequence, in the
present splitted scheme, we can take the decomposition
ω = ωK + ω′

0
ψ1, where ωK is the Keplerian term and

ω′

0 ≡ dω0dψ0 = const. This form for ω holds locally, as
far as (r−r0) remains a sufficiently small quantity, so that
the dominant deviation from the Keplerian contribution is
due to ψ1.

Accordingly to the drift ordering, the profile of the
toroidal currents rising in the disk, takes the expression
Jφ ≃ −(c/4πr0)×

(

∂2rψ1 + ∂2zψ1

)

.

Vertical and Radial Equilibrium. – We now fix
the equations governing the vertical and the radial equilib-
rium of the disk, by separating the basic fluid component
from the presence of the electromagnetic reaction. Such
a splitting of the MHD equations for the vertical force
balance gives

D(z2) ≡ ǭ

ǫ0(r0)
= e

−
z
2

H2
0 , H2

0
≡ 4KBT̄

miω2

K

, (4)

∂z p̂+ ω2

Kzǫ̂−
1

4πr2
0

(

∂2zψ1 + ∂2rψ1

)

∂zψ1 = 0 , (5)

where ǫ0(r0) ≡ ǫ(r0, 0) and mi is the ion mass. The be-
havior of the function D(z2) accounts for the pure ther-
mostatic equilibrium holding in the disk when the vertical
gravity (i. e. the Keplerian rotation) is large enough to
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provide a confined thin configuration, while the tempera-
ture T admits the representation

2KBT ≡ mi

p

ǫ
= mi

p̄+ p̂

ǭ + ǫ̂
≡ 2KB(T̄ + T̂ ) . (6)

The radial equations underlying the equilibrium of the ro-
tating layers of the disk, can be decomposed into the dom-
inant character of the Keplerian angular velocity plus an
equation describing the behavior of the deviation δω:

2ωKr0(ǭ + ǫ̂)ω′

0
ψ1 +

1

4πr2
0

(

∂2zψ1 + ∂2rψ1

)

∂rψ1 =

= ∂r

[

p̂+
1

8πr2
0

(∂rψ1)
2

]

+
1

4πr2
0

∂rψ1∂
2

zψ1. (7)

We neglected, in the radial and vertical equilibria, the
presence of the poloidal current associated with the az-
imuthal component of the magnetic field.

We define the dimensionless functions Y , D̂ and P̂ , in
place of ψ1, ǫ̂ and p̂, i. e.

Y ≡ k0ψ1

∂r0ψ0

, D̂ ≡ βǫ̂

ǫ0
, P̂ ≡ β

p̂

p0
, (8)

where p0 ≡ 2KBT̂ ǫ0/mi and β ≡ 8πp0/B
2
0z = 1/(3ǫ2z) ≡

k2
0
H2

0
/3. We introduced the fundamental wavenumber k0

of the radial equilibrium, defined as k0 ≡ 3ω2

K/v
2

A, with
v2A ≡ 4πǫ0/B

2

z0, recalling that Bz0 = ∂r0ψ0/r0. It is then
natural to deal with the dimensionless radial variable x ≡
k0(r− r0), while assuming that the fundamental length in
the vertical direction is ∆ ≡ √

ǫzH0, leading to introduce
u ≡ z/∆.1

By this definitions, the vertical and radial equilibrium
equations can be restated respectively as

∂u2 P̂ + ǫzD̂ + 2
(

∂2x2Y + ǫz∂
2

u2Y
)

∂u2Y = 0 , (9)

(

D +
1

β
D̂

)

Y + ∂2x2Y + ǫz∂
2

u2Y +
1

2
∂xP̂ +

+
(

∂2x2Y + ǫz∂
2

u2Y
)

∂xY = 0 . (10)

Once D and D̂ are assigned, the equations above provide
a coupled system for P̂ and Y , allowing to fix the disk
configuration due to the toroidal currents.

Reduction of the Fundamental System. – The
analysis of the partial differential system derived above has
been performed in Ref. [2] in the limit of small values of ǫz
and an approximated solution was found as an expansion
in such a parameter. Instead in Ref. [3], the study has
been extended to the case ǫz > 1, by requiring that the
function Y satisfied the basic eigenstate equation

∂2x2Y + ǫz∂
2

u2Y = −DY . (11)

Here we show that the two partial differential equations (9)
and (10) can be treated separating the radial and vertical
dependence, thus reducing them to an ordinary differential

system. In fact, we easily get such a reduction by the
following positions

Y = F (u2) sin(αx) (12)

P̂ = L(u2) cos(αx) +M(u2) sin2(αx) (13)

D̂ = d(u2) cos(αx) . (14)

and by imposing the vanishing of the coefficients of each
type of trigonometrical terms. A simple calculation shows
that the vertical equilibrium (9) yields the two equations

dL

du2
+ ǫzd = 0 (15)

dM

du2
+ 2

(

−α2F + ǫz
d2F

du2

)

dF

du2
= 0 , (16)

while the radial equation (10) gives

D(u2)F − α2F + ǫz
d2F

du2
− α

2
L = 0 (17)

1

β
dF + αM + αF

(

−α2F + ǫz
d2F

du2

)

= 0 , (18)

These two pairs of equations form an ordinary differen-
tial system in the variable u of four coupled second order
equation in the four unknowns F (u2), L(u2), M(u2) and
d(u2) respectively. The quantities ǫz and α (we recall that
β = 1/3ǫ2z) play the role of free parameters of the problem.
In particular ǫz measures the relevance of the electromag-
netic interaction in the establishment of the equilibrium
configuration of the disk plasma. The greater ǫz is, the
stronger the internal currents deform the background dis-
tribution of matter and magnetic field. The parameter
α fixes the amplitude of the radial wavenumber (with re-
spect to the fundamental one k0) associated to the pertur-
bations. The greater is α, the smaller is the wavelenght of
the radial plasma structures. The same way, also ǫz can
be regarded as the parameter which gives the scale of the
vertcal confinament, according to the relation, introduced
above, ∆ =

√
ǫzH0. Such a relation, together with the def-

inition ∆ =
√

H0/k0, allows to express the function D(u2)
from D(z2) introduced in (4) as D(u2) = exp{−ǫzu2}.

Analytical Solution for Small ǫz Values. Let us study
the system of configuration equations in the limit of small
values of the parameter ǫz, when we can use the expansion
D(u2) = 1 − ǫzu

2. In this way, we are led to search a
solution to the four equations above, in the form

F = A exp
(

−u2

2

)

; L = lF ; (19)

d = kF ; M = C(u2)F 2 . (20)

In other words we assume that the function Y is confined
around the equatorial plane and that the other functions
can be expressed through F (u2), in agreement to the struc-
ture of the four equations. Substituting expressions (19)
into the equations (17), we get the algebraic relations

α = 1

2

√

3(1− ǫz); l =
2

3
α; (21)

k = α
3ǫz

; C(u2) = α2 − ǫzu
2 . (22)
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Thus, for small values of ǫz, we are able to provide an an-
alytic solution describing the detailed features of the disk
plasma. We see that the wavenumber of the perturbations
is not very different, in this limit, from k0, while the func-
tion d is much greater than F and, as we shall see below,
this is an important peculiar feature of this solution.

We also remark that, since this solution relies on the
expansion e−ǫzu

2 ≃ 1 − ǫzu
2, its range of validity is ac-

tually broader than the ǫz ≪ 1 region. In particular, the
solution is still valid for ǫz ∼ 1, provided that u≪ 1/

√
ǫz

(i.e., provided that we are close enough to the equatorial
plane). The solution can also be continued in the ǫz > 1
region by noting that in this case, according to Eq. (21)
above, α would be purely immaginary, and the trigono-
metric functions would become hyperbolic functions. We
are then led to search a solution in the form:

Y ′ = F ′(u2) sinh(α′x) (23)

P̂ ′ = L′(u2) cosh(α′x) +M ′(u2) sinh2(α′x) (24)

D̂′ = d′(u2) cosh(α′x) , (25)

where, as before:

F ′ = A′ exp
(

−u2

2

)

; L′ = l′F ; (26)

d′ = k′F ; M ′ = C′(u2)F ′2 . (27)

Repeating the above procedure we find:

α′ = 1

2

√

3(ǫz − 1) ; l′ =
2

3
α′ ; (28)

k′ = α′

3ǫz
; C′(u2) = −α′2 − ǫzu

2 . (29)

The Oscillatory Structure. Once the form of the solu-
tion has been fixed, we can analyze the physical implica-
tions for the disk structure. In particular, it is immediate
to recognize that for ǫz < 1 the mass density distribution
acquires the behavior

ǫ

ǫ0
= D(u2) +

1

β
D̂(u2) =

= 1− ǫzu
2 +A(αǫz)e

−
u
2

2 cos(αx) ≥ 0 . (30)

We see that the perturbations to the mass density profile
is an odd function of x and has an oscillating radial de-
pendence. On the contrary, it is clear that the oscillating
behaviour is not present in the ǫz > 1 regime, since in
that case the density and pressure are expressed in terms
of hyperbolic functions. We will then concentrate in the
following in the analysis of the ǫz < 1 case.
Since ǫzu

2 is much smaller than unity, it is easy to realize
that the positive character of the mass density is ensured
by the request A < 1/(αǫz). The total pressure term in
the disk plasma is given by

p

p0
= e−ǫzu

2

+ 3ǫ2zA

[

2

3
α cos(αx)+

A
(

α2 − ǫzu
2
)

e−
u
2

2 sin2(αx)

]

e−
u
2

2 . (31)

and the perturbation is an even function of x. The term
in squared brackets can provide a negative contribution
to the total pressure, but, in the limit of small enough
ǫz ≪ 1, its weight is limited by the coefficient ǫ2z and the
expression above, for values of u in the range of some units
over the equatorial plane, rewrites as

p

p0
≃ 1 + 3ǫ2zA

[

1√
3
cos(αx) +

3

2
Ae−

u
2

2 sin2(αx)

]

e−
u
2

2

(32)
and the total plasma pressure is clearly positive when
A < 1/(αǫ2z). It can be seen that, since ǫz < 1, this is
always ensured once the condition for the positiveness of
the density (A < 1/(αǫz) ) is fulfilled. However, in the
general case, the positive character of p/p0 in the point
αx = π, requires that 2αǫ2zA exp[(ǫz − 1/2)u2] ≪ 1, that
constrains the possible values of A, with implications on
the morphology of the ring profile.

However, the very important feature we get, is that,
differently from the analysis in Refs. [2, 3], here the mass
density can have nodes even for small values of ǫz, i. e. for
high β values of the plasma (see Fig. 1). This behavior
is a consequence of dealing with a solution in which the
quantity ǫ̂ is of order ǫz, instead of order ǫ2z like in [2, 3].
We show the radial density and pressure profiles in Figs.
1 and 2, for different values of the vertical coordinate u,
and for values of the parameters A = 100 and ǫz = 10−2

[the value of α is fixed by the relation (21)]. It is clearly
seen that there are “empty” regions, i.e. regions where
ǫ/ǫ0 ≪ 1, indicating the presence of a ring-like structure
of the disk. This a general feature of the mass distribution
described by Eq. (30) when Aαǫz ≃ 1. The relevance
of this result relies on the existence of a local ring profile
in the disk plasma even if the magnetic pressure does not
dominate the termostatic one. As a consequence, we can
infer that the oscillatory structure of the disk is expect-
edly a very diffuse phenomenon in accreting astrophysical
sources.

Comparison with previous works
In this section we compare our results with those ob-

tained in previous works, mainly focusing on Ref. [3]. The
main assumption underlying the analysis presented in Ref.
[3] is that Y satisfies the eigenvalue equation (11). In
our analysis, this equation is not satisfied given the po-
sitions that we have made concerning the form the func-
tions Y and P̂ [see Eq. (12) above]. In fact, substituting
Y = F (u2) sin (αx) in the above eigenvalue equation, we
get:

ǫz
d2F

du2
− α2F + D̄F = 0. (33)

On the other hand, we have that instead, in our analysis,
the corresponding equation satisfied by F is Eq. (17),
namely:

ǫz
d2F

du2
− α2F + D̄F − α

2
L = 0. (34)

We recall that the function L(u2) appearing in the addi-
tional term is related to the cosine part of the pressure. It
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0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

x

Ε

Ε0

A = 100, Εz = 0.01

Figure 1: Top: Radial density profile of the disk for u = 0.5, 1, 2
(black [solid], red [dashed] and blue [dotted] curves, respec-
tively). Bottom: Normalized mass density as a function of the
dimensionless radial and vertical coordinates x and u. In both
panels, A = 100 and ǫz = 0.01.

it is thus clear that, if L(u2) 6= 0, the two approaches will
bear different results. So the basic difference between the
two analyses can be traced back to the presence, in the
pressure function, of a term proportional to cos (αx).

Numerical Analysis. – In the region of the param-
eters where ǫz is not much smaller than unity, the system
(15)-(17) has to be integrated numerically. To this pur-
pose, we change the vertical variable to ξ = u2/2. Observ-

ing that d2F
du2 = 2ξ d2F

dξ2
+ dF

dξ
we rewrite the configuration

system in the form:

dL

dξ
+ 2ǫzd = 0 (35)

dM

dξ
+ 2

[

−α2F + ǫz

(

2ξ
d2F

dξ2
+
dF

dξ

)]

dF

dξ
= 0 . (36)

e−2ǫzξF − α2F + ǫz

(

2ξ
d2F

dξ2
+
dF

dξ

)

− α

2
L = 0 (37)

3ǫ2zdF + αM + αF

[

−α2F + ǫz

(

2ξ
d2F

dξ2
+
dF

dξ

)]

= 0 . (38)

This system of four ordinary differential equations in the
four unknown functions F (ξ), L(ξ), M(ξ) and d(ξ) can be
integrated numerically by fairly standard methods. How-
ever, in order to perform the numerical integration, initial
conditions should be given. These can be found by noting

0 2 4 6 8 10 12 14
0

1

2

3

4

x

p
p0

A = 100, Εz = 0.01

Figure 2: Top: Normalized pressure as a function of the di-
mensionless radial coordinate x, for u = 0.5, 1, 2 (black [solid],
red [dashed] and blue [dotted] curves, respectively). Bottom:
Normalized pressure as a function of the dimensionless radial
and vertical coordinates x and u. In both panels, A = 100 and
ǫz = 0.01.

that, when ξ is small enough, the analytic solution found
in the previous section is an acceptable solution to the
differential system even if ǫz is of order unity or larger.
In fact, the parameter of the expansion that leads to the
above analytical solution is ǫzu

2 = 2ǫzξ, so that for every
value of ǫz it is always possible to find a (however small)
starting value ξ0 for the numerical integration such that
2ǫzξ0 ≪ 1.

Then, we give the initial conditions so that they match
the analytic solution in ξ0:

F0 ≡ F (ξ0) = Ae−ξ0 ; L(ξ0) =
2

3
αF0 ;

d(ξ0) =
α

3ǫz
F0; M(ξ0) = (α2 − 2ǫzξ0)F

2

0 ;

dF

dξ
(ξ0) = −F0 (39)

The fact that we are matching the analytical solution
in ξ0 means that we have to enforce the condition α =
1

2

√

3(1− ǫz) like we did before, in order to ensure the

consistency of the differential system. Hence, initial con-
ditions are completely fixed once A and ǫz (or equivalently
α) are fixed. The results of our numerical integration are
shown in Figs. 3-4.
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Figure 3: Behaviour of the functions F (u), L(u), M(u) and

d(u) for D(u) = eǫzu
2

, A = 1 and ǫz = 0.9 (Red [solid] lines).
Also shown is the correspoding analytical solution for D(u) =
1− ǫzu

2 (Black [dotted] lines).

Concluding Remarks. – In this paper we presented
an exact separable solution of the radial and vertical equi-
librium equations at the basis of the oscillating morphol-
ogy emerging in the plasma configuration of an accretion
disk. We reduced the original system of two partial dif-
ferential equations into a set of four independent ordinary
differential equations in the vertical coordinate, one for
the flux surface function, one for the mass density per-
turbations and two related to different components of the
pressure. This reduced system admits an analytical solu-
tion only in the limit of high values of the β parameter of
the plasma, i. e. only when the thermostatic pressure of
the disk is much larger than the magnetic pressure con-
tribution. We also performed a numerical analysis of the
system for small values of β.

The main results of our analysis can be summarized in
the following three points.

i)-We have derived a solution showing how the radial
gradient of the thermostatic pressure is relevant in estab-
lishing the equilibrium, even in the linear limit and for
small values of ǫz. This feature makes our solution in-
trinsically different from the analyses developed in Refs.
[2, 3], except for the discussion of the extreme non-linear
regime in Section IX of Ref. [3]. In fact, in such a limit,
our approach is reconcilied with that one, because the lat-
ter accounts on an equivalent level the role of the radial
gradient of the pressure.

ii)-We have obtained the fundamental feature that the
ring-like structure emerges as a strong structural feature
of the plasma disk confined in magnetic field, since the
radial oscillation of the mass density takes place even in
the linear weakly magnetized limit A ≪ 1 and ǫz ≪ 1.
Indeed a suitable choice of these free parameters of the
model is always possible in order to arrange for nodes in
the mass density profile. This morphology is relevant be-
cause suggests that the ring profile can be expected to be
a general character of the magnetized accreting compact
objects we observe in the Universe, and it is due to the
direct link existing between the radial pressure gradient
and the mass density perturbations. This output of our
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Figure 4: The same as Fig. 4, but for ǫz = 1.5

.

separation algorithm indicates that more general configu-
ration scenarios can be contained in the radial and vertical
equilibrium equation with respect to the one investigated
in [2,3], though they could exist in a non-separable regime.

iii)-We have found that the disk profile undergoes a
transition when the parameter ǫz becomes greater than
one, going from the oscillating structure to an hyperbolic
behavior. This fact suggests the possible co-existence of
two different disk components in the same global profile.
In fact in the present local model we addressed ǫz as a
constant because it refers to a generic value of the radial
coordinate r0, but throught the disck it is clearly a func-
tion of the radial coordinate itself, taking values above and
below unity in different radial regions.
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