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ABSTRACT

The optical depth to reionization, τ, is the least constrained parameter of the cosmological Λ cold dark matter (ΛCDM) model. To
date, its most precise value is inferred from large-scale polarized cosmic microwave background (CMB) power spectra from the
High Frequency Instrument (HFI) aboard the Planck satellite. These maps are known to contain significant contamination by residual
non-Gaussian systematic effects, which are hard to model analytically. Therefore, robust constraints on τ are currently obtained
through an empirical cross-spectrum likelihood built from simulations. In this paper, we present a likelihood-free inference of τ
from polarized Planck HFI maps which, for the first time, is fully based on neural networks (NNs). NNs have the advantage of
not requiring an analytical description of the data and can be trained on state-of-the-art simulations, combining the information
from multiple channels. By using Gaussian sky simulations and Planck SRoll2 simulations, including CMB, noise, and residual
instrumental systematic effects, we trained, tested, and validated NN models considering different setups. We inferred the value of τ
directly from Stokes Q and U maps at ∼4◦ pixel resolution, without computing angular power spectra. On Planck data, we obtained
τNN = 0.0579±0.0082, which is compatible with current EE cross-spectrum results but with a ∼30% larger uncertainty, which can be
assigned to the inherent nonoptimality of our estimator and to the retraining procedure applied to avoid biases. While this paper does
not improve on current cosmological constraints on τ, our analysis represents a first robust application of NN-based inference on real
data, and highlights its potential as a promising tool for complementary analysis of near-future CMB experiments, also in view of the
ongoing challenge to achieve the first detection of primordial gravitational waves.

Key words. cosmic background radiation – cosmological parameters – dark ages, reionization, first stars – methods: data analysis –
methods: statistical

1. Introduction

Cosmic reionization, the period in cosmic history that accompa-
nies the ignition of the first stars, is of great interest to both astro-
physics and cosmology. At recombination, about 380 000 years
after the big bang, free electrons were bound in hydrogen atoms,
causing the decoupling of matter from the photon field that we
observe today as the cosmic microwave background (CMB).
This is when the Universe entered the electrically neutral phase,
called “cosmic dark ages.” It is presumed that about 200 mil-
lion years later, cold hydrogen gas had collapsed gravitationally
in dark matter halos, forming the first stars. These earliest com-
pact sources of UV radiation heated up the surrounding hydro-
gen gas, progressively ionizing the whole Universe via bubbles
of expanding HII regions. The so-called Gunn-Petersen trough
(Gunn & Peterson 1965; Scheuer 1965) in the absorption spec-
trum of high-redshift quasars indicates the presence of neutral
hydrogen in the intergalactic medium (IGM) along the corre-
sponding lines of sight. The detection of this feature in the spectra
of some z > 5.8 quasars by the Sloan Digital Sky Survey provided
the first spectroscopic evidence for reionization (Fan et al. 2000,
2001; Becker et al. 2001). Modern quasar measurements indicate
that the epoch of reionization was completed by z ≈ 5.3 (Qin et al.
2021; Villasenor et al. 2022; Bosman et al. 2022).

Reionization plays a crucial role in cosmology as well.
Photons that are emitted during recombination have a finite prob-
ability of Compton scattering with free electrons released dur-
ing reionization. For us as observers, this has two effects: firstly,
CMB photons traversing the IGM cause a uniform damping of
CMB anisotropies at scales below the cosmological horizon at
the epoch of reionization (` > 20). Secondly, a statistically rel-
evant fraction of CMB photons scatter into our line of sight,
carrying a nonzero net polarization observable as secondary
anisotropies in the CMB polarization. The first effect reduces the
CMB power spectrum amplitude of both unpolarized and polar-
ized components by a factor e−2τ, where τ is the optical depth to
reionization, defined as

τ =

∫ t0

t(zCMB)
neσT c dt′. (1)

Here, zCMB ≈ 1100 is the time of last scattering between
photons and baryons, ne is the electron number density, σT
is the Thomson scattering cross section, and c is the speed
of light. The second effect introduces large-scale power in the
polarized CMB proportional to τ2, affecting scales larger than
the horizon at the epoch of reionization (` < 20). Full-sky
space missions such as WMAP and Planck have been able
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to measure this “reionization bump” through pixel-based and
power-spectrum-based analysis methods. The WMAP nine-year
data release cites τ = 0.089 ± 0.014 (Hinshaw et al. 2013),
a value that later turned out to be biased high due to Galac-
tic dust emission (Planck Collaboration XI 2016; Natale et al.
2020). Planck’s low-frequency instrument (LFI) polarization
data at 70 GHz contain less large-scale systematics than the High
Frequency Instrument (HFI) data at 100 GHz and 143 GHz,
motivating the Planck Collaboration to perform map-based
analysis on LFI data and cross-spectrum analysis on HFI
data. The Planck 2018 legacy release cites τ = 0.063 ±
0.020 as inferred from LFI data and 0.051 ± 0.009 from HFI
data (Planck Collaboration V 2020). The cross-spectrum anal-
ysis method of Planck HFI data at 143 GHz and 100 GHz
yields the tightest constraint to date, while avoiding the bias
arising from uncorrelated noise in the individual frequency
channels.

The Planck 2018 legacy polarization data products at
large scales are known to be affected by residual contamina-
tion from instrumental systematic effects. As investigated in
Planck Collaboration VI (2014) and Delouis et al. (2019), the
most important effects at 143 GHz and 100 GHz are temperature-
to-polarization (T -to-P) leakage due the analog-to-digital
converter nonlinearity (ADCNL), uncertainties on the detectors’
orientation and polarization efficiencies, T -to-P leakage due
to bandpass mismatch and inaccurate Galactic foreground
modeling, and a varying time constant associated with the heat
transfer to the bolometers. In general, these systematic effects
follow non-Gaussian statistical distributions and are expected
to correlate among different channels, mainly because they are
partially sourced by the temperature signal. Several updated
mapmaking codes have been published that improve on the
systematics cleaning, such as SRoll2 (Delouis et al. 2019),
and NPIPE (Planck Collaboration Int. LVII 2020). The SRoll2
algorithm, an upgraded version of the Planck Collaboration’s
SRoll algorithm (Planck Collaboration Int. XLVI 2016), iter-
atively cleans systematics from Planck’s time-ordered data
products. Major improvements in SRoll2 encompass a new
gain calibration model that accounts for second-order ADCNL,
updated foreground templates, and an internal marginalization
over the polarization angles and efficiencies for each bolometer.
The SRoll2 data products contain a significantly lower level of
spurious systematic effects and a dipole residual power reduced
by 50% with respect to the Planck 2018 legacy data, falling below
the noise level. The SRoll2 EE cross-spectrum is dominated by
the cosmological signal at all scales that were considered in the
analysis (2 < ` < 30).

In spite of the improved cleaning, a small residual contami-
nation remains (mainly due to the second-order ADCNL effect),
which may bias cosmological analyses. For their 100× 143 GHz
EE cross-spectrum analysis of the SRoll2 data products,
Pagano et al. (2020) use an empirical likelihood built from real-
istic simulations (Planck Collaboration V 2020; Gerbino et al.
2020), motivating their choice by the expected non-Gaussianity
of the maps and by the difficulty to model residual systematic
effects analytically. They obtain τ = 0.0566+0.0053

−0.0062 (68% CL)
from EE only and τ = 0.059 ± 0.006 when combining with
TT data. Compared with the EE results from the Planck 2018
legacy release (τ = 0.051 ± 0.009), this reduces the uncer-
tainty by ∼40% and increases the best-fit τ value by up to
0.9σ. More recently, de Belsunce et al. (2021) applied various
likelihood approximation schemes on EE cross-spectrum data
from SRoll2maps, finding results compatible with Pagano et al.
(2020), though slightly larger by 0.3σ.

In recent years, neural network (NN)-based approaches to
likelihood-free inference underwent a rapid development in
cosmology, showing potential as an alternative tool for param-
eter estimation that does not require the existence of an ana-
lytical description of the data, but only relies on numerical
simulations to train a regression model. In the general context of
cosmology, a variety of machine learning (ML) techniques have
been exploited and tested in recent years. Promising tools are
being developed for many applications: from cosmic large-scale
structure (LSS) simulations (Villaescusa-Navarro et al. 2022),
to CMB lensing reconstruction (Caldeira et al. 2019), kinetic
SZ detection (Tanimura et al. 2022), or modeling and clean-
ing of Galactic foregrounds (Jeffrey et al. 2022; Wang et al.
2022; Casas et al. 2022; Krachmalnicoff & Puglisi 2021). NN-
based inference of cosmological parameters has seen signif-
icant progress in the context of observations of the LSS,
where the complexity of the cosmological and astrophysical
signals, together with the difficulty in the definition of opti-
mal summary statistics, challenge analytical methods. Up to
now, this approach has been tested on simulations (see e.g.,
Villaescusa-Navarro et al. 2022), with applications on real data
still limited in number, although leading to promising results
(e.g., Fluri et al. 2019). In this context, CMB data analysis could
also benefit from the application of NN-based inference, helping
overcome the limitations of traditional methods. This is relevant,
for example, for the estimation of parameters affecting the large
angular scales, such as the optical depth to reionization, which
is critically hampered by the presence of spurious non-Gaussian
signals, as outlined above.

This paper represents the first map-level cosmological infer-
ence on CMB data that is entirely based on convolutional neural
networks (CNNs). We use CNNs to infer the optical depth to
reionization τ and its statistical uncertainty from Planck multi-
frequency maps on the 100 and 143 GHz channels at scales &4◦,
having trained and validated our findings on the SRoll2 simu-
lations. Using moment networks (Jeffrey & Wandelt 2020), we
infer τ and its statistical uncertainty σ(τ) from a single data set.
In particular, we demonstrate:
1. When training the CNN on simulations with realistic, cor-

related Gaussian noise, we achieve unbiased estimates of τ
from maps.

2. Our NN models can effectively combine multifrequency
information, recognizing common features across channels,
not only to reduce statistical uncertainty but also to diminish
the impact of noise and systematic effects.

3. Training on non-Gaussian data is necessary to obtain unbi-
ased results on the SRoll2 test simulations and Planck data.
Limited by a low number of simulations that contain Planck
systematics, we were forced to build a retrained model,
which increased the error bar on τ by ∼30% in exchange for
unbiased results.

This paper is structured as follows. We present the simulations
and data used in this work in Sect. 2, followed by the neural
network inference method in Sect. 3. In order to validate this
method, we apply it to a series of simulations and present the
results in Sect. 4. We discuss the final results on the Planck
SRoll2 maps follows in Sect. 5 and conclude in Sect. 6.

2. Simulations and data

The goal of our analysis is to build a NN model able to infer the
value of the cosmological parameterτ from Planck low-resolution
polarization input maps. In particular, in this work we used the
SRoll2 maps at 100 and 143 GHz. To achieve this, we needed
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a large number of simulations to perform NN training, testing,
and validation. We generated simulated maps that include CMB
emission, noise, and instrumental systematic effects, as well as
possible spurious signals coming from our Galaxy. In this section,
we describe the simulations, the data, and the sky masks needed
to avoid the highly contaminated Galactic plane region.

2.1. Simulated CMB maps

Polarized CMB anisotropies, observed at the Planck noise
levels, can be sufficiently well represented by a spin-2
field with Gaussian statistics (Planck Collaboration IX 2020).
The TT , T E, and EE power spectra characterize the prob-
ability distribution of CMB temperature and polarization
anisotropies and can be described by the six parameters
of the Λ cold dark matter (ΛCDM) model. Analyses of
small-scale temperature data from the Planck 2018 legacy
release place a 0.5% constraint on the parameter combina-
tion 109 As e−2τ = (1.88 ± 0.01; Planck Collaboration VI 2020).
Varying the two parameters (As, τ) simultaneously condi-
tioned on 109 As e−2τ = 1.884, coherent with previous studies
(Planck Collaboration Int. XLVI 2016; Planck Collaboration V
2020; Pagano et al. 2020; Planck Collaboration Int. LVII 2020),
we used the Boltzmann solver CAMB1 (Lewis et al. 2000) to
generate a lookup table of EE power spectra computed with the
ΛCDM model. To build the simulated CMB maps used to train
and validate our NN models, we discretized τ ∈ [0.01, 0.13]
with step size ∆τ = 5 × 10−4. Since the other ΛCDM parame-
ters have no substantial impact on polarized CMB spectra at low
multipoles, we fixed them to the Planck 2018 legacy best-fit val-
ues H0 = 67.32 km s−1 Mpc−1, Ωbh2 = 0.02237, Ωch2 = 0.1201,
ns = 0.9651, mν = 0.06. From the tabulated power spectra,
we uniformly drew 200 000 samples based on which we gen-
erated 200 000 pairs of full-sky Stokes Q and U maps using the
HEALPix package (Górski et al. 2005). We fixed the Q and U
maps’ angular pixel resolution by choosing Nside = 16 (or a
pixel size of ∼4◦)2 and smooth each map with a cosine beam
window function (Benabed et al. 2009), in analogy with the pro-
cedure used to generate the Planck SRoll2maps (see Sect. 2.4).
These large scales retained in our maps correspond to multi-
poles ` . 50, where the reionization bump leaves an observable
imprint in the CMB EE spectrum.

2.2. Simulated Gaussian noise

Planck maps contain Gaussian instrumental noise which, in
pixel space, is well described by the FFP8 covariance matri-
ces (Planck Collaboration XII 2016). We drew samples from
them for the Planck 100 and 143 GHz polarization chan-
nels (Planck Collaboration VI 2014; Planck Collaboration XIII
2016), obtaining 200 000 Gaussian noise maps at pixel resolu-
tion Nside = 16 for both channels, respectively. We coadded the
training maps of CMB and noise to obtain 200 000 Planck-like
simulations on the full sky, out of which we selected 190 000
for training and 10 000 for validation. For the testing phase, we
drew new noise samples in the same fashion as before, but coad-
ded CMB simulations with fixed input values τ = 0.05, 0.06, and
0.07 and different seeds than the ones used for training and vali-
dation. In this way, we obtained three sets of 10 000 independent
Gaussian test simulations with the fixed input cosmologies.
1 http://camb.info
2 A HEALPix map has Npix = 12N2

side pixels of the same area Ωpix =

π/(3N2
side).

2.3. SRoll2 simulations

The SRoll2 simulations (Delouis et al. 2019) improve on the
SRoll simulations published along with Planck’s third data
release (Planck Collaboration Int. LVII 2020). They are the
result of applying the SRoll2 cleaning algorithm to a set of 500
Planck-like realistic sky simulations containing modeled noise,
foregrounds, and instrument systematics. We chose the SRoll2
simulations as our reference for systematic effects present in
the SRoll2 Planck data. All simulated maps are cleaned from
Galactic foregrounds through a template fitting procedure, as
described in Pagano et al. (2020). In order to produce our train-
ing set, we started with 400 out of the 500 original SRoll2
simulations containing pairs of Q and U full-sky maps at
pixel resolution Nside = 16 and two channels corresponding to
100 GHz and 143 GHz. To augment our original SRoll2 sim-
ulation set, we randomly drew SRoll2 100 GHz and 143 GHz
maps from the original 400 maps (with repetition), keeping cor-
responding Q and U maps together. This allowed us to assemble
a total of 200 000 SRoll2 simulations. After coadding them with
CMB simulations, we obtained a set of 200 000 polarized full-
sky simulations, used for training and validation. For the testing
phase, we made 3× 100 copies of 100 unseen SRoll2 maps and
coadded them with 10 000 CMB maps with fixed input τ = 0.05,
0.06, and 0.07, respectively. In this way we obtained a set of
3 × 10 000 full-sky SRoll2 test simulations.

2.4. Planck maps

The goal of this work is the analysis of the SRoll2 Planck
polarization data products (Delouis et al. 2019). They consist of
Stokes Q and U maps at the 100 GHz and 143 GHz HFI fre-
quency channels, stored at pixel resolution Nside = 16. The
Planck maps are first smoothed with cosine beam window func-
tions, and then cleaned from foreground contamination through
a template fitting procedure (Pagano et al. 2020). Figure 1 shows
the map products in Galactic coordinates. We note that close to
the Galactic plane, Q and U on both channels are visibly con-
taminated by residual systematic effects, which we masked prior
to the analysis in order to avoid bias. The arc-shaped features
in the northern and southern Galactic hemisphere likely indi-
cate residual gain variations caused by the ADCNL systematic
effect. As shown by Delouis et al. (2019), these features show
lower residual power than the CMB in the 100 × 143 GHz EE
cross-spectrum but may still amount to a nonnegligible bias in
cosmological analyses.

2.5. Masks

At low Galactic latitudes, the Milky Way emits polarized fore-
ground radiation which dominates the CMB signal in intensity
and polarization. Even after component separation, residuals of
this emission need to be excluded from the analysis to avoid
biasing cosmological analyses. We therefore applied masks to all
maps described in the previous sections. We considered two of
the binary polarization masks published in Pagano et al. (2020),
retaining sky fractions of fsky = {50%, 60%}. We smoothed them
with Gaussian beams of corresponding FWHM of {15◦, 16◦},
and apply a binary threshold, setting all pixels with a value
larger than 0.5 to one and all others to zero. This proce-
dure allows us to avoid fuzzy borders and mitigate groups
of isolated masked pixels. The smoothed masks are shown in
Fig. 2. Our baseline mask in this paper is the fsky = 0.5
smoothed mask, as it retains enough large-scale information to
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Fig. 1. SRoll2 data products of the Planck Q and U maps at frequencies
100 GHz and 143 GHz, after component separation, used in this work,
displayed in Galactic coordinates.

Fig. 2. Smoothed version of the SRoll2 sky masks at sky fractions 50%
and 60% used in this paper, displayed in Galactic coordinates.

constrain τ but avoids excessive levels of foregrounds in the
Galactic plane.

3. NN inference

In this work, we use CNNs to build simulation-based empirical
models to perform cosmological inference. In the following, we
describe our CNN implementation and give details on the proce-
dures applied to train and test our model on simulations.

3.1. CNN architecture for τ estimation

CNNs are the industry standard of pattern recognition in two-
dimensional images, performing both classification (e.g., iden-
tifying families of objects) and regression tasks (e.g., estimat-
ing continuous parameters on maps). The success of CNNs
in extracting low-dimensional information from visual input
is due to a multilayer image filtering algorithm. This typi-
cally involves searching for distinct sets of local features in the
original image (through convolution) and compressing the data
(through so-called pooling layers), going to lower and lower res-
olution, before inferring the desired summary statistic.

In our case, we want to retrieve information from data pro-
jected on the sphere, requiring convolutions on the spherical
domain. To this end, we made use of the NNhealpix3 algorithm
which allows to build deep spherical CNNs taking advantage
of the HEALPix tessellation. In particular, NNhealpix performs
convolution by looking at the first neighbors for each pixel
on the map, and average pooling by downgrading the map

3 https://github.com/ai4cmb/NNhealpix

Fig. 3. Schematic of the convolutional layers of the neural network used
in this paper. This represents the first part of the architecture, performing
image filtering.

resolution (i.e., by going to lower Nside parameter). We refer to
Krachmalnicoff & Tomasi (2019) for additional details on how
the algorithm works, as well as its advantages and disadvantages.
In this work, we used NNhealpix in combination with the pub-
lic keras python package4 to build our deep CNN architecture,
and to perform training, validation, and testing.

The first part of our CNN, performing image filtering, con-
sists of four CNN building blocks, as illustrated in Fig. 3. We
accept Nmap input maps, which in our case represent one or two
frequency channels and Stokes Q and U maps, hence Nmap = 2
or 4. Each convolutional layer introduces 32 filters with nine
trainable pixel weights, respectively, and is followed by a Rec-
tified Linear Unit (ReLU) activation layer. Mathematically, this
means each image pixel pi undergoes a linear transformation f
followed by a nonlinear transformation g

pi 7→ p′i = ( f ◦ g)(pi), (2)

f (pi) = piw0 +

Nneigh(i)∑
j=1

pk j(i)w j, (3)

g(x) ≡ max(0, x), (4)

where k j(i), j = 1, . . . , Nneigh(i) runs over the indices of all
neighboring pixels in the HEALPix map (which can be either
seven or eight, depending on the pixel location). Then, an “aver-
age pooling” degradation layer reduces the map resolution from
Nside to Nside/2, assigning to every low-resolution pixel the aver-
age of its four children at the next higher resolution. Up to this
point, the application of the four CNN building blocks transform
the array of input maps at Nside = 16 (or Npix = 3072 pixels)
into an array of 32 filtered maps at Nside = 1 (or Npix = 12 pix-
els). This represents the image filtering part, meaning the trans-
formation of the original inputs into 32 maximally compressed
feature maps that, ideally, retain all the desired (cosmological)
information. We still need to “learn” the mapping from theses
feature maps to the output numbers τNN and σNN(τ) described
in the following section. Compression is achieved by two fully
connected (or dense) layers.

A fully connected layer is a linear map from M-dimensional
input feature space to N-dimensional output feature space and is
commonly used for data compression (in which case N < M). A
fully connected layer of output dimension N is said to contain N
neurons associated to a vector of trainable weights that parame-
terize the layer. In each of its N neurons, a fully connected layer

4 https://keras.io
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Fig. 4. Schematic of the fully connected layers of the neural network
used in this paper. This represents the second part of the architecture,
performing data compression.

linearly contracts the input vector x of length M to a number by
means of a weights vector v(i),

xi 7→ x′i′ =

M∑
j=1

v(i′)
j x j. (5)

The second part of our CNN, the data compression block, is
shown in Fig. 4 and contains a dropout and flattening layer, a
fully connected layer with 48 neurons, a ReLU nonlinear acti-
vation layer, concluded by a final fully connected layer with
two neurons that outputs τNN and σNN(τ) as described in the
following section. The dropout layer acts as a selective off
switch for parts of the following fully connected layer, deac-
tivating at random 20% of its 48 neurons at a time, thus mit-
igating the overfitting problem common for neural networks
(Srivastava et al. 2014). With the described architecture the total
number of weights that need to be optimized during training is
Nw ≈ 4.7 × 104.

3.2. Training

When we train a neural network, we effectively tune its many
free parameters until the task at hand, such as estimating param-
eters from maps, would be optimally performed on the training
data. In the following, we describe this procedure in detail.

At each training step we passed one batch of Nbatch = 32
training simulations through the network, meaning we simulta-
neously considered the results from all simulations that belong
to a single batch. Input maps need to be masked with the same
mask that is used in the analysis. The output values of the two
neurons of the final layer, representing the estimated parameters
τNN j, σNN(τ) j ( j = 1, . . . , Nbatch), as well as the truth values τ j,
are then inserted into the loss function (Jeffrey & Wandelt 2020)

L
[
τ,

(
τNN j, σNN(τ) j

)]
=

Nbatch∑
j=1

[
(τ j − τNN j)2 +

(
(τ j − τNN j)2 − σNN(τ)2

j

)2
]
. (6)

We then updated all Nw network parameters subject to min-
imizing this loss function. For doing so, we used the Adam
optimizer, a widely used stochastic gradient descent algorithm
implemented in keras, for which we found an initial training
rate of LR = 10−3 and first- and second-moment exponential
decay rates β1 = 0.9 and β2 = 0.999 to be appropriate. Repeat-
ing the described procedure for the entire training set of size

Ntrain = 190 000 made up one training epoch5. We trained on
a maximum of 45 epochs, using the keras callback function
ReduceLROnPlateau to allow for learning rates to decrease by
a factor of 0.1 if the loss of the validation set did not improve
over the course of five epochs. Moreover, the callback function
EarlyStopping allows for training to stop after a minimum
number of epochs (in our case 20) without improvement in the
validation loss. Using both of these callback functions allowed
for a faster convergence and suppressed unwanted oscillations in
the loss function during the training phase. Training on a 32-core
Intel Xeon CPU node took about three hours, while training on
eight NVIDIA Tesla V100 GPU cores took about 30 minutes.

3.3. Testing

After training, we fix the neural network parameters, which in
principle completes the model building. However, trained NNs
may not perform well for two main reasons: firstly, the loss func-
tion may have not converged to its global minimum, causing
model predictions to be biased. Secondly, the model may overfit
the input, meaning that the network learns the training set’s fea-
tures with an excellent accuracy, but fails to make correct pre-
dictions on similar, independent test sets. One usually addresses
both problems by testing the model’s predictions on simulations
that have not been fed into the network before. We used 2×3 test
sets of 10 000 sky simulations with fixed input τ = {0.05, 0.06,
0.07}, described in detail in Sects. 2.2 and 2.3.

We note that, by inferring only τNN and σNN(τ), we implic-
itly assumed Gaussian posteriors, which we exhaustively val-
idated on simulations by checking for biases in the Gaussian
mean and variance (see Sect. 4). If, instead, our algorithm had
provided an entire, potentially non-Gaussian probability distri-
bution function or higher statistical moments, we would have
needed to perform more extensive sanity checks and indicate
credible intervals instead of Gaussian standard deviations.

4. Results on simulations

Before arriving at the estimation of τ from the Planck SRoll2
data, we considered several setups to train our CNN model,
increasing the complexity of the training simulations. This
allowed us to get valuable insight into the learning process. In
particular, we started by training the CNN on a set of simula-
tions including CMB with Gaussian noise (see Sect. 2.2), either
on a single frequency channel, or on two channels. We then
moved to simulations including non-Gaussian systematic effects
(i.e., SRoll2 simulations), trying different possible strategies to
obtain unbiased τ estimates in the presence of complex residu-
als. Only once we achieved this, we applied our trained model
to real Planck data. In all the cases presented in this section, we
trained and tested the CNNs considering the fsky = 0.5 mask as
our reference (see Fig. 2). A summary of all analysis cases, along
with their corresponding results tables and figures, can be found
in Table 1.

4.1. Gaussian training

As aforementioned, we first tested the ability of our CNN to
estimate the value of τ considering only Gaussian noise. These
simulations have noise amplitudes and pixel-pixel correlations

5 Among the total 200 000 simulations generated as described in
Sect. 2, we actually used 190 000 to optimize the NN’s parameters,
while we used the remaining 10 000 as a validation set.
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Table 1. References to results tables and figures in this paper.

Gaussian test simulations SRoll2 test simulations Planck data

Gaussian NN (one channel) Table 2; Fig. 5 Table 3; Fig. 5
Gaussian NN (two channels) Table 2; Figs. 5, 8 Table 3; Figs. 5, 8 Table 5; Figs. 9, 10
HL likelihood Table 2 Table 3
SRoll2 training Table 4
SRoll2 retraining Table 4; Fig. 8 Table 5; Figs. 9, 10
Empirical likelihood Table 5; Fig. 10

Table 2. τ predictions from 10 000 Gaussian CMB + noise simulations generated with three different, fixed fiducial τ values.

Test on Gaussian simulations
143 GHz 143 + 100 GHz 143 × 100 GHz

Gaussian training Gaussian training HL likelihood

fiducial τ τNN σNN(τ) σ(τNN) τNN σNN(τ) σ(τNN) τHL σHL(τ) σ(τHL)
0.05 0.0508 0.0059 0.0066 0.0503 0.0054 0.0057 0.0496 0.0046 0.0047
0.06 0.0608 0.0065 0.0067 0.0600 0.0056 0.0059 0.0596 0.0048 0.0048
0.07 0.0712 0.0067 0.0070 0.0702 0.0057 0.0063 0.0697 0.0048 0.0049

Notes. The results correspond to the Gaussian NN training on one and two channels, and the Bayesian inference with a power spectrum likelihood.
We show the posterior mean τNN/HL and standard deviation σNN/HL(τ) averaged over all simulations, as well as the scatter of τNN/HL over all
simulations.

directly estimated from Planck maps, and therefore serve as a
good description of the Gaussian noise present in real data. At the
same time, they lack for realism, since they do not include non-
Gaussian residual systematic effects, contamination due to Galac-
tic foregrounds, both known to be present on the Planck SRoll2
maps. We therefore expected these models (which we refer to as
“Gaussian models”) to induce a bias onτwhen applied to the more
realistic SRoll2 simulations, or to real Planck data.

4.1.1. Single channel

We began by training our CNN on Stokes Q and U maps with
Gaussian Planck-like noise and CMB at 143 GHz only, thus
feeding Nmap = 2 maps to the network. In the left-hand side of
Table 2, we show the results of testing Nsims = 10 000 Gaussian
simulations of CMB and noise generated with fiducial τ = 0.05,
0.06, and 0.07, respectively. The average learned mean poste-
rior values τNN are close to unbiased and deviate at the 0.2σ
level. The average learned posterior standard deviations σNN(τ)
are within 5% agreement with the sample scatter across simula-
tions, σ(τNN).

To assess the performance of the Gaussian model also on
non-Gaussian Planck-like maps, we tested this model on 10 000
SRoll2 simulations generated with fiducial τ = 0.06 (see
Sect. 2.3). As illustrated in the upper right panel of Fig. 5, this
leads to a bias of more than 1σ on τNN. These tests on a sin-
gle frequency channel leave us with two conclusions: on the one
hand, CNNs are able to correctly retrieve τ and its statistical
uncertainty from a single Planck-like simulation of the 143 GHz
channel containing correlated Gaussian noise. On the other hand,
systematic effects present in the Planck SRoll2 simulations bias
the single-channel CNN inference, as expected. To improve our
results, we added another frequency channel to the inference
pipeline, seeking to mitigate this bias. We expected that com-
bining two channels should lead to a lower error bar and a lower
bias on the SRoll2 simulations, in a similar way as cross-spectra
achieve lower noise bias than auto-spectra.

0.04 0.06 0.08

train on 143 GHz
Gaussian test sims

= 0.0608 ± 0.0067

0.04 0.06 0.08

train on 143 GHz
SRoll2 test sims

= 0.0738 ± 0.0076

0.04 0.06 0.08

train on 143+100 GHz
Gaussian test sims

= 0.0600 ± 0.0059

0.04 0.06 0.08

train on 143+100 GHz
SRoll2 test sims

= 0.0609 ± 0.0070

 prediction

Fig. 5. Predictions of τNN from 10 000 simulations with input τ = 0.06,
containing either CMB with Gaussian noise (left panels) or CMB with
SRoll2 noise + systematics (right panels). The two rows denote dif-
ferent CNN models trained on CMB with Gaussian noise on a single
frequency channel (top), on two frequency channels (bottom).

4.1.2. Two channels

As a second test, we added the HFI 100 GHz channel in the train-
ing and testing procedures, simulated as CMB plus the corre-
sponding Gaussian correlated noise, so that Nmap = 4 maps were
fed into the neural network. The results from testing on Gaussian
noise are shown in Table 2. We note two positive effects: firstly,
the small bias observed for Gaussian noise on a single chan-
nel reduces to below 1% of a standard deviation. Secondly, the
learned σNN(τ) decreases by more than 10% when training on
two frequency channels. Meanwhile, the prediction of the pos-
terior standard deviation stays within 5% of the sample standard
deviation of the inferred τNN. The same results are presented in
Fig. 5 for fiducial τ = 0.06, showing significant improvement of
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Table 3. Same as Table 2 but testing on CMB and SRoll2 simulations instead of CMB and Gaussian noise simulations.

Test on SRoll2 simulations
143 GHz 143 + 100 GHz 143 × 100 GHz

Gaussian training Gaussian training HL likelihood

fiducial τ τNN σNN(τ) σ(τNN) τNN σNN(τ) σ(τNN) τHL σHL(τ) σ(τHL)
0.05 0.0669 0.0065 0.0074 0.0536 0.0055 0.0067 0.0478 0.0050 0.0079
0.06 0.0738 0.0067 0.0076 0.0609 0.0056 0.0070 0.0585 0.0050 0.0073
0.07 0.0813 0.0069 0.0074 0.0690 0.0057 0.0071 0.0688 0.0049 0.0069

the two-channel CNN inference in the lower panels with respect
to the one-channel results (upper panels). We proceeded to test
this two-channel Gaussian model on the SRoll2 simulations. As
shown in the right panel of Fig. 5, for fiducial τ = 0.06, the addi-
tion of a second channel allows for a significant reduction of
the systematic-related bias in τNN and to a better statistical con-
straint. This led us to conclude that CNNs are able to recognize
common features across channels, combining the information to
reduce the statistical uncertainty and the bias due to uncorrelated
systematic effects.

The corresponding quantitative results, for all the three τ val-
ues used during testing, are listed in Table 3: adding a second
channel in the Gaussian training model leads to improved results
on the SRoll2 test simulations for all considered values of τ.
However, a residual bias is still present, especially for τ = 0.05,
when the CMB signal is smallest.

Moreover, we noticed that, when applied to the SRoll2 test
maps, the models trained on Gaussian simulations returned val-
ues of σNN(τ) that disagreed with the actual spread of estimates
σ(τNN), with the latter being up to ∼25% larger. This implies that
the learned error was not accurate in this case, hence could not
be used to describe the uncertainties of our inferred τ values on
SRoll2 maps. We address this issue in Sect. 4.4.

4.2. Comparison with Bayesian inference from cross-QML
power spectrum estimates

In this section we compare NN inference results with results
coming from a standard Bayesian approach applied to E-mode
power spectra. In particular, we considered quadratic Maximum
Likelihood (QML) estimates (see, e.g., Tegmark & de Oliveira-
Costa 2001) of the 100 × 143 GHz EE cross-spectrum and
drew posterior samples using the well-known power spectrum
likelihood approximation introduced by Hamimeche & Lewis
(2008; in the following HL likelihood). The HL likelihood pro-
vides a good approximation to the non-Gaussian distribution
of the exact power spectrum likelihood, which markedly dif-
fers from Gaussianity at the low multipoles 2 ≤ ` . 30 that
are most relevant for constraining τ. Evaluating the HL likeli-
hood requires a power spectrum covariance matrix, which we
obtained directly from simulations of Gaussian noise and CMB
realized with the same τ values used for generating the test sim-
ulations (Sect. 2). For the HL likelihood we assumed a theoret-
ical model of the CMB E-modes, computed with CAMB, con-
sidering the multipole range 2 ≤ ` ≤ 30, and sampling only
for the τ parameter, keeping 109Ase−2τ = 1.884 fixed. Our final
results are the best-fit value τHL, the standard deviation σHL(τ)
of the posterior, and the scatter σ(τHL) computed from the set of
test simulations.

We ran the HL likelihood on 3 × 10 000 Gaussian sky sim-
ulations with input τ = 0.05, 0.06, and 0.07. As shown in the

last three columns of Table 2, we find unbiased best-fit results
with average posterior standard deviation σHL(τ) and best-fit
parameter scatter σ(τHL) of ∼0.0048. We note that the uncertain-
ties derived from sampling the HL likelihood are ∼20% smaller
than the ones from NN estimates. Part of the scatter of τNN
comes from the intrinsic stochastic nature of the training pro-
cess. We could reduce this scatter by taking the average over
multiple NN models (as discussed in Sect. 4.4). Nevertheless,
these results reveal that although we were able to retrieve unbi-
ased τ values with NNs from Gaussian simulations, our estima-
tor does not achieve minimum variance. Further development of
the method, including an optimization of the convolution algo-
rithm on the sphere, the NN architecture, and the training pro-
cedure, are required and will be explored in future work in the
light of improving the estimator’s variance.

In addition to Gaussian simulations, we applied the cross-
spectrum inference pipeline on 3 × 10 000 SRoll2 simulations
and show the corresponding results in the last three columns
of Table 3. We stress that the HL likelihood contains the same
covariance matrix as before, calculated from Gaussian simula-
tions. This is done in analogy with the case of Gaussian NN
training applied to SRoll2 simulations, therefore neglecting the
presence of systematic effects. We retrieve biased estimates on
τ, confirming our expectation that the power spectrum model
implemented in the likelihood is an inaccurate representation of
the SRoll2 simulations, which include spurious non-Gaussian
signals. Interestingly, this affects the NN and HL estimates in dif-
ferent ways, leading to biases in opposite directions for τ = 0.05
and 0.06. To study the relative behavior of the two estimators, it
is instructive to look at a one-by-one comparison of the NN and
HL results on the same 10 000 test simulations, as presented in
Fig. 6 for τ = 0.06. The scatter plot of the estimated τNN and τHL
on Gaussian simulations and on SRoll2 simulations are shown
in bright red and dark green, respectively. In the Gaussian case
the correlation of the estimated τ values is at a level of ∼76%,
while for SRoll2 it is at 63%. We conclude that map-level
systematic effects, which are partially unaccounted for in the
estimates, decrease the correlation and increase the differences
between τHL and τNN when changing from Gaussian to SRoll2
test simulations. This indicates that spurious non-Gaussian sig-
nals impact the two estimators in different ways.

4.3. Training including systematic effects

As previously seen, the two-channel Gaussian training allowed
to improve our τ estimates on SRoll2 simulations. However, the
continued occurrence of bias, even though small, motivated us
to evolve the training setup by including systematic effects in the
training set. Our goal was to achieve fully unbiased results before
applying our NN models to real Planck maps. In this section
we explore two possible ways of including systematics: training
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Fig. 6. Per-simulation comparison between the HL likelihood estimate
τ and the NN estimate τNN for a test set of 10 000 simulations realized
with τ = 0.06. Gaussian simulations are shown in bright red, SRoll2
simulations in dark green. The correlation coefficients between both
estimators are 76% (Gaussian) and 63% (SRoll2).

on SRoll2 simulations from the very beginning and perform-
ing a SRoll2 retraining update on previously trained Gaussian
networks.

4.3.1. Training on SRoll2 simulations

The SRoll2 simulations (Delouis et al. 2019) are designed to
accurately describe Planck’s Gaussian noise component and
non-Gaussian polarization systematics. Motivated by this, we
trained a CNN from the start on the 200 000 SRoll2 training
simulations described in Sect. 2.3. As usual, we used 190 000
simulations to perform weight optimization, and 10 000 for val-
idation. We trained on Planck’s 143 GHz and 100 GHz channels
simultaneously and used the same hyperparameter values as for
the Gaussian training, described in Sect. 3.2. We stress that even
though artificially augmented by forming new channel pair com-
binations, the SRoll2 training set was essentially built from 400
sampled skies only. We tested on 3×10 000 SRoll2 simulations
with fixed τ = 0.05, 0.06, and 0.07, generated from the remain-
ing 100 independent realizations that the CNN did not “see” dur-
ing training.

Table 4 shows the results obtained with this approach. For
the three input τ values we find a positive bias of ∼0.4σ. For
τ = 0.06, the average learned error σNN(τ) = 0.0062 is slightly
larger than for the two-channel Gaussian training but smaller
than the scatter σ(τNN) = 0.0070. We see similar results both for
the Gaussian CNN and the HL likelihood inference (see Table 3).
As in the case of Gaussian NN training, the learned error does
not agree with the SRoll2 simulation scatter, therefore it cannot
be used to infer the statistical uncertainty on τNN.

We ascribe the main reason for the bias on τ to overfitting.
Figure 7 illustrates this problem. We compared the τ predictions
on a set of 10 000 test simulations with the ones coming from
10 000 training simulations. The results show a bias and standard
deviation of ∆τ = 0.0023 ± 0.0069 for the test set, while the
training set is unbiased, with ∆τ = 0.0001 ± 0.0068. This is

0.02 0.00 0.02

Trained on SRoll2
test sims
training sims

0.02 0.00 0.02

Retrained on SRoll2
test sims
training sims

0.0 0.2 0.4 0.6 0.8 1.0
 prediction  truth
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0.6
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Fig. 7. Neural network accuracy in predicting the true τ input from
10 000 simulations. Step-filled histograms show the results on unseen
test simulations, black outlines show the results on a subset of the
actual training simulations. We compare a network exclusively trained
on SRoll2 simulations (left panel) with a Gaussian network retrained
on SRoll2 simulations (right panel).

clear evidence for overfitting: while the model performs well on
the 400 SRoll2 simulations that the training set is built from,
these are not enough to generalize to the remaining 100 SRoll2
simulations used to build the test set, leading to the observed bias
on τ in the latter case.

4.3.2. Retraining update with SRoll2 simulations

We recognized the bias described above as a critical problem that
needed to be addressed. The obvious option, training on a con-
siderably larger simulation set, was unavailable to us due to the
limited number of SRoll2 realizations. Therefore, we applied
a transfer learning technique to inform our previously trained
Gaussian networks on the SRoll2 systematics. As shown in the
previous sections, our Gaussian NN model is not affected by
overfitting issues and, if trained on two channels, performs rea-
sonably well even on SRoll2 simulations. This motivated us to
leverage the existing results on Gaussian networks to solve the
overfitting issue with as little changes as possible. To this end,
we chose the approach of retraining the two-channel Gaussian
model on the full set of SRoll2 training simulations, while tar-
geting two specific goals:
(i) The retrained CNN should learn to extract information on

the systematic effects present in the SRoll2 simulations and
update its CNN weights just enough to achieve fully unbi-
ased results on the SRoll2 training set.

(ii) At the same time, we wanted to ensure that the information
already learned was not destroyed during the new training
phase (an issue sometimes referred to as “catastrophic for-
getting”, see e.g., Kirkpatrick et al. 2017; Ramasesh et al.
2021), avoiding going back to the overfitting situation
described in the previous section.

We achieved this by performing what we call “minimal retrain-
ing”: we chose the hyperparameters of the NN such that we
obtained unbiased results on the SRoll2 test simulations while
making minimal changes to the original network. We found an
optimal setup with five retraining epochs, a learning rate of
LR = 10−7, and no additional changes to the original network
architecture.

The right panel of Fig. 7, in analogy to the left panel, com-
pares the distribution of ∆τ from the SRoll2-retrained model
on training simulations (black contours), or test simulations
(green filled histogram). We find both histograms to be in good
agreement, indicating that unlike the SRoll2-trained model, the
retrained model does not suffer from overfitting, thus achiev-
ing our goal (ii) defined above. Table 4 on the right-hand side
lists the results of the SRoll2-retrained model on SRoll2 test
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Table 4. τ predictions from 10 000 CMB + SRoll2 test simulations generated with three different fiducial τ values.

Test on SRoll2 simulations
143 + 100 GHz 143 + 100 GHz
SRoll2 training SRoll2 retraining

fiducial τ τNN σNN(τ) σ(τNN) τNN σNN(τ) σ(τNN)
0.05 0.0526 0.0059 0.0066 0.0508 0.0077 0.0091
0.06 0.0622 0.0062 0.0070 0.0606 0.0079 0.0088
0.07 0.0722 0.0064 0.0070 0.0707 0.0081 0.0087

Notes. These results correspond to two frequency channels, either training on SRoll2 from the start or retraining on SRoll2 maps. Displayed are
the average posterior mean, average predicted standard deviation σNN(τ), and the scatter σ(τNN) calculated across the test simulations.

0.02 0.00 0.02

Gaussian training
input = 0.05

= 0.0536 ± 0.0067

0.02 0.00 0.02

SRoll2 retraining
input = 0.05

= 0.0508 ± 0.0091

0.02 0.00 0.02

Gaussian training
input = 0.06

= 0.0609 ± 0.0070

0.02 0.00 0.02

SRoll2 retraining
input = 0.06

= 0.0606 ± 0.0088

0.02 0.00 0.02

Gaussian training
input = 0.07

= 0.0690 ± 0.0071

0.02 0.00 0.02

SRoll2 retraining
input = 0.07

= 0.0707 ± 0.0087

 prediction  truth

Fig. 8. Predictions of τNN on 10 000 SRoll2 simulations with input
τ = 0.05, 0.06, and 0.07 (first, second, third row, respectively). The
two columns display two different NN models trained on two channels
of Gaussian simulations (left panels) and retrained on two channels of
SRoll2 simulations (right panels). All results correspond to fsky = 0.5.

simulations. We find τNN = 0.0508, 0.0606, and 0.0707 for
the respective input values of τ = 0.05, 0.06, and 0.07. This
amounts to a bias below ∆τ = 8 × 10−4, or .0.1σ. In Fig. 8, we
show a comparison of the results on SRoll2 test sets obtained
by Gaussian and SRoll2-retrained CNNs. The reduction of the
bias is evident, in particular for τ = 0.05. Therefore, we chose
the retrained approach as our baseline model to estimate τ on real
Planck data. At the same time, this approach brings an increase
in σ(τNN), an effect not seen with the SRoll2 training proce-
dure described in Sect. 4.3.16. This could be the consequence of
the typical variance-bias trade-off observed between statistical
estimators: with minimal retraining we are able to achieve unbi-
ased estimates (goal (i) above) at the cost of a larger σ(τNN).
In addition to that, we are still unable to retrieve values of the
learned σNN(τ) that agree with σ(τNN) for SRoll2 simulations
(and therefore also for Planck data). We conclude that, except
for case in which we test the Gaussian model on Gaussian sim-

6 Compare the fourth column in Table 4 with the seventh column in
Table 3.

ulations, we cannot use the learned error as an estimate of the
uncertainty of the inferred τNN.

4.4. NN errors

The loss function in Eq. (6) provides an estimate for the poste-
rior standard deviation σNN(τ). However, as seen in the previous
sections, the learned σNN(τ) tends to underestimate the actual
spread of the inferred values of τNN on test set maps, especially
in the case of SRoll2 maps. We therefore proceeded to empiri-
cally estimate our errors from simulations.

In doing so, we needed to make an additional consideration:
training a NN is an intrinsically stochastic procedure that relies
upon the use of a stochastic optimizer, randomly initialized NN
weights and random realizations of the maps in the training set.
This results in the fact that each NN prediction can be described
as the sum of two random variables: τNN = τ + ∆NN, and
therefore

σ2(τNN) = σ2(τ) + σ2(∆NN) + 2 Cov(τ,∆NN), (7)

where the first source of uncertainty, σ(τ), is due to noise and
cosmic variance of test simulations or observed data, while the
second, σ(∆NN), represents the stochasticity of the NN estima-
tor. These two terms are sometime referred to as aleatory and
epistemic error, respectively (Hüllermeier & Waegeman 2021).

We can measure the uncertainty related to the NN stochas-
ticity by training an ensemble of models, all based on the
same architecture and hyperparameters, but with different initial
weights and training set realizations. Our estimate of σ(∆NN)
is given by the standard deviation of the models’ τ predictions
when tested on a single test map. In practice, we defined the
“model ID” of a trained NN as the fixed random seed control-
ling the initialization of network weights. We generated a new
training set of simulations whose specific realizations (of CMB,
noise, and potentially systematics) was fully determined by the
model ID. Following this recipe, we created 100 independent
Gaussian training sets and used them to train 100 Gaussian net-
works. Repeating this procedure with 100 SRoll2 training sets,
we retrained the set of 100 Gaussian networks to obtain 100
SRoll2-retrained networks. Using a single test map with input
τ = 0.06, we find σ(∆NN) ' 0.0024 for Gaussian NN models
tested on Gaussian maps, and σ(∆NN) ' 0.0034 for minimally
retrained NN models tested on SRoll2. In both cases this repre-
sents about 40% of the corresponding value of σ(τNN) reported
in Tables 2 and 4, respectively.

We can reduce the impact of the NN stochasticity by taking,
for each test map, the ensemble average of the τ estimates over
the 100 trained NNs. By doing so, for the case with fsky = 0.5
and input τ = 0.06, we find σ(τNN) ' 0.0054 for Gaussian
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Fig. 9. NN predictions of τ from Planck 100+143 GHz data, resulting from training 100 equivalent models with different random initial weights
and random seeds for training data, considering Gaussian two-channel training (blue tones) versus SRoll2 retraining (orange tones), and fsky = 0.5
(downward triangles) versus fsky = 0.6 (upward triangles). Colored triangle markers show the best-fit values for the single models and horizontal
lines in the corresponding colors show the ensemble average of τ (middle) ± the 68% confidence interval (upper and lower lines).
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Fig. 10. Results on τ obtained from Planck SRoll2 data. The values in
this plot are shown in Table 5.

models applied to Gaussian maps and σ(τNN) ' 0.0083 for
retrained models applied to SRoll2 simulations.

We also evaluated the correlation coefficient between the
predictions of pairs of models ( j, k), tested on the same 10 000
simulations, for both Gaussian and SRoll2 training and testing,
respectively. In both cases, we find ρ jk ' 0.84, in agreement
with what is expected if Eq. (7) holds and the models’ epistemic
errors are uncorrelated, Cov(∆ j

NN,∆
k
NN) = δKjkσ

2(∆NN). In the
following section we describe how we applied our CNN mod-
els to Planck maps to infer the value of τ from data, estimating
its uncertainty from simulations and using the ensemble aver-
age over 100 trained models to reduce the impact of the NN
stochasticity.

5. Results on Planck data

As shown in Sects. 4.3.2 and 4.4, by retraining on the SRoll2
simulations, we are able to obtain a CNN-based model that
yields unbiased results on unseen SRoll2 test simulations gen-
erated with fixed τ ∈ {0.05, 0.06, 0.07}. Having thus confirmed
the robustness of our method, we moved to real Planck data and
proceeded to predict τ from the 100 and 143 GHz SRoll2 HFI
maps.

We obtained our baseline τ estimate by taking the average
of the inferred values from the 100 minimally retrained NNs
applied to Planck data for a sky mask with fsky = 0.5, resulting
in a mean estimate of τNN ' 0.0058. Figure 9 shows the obtained

τ values for each of these NN models. Following the conclusions
of the previous sections, since the learned σNN(τ) is inadequate
as an error prediction, we estimated the uncertainty from simu-
lations. In practice, we generated a set of 10 000 SRoll2 simula-
tions realized with τ = 0.058 and average the τNN estimates over
100 networks. Afterwards, we computed the standard deviation
over 10 000 simulations. Our final inference on Planck maps in
this baseline case results in:

τNN = 0.0579 ± 0.0082 (Planck 100 + 143 GHz). (8)

This value is in very good agreement with the τ estimates
obtained with an empirical likelihood based on cross-QML
power spectra, presented in Pagano et al. (2020; hereafter
P2020) applied to the same Planck maps and constructed from
the same SRoll2 simulations that we use in this work. In par-
ticular, P2020 obtained τ = 0.0566+0.0053

−0.0062 on the fsky = 0.5 sky
mask. We note that the uncertainty from our NN method is ∼30%
larger. As previously described, this is due to the fact that our NN
estimator does not reach minimum variance and that we relied on
the retraining strategy leading to larger errors. However, the fact
that we obtain a τ value in agreement with the literature while
using an inherently different inference approach that is, for the
first time, fully based on NNs, represents a remarkable result of
this work.

We also applied the Gaussian NN model to Planck data,
deriving the best-fit parameter value and error bars analogously.
We note that, although the Gaussian model leads to results that
are mildly biased by up to ∼0.5σ when applied to SRoll2 maps
with low CMB input signal (τ = 0.05), the bias is below 0.15σ
when τ = 0.06, as displayed in the fifth column of Table 3.
In this case, using the same fsky = 0.5 mask, we obtained
τNN = 0.0588 ± 0.0063. The statistical uncertainty is lower for
this second method, as we omitted retraining on systematics, and
similar to the one obtained from the empirical likelihood pre-
sented in P2020.

Lastly, as a robustness test, we applied these same methods to
a second sky mask, with a larger sky coverage of fsky = 0.6. The
parameter estimated remained stable for both the retrained and
the Gaussian model, with lower uncertainties. The NN predic-
tions of the single models on fsky = 0.6 are displayed in Fig. 9.
A summary of our results on Planck maps is shown in Fig. 10
and Table 5.
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Table 5. Results from Planck data on two different sky masks, using Gaussian NNs, SRoll2-retrained NN models, and the empirical
C`-based likelihood presented in Pagano et al. (2020).

Predictions on Planck SRoll2 data
143 + 100 GHz 143 + 100 GHz 143 × 100 GHz

Gaussian training SRoll2 retraining C` likelihood

fsky τNN σ(τNN) τNN σ(τNN) τ σ(τ)
50% 0.0588 0.0063 0.0579 0.0082 0.0566 0.0062
60% 0.0593 0.0059 0.0583 0.0078 0.0577 0.0054

Notes. The NN results are averaged over 100 models, and σ(τNN) is computed from 10 000 simulations with input τ = 0.058.

6. Conclusions

In this paper, we present the first cosmological parameter infer-
ence on Planck’s CMB polarization maps that is performed
entirely by neural networks. We estimated the optical depth
to reionization, τ, from the SRoll2 low resolution polariza-
tion maps of Planck-HFI at 100 and 143 GHz. These maps
are known to contain a significant level of residual system-
atic effects at large angular scales that, if ignored, would bias
cosmological results. These spurious signals are non-Gaussian
and hard to model in an analytical way. For this reason, in
the literature (P2020), the estimation of τ from these maps is
obtained by sampling an empirical EE cross-spectrum likeli-
hood (Planck Collaboration V 2020; Gerbino et al. 2020), built
from a set of realistic SRoll2 simulations (Delouis et al. 2019).

In this work, we approached this problem through NN-based
inference applied directly on the map domain. One of the bene-
fits of this method is that it does not require an analytical model
of the data but, instead, relies solely on simulations to train a
regression model. In particular, we used the NNhealpix algo-
rithm to build our NN models, allowing the application of con-
volutional layers on the sphere. We considered several setups
to train and validate CNNs on multiple sets of simulations,
before applying them to Planck data. We adopted the moments
loss function (Jeffrey & Wandelt 2020) to learn the mean and
standard deviation of the marginal posterior on τ inferred from
Stokes Q and U maps pixelized on a grid at Nside = 16 (∼4◦). To
find the best training method, we started from simulations of a
single frequency channel of CMB with coadded Gaussian corre-
lated noise and, step by step, moved to more complex setups that
involved two frequency channels containing CMB, noise, and
systematic effects. We compared the results obtained with NNs
with the ones from a standard Bayesian method that applies the
HL likelihood to EE cross-spectra. Our main results and conclu-
sions from the analysis applied to simulations are the following:
1. When trained and applied to Gaussian simulations, the NN

models are able to retrieve unbiased values of τ directly
from maps. Additionally, by using the moments loss function
reported in Eq. (6), the models can also learn and return an
error estimate that is consistent with the spread of the best-fit
values on the test set.

2. When trained using maps from two frequency channels that
share the same cosmological signal, the NNs are able to
effectively combine the information from both maps. This
leads to improved accuracy in the τ estimates and smaller
uncertainties. This ability to combine information from dif-
ferent channels is a key advantage of the NN approach as, in
the future, it would allow for a straightforward combination
of all available data sets without the need for a joint model,
thus reducing the impact of noise and systematics.

3. A comparison of the NN estimates with the ones obtained
from the HL cross-spectrum method applied to Gaussian
simulations shows that the NN approach leads to higher
uncertainties by about 20%. This implies that the NN esti-
mator, although unbiased, does not reach the minimum
variance. In order to further improve the performance of the
estimator, future work should focus on optimizing the spher-
ical convolution algorithm, the model architecture, and the
training procedure. This will help to minimize the uncertain-
ties and reach the best possible performance.

4. The application of the Gaussian two-channel model to the
SRoll2 simulations, which include systematic effects, leads
to inaccurate estimates on τ, as does the use of the HL likeli-
hood. Although expected, this observed bias is much smaller
(nearly unbiased for τ ∼ 0.06) than that seen for the single-
channel model, demonstrating that the neural network is able
to identify common features in the maps, efficiently ignoring
the uncorrelated signal between different channels.

5. To recover fully unbiased results on SRoll2 maps, as a pre-
requisite to apply our NN model to Planck data, we needed to
train NNs on maps that incorporate instrumental systematic
effects. Due to the limited number of available SRoll2 sim-
ulations, we adopted a minimal retraining approach, building
on the good results already obtained with the Gaussian mod-
els. This approach helps to minimize the issue of overfitting,
but it also leads to slightly larger errors in the recovered τ
values.

6. In more complex scenarios, when we applied the NN models
to the SRoll2maps, we found that the error estimate learned
by the NN, σNN(τ), underestimated the spread evaluated on
the empirical distribution of the test maps, σ(τNN). This sug-
gests that the NN model did not capture the full range of
uncertainty in the data. To overcome this issue, we proceeded
by evaluating the final error on τ through simulations, by tak-
ing the ensemble average of 100 NN models. This helped to
reduce the impact of the epistemic uncertainty caused by the
intrinsic stochasticity of the NN estimator.

After evaluating and validating the performance of the NNs on
simulations, we applied our trained models to Planck SRoll2
maps at 100 and 143 GHz. For the minimally retrained model,
which is the one that leads to fully unbiased results on the
SRoll2 simulations, we obtain τNN = 0.0579 ± 0.0082 on our
fiducial fsky = 0.5 mask. This value is in very good agreement
with the one obtained from the empirical likelihood based on
cross power spectra reported in P2020, which relies on the same
set of simulations. We consider this a remarkable result of our
work, given the fact that the two estimators are intrinsically dif-
ferent. However, we note that our final uncertainty on the τNN
estimate, which we evaluated from simulations and the ensemble
average of 100 NN models, is about 30% larger than the one
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obtained in P2020. This is because our NN estimator does not
reach minimum variance and, moreover, we could rely only on a
limited number of SRoll2 simulations to inform the NN about
systematic effects. The minimal retraining approach allows us to
achieve unbiased results, but at the cost of an increased variance.

An effective robustness test against systematics-induced
“unknown unknowns” is to predict τ from SRoll2 simulations
using the Gaussian network (as described in Sect. 4.1), which
can be considered agnostic to the strong non-Gaussian map fea-
tures characteristic for SRoll2 maps. Given its good perfor-
mance on SRoll2 simulations for τ ∼ 0.06, we applied the
Gaussian model to the Planck data. In this second case we obtain
τNN = 0.0588 ± 0.0063, in agreement with the estimate reported
in the literature, and with a similar level of uncertainty.

As an additional robustness test of the NN approach, we
considered a second mask that retains a larger sky fraction of
fsky = 0.6 and find consistent results. The summary of our results
is reported in Table 5 and Fig. 10, showing full stability of the
retrieved τNN estimations.

Concluding, in this work we present a first thorough appli-
cation of NN-based inference to real CMB maps. It is impor-
tant to stress that obtaining reliable results on real data required
a significant effort to validate and test our models on different
setups and to develop training strategies that can effectively cope
with systematic effects. This highlights the fact that NN mod-
els developed to perform well on simplified simulations cannot
always be straightforwardly applied to real data and need careful
consideration of the training and validation procedures. Nonethe-
less, the consistent and robust results we obtain demonstrate that
NNs represent a promising tool that could complement standard
statistical data analysis techniques for CMB observations, espe-
cially in cases where the Gaussian CMB signal is contaminated
by spurious effects that cannot be analytically described in a like-
lihood model. This is particularly relevant for the ongoing search
for primordial gravitational waves, constrained by large-scale B-
modes which are targeted by a number of near-future experiments
such as the Simons Observatory (Ade et al. 2019), LiteBIRD
(LiteBIRD Collaboration 2022) and CMB-S4 (Abazajian et al.
2019). However, additional optimization and validation of this
approach must be developed before tackling this challenge.
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