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A B S T R A C T   

In single-degree-of-freedom (single-DOF) mechanisms, the location of the instantaneous screw 
axes (ISAs) of the relative motions between any two links depends only on the mechanism 
configuration. In the literature, this property together with the Aronhold-Kennedy (AK) theorem 
was exploited to devise geometric and analytic techniques that determine ISAs in planar mech-
anisms, where the ISAs are located by the instant centers (ICs). Despite the fact that an extended 
Aronhold-Kennedy (EAK) theorem has been demonstrated for spatial mechanisms, too, since 
1959, the spatial counterpart of these techniques has not been proposed, yet. Relating ISA lo-
cations to the mechanism configuration is important during the mechanism design and provides a 
deeper comprehension of the mechanism motion by disclosing the role each link plays. Here, a 
geometric and analytic technique based on the EAK theorem is presented for the ISA determi-
nation in single-DOF spatial mechanisms. The proposed method is indeed the extension to spatial 
mechanisms of those techniques used for the IC determination in planar mechanisms. The 
effectiveness of the proposed technique is also illustrated through two relevant case studies.   

1. Introduction 

The vast majority of single-DOF mechanisms have time-independent (scleronomic) constraints that are either holonomic con-
straints or non-holonomic constraints whose dependence on motion-variables’ rates is linear (i.e., they are first-order non-holonomic 
constraints) [1]. If a mechanism has only one DOF, these types of scleronomic constraints make the ratios between any two 
motion-variables’ rates, named velocity (or influence) coefficients (VCs), depend only on the mechanism configuration. In addition, 
the analytic/geometric expression of a VC only depends on the instantaneous screw axes (ISAs) of three relative motions, one between 
the two links the two motion variables refer to, and the remaining two between either of these two links and a third link of the 
mechanism, which usually is chosen coincident with the mechanism frame. As a consequence, the ISA locations only depend on the 
mechanism configuration in single-DOF mechanisms with these types of scleronomic constraints. Hereafter, for the sake of conciseness, 
the phrase “single-DOF mechanism” will refer to a single-DOF mechanism with these types of scleronomic constraints. 

Since the ISAs pertain to the links’ velocity fields, expressing the constraints between two links, say links i and j (see Fig. 1), joined 
by a kinematic pair, through geometric conditions on the ISA, hereafter named ISAji, of the relative motion between links j and i is 
possible both for holonomic and first-order non-holonomic constraints. Therefore, in single-DOF mechanisms, a fully geometric 
analysis that relates the ISA locations to the mechanism configuration is always possible. Such a geometric approach is relevant during 
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the mechanism design. 
For planar single-DOF mechanisms where the ISAs are located by the instant centers (ICs), the demonstration [2,3] of the 

Aronhold-Kennedy (AK) theorem allowed the proposition of geometric and analytic techniques [4–10] that determine the IC positions 
by taking into account only the mechanism configuration. For spatial single-DOF mechanisms, an extended Aronhold-Kennedy (EAK) 
theorem1 has been demonstrated since 1959 [11] and better detailed in the next years [12–17]. Nevertheless, in the literature, the 
proposed general techniques for the ISA determination [18,19,20] in spatial single-DOF mechanisms pass through the velocity analysis 
solution, thus loosing the advantages of a purely geometric approach, and those geometric techniques conceived for planar mecha-
nisms have not been extended to the spatial case yet, even though some particular cases [21–25] have been geometrically analyzed. 

In particular, Suh [18] differentiated the matrix relationship between homogeneous coordinates of points and introduced the 
“instant pitch” to obtain what he called “velocity matrix of instant pitch”, which contains the coordinates of one ISA-line point, the 
components of the ISA-line’s unit-vector and the “instant pitch” in quadratic expressions appearing in the entries of this matrix; then, 
he introduced such matrix type in the velocity analysis of the relative motion between two rigid bodies connected by particular binary 
links to obtain standard blocks to assemble according to the topology of the mechanism to analyze. In the analysis of a mechanism, this 
procedure must be repeated for each relative motion, whose ISA must be determined, and, anyway, it is not able to find both the 
relationship among the computed ISAs and the relationship between the ISAs and the mechanism’s geometric constants. 

In [19], Valderrama-Rodriguez et al. showed that the EAK theorem is basically the application of the Killing and Klein forms to the 
equation that relates the velocity states of three bodies regardless if they are free to move in the space or they form part of a kinematic 
chain. Then, they exploited this result to conceive a technique for determining ISAs that writes the screw associated to the sought-after 
ISA as a linear combination of the screws corresponding to the kinematic pairs of the kinematic chains that simultaneously connect the 
two links, whose relative motion is associated to the sought-after ISA, and, successively, solves the resulting system of equations by 
using the orthogonal annihilators with respect to the Killing and the Klein forms of the subspaces generated by the set of screws 
appearing in the written linear combinations. Since such linear combinations coincide with the ones that are usually written for the 
velocity analysis of a mechanism considered as a combination of simultaneous connections between two rigid bodies, their technique 
can be considered the screw-based version of the above-commented matrix-based technique presented by Suh in [18], with which it 
shares the above-highlighted drawbacks. Later the same authors, in [20], presented another technique that, firstly, writes the 
velocity-analysis equations as loop equations and solve them, and, then, uses the obtained results to compute the sought-after ISA by 
means of one of the linear combinations of screws used in their previous technique. This new technique is more direct of their previous 
one, but still keeps the above-highlighted drawbacks. 

In this paper, firstly, the demonstration of the EAK theorem is revisited to reformulate the analytic relationships that accompany the 
geometric condition stated therein and a corollary of the EAK theorem is added. Secondly, the analytic and geometric conditions on the 
ISAji due to each of the possible kinematic pairs present in spatial mechanisms are reminded/deduced. Then, all these tools are 
combined into a general geometric and analytic procedure for the determination of all the ISAs in single-DOF spatial mechanisms. 
Finally, the proposed procedure is applied to two relevant case studies. The presented procedure is the spatial counterpart of the one 
used for the IC determination in single-DOF planar mechanisms. As far as this author is aware, even though the background concepts 
involved in the formulation of the proposed approach are known, their combination into a self-standing procedure for the ISA 
determination is novel. 

The paper is organized as follows. Section 2 revisits the EAK theorem, states/proves the new corollary, reminds the geometric 
conditions on the ISAji due to the kinematic pairs, and presents the novel procedure for the ISA determination. Section 3 illustrates the 
application of the proposed procedure to two relevant case studies. Then, Section 4 discusses the results, and Section 5 draws the 
conclusions. 

Fig. 1. System of two bodies whose relative motion is a helical motion: notations.  

1 It is worth stressing that, in the literature, the EAK theorem is referred to with a number of different names such as “Three-axes theorem”, 
“Spatial Aronhold-Kennedy theorem”, “Dual of the Aronhold-Kennedy theorem”, “3D Kennedy theorem”, etc. 
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2. Materials and methods 

In a set of m rigid bodies (links), the relative motions between link pairs2 are m×(m–1)/2 and the instantaneous screw axes, ISAji 
(≡ISAij) with j,i∈{1,…,m| (j∕=i)&(j>i)}, that identify their instantaneous status are as many. Nevertheless, if (m–1) of such relative 
motions are known, the remaining ones can be determined by means of the relative motion theorems [26], that is, at most (m–1) 
relative motions are independent in the worst case, which is the one where the m links are not connected through kinematic 
pairs/chains.3 

Hereafter, with reference to the motion of link j with respect to link i (Fig. 1), the ISAji will be geometrically identified by the 
ordered couple (Aji, uji) where Aji is a point belonging to ISAji and uji is a unit vector parallel to ISAji; the angular velocity, ωji, will be 
put equal to ωjiuji and will be assigned through its signed magnitude ωji. In addition, if ωji∕=0 (i.e., the relative motion is a helical 
motion), the velocity,4 ivAji| j, of point Aji (∈ISAji) will be put equal to ωjipjiuji and assigned through the pitch pji of the helical motion; 
otherwise (i.e., if ωji=0), it will be put equal to νjiτji where νji is the signed magnitude of the translation velocity and τji is the unit vector 
that gives the positive direction of translation.5 

With these notations, the following relationships hold:  

(a) if ωji∕=0, then Aji=Aij, uji=uij, pji=pij and ωji=− ωij;  
(b) if ωji=0, then τji=τij and νji=− νij. 

Moreover, the instantaneous relative motion between links j and i is fully defined when, in the case ωji∕=0, ISAji (i.e., the ordered 
couple (Aji, uji)), pji and ωji or, in the case ωji=0, νji and τji are known. 

2.1. The extended Aronhold-Kennedy theorem and its implications 

In a system of three bodies, say links i, j, and k (Fig. 2), the possible relative motions are 3 (=3×(3–1)/2) and the corresponding ISAs 
are ISAji, ISAjk and ISAik, but, when only 2 (=(3–1)) of such motions are known, the remaining third is uniquely determined. For this 
system, the extended Aronhold-Kennedy (EAK) theorem states that: 

Statement 1. (EAK theorem): “In a system of three bodies the three ISAs of the three possible relative motions share a common 
normal.” 

A mnemonic rule to check the applicability of the EAK theorem is the following one: 

Rule 1. “The EAK theorem is applicable to two known ISAs if the indices reported in the right subscript of the two known ISAs share a 
common link-index.”6 

In the system of three bodies shown in Fig. 2, if the two instantaneous relative motions ji and ik7 are known, the remaining third, 
that is, the motion jk, is uniquely determined through the relative motion theorems [26]. In addition, since two lines always share a 
common normal, which is unique if the two lines are skew, the determination of the jk motion through the relative motion theorem and 
the known data of the ji and ik motions is able to check the correctness of the EAK theorem and to provide the analytic relationships 
that relates the three motions. This determination is illustrated below together with a corollary that immediately follows. 

The two known motions ji and ik may only be8 

1st case (Hel-Hel): two helical motions (Fig. 3(a)), which, with our notations, are assigned by giving (Aji, uji) (i.e., the ISAji), pji, and 
ωji for the ji motion and (Aik, uik) (i.e., the ISAik), pik, and ωik for the ik motion; 

2nd case (Hel-Tra): one helical motion and one translational motion (Fig. 3(b)), which, with our notations, if the ji motion is the 
helical one, are assigned by giving (Aji, uji) (i.e., the ISAji), pji, and ωji for the ji motion and νik and τik for the ik motion; 

3rd case (Tra-Tra): two translational motions, which, with our notations, are assigned by giving νji and τji for the ji motion and νik 
and τik for the ik motion. 

In the Tra-Tra case, the EAK theorem demonstration is trivial. Indeed, the relative motion theorems immediately bring one to 
conclude that the third unknown motion (i.e., the jk motion) must be a translation with translation velocity vjkτjk = vjiτji + vikτik, which 

2 Here, for a generic link pair constituted by links i and j, the motion of link i with respect to link j and its inverse motion (i.e., the motion of link j 
with respect to link i) are considered the same relative motion since the velocity fields associated to the two motions are immediately obtained from 
one another through a change of sign.  

3 It is worth stressing that, if the m links are connected to form a particular mechanism with f degrees of freedom, the number of independent 
relative motions is the minimum value between (m–1) and f.  

4 Hereafter, ivP | j will denote the velocity of point P when the point is fixed to link j and the velocity is measured from link i.  
5 In the case of a translation, the ISAji is the line at infinity (ideal line) that is the geometric locus of the points at infinity of the planes 

perpendicular to the translation direction.  
6 It is worth stressing that, if rule 1 is respected, the elimination of the common link-index leaves the couple of link-indices of the third ISA that 

must be perpendicular to the common normal of the two known ISAs.  
7 Hereafter, for the sake of brevity, the phrase “motion mn” will be used to mean “instantaneous relative motion of link m with respect to link n”  
8 Here, a pure rotation is considered a particular case of helical motion since it is sufficient to put the pitch equal to zero in the formulas deduced 

for a helical motion to obtain the formulas valid for a pure rotation. 
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is parallel to the plane the two known translation velocities (i.e., vjiτji and vikτik) lie on thus proving the EAK theorem.9 

In the Hel-Hel case (Fig. 3(a)), the relative motion theorems yield 

kvP|j =
ivP|j +

kvP|i (1a)  

ωjkujk = ωjiuji + ωikuik (1b) 

Eq. (1b) allows the computation of ωjk and ujk as functions of the data with the following explicit formulas (remind that ωki = − ωik) 

ujk =
ωjiuji + ωikuik

‖ ωjiuji + ωikuik ‖
(2a)  

ωjk = ωji
(
uji ⋅ ujk

)
+ ωik

(
uik ⋅ ujk

)
(2b)  

ωji

ωki
=

uik ⋅
(
ni × ujk

)

uji ⋅
(
ni × ujk

) =
ni ⋅
(
uik × ujk

)

ni ⋅
(
uji × ujk

) (2c)  

where ni≡(uji ×uik)/ ‖ uji ×uik ‖ is the unit vector of the common normal to ISAji and ISAik. Eq. (2a) shows that ISAjk must lie on a plane 
perpendicular to ni; whereas, Eq. (2c) highlights that the VC (ωji/ωki), which is the ratio of the two known signed-magnitudes of 
angular velocities, depends only on the directions of the three ISAs. 

Fig. 2. System of three bodies, denoted i, j, and k: the dash-dot line is the common normal shared by ISAik, ISAji, and ISAjk, the EAK theorem refers 
to, and points Qik, Qji, and Qjk are the intersection of this line with ISAik, ISAji, and ISAjk, respectively. 

Fig. 3. EAK theorem: (a) both the ji and ik motions are helical motions, (b) the ji motion is a helical motion and the ik motion is a trans-
lational motion. 

9 It is worth noting that, in this case, three planes perpendicular to the three translation velocities that share a common point must also share a 
line, which is the common normal, shared by the three ideal lines, that play the role of ISAs in the Tra-Tra case. 
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Moreover, if point10 P of Eq. (1a) is a generic point of the unknown ISAjk and Qji (Qik) is the intersection point of the known ISAji 
(ISAik) with the common normal of ISAji and ISAik, the following relationships hold 

ivP|j = ωji
[
pjiuji +

(
Qji − P

)
× uji

]
; kvP|i = ωik[pikuik +(Qik − P)×uik];

kvP|j = pjkωjkujk (3)  

and the introduction of Eqs. (1b) and (3) into Eq. (1a) transforms Eq. (1a) as follows: 

pjk
(
ωjiuji +ωikuik

)
= ωji

[
pjiuji +

(
Qji − P

)
×uji

]
+ ωik[pikuik +(Qik − P)×uik] (4)  

where the coordinates of points Qji and Qik can be computed as reported in Appendix A (see formulas (A.4)); whereas pjk and the 
coordinates of point P are unknowns. 

Since point P is any point of ISAjk, if, without losing generality, point P is assumed coincident with the intersection, P* (see Fig. 3 
(a)), of ISAjk with the plane, (Qji, uji, ni), passing through point Qji and parallel to the mutually orthogonal unit vectors uji and ni, the 
following relationships can be written 

{ (
P − Qji

)
≡
(
P∗ − Qji

)
= xuji + yni

(P − Qik) ≡ (P∗ − Qik) = xuji + (y − h)ni

(5)  

where x and y are two scalar unknowns that locate point P* on the plane (Qji, uji, ni). The introduction of formulas (5) into Eq. (4) gives 
the following system of three equations in three unknowns (i.e., pjk, x, and y): 

x ‖ uji ×uik ‖ ni + y (ni × ai) + pjkai = bi (6)  

with 

ai≡uik −

(
ωji

ωki

)

uji; bi≡pikuik −

(
ωji

ωki

)

pjiuji + h(ni × uik) (7) 

The dot products of Eq. (6) by ni, by ai, and by (ni×ai), after some rearrangement, yield the following explicit expressions of the 
unknowns: 

x = 0 (8a)  

pjk =
pik −

(
ωji
ωki

)[(
pji + pik

)(
uji ⋅ uik

)
− h ‖ uji × uik ‖

]
+
(

ωji
ωki

)2
pji

1 − 2
(

ωji
ωki

)(
uji ⋅ uik

)
+
(

ωji
ωki

)2 =
pik −

(
ωji
ωki

)[(
pji + pik

)
cosαji,ik − hsinαji,ik

]
+
(

ωji
ωki

)2
pji

1 − 2
(

ωji
ωki

)
cosαji,ik +

(
ωji
ωki

)2 (8b)  

y =

(
ωji
ωki

)(
pji − pik

)
‖ uji × uik ‖ +h

[
1 −

(
ωji
ωki

)(
uji ⋅ uik

)]

1 − 2
(

ωji
ωki

)(
uji ⋅ uik

)
+
(

ωji
ωki

)2 =

(
ωji
ωki

)(
pji − pik

)
sinαji,ik + h

[
1 −

(
ωji
ωki

)
cosαji,ik

]

1 − 2
(

ωji
ωki

)
cosαji,ik +

(
ωji
ωki

)2 (8c)  

where the relationships (see Fig. 3(a)) cosαji,ik = uji ⋅ uik and sinαji,ik =‖ uji ×uik ‖ have been used to deduce the last expressions of Eqs. 
(8b) and (8c). Eqs. (2a) and (8a) prove that ISAjk must be perpendicular to ni and must intersect the line (Qji, ni), that is, they prove the 
EAK theorem in the Hel-Hel case. After having demonstrated that ni is perpendicular to the three unit vectors uji, uik, and ujk, the VC 
expression given by formula (2c) can be completed and geometrically interpreted as follows: 

ωji

ωki
=

uik ⋅
(
ni × ujk

)

uji ⋅
(
ni × ujk

) =
ni ⋅
(
uik × ujk

)

ni ⋅
(
uji × ujk

) =
sinαik,jk

sinαji,jk
(9)  

where αji,jk (αik,jk) is the oriented angle, counterclockwise with respect to ni, that goes from uji (uik) to ujk. Hereafter, the notation αqr,qt 
(see Fig. 3(a)) will denote the oriented angle, counterclockwise with respect to nq, that goes from uqr (i.e., ISAqr) to uqt (i.e., ISAqt) 
where nq is the unit vector of the common normal to ISAqr, ISAqt, and ISArt. 

In the Hel-Tra case (Fig. 3(a)), the relative motion theorems (see Eqs. (1)) yield (ωik = 0; kvP|i = vikτik) 

kvP|j =
ivP|j + vikτik (10a)  

ωjkujk = ωjiuji ⇒
{

ωjk = ωji
ujk = uji

(10b) 

Eq. (10b) shows that, in this case, there are two parallel ISAs (i.e., ISAji and ISAjk); as a consequence, the common normal is not 

10 Hereafter, for a point, a capital letter in plain text (e.g., P) refers to the point as a geometric entity; whereas, the same capital letter in italic (e.g., 
P) refers to the position vector that locates the point in a fixed reference system. 
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uniquely determined. Nevertheless, its direction, given through the unit vector ni, is uniquely determined since the common normal to 
ISAji and ISAik, which, in this case, is the line at infinity of the planes perpendicular to τik (i.e., to the translation direction) must be an 
intersection between one of the planes perpendicular to τik and one of the planes perpendicular to uji (i.e., to ISAji), that is, the 
following relationship holds: 

ni =
uji × τik

‖ uji × τik ‖
(11) 

If point P of Eq. (10a) is a generic point of the unknown ISAjk and Qji is a point of the known ISAji the following relationships hold 

ivP|j = ωji
[
pjiuji +

(
Qji − P

)
× uji

]
; kvP|j = pjkωjkujk (12)  

and the introduction of Eqs. (10b) and (12) into Eq. (10a) transforms Eq. (10a) as follows: 

pjkωjiuji = ωji
[
pjiuji +

(
Qji − P

)
× uji

]
+ vikτik (13)  

where pjk and the coordinates of point P are unknowns. 
Since point P is any point of ISAjk, if, without losing generality, point P is assumed coincident with the intersection, P* (see Fig. 3 

(b)), of ISAjk with the plane, (Qji, ni, uji×ni), passing through point Qji and parallel to the mutually orthogonal unit vectors ni and 
uji×ni, the following relationships can be written 

(
P − Qji

)
≡
(
P∗ − Qji

)
= yni + z

(
uji ×ni

)
(14)  

where y and z are two scalar unknowns that locate point P* on the plane (Qji, ni, uji×ni). The introduction of formula (14) into Eq. (13) 
gives the following system of three equations in three unknowns (i.e., pjk, y, and z): 

pjkuji + y
(
ni ×uji

)
+ z ni = pjiuji +

vik

ωji
τik (15) 

Eventually, the dot products of Eq. (15) by ni, by uji and by uji×ni yield the following explicit expressions of the unknowns as 
functions of the data: 

z = 0 (16a)  

pjk = pji +
vik

ωji

(
τik ⋅ uji

)
(16b)  

y =
vik

ωji
τik ⋅

(
ni ×uji

)
(16c) 

Eqs. (16a) and (10b) highlight that the ISAjk must intersect (see Eq. (16a)) the line (Qji, ni) and be perpendicular (see Eq. (10b)) to 
the same line, which plays the role of common normal to the three ISAs. Such a result proves the EAK theorem in the Hel-Tra case. 

Eq. (16c) can be rewritten (see Eq. (11) and Fig. 3(b)) as follows (vik = − vki): 

vki

ωji
=

(
Ajk − Aji

)
⋅
(
uji × τik

)

τik ⋅
[
uji ×

(
uji × τik

)] =

(
Ajk − Aji

)
⋅
(
uji × τik

)

(
uji ⋅ τik

)2
− 1

= −

(
Ajk − Aji

)
⋅
(
uji × τik

)

sin2αji,ik
(17)  

where the relationship uji × (uji ×τik) = (uji ⋅ τik)uji − τik ⇒ τik ⋅ [uji ×(uji ×τik)] = (uji ⋅ τik)
2
− 1 = − sin2αji,ik has been considered. Eq. 

(17) shows that the explicit expression of the VC (vki /ωji), (i.e., the ratio of the two known signed-magnitudes of the translation and 
angular velocities) depends only on the geometric data that identifies the three ISAs (i.e., (Aji, uji), (Ajk, ujk=uji), and τik) even in the 
case that one ISA is an ideal line. Moreover, if Eq. (17) was applied to the three links i, j, and r with r∕=k, where the relative motion ir is a 
translation with translation velocity rvP|i = virτir, it would yield the expression of the VC (vri /ωji) that differs from the one of the VC (vki 
/ωji) (i.e., Eq. (17)) only for the replacement of k with r; thus, the ratio (vki /ωji)/(vri /ωji), which is equal to the new VC (vki /vri), is 

vki

vri
=

(
Ajk − Aji

)
⋅
(
uji × τik

)[(
uji ⋅ τir

)2
− 1
]

(
Ajr − Aji

)
⋅
(
uji × τir

)[(
uji ⋅ τik

)2
− 1
] =

(
Ajk − Aji

)
⋅
(
uji × τik

)
sin2αji,ir

(
Ajr − Aji

)
⋅
(
uji × τir

)
sin2αji,ik

(18)  

which is the explicit expression of the VC that relates the signed magnitudes of two relative translations in a set of four links (i.e., links i, 
j, k, and r). It is worth noting that, since link j can be any link, choosing link j so that ISAji (i.e., (Aji, uji)) is neither parallel to τik nor 
parallel to τir is always possible. 

The EAK theorem allows the demonstration of the following corollary: 

Statement 2. (four-axes (FA) theorem): “Let i, j, k, and r be four bodies, if the ISAs of the jk, ik, jr, and ir relative motions are four 
distinct and known lines, then the ISA of the ji (kr) relative motion is the common normal to the following two lines: (i) the common 
normal to ISAjk and ISAik (to ISAjk and ISAjr), and (ii) the common normal to ISAjr and ISAir (to ISAik and ISAir).” 
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Proof. Applying the EAK theorem to the three bodies i, j, and k (j, k, and r) brings one to conclude that ISAji (ISAkr) must be 
perpendicular to the common normal to ISAjk and ISAik (to ISAjk and ISAjr), and applying the EAK theorem to the three bodies i, j, and r 
(i, k, and r) brings one to conclude that ISAji (ISAkr) must also be perpendicular to the common normal to ISAjr and ISAir (to ISAik and 
ISAir). Q.E.D. 

A mnemonic rule to check the applicability of the FA theorem is the following one: 

Rule 2. “The FA theorem is applicable to four known ISAs if the indices reported in the right subscript of the four known ISAs (i.e., 
{jk, ik, jr, ir}) can be grouped into two pairs that share one link-index whose elimination leaves the same couple of link-indices in both 
the pairs no matter how they are ordered.” 

From an analytic point of view, the FA theorem can be exploited as follows. Fig. 4 shows the four known ISAs and the geometric 
determination of ISAji. With reference to Fig. 4, the following relationships hold: 

nk =
ujk × uik

‖ ujk × uik ‖
; nr =

ujr × uir

‖ ujr × uir ‖
; (19a)  

Qji = Qjk + yQji nk; Q′

ji = Qjr + yQ′
ji
nr; (19b)  

uji =
nr × nk

‖ nr × nk ‖
;
(

Qji − Q′

ji

)
= hjiuji; (19c)  

where hji, yQji , and yQ’ji are three scalar unknowns that must be determined; whereas, Qjk (Qjr) has been determined by using the 
formulas reported in Appendix A with the data that locate ISAjk and ISAik (ISAjr and ISAir), that is, (Ajk, ujk) and (Aik, uik) (that is, (Ajr, 
ujr) and (Air, uir)). The introduction of formulas (19b) into the second Eq. (19c) yields the following system of three equations in three 
unknowns (i.e., hji, yQji , and yQ′

ji
): 

yQji nk − yQ’ji nr − hji
nr × nk

‖ nr × nk‖
=
(
Qjr − Qjk

)
(20)  

whose solution gives the following explicit expressions of the three unknowns 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hji = −
(
Qjr − Qjk

)
⋅

nr × nk

‖ nr × nk ‖

yQji =

(
Qjr − Qjk

)
⋅ [nr × (nr × nk)]

nk ⋅ [nr × (nr × nk)]

yQ′
ji
= −

(
Qjr − Qjk

)
⋅ [nk × (nr × nk)]

nr ⋅ [nk × (nr × nk)]

(21) 

The above geometric/analytic discussion refers to the case in which nk ∕= ±nr (i.e., the two lines (Qjk, nk) and (Qjr, nr) are skew) and 
the two lines (Qjk, nk) and (Qjr, nr) are uniquely determined from the four known ISAs (i.e., from (Ajk, ujk), (Aik, uik), (Ajr, ujr) and (Air, 
uir)). The discussion of the remaining possible cases follows. 

With reference to the system of the four links i, j, k and r (i.e. the one the FA theorem refers to), the relative motion theorem bring 
one to write (see Fig. 4 for the notations) 

ωjiuji = ωjkujk + ωkiuik
ωjiuji = ωjrujr + ωriuir

}

⇒ ωjiuji = ωjkujk + ωkiuik = ωjrujr + ωriuir (22a)  

Fig. 4. Determination of ISAji through the FA theorem in the case of skew lines.  
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ivQji |j =
kvQji |j +

ivQji |k
ivQji |j =

ivQji
′
|j =

rvQji
′
|j +

ivQji
′
|r

}

⇒

⎡

⎣
pjiωjiuji = ωjk

(
pjkujk − yQji nk × ujk

)
+ ωki

[
pikuik −

(
yQji − hk

)
nk × uik

]
=

= ωjr

(
pjrujr − yQji

′ nr × ujr

)
+ ωri

[
piruir −

(
yQji

′ − hr

)
nr × uir

] (22b) 

The last equality of Eq. (22a) constitutes a linear system of three equations that are linearly independent and compatible if and only 
if the four unit vectors ujk, uik, ujr, and uir are not coplanar (i.e., if the case shown in Fig. 4 occurs). In this case, if one out of the four 
signed magnitudes ωjk, ωik, ωjr, and ωir is assigned the remaining three are uniquely determined and, as a consequence, ωjiuji is 
determined, too, that is, the instantaneous motion has only one DOF. Differently, if the four unit vectors ujk, uik, ujr, and uir are 
coplanar with ujk not parallel to uik then (see last equality of Eq. (22a)) also ujr must not be parallel to uir (i.e., the case nk = ±nr with 
the two lines (Qjk, nk) and (Qjr, nr) uniquely determined occurs) and the system is singular since it has only two independent equations; 
therefore, in this second case, the instantaneous motion has two DOF (i.e., two signed magnitudes that share one common index, that 
is, k or r, must be assigned to determine the remaining ones and ωjiuji). Accordingly, in a single-DOF mechanism, such a condition may 
occur only at a singular configuration of the mechanism. 

Moreover, if ujk is parallel to uik and ujr is parallel to uir, but ujk is not parallel to ujr (i.e., the case nk ∕= ±nr with the two lines (Qjk, 
nk) and (Qjr, nr) not-uniquely determined occurs) then the last equality of Eq. (22a) will be satisfied if and only if ωji is equal to 0, that 
is, if and only if the ji motion is a translation. In this case, Fig. 3(b) and the above-reported analysis of the Hel-Tra case bring one to 
conclude that the translation direction of the ji motion must be perpendicular both to nk and nr, that is, it must be parallel to nk × nr, 
which yields τji = nk × nr/ ‖ nk × nr ‖. 

Eventually, if ujk, uik, ujr, and uir are all parallel, the lines (Qjk, nk) and (Qjr, nr) are always undetermined. In this case, if the four 
known and parallel ISAs are arranged so that ISAjk and ISAik lie on a plane not-parallel to the plane which ISAjr and ISAik lie on, then 
nk ∕= ±nr and ISAji must be the intersection line between these two not-parallel planes. Otherwise, if the four known and parallel ISAs 
are arranged so that ISAjk and ISAik lie on a plane different-from and parallel-to the plane which ISAjr and ISAik lie on, then nk = ±nr 
and ISAji must be the line at infinity these two parallel planes shares, that is, the ji relative motion must be a translation with translation 
direction perpendicular to these two parallel planes, which yields τji = nk × ujk/ ‖nk × ujk‖≡ ±nr × ujr/ ‖ nr × ujr ‖. Finally, if the four 
known and parallel ISAs are arranged so that they all lie on the same plane, the ISAji motion is undetermined since this geometric 
condition shares the properties of both the previously-analyzed two cases (i.e., any line parallel to the ISAs (even the line at infinity) 
that lies on the plane of the four known ISAs can be seen as an intersection line of two coincident planes) and the resulting instan-
taneous motion has more than one DOF. Accordingly, in a single-DOF mechanism, this condition may occur only at a singular 
configuration of the mechanism. 

The fact that, out of singular configurations, the ISAji can always be determined through the FA theorem makes the FA theorem a 
simple geometric and analytic tool for the direct determination of unknown ISAs (secondary ISAs) in a spatial single-DOF mechanism. 
As a consequence, the FA theorem provides the spatial counterpart of the rule used to draw segments that connect link indices in circle 
diagrams [27,28] when secondary ICs must be determined in single-DOF planar mechanisms; thus, it extends the use of circle diagrams 
(and/or their alternatives) to the ISA determination in spatial single-DOF mechanisms. 

2.2. Constraints on the ISAs due to the kinematic pairs 

The kinematic pairs that can be encountered in a spatial mechanism are only ten, six of which are lower pairs and the remaining 
four are higher pairs. The lower pairs are (see Fig. 5): revolute (R) pair, prismatic (P) pair, helical (H) pair, cylindrical (C) pair, 

Fig. 5. Lower kinematic pairs (reproduced from Ref. [29]).  
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spherical (S) pair, and planar (E) pair. The higher pairs are: rolling point-contact (RP), rolling line-contact (RL), sliding point-contact 
(SP), and sliding line-contact (SL). 

The ji relative motion is uniquely determined when the following data are known: (Aji, uji) (i.e., the ISAji), pji, and ωji. Such data 
constitute a set of six scalar parameters since (Aji, uji) contains only four independent parameters (remind that Aji is any point of the 
line and uji is a unit vector). If links j and i are connected through one of the ten possible kinematic pairs, a number of these parameters, 
which is equal to (6–f) where f is the DOF of the connecting pair, are uniquely determined. In particular, the known/unknown data are 
as follows. 

2.2.1. Lower pairs  

– Revolute (R) pair (1 DOF): ISAji (i.e., (Aji, uji)) is known since it coincides with the R-pair axis, pji=0, and ωji is the unknown joint 
rate;  

– Prismatic (P) pair (1 DOF): if τji is the unit vector that gives the (positive) translation direction imposed by the P-pair, then ISAji is 
the line at infinity common to all the planes that are perpendicular to τji, pji= ∞, and νji is the unknown joint rate;  

– Helical (H) pair (1 DOF): ISAji (i.e., (Aji, uji)) is known since it coincides with the H-pair axis, pji is a known constant since it is equal 
to the H-pair pitch, and ωji is the unknown joint rate;  

– Cylindrical (C) pair (2 DOF): ISAji (i.e., (Aji, uji)) is known since it coincides with the C-pair axis; whereas pji and ωji are both 
unknown;  

– Spherical (S) pair (3 DOF): the S-pair’s center is a point of ISAji (i.e., Aji is known), uji is unknown, pji=0, and ωji is unknown;  
– Planar (E) pair (3 DOF): ISAji ‘s direction is perpendicular to the motion plane (i.e., uji is known), Aji is unknown, pji=0, and ωji is 

unknown. 

2.2.2. Higher pairs  

– Rolling (RL) contact with a contact line (1 DOF): ISAji (i.e., (Aji, uji)) is known since it coincides with the contact line, pji=0, and ωji is 
unknown;  

– Rolling (RP) contact with a contact point (3 DOF): the contact point is a point of ISAji (i.e., Aji is known), uji is unknown, pji=0, and ωji 
is unknown; 

Fig. 6. Sliding contact between links j and i with a contact line (line (Cji, rji)).  
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– Sliding (SL) contact with a contact line (4 DOF) (Fig. 6): ISAji lies on a plane that is parallel to the contact line and is perpendicular to 
the plane tangent to the two surfaces that touch one another, which implies that Aji is unknown and uji has only one unknown 
component; moreover, pji and ωji are related to one another; 

For the SL pair the relationships among the six parameters that identify the ji relative motion can be deduced as follows. With 
reference to Fig. 6, σj and σi are the two surfaces fixed to links j and i, respectively, that touch one another along the line (Cji, rji), which 
is the contact line; sji is the unit vector perpendicular to (Cji, rji) and lying on the plane tangent both to σj and σi and tji=rji×sji . 

With these notations, (Cji, rji, sji), (Cji, rji, tji), and (Cji, sji, tji) are the tangent plane, the first normal plane, and the second normal 
plane at the contact line, respectively, of the SL-pair. The kinematic conditions, imposed by the SL-pair, are that the sliding velocity 
ivCji |j must lie on the tangent plane (Cji, rji, sji) and that the angular velocity ωji must lie on the first normal plane (Cji, rji, tji). Such 
conditions yield the following analytic relationships: 

ivCji |j ⋅ tji = 0 ⇒ ivCji |j =
ivCji |j

(
rjicosβji + sjisinβji

)
(23a)  

ωji ⋅ sji = 0 ⇒ ωji = ωji
(
rjicosγji + tjisinγji

)
= ωjiuji ⇒ uji = rjicosγji + tjisinγji (23b)  

where γji is the angle (i.e., the unique scalar parameter) that fully identifies the unit vector uji (i.e., the direction of ISAji); whereas, ivCji |j 

and βji are the signed magnitude and the angle, respectively, that identify the sliding velocity ivCji |j in the tangent plane (Cji, rji, sji). Eq. 
(23b) shows that ISAji is parallel to the first normal plane (Cji, rji, tji). Let point P (P*) be the intersection between ISAji and the tangent 
plane (Cji, rji, sji) (and the second normal plane (Cji, sji, tji)), the following relationships hold: 

ivP|j =
ivCji |j + ωji

(
Cji − P

)
× uji (24a)  

ivP|j = pjiωjiuji (24b)  

(
P − Cji

)
= xjirji + yjisji (24c)  

(
P∗ − Cji

)
= yjisji + zjitji(

P∗ − Cji
)
=
(
P − Cji

)
+ μjiuji =

(
xji + μjicosγji

)
rji + yjisji + tjiμjisinγji

}

⇒

⎧
⎪⎨

⎪⎩

μji = −
xji

cosγji

zji = μjisinγji = − xjitanγji

(24d)  

where xji and yji (yji and zji) are two scalar parameters that locate point P (point P*) on the tangent plane (Cji, rji, sji) (on the second 
normal plane (Cji, sji, tji)). The introduction of formulas (23a), (24b) and (24c) into Eq. (24a) yields the following system of three 
equations in the three unknowns pji, xji and yji: 

pjiuji + xjirji × uji + yjisji × uji =

(ivCji |j

ωji

)
(
rjicosβji + sjisinβji

)
(25) 

The dot products of Eq. (25) by uji, (sji × uji)× uji, and (rji ×uji) × uji provide the following explicit expressions of the unknowns 

pji =

(ivCji |j

ωji

)
(
rjicosβji + sjisinβji

)
⋅ uji =

(ivCji |j

ωji

)

cosβji ⋅ cosγji (26a)  

xji =

(ivCji |j

ωji

) (
rjicosβji + sjisinβji

)
⋅
[(

sji × uji
)
× uji

]

(
rji × uji

)
⋅
[(

sji × uji
)
× uji

] = −

(ivCji |j

ωji

) sinβji

sinγji
(26b)  

yji =

(ivCji |j

ωji

) (
rjicosβji + sjisinβji

)
⋅
[(

rji × uji
)
× uji

]

(
sji × uji

)
⋅
[(

rji × uji
)
× uji

] =

(ivCji |j

ωji

)

sinγjicosβji (26c)  

where Eq. (23b) has been used to deduce the last formulas. Moreover, the introduction of the last expression of Eq. (26b) into Eq. (24d) 
yields: 

zji =

(ivCji |j

ωji

) sinβji

cosγji
(27) 

Eq. (26a) is the sought-after relationship between pji and ωji; whereas, Eqs. (26b), 26c), and ((27) locate ISAji through the co-
ordinates of its intersections (P and P*) with the tangent plane (Cji, rji, sji) and with the second normal plane (Cji, sji, tji). Equations (26) 
and (27) show that, if both sinβji = 0 and sinγji = 0, the contact line (Cji, rji) will be ISAji and that, if sinβji ∕= 0 and sinγji = 0, ISAji will lie 
on the first normal plane (Cji, rji, tji) and be parallel to the contact line (Cji, rji). 

- Sliding (SP) contact with a contact point (5 DOF) (Fig. 7): in this case, the angular velocity can assume any value and the velocity of 
the contact point (sliding velocity) cannot have a component along the common normal to the two surfaces that touch each other; 
therefore, the ISA line can have any direction (i.e., any uji is possible) and location in the space (i.e., any Aji is possible); moreover, Aji, 
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uji, and pji are related through a scalar relationship, and ωji is unknown. 
For the SP pair the relationships among the six parameters that identify the ji relative motion can be deduced as follows. With 

reference to Fig. 7, σj and σi are the two surfaces fixed to links j and i, respectively, that touch one another at point Cji; (Cji, rji, sji) with 
rji and sji that are mutually orthogonal unit vectors is the plane tangent both to σj and σi at Cji and tji=rji×sji . Accordingly, (Cji, rji, tji), 
and (Cji, sji, tji) are the first normal plane, and the second normal plane at the contact point, respectively, of the SP-pair. 

The kinematic conditions, imposed by the SP-pair, is that the sliding velocity ivCji |j must lie on the tangent plane (Cji, rji, sji) and that 
there is no limitation to the direction of uji. Such conditions yield the following analytic relationships: 

ivCji |j ⋅ tji = 0 ⇒ ivCji |j =
ivCji |j

(
rjicosβji + sjisinβji

)
(28a)  

ωji = ωji
[(

rjicosγji,2 + sjisinγji,2
)
cosγji,1 + tjisinγji,1

]
= ωjiuji ⇒ uji =

(
rjicosγji,2 + sjisinγji,2

)
cosγji,1 + tjisinγji,1 (28b)  

where, ivCji |j and βji are the signed magnitude and the angle, respectively, that identify the sliding velocity ivCji |j in the tangent plane (Cji, 
rji, sji); whereas, γji,1 and γji,2 are the two angles that uniquely determine the unit vector uji (i.e., the direction of ISAji). Let point P be the 
intersection between ISAji and the tangent plane (Cji, rji, sji), the following relationships hold (Fig. 7): 

ivP|j =
ivCji |j + ωji

(
Cji − P

)
× uji (29a)  

ivP|j = pjiωjiuji (29b)  

(
P − Cji

)
= xjirji + yjisji (29c)  

which are formally similar to Eqs. (24a), (24b), and (24c), but, now, uji has the expression given by Eq. (28b). Analogously, the 
introduction of Eqs. (28a), (29b) and (29c) into Eq. (29a) generates a system of three equations in three unknowns (i.e., pji, xji and yji), 
which is formally similar to Eq. (25), that is, 

pjiuji + xjirji × uji + yjisji × uji =

(ivCji |j

ωji

)
(
rjicosβji + sjisinβji

)
(30)  

whose dot products by uji, (sji × uji)× uji, and (rji ×uji) × uji provide the following explicit expressions of the unknowns computed with 
the new expression (Eq. (28b)) of uji 

Fig. 7. Sliding contact between links j and i with a contact point (point Cji).  
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pji =

(ivCji |j

ωji

)
(
rjicosβji + sjisinβji

)
⋅ uji =

(ivCji |j

ωji

)
(
cosβjicosγji,2 + sinβjisinγji,2

)
cosγji,1 (31a)  

xji =

(ivCji |j

ωji

) (
rjicosβji + sjisinβji

)
⋅
[(

sji × uji
)
× uji

]

(
rji × uji

)
⋅
[(

sji × uji
)
× uji

] =

(ivCji |j

ωji

) cosβjisinγji,2cosγji,2cos2γji,1 − sinβji
(
sin2γji,1 + cos2γji,2cos2γji,1

)

sinγji,1

(31b)  

yji =

(ivCji |j

ωji

) (
rjicosβji + sjisinβji

)
⋅
[(

rji × uji
)
× uji

]

(
sji × uji

)
⋅
[(

rji × uji
)
× uji

] =

(ivCji |j

ωji

) cosβji
(
sin2γji,2cos2γji,1 + sin2γji,1

)
− sinβjicosγji,2sinγji,2cos2γji,1

sinγji,1
(31c) 

Eqs. (31a), (31b), and (31c) are the sought-after relationships. Since both xji and yji go to infinity (see Eqs. (31b) and (31c)) when uji 
(i.e., ISAji) is parallel to the tangent plane (i.e., when sinγji,1 = 0), the computation of the coordinates of the intersection, P*, between 
ISAji and the second normal plane (Cji, sji, tji) is necessary to solve this indeterminacy. Such coordinates are computable as follows 
(Fig. 7): 

(
P∗ − Cji

)
=y∗jisji+zjitji

(
P∗ − Cji

)
=
(
P− Cji

)
+μjiuji=

(
xji+μjicosγji,1cosγji,2

)
rji+

(
yji+μjisinγji,2cosγji,1

)
sji+tjiμjisinγji,1

⎫
⎬

⎭
⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μji=−
xji

cosγji,1cosγji,2

y∗ji=yji − xjitanγji,2

zji=μjisinγji,1=− xji
tanγji,1

cosγji,2

(32)  

where y∗ji and zji are two scalar parameters that locate P* in the second normal plane (Cji, sji, tji). The introduction of formulas (31b) and 
(31c) into Eqs. (32) yields 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y∗ji =
(ivCji |j

ωji

) sinγji,1
(
cosβjicosγji,2 + sinβjisinγji,2

)

cosγji,2

zji =

(ivCji |j

ωji

) cosγji,1
[
sinβji

(
tan2γji,1 + cos2γji,2

)
− cosβjisinγji,2cosγji,2

]

cosγji,2

(33) 

Eventually, it is worth noting that, if pure sliding (i.e., ωji =0) occurs in a SL-pair or a SP-pair, ISAji will become the line at infinity of 
the planes perpendicular to the sliding direction given by the unit vector (see Eqs. (23a) and (28a)) 

τji = rjicosβji + sjisinβji (34)  

2.3. Procedure for the ISA determination in single-DOF spatial mechanisms 

The above analysis of the kinematic pairs has highlighted that, in five of them (i.e., R, P, H, C, RL), which are all the pairs with 
DOF≤2, ISAji is completely determined and that in the remaining five (i.e., S, E, RP, SL, SP), ISAji is partially determined. Therefore, in a 
mechanism with m links, a simple inspection of the mechanism that just goes through its kinematic pairs allows the determination of a 
number of ISAs out of the m(m–1)/2 possible ones. By analogy with the IC-determination procedures, the ISAs that can be determined 
after a simple mechanism inspection will be called “primary” ISAs; whereas, the other ISAs (i.e., the ones whose determination need a 
specific graphic/analytic procedure) will be called “secondary” ISAs. 

The locations of the primary ISAs and the pieces of information on the partially-known secondary ISAs are the input data of the ISA- 
determination procedure. Such data can be identified directly on a 3D drawing of the mechanism (e.g., through a 3D CAD software) 
and/or analytically computed by solving the closure-equation system of the mechanism (i.e., its position-analysis problem). 

Once the input data have been determined, the determination of the secondary ISAs can be implemented as follows:  

i) the indices of all the completely-known ISAs are checked to identify all the four-axes sets that match the hypotheses of the FA 
theorem11;  

ii) if in step (i) no four-axes set has been determined, jump to step (vi); otherwise continue;  
iii) for each four-axes set identified in step (i), the two more ISAs that the FA theorem indicates how to determine are determined 

through the above-reported formulas that accompany the analytic implementation of the FA theorem;  
iv) the secondary ISAs determined in step (iii) are added to the list, L, of the completely-known ISAs;  
v) if the updated list L includes all the secondary ISAs, then stop the procedure; otherwise, jump to step (i);  

vi) the indices of all the completely-known or partially-known ISAs are checked to identify the four-axes set that, with the minimum 
number of assigned unknowns, match the hypotheses of the FA theorem; 

11 This step can be implemented by using the same tools (e.g., circle diagrams) employed in single-DOF planar mechanisms to determine the ICs. 
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vii) for the four-axes set identified in step (vi), the data of the two more ISAs that the FA theorem indicates how to determine are 
determined as explicit functions of the introduced unknowns and their indices are added to a separate list, L*, of ISAs that are 
completely known after the introduced unknowns have been determined;  

viii) the indices of all the ISAs included in the list L ∪ L∗ are checked to identify all the four-axes sets that match the hypotheses of the 
FA theorem;  

ix) for each four-axes set identified in step (viii) the data of the two more ISAs that the FA theorem indicates how to determine are 
determined as functions of the introduced unknowns till to generate a system with a number of equations equal to the number of 
introduced unknowns;  

x) the system generated at step (ix) is solved and the computed values of the unknowns are used to compute the data that 
completely determine the ISAs included in list L*;  

xi) all the ISAs included in list L* are added to list L of the completely known ISAs;  
xii) clear list L* and jump to step (v). 

It is worth stressing that steps (vii) and (ix) need an algebraic manipulator to manage symbolic calculus. 

3. Results 

In this section, the ISA-determination algorithm presented in Section 2.3 will be applied to two single-DOF spatial mechanisms: the 
single-loop RCCC mechanism (Fig. 8) and the multi-loop 5-US parallel mechanism (Fig. 9) where U denotes a universal joint (i.e., the 
combination of two R-pairs with mutually orthogonal and intersecting axes that are connected in series). 

3.1. Determination of the secondary ISAs in the RCCC mechanism 

In the literature (see, for instance, [20,25,30–34]), RCCC mechanisms have been extensively studied. An RCCC mechanism (Fig. 8 
(a)) features four binary links connected in a single-loop through one R-pair and three C-pairs. In Fig. 8(a), link 1 is the frame and link 2 
is connected to the frame through the unique R-pair. Accordingly, the total number of possible relative motions is 6 (=4(4–1)/2) and 
the corresponding ISAs are ISA21, ISA32, ISA43, ISA41, ISA31, and ISA42. With reference to the geometric constraints on ISAs listed in 
Section 2.2, the simple inspection of the RCCC mechanism reveals that ISA21 (≡(A21, u21) in Fig. 8(a)), ISA32 (≡(A32, u32) in Fig. 8(a)), 
ISA43 (≡(A43, u43) in Fig. 8(a)), and ISA41 (≡(A41, u41) in Fig. 8(a)) are primary ISAs and the remaining two, that is, ISA31 and ISA42, 
are the secondary ISAs whose location must be determined. 

The four known ISAs respect the above-stated rule 2. Accordingly, the FA theorem can be applied to them. In particular, the set of 
primary-ISA indices is {21, 32, 43, 41}. Thus, the application of the FA theorem to the two ISA pairs (ISA21, ISA32) and (ISA41, ISA43) 
brings to determine ISA31; whereas, the application of the FA theorem to the two ISA pairs (ISA21, ISA41) and (ISA43, ISA32) brings to 
determine ISA42. This analysis of the ISA-indices is immediately implementable through the circle diagram shown in Fig. 8(b) that is 
built by using the same rules adopted for the circle diagrams when they are employed for determining secondary ICs in planar 
mechanisms [27,28]. In short, the numbers refer to the links and the segments that join two numbers refer to the already-determined 
ISAs; consequently, every quadrilateral of already-determined ISAs respect rule 2 and indicates that the two ISAs associated to the two 
diagonals of the quadrilateral can be determined through the FA theorem. 

The geometric determination of ISA31 and ISA42 is reported in Fig. 8(a) where the line (Q31, u31) (the line (Q42, u42)) is ISA31 (ISA42) 
and has been determined as common normal to the lines (Q32, n2) and (Q’43, n4) (to the lines (Q43, n3) and (Q41, n1)). The analytic 
determination of ISA31 and ISA42 is also straight since, after the closure-equation system has been numerically or analytically solved, it 
simply consists in using the explicit formulas (19) and (21) two times, one for ISA31 and the other for ISA42. This analytic determination 
is reported in the remaining part of this subsection. 

With reference to Fig. 8(a), the unit vectors u21, u41 and n1 (≡ u41 × u21/ ‖ u41 × u21 ‖= u41 × u21/sinα41,21) are fixed to the frame 
and the following relationships hold: 

n2 = n1cosθ21 + (n1 ×u21)sinθ21 =
u32 × u21

sinα32,21
; u32 = u21cosα32,21 + (u21 ×n2)sinα32,21; (35a)  

n3 = n2cosθ32 + (n2 ×u32)sinθ32 =
u32 × u43

sinα32,43
; u43 = u32cosα32,43 − (u32 ×n3)sinα32,43; (35b)  

u43 ⋅ u41 = cosα43,41 (35c)  

u43 = u32cosα32,43 − (u32 × n3)sinα32,43
n4 = n1cosθ41 + (n1 × u41)sinθ41
u43 = u41cosα43,41 + (u41 × n4)sinα43,41

⎫
⎬

⎭
⇒ u32cosα32,43 − (u32 ×n3)sinα32,43 = u41cosα43,41 + (u41 ×n4)sinα43,41 (35d)  

n4 = n3cosθ43 + (n3 × u43)sinθ43
n4 = n1cosθ41 + (n1 × u41)sinθ41

}

⇒ n3cosθ43 + (n3 × u43)sinθ43 = n1cosθ41 + (n1 ×u41)sinθ41 (35e)  

a1n1 + d1u21 − a2n2 − d32u32 − a3n3 − d43u43 + a4n4 − d41u41 = 0 (35f) 
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where the angles α41,21, α32,21, α32,43 and α43,41 are geometric constants of the links 1, 2, 3 and 4, respectively, and the angle θji, for ji∈
{21, 32, 43, 41}, is a joint variable defined as the rotation angle around ISAji that is positive if counterclockwise with respect to uji and 
equal to zero when nj = ni. Moreover, in Eq. (35f), the linear parameters a1, d1, a2, a3 and a4 are geometric constants of the links 
defined as follows (see Fig. 8(a)): 

Fig. 8. The RCCC mechanism: (a) kinematic scheme of the mechanism with the geometric determination of the secondary ISAs, (b) circle diagram of 
the RCCC mechanism (the blue segments refer to the primary ISAs (i.e., ISA21≡(A21, u21), ISA32≡(A32, u32), ISA43≡(A43, u43), and ISA41≡(A41, u41)); 
the brown segments refer to the secondary ISAs (i.e., ISA31≡(Q31, u31), and ISA42≡(Q42, u42))). 

Fig. 9. The 5-US parallel mechanism (U stands for Universal joint; Ajb and Apj, for j =1,2,…,5, are the centers of the U-joint and of the S-pair, 
respectively, in the j-th limb): (a) kinematic scheme, (b) limb j, j =1,2,…,5, and adopted notations. 
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a1 =
(
Q’

21 − Q41
)

⋅ n1; d1 =
(
Q21 − Q’

21

)
⋅ u21; a2 = (Q21 − Q32) ⋅ n2; (36a)  

a3 =
(
Q’

32 − Q43
)

⋅ n3; a4 =
(
Q’

41 − Q’
43

)
⋅ n4; (36b)  

whereas, the linear parameters d32, d43 and d41 are joint variables defined as follows (see Fig. 8(a)): 

d32 =
(
Q32 − Q’

32

)
⋅ u32; d43 =

(
Q43 − Q’

43

)
⋅ u43; d41 =

(
Q’

41 − Q41
)

⋅ u41. (37) 

The position analysis of an RCCC mechanism is solvable in closed form [30] and provides at most two solutions for each assigned 
value of the generalized coordinate. Eqs. (35c)–(35f) can be used to solve it as follows. Let θ21 be the chosen generalized coordinate, the 
introduction of formulas (35a) and (35b) into Eq. (35c), after some algebraic manipulations, yields 

b0 + b1sinθ32 + b2cosθ32 = 0 (38)  

where 

b0 =
(
cosα41,21cosα32,21 + sinα41,21sinα32,21cosθ21

)
cosα32,43 − cosα43,41; (39a)  

b1 = sinα41,21sinα32,43sinθ21; b2 =
(
cosα41,21sinα32,21 − sinα41,21cosα32,21cosθ21

)
sinα32,43. (39b) 

Then, the introduction of the trigonometric identities sinθ32=2t/(1 + t2) and cosθ32=(1–t2)/(1 + t2), with t=tan(θ32/2), into Eq. 
(38) makes it a quadratic equation in t whose solution provides the following two explicit expressions of θ32 as a function of θ21 and of 
the geometric constants 

θ32,k = 2arctan

(
− b1 + ( − 1)k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b1

2 + b2
2 − b0

2
√

b0 − b2

)

k = 1, 2 (40) 

The introduction into Eq. (35d) of the computed values (θ21, θ32,k) allows the computation of the corresponding θ41,k through the 
following explicit formula 

θ41,k = atan2
(

u43,k ⋅ n1

sinα43,41
,
u41 ⋅

(
n1 × u43,k

)

sinα43,41

)

k = 1, 2 (41)  

where 

u43,k ⋅ n1 = sinα32,21cosα32,43sinθ21 −
(
sinθ21cosθ32,kcosα32,21 + cosθ21sinθ32,k

)
sinα32,43 (42a)  

u41 ⋅
(
n1 × u43,k

)
= cosα41,21

[
sinα32,21cosα32,43cosθ21 +

(
sinθ21sinθ32,k − cosθ21cosθ32,kcosα32,21

)
sinα32,43

]
+

− sinα41,21
(
cosα32,21cosα32,43 + sinα32,21sinα32,43cosθ32,k

) (42b) 

Eventually, the introduction into Eq. (35e) of the computed values (θ21, θ32,k, θ41,k) allows the computation of the corresponding 
θ43,k through the following explicit formula 

θ43,k = atan2
( [

n1cosθ41,k +(n1 × u41)sinθ41,k
]

⋅
(
n3,k ×u43,k

)
,
[
n1cosθ41,k +(n1 ×u41)sinθ41,k

]
⋅ n3,k

)
, k = 1, 2 (43)  

where 
⎡

⎢
⎢
⎣

[
n1cosθ41,k + (n1 × u41)sinθ41,k

]
⋅
(
n3,k × u43,k

)
=
(
cosθ21cosθ32,k − sinθ21sinθ32,kcosα32,21

)(
cos2θ41,ksinα43,41 + cosα43,41sinθ41,k

)
+

−
(
cosα41,21cosα43,41cosθ41,k − sinα41,21sinα43,41sin2θ41,k

)(
sinθ21cosθ32,k + cosθ21sinθ32,kcosα32,21

)
+

−
(
sinα41,21cosα43,41cosθ41,k + cosα41,21sinα43,41sin2θ41,k

)
sinα32,21sinθ32,k

(44a)  
[ [

n1cosθ41,k + (n1 × u41)sinθ41,k
]

⋅ n3,k =
(
cosθ21cosθ32,k − sinθ21sinθ32,kcosα32,21

)
cosθ41,k+

+
[
cosα41,21

(
sinθ21cosθ32,k + cosθ21sinθ32,kcosα32,21

)
+ sinα41,21sinα32,21sinθ32,k

]
sinθ41,k

(44b) 

Finally, the introduction into Eq. (35f) of the computed values (θ21, θ32,k, θ41,k, θ43,k), k=1, 2, makes it the linear system of three 
equations in the remaining three unknowns, d32,k, d43,k and d41,k, that follows 

d32,ku32 + d43,ku43,k + d41,ku41 = ck k = 1, 2 (45)  

with ck = a1n1 + d1u21 − a2n2 − a3n3,k + a4n4,k, whose solutions are 

d32,k =
ck ⋅
(
u43,k × u41

)

u32 ⋅
(
u43,k × u41

); d43,k =
ck ⋅ (u32 × u41)

u43,k ⋅ (u32 × u41)
; d41,k =

ck ⋅
(
u32 × u43,k

)

u41 ⋅
(
u32 × u43,k

). k = 1, 2 (46) 

Eqs. (40), (41), (43) and (46), which must be used in sequence, provide the closed-form solutions of the RCCC position analysis. 
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Once all the joint variables have been computed as a function of the generalized coordinate θ21, the directions of ISA31≡(Q31, u31) and 
ISA42≡(Q42, u42), for each of the two position-analysis solutions, are (see Eq. (19c) and Figs. 4 and 8(a)) 

u31,k =
n2 × n4,k

‖ n2 × n4,k‖
; u42,k =

n3,k × n1

‖ n3,k × n1‖
; k = 1, 2 (47)  

whereas their positions are located as follows (see Eqs. (19b), (20) and (21) and Figs. 4 and 8(a)) 

Q31,k = Q21 +
(

yQ31,k − a2

)
n2; Q42,k = Q41 + yQ’ 42,k n1 + h42,ku42,k; k = 1, 2 (48)  

with (see Fig. 8(a)) 

yQ’ 31,k n4,k − yQ31,k n2 − h31,ku31,k =
(

Q32 − Q’
43,k

)
⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h31,k = −
(
Q32 − Q’

43,k
)

⋅ u31,k

yQ’ 31,k =

(
Q32 − Q’

43,k
)

⋅
(
n2 × u31,k

)

n4,k ⋅
(
n2 × u31,k

)

yQ31,k = −

(
Q32 − Q’

43,k
)

⋅
(
n4,k × u31,k

)

n2 ⋅
(
n4,k × u31,k

)

k = 1, 2 (49a)  

yQ’
42,k n1 − yQ42,k n3,k + h42,ku42,k =

(
Q43,k − Q41

)
⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h42,k =
(
Q43,k − Q41

)
⋅ u42,k

yQ’
42,k =

(
Q43,k − Q41

)
⋅
(
n3,k × u42,k

)

n1 ⋅
(
n3,k × u42,k

)

yQ42,k = −

(
Q43,k − Q41

)
⋅
(
n1 × u42,k

)

n3,k ⋅
(
n1 × u42,k

)

k = 1, 2 (49b)  

where 

Q32 = Q21 − a2 n2; Q’
43,k = Q41 + d41,ku41 − a4 n4,k; Q43,k = Q’

43,k + d43,ku43,k. (50) 

Eqs. (47) and (48) provide the explicit expressions of the sought-after ISA locations as a function of the generalized coordinate. 
The above-reported formulas have been tested with the following RCCC-mechanism’s geometric data (l.u. stands for a generic 

length unit): A21=(0,0,0)T l.u., u21=(0,1,0)T l.u., d1=3 l.u., A41=(0,0,–1)T l.u., u21=(1,0,0)T l.u., a2=2 l.u., α32,21=0.5π rad, a3=3 l.u., 
α32,43=0.5π rad, a4=2 l.u., α43,41=0.5π rad. With these geometric data the two position analysis solutions for θ21=1.25π rad are re-
ported in Table 1; whereas, Fig. 10 shows the RCCC mechanism in the two corresponding configurations together with the locations of 
ISA31 and ISA42. 

3.2. Determination of the secondary ISAs in the 5-US parallel mechanism 

The 5-US parallel mechanism (see Fog. 9(a)) features a mobile rigid-body (platform) connected to the frame (base) through five 
kinematic chains (limbs) of type US (i.e., constituted by one binary link whose endings are joined to the platform with one S-pair and to 
the base with one U-joint). In each limb, the line passing through the centers of the U-joint and of the S-pair is the limb axis; the U-joint 
just makes the limb rotation around its axis controllable and it has no effect on the relative motion between platform (link p in Fig. 9) 
and base (link b in Fig. 9), which is the same as the one of the 5-SS parallel mechanism. In the literature, the interest for the 5-US 
mechanism is mainly related to multi-link suspensions [35–41] of ground vehicles and to human-knee modeling [42]. 

With reference to Fig. 9, link j for j=1,…,5 is the binary link of the j-th limb; link p (link b) is the platform (the base). Moreover, Ajb 
(Apj) for j=1,…,5 is the center of the U-joint (of the S-pair) of the j-th limb and dj for j=1,…,5 is the length (limb length) of the segment 
AjbApj. Eventually, ej and gj for j=1,…,5 are the unit vectors of the two R-pair axes of the U-joint belonging to the j-th limb. 

Table 1 
Numerical example of a RCCC mechanism: position analysis solutions for θ21=1.25π rad (l.u. stands for generic length unit).  

k θ32,k [rad] θ41,k [rad] θ43,k [rad] d32,k [l.u.] d43,k [l.u.] d41,k [l.u.] 

1 0 π − 0.25π − 3.5858 3 − 6.0711 
2 − π π 0.75π 2.4142 3 2.4142  
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The mechanism inspection and the geometric constraints on the ISAs reported in Section 2.2 bring one to conclude that Apj (see 
Fig. 9(b)) must belong to ISApj (i.e., ISApj≡(Apj, upj)), and that ISAjb must lie on the plane (Ajb, ej, gj)12 and must pass through point Ajb 
(i.e., ISAjb≡(Ajb, ujb) with ujb⋅(ej×gj)=0). Therefore, in the 5-US mechanism, there is no primary ISA and ten secondary ISAs (i.e., 
ISApj≡(Apj, upj) and ISAjb≡(Ajb, ujb) for j=1,…,5) are partially known. As a consequence, the determination of the secondary ISAs must 
be done by exploiting steps (vi)–(xii) of the algorithm presented in Section 2.3. In the 5-US mechanism, the total number of ISAs is 21 
(=7(7–1)/2), but only the ISApb≡(Apb, upb) is of interest in its applications. Accordingly, only the ISApb determination will be discussed 
in details in the following part of this subsection. 

The position analysis of the 5-US mechanism can be addressed through the algorithms conceived to solve the direct position 
analysis of particular fully-parallel-manipulators (FPMs) [43]. Indeed, assigning the value of one joint variable (i.e., the one chosen as 
generalized coordinate for this single-DOF spatial mechanism) corresponds to the introduction of a sixth (fictitious) limb (see Fig. 11) 
for locking the 5-US mechanism at a given configuration and the so-generated spatial structure coincides with the one obtained from 
the 6–5 FPM [44–46], which has six DOF, by locking the six limb lengths. Such a problem can be solved only in analytical form (i.e., 
through an algorithm with a definite number of algebraic operations that computes all the possible solutions) and admits at most 40 
solutions (see [45,46] for details). Despite the complexity of the algebraic solution, the closure-equation system can be put in the 
following simple form (Fig. 11) 

(
Ap1+

bRp
pApj − Ajb

)
⋅
(
Ap1+

bRp
pApj − Ajb

)
= d2

j , j = 0, 1,⋯, 5 (51)  

where Ap0 ≡ Ap1, bRp is the rotation matrix that transforms vector components measured in Ap1xpypzp into components of the same 
vector measured in Obxbybzb (see Fig. 11), Apj (pApj) for j=0, 1,…,5 is the position vector of point Apj measured in Obxbybzb (measured 
in Ap1xpypzp) and Ajb for j=0, 1,…,5 is the position vector of point Ajb measured in Obxbybzb. In system (51), d0 plays the role of 
generalized coordinate; Ap1 and the orientation parameters that uniquely identify bRp are the unknowns to compute13; whereas pApj 

and Ajb for j=0, 1,…,5 are known constant vectors that define the geometry of the platform and the base, respectively. 
If one is interested only to mechanism configurations near to a reference configuration as in the study of a car suspension, system 

Fig. 10. Numerical example of a RCCC mechanism: (a) RCCC mechanism at the 1st position-analysis solution together with ISA31 and ISA42, (b) 
RCCC mechanism at the 2nd position-analysis solution together with ISA31 and ISA42. 

12 It is worth noting that, if the spatial disposition of the U-joint is not of interest as it happens in the case of a suspension, the rotation of limb j 
around its axis can be locked by imposing that ej and gj be both perpendicular to the j-th limb axis. In general, such a condition is numerically more 
efficient since it eliminates the U-joint singularity, which occurs when the j-th limb axis (i.e., point Apj) lies on the plane (Ajb, ej, gj).  
13 It is worth reminding that Apj = Ap1 +

bRp
pApj 
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(51) can be solved numerically starting from the reference configuration and using numerical algorithms for the solution of non-linear 
system of equations (e.g., Newton-Raphson method [47]). Once the position analysis of the 5-US mechanism has been solved the ISApb 
determination can start. 

Fig. 9(b) shows the j-th limb together with ISAjb≡(Ajb, ujb) and ISApj≡(Apj, upj), which are the two partially-known secondary ISAs 
referable to the j-th limb, and the geometric relationship, due to the EAK theorem, between these two partially-known ISAs and 
ISApb≡(Apb, upb), which is the unknown secondary ISA to determine. With reference to Fig. 9(b), after the position-analysis solution, 
the coordinates of points Apj and the components of unit vectors ej and gj, for j=1,…,5, are all known in the reference system Obxbybzb. 
By using these data the following relationships can be written (see Eq. (A.4) of Appendix A and Eq. (1b)) 

mpb =
(
ibcosγpb + jbsinγpb

)
cosβpb + kbsinβpb;Apb = apbmpb; (52a)  

upb0 =
kb × mpb

‖ kb × mpb‖
; upb = upb0cosαpb +

(
mpb ×upb0

)
sinαpb; (52b)  

ujb = ejcosβjb + gjsinβjb; nj =
ujb × upb

‖ ujb × upb‖
; j = 1,⋯, 5 (52c)  

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Qpb,j = Apb +

(
Ajb − Apb

)
⋅
[
upb −

(
ujb ⋅ upb

)
ujb
]

1 −
(
ujb ⋅ upb

)2 upb = Apb +

(
Ajb − Apb

)
⋅
(
upb − ujbcosαpb,jb

)

sin2αpb,jb
upb

Qjb = Ajb +

(
Apb − Ajb

)
⋅
[
ujb −

(
ujb ⋅ upb

)
upb
]

1 −
(
ujb ⋅ upb

)2 ujb = Ajb +

(
Apb − Ajb

)
⋅
(
ujb − upbcosαpb,jb

)

sin2αpb,jb
ujb

j = 1,⋯, 5 (52d)  

yj =
(
Qpb,j − Qjb

)
⋅ nj; hj =

(
Apj − Qjb

)
⋅ nj; j = 1,⋯, 5 (52e)  

Qpj = Qjb + hjnj = Qjb +

[(
Apj − Qjb

)
⋅
(
ujb × upb

)

(
ujb × upb

)
⋅
(
ujb × upb

)

]
(
ujb × upb

)
; upj =

Qpj − Apj

‖ Qpj − Apj‖
; j = 1,⋯, 5 (52f)  

ωpbupb = ωpjupj − ωbjujb ⇒
ωpj

ωbj
=

ujb ⋅
(
nj × upb

)

upj ⋅
(
nj × upb

) =
nj ⋅
(
ujb × upb

)

nj ⋅
(
upj × upb

) =

(
ujb × upb

)2

(
ujb × upb

)
⋅
(
upj × upb

); j = 1,⋯, 5 (52g)  

where ib, jb, and kb are the unit vectors of the co-ordinate axes xb, yb, and zb, respectively; whereas, the linear variable apb and the three 

Fig. 11. Locking one joint variable of the 5-US mechanism modelled through the introduction of one fictitious limb (limb 0) for freezing the 5-US 
mechanism at a configuration (the reference systems Obxbybzb and Ap1xpypzp are fixed to base and platform, respectively). 
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angular variables αpb, βpb and γpb are four unknowns whose determination uniquely locates ISApb≡(Apb, upb); eventually, the five 
angular variables βjb, for j=1,…,5, are five more unknowns whose determination uniquely locates the five ISAjb≡(Ajb, ujb), for j=1, 
…,5. 

Eqs. (52a)–(52f) show that, once the above-mentioned nine unknowns have been determined, ISApb≡(Apb, upb) and the ten 
partially-known secondary ISAs (i.e., ISApj≡(Apj, upj) and ISAjb≡(Ajb, ujb) for j=1,…,5) have been located. In addition, they show that 
the geometric conditions the EAK theorem imposes to the lines of these eleven ISAs can be satisfied by arbitrarily choosing nine 
variables (see Fig. 12). This is due to the fact that the uniqueness of the ISAs in single-DOF mechanism comes out when, over the 
geometric conditions highlighted by the EAK theorem, the geometric/kinematic relationships (Eqs. (8b) and (8c)) that have been 

Fig. 12. Diagram of the 5-US mechanism that contains ISApb together with ISApj and ISAjb for j=1, …,5 in a spatial disposition that satisfies Eqs. 
(52a)–(52f). 

Fig. 13. Determination of ISApb through the four partially-known secondary ISAs associated to limb k and limb r: (a) geometric determination, (b) 
circle diagram (the blue dot-dash lines indicate these four partially-known ISAs; the brown dot-dash lines indicate the ISAs whose locations can be 
directly determined after these four partially-known ISAs have been located). 
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deduced together with the demonstration of the EAK theorem in subSection 2.1 are satisfied, too. 
In particular, the relative motion pb must be the same no matter which limb is used to determine it; therefore, the different ex-

pressions, ppb,j for j=1,…,5, of pitch ppb of this motion that are computed by using Eq. (8b) with the data coming from different limbs 
must provide the same value. From an analytic point of view, this kinematic condition brings one to write the following four scalar 
equations in the above-mentioned nine unknowns 

⎧
⎪⎪⎨

⎪⎪⎩

ppb,1 = ppb,2
ppb,1 = ppb,3
ppb,1 = ppb,4
ppb,1 = ppb,5

(53)  

with (see Eq. (8b) by reminding that the U-joints and the S-pairs impose pjb=ppj=0 for j=1,…,5) 

ppb,j =
hj ‖ upj × ujb ‖

(
ωpj
ωbj

)

1 − 2
(

ωpj
ωbj

)(
upj ⋅ ujb

)
+
(

ωpj
ωbj

)2 =

(
Apj − Qjb

)
⋅
(
upj × ujb

)(ωpj
ωbj

)

1 − 2
(

ωpj
ωbj

)(
upj ⋅ ujb

)
+
(

ωpj
ωbj

)2; j = 1,⋯, 5 (54)  

where the expression of hj given by Eq. (52e) has been used to deduce the last formula and the expressions of (ωpj /ωbj), for j=1,…,5, as 
a function of the geometric data are given by Eq. (52g). 

Moreover, Eq. (8c) when applied to each limb brings one to write the following five more scalar equations in the same nine un-
knowns (see the first formula of Eq. (52e) and Eq. (8c) by reminding that the U-joints and the S-pairs impose pjb=ppj=0 for j=1,…,5) 

(
Qpb,j − Qjb

)
⋅ nj =

hj

[
1 −

(
ωpj
ωbj

)(
upj ⋅ ujb

)]

1 − 2
(

ωpj
ωbj

)(
upj ⋅ ujb

)
+
(

ωpj
ωbj

)2 ⇒
(
Qpb,j − Qjb

)
⋅
(
ujb ×upb

)
=

(
Apj − Qjb

)
⋅
(
ujb × upb

)[
1 −

(
ωpj
ωbj

)(
upj ⋅ ujb

)]

1 − 2
(

ωpj
ωbj

)(
upj ⋅ ujb

)
+
(

ωpj
ωbj

)2 ; j

= 1,⋯, 5
(55)  

where the expressions of nj and hj given by Eqs. (52c) and (52e), respectively, have been used to deduce the last formula and the 
expressions of (ωpj /ωbj), for j=1,…,5, as a function of the geometric data are given by Eq. (52 g). 

Eqs. (53) and (55) constitute a system (compatibility system) of nine scalar equations in nine unknowns whose solution uniquely 
locates the sought-after ISApb and the ten partially-known ISAs. After having determined these eleven ISAs, the remaining ten sec-
ondary ISAs, which have not been determined, yet, are the ISAkr with r, k ∈ {1, ...,5|r ∕= k} (here, it is worth stressing that the couples 
(r, k) are exactly ten (=5*(5–1)/2)). Such ten ISAs can be directly computed through the steps (i), (iii)–(v) of the algorithm presented in 
Section 2.3. Indeed, the four partially-known ISAs associated to two different limbs, that is (see Fig. 13(a)), ISApk, ISAkb, ISApr, and 
ISArb with r, k ∈ {1, ..., 5|r ∕= k}, satisfy the conditions (i.e., rule 2) for the application of the FA theorem and the circle diagram 
associated to them (Fig. 13b) shows that, if they are fully located, they can be directly used to compute both ISApb, which has been 
already computed by solving the compatibility system, and the ISAkr with r,k ∈ {1, ...,5|r ∕= k}. 

The above-reported formulas have been tested on a 5-US mechanism whose configuration is assigned through the following data (l. 
u. stands for generic length unit): A1b=(0,0,0)T l.u., A2b=(0.243041, 0, 0)T l.u., A3b=(0.250015, 0.098196, 0.044518)T l.u., 
A4b=(0.391300, 0.124471, 0.077507)T l.u., A5b=(− 0.130953, 0.244635, 0)T l.u., Ap1=(0.108475, − 0.140175, 0.263091)T l.u., 
Ap2=(0.189570, − 0.099235, 0.236663)T l.u., Ap3=(0.270933, 0.026986, 0.277295)T l.u., Ap4=(0.169728, 0.127555, 0.334066)T l.u., 
Ap5=(0.096696, 0.068067, 0.368364)T l.u.. Since the actual architectures of the U-joints are not of interest, the unit vectors ej and gj 
have been chosen both perpendicular to the axis of limb j, for j=1,…,5. With these data, the solution of the compatibility system (i.e., 
Eqs. (53) and (55)) provides the results reported in Table 2 and the following ISApb: Apb=(0.082372, 0.194075, − 0.015518)T l.u., 
upb=(0.898684, − 0.361582, 0.248243)T l.u., ppb=− 0.018114 lu. . Fig. 14 shows the 5-US mechanism together with the computed 
ISAs. 

Table 2 
Numerical example of a 5-US mechanism: numerical results (l.u. stands for generic length unit).  

j ujb [l.u.] Qjb [l.u.] upj [l.u.] Qpj [l.u.] Qpb,j [l.u.] 

1 (0.9197, − 0.0239, 
− 0.3919)T 

(0.1558, − 0.0041, 
− 0.0664)T 

(0.1469, 0.4379, − 0.8870)T (0.1612, 0.0169, − 0.0552)T (0.1947, 0.1489, 0.0155)T 

2 (0.9622, − 0.2474, 0.1137)T (0.5245, − 0.0723, 0.0332)T (0.8941, 0.2237, − 0.3880)T (0.5332, − 0.0133, 0.0875)T (0.5369, 0.0112, 0.1100)T 

3 (− 0.9716, 0.1873, 0.1446)T (0.2986, 0.0888, 0.0373)T (0.1530, 0.4039, − 0.9019)T (0.3085, 0.1262, 0.0557)T (0.3030, 0.1053, 0.0454)T 

4 (− 0.0568, − 0.9977, 
− 0.0370)T 

(0.3882, 0.0702, 0.0755)T (0.8774, − 0.4148, 0.2411)T (0.3041, 0.0640, 0.3710)T (0.3899, 0.0703, 0.0694)T 

5 (− 0.8410, 0.0412, 0.5395)T (− 0.0481, 0.2406, 
− 0.0532)T 

(− 0.2871, 0.4171, 
− 0.8624)T 

(− 0.0402, 0.2670, 
− 0.0430)T 

(− 0.0465, 0.2459, 
− 0.0511)T  
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4. Discussion 

The algorithm proposed in Section 2.3 combines two parts: (a) steps (i), (iii)–(v) and (b) steps (vi)–(xii). Part (a) must be used (see 
step (ii)) when there is a sequence, which is obtainable through a circle diagram, of secondary ISAs that can be sequentially determined 
by directly using the EAK theorem. Part (b) must be used (see step (ii)) when a number of secondary ISAs need a simultaneous (i.e., not 
in sequence) determination through the introduction of unknowns and the solution of an equation system (compatibility system). 
These two parts are also present in the algorithms that compute the secondary ICs of planar mechanisms (see [9] for instance) and, by 
analogy with the planar case, the spatial single-DOF mechanisms that needs part (b) for the determination of their secondary ISAs can 
be named “indeterminate” mechanisms. Differently from the planar case, the majority of spatial single-DOF mechanisms are inde-
terminate even though they usually do not need the introduction of a high number of unknowns as in the case of the 5-US mechanism 
presented in Section 3.2. This is due to the fact that, differently from planar mechanisms, where the possible kinematic pairs are only 
four (i.e., R, P, RP and SP) with three of them that uniquely determine a primary IC, the possible kinematic pairs that are present in 
spatial mechanisms are ten (i.e., the one analyzed in Section 2.2) and only five (i.e., R, P, H, C, and RL) of them bring to determine a 
primary ISA. 

The implementation of part (a) is easy to automate since it simply consists in the reiterated use of the formulas reported in Section 
2.1 after the sequence with which the secondary ISAs must be computed has been determined through a circle diagram. Differently, the 
implementation of part (b) uses the formulas of Section 2.1 to generate multiple symbolic expressions of the sought-after kinematic 
quantities; then, it obtains the equation system to solve by imposing the compatibility of different expressions of the same quantity. 
Thus, the implementation of part (b) requires an algebraic manipulator and a strategy for identifying the smallest set of equations to 
solve. 

From a geometric point of view, the implementation of part (a) in a CAD system is direct; whereas, the implementation of part (b) 
requires a trial-and-error procedure that, by assigning trial values to the unknown data, tries to satisfy all the geometric and kinematic 

Fig. 14. Numerical example of a 5-US mechanism: diagram of the mechanism at the assumed configuration together with the computed ISAs.  
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conditions on the sought-after ISAs. The same difference occurs in the geometric determination of the ICs in planar single-DOF 
mechanisms when not-indeterminate and indeterminate linkages are considered [4,6,8]. Differently from the planar case, where all 
the pitches associated to the ISAs are equal either to 0 or to infinity, in the spatial case, where the same pitches can assume any real 
value, the determination of the secondary ISAs needs to consider also geometric/kinematic conditions (e.g., Eqs. (8b) and (8c)) that 
complement the EAK theorem and take into account the variability of the pitches. 

The geometric determination of the ISAs does not change when a kinematic pair is replaced by another pair that provides the same 
geometric constraint on the ISA of the relative motion between the two links joined by that pair. For instance, in Fig. 8(a), replacing the 
R-pair with an H-pair (i.e., considering an HCCC mechanism instead of an RCCC mechanism) whose axis coincides with the axis of the 
replaced R-pair changes neither the locations of the secondary ISAs in the considered mechanism configuration nor the circle diagram 
of Fig. 8(b), even though it slightly affects the accompanying equations when the change of configuration is considered since point Q21 
is no longer a fixed point of the frame (link 1) in the resulting HCCC mechanism. Moreover, since geometric changes of a mechanism 
that do not affect the ISAs’ locations do not affect the mechanism motion near to the considered configuration (e.g., the reference 
configuration of a car suspension), drawing a mechanism diagram that contains all the ISAs (e.g., Figs. 8(a) and 12), as this approach 
brings to do, allows the identification of all the possible changes that do not affect the mechanism motion. For instance, in the case of 
the j-th limb of the 5-US mechanism (Fig. 9(b)), moving the limb’s attachment point Ajb (Apj) along ISAjb≡(Ajb, ujb) (along ISApj≡(Apj, 
upj)) does not change the location of ISAjb, ISApj and ISApb, that is, does not change the mechanism motion near that configuration. 
Eventually, the classification, reported in Section 2.2, of the geometric conditions on the ISAs due to all the possible kinematic pairs 
combined with the proposed approach greatly facilitates the synthesis of a spatial single-DOF mechanism starting from the desired 
locations of the ISAs, that is, from the motion requirements. All these features make the proposed approach more appealing than others 
during mechanism design. 

Finally, in Section 2.1, the possible VCs (see Eqs. (9), (17), and (18)) have been explicitly expressed as functions of the geometric 
parameters that identify the involved ISAs. As a consequence, the geometric construction obtained with the proposed approach, where 
all the ISAs are reported on the mechanism, immediately provides pieces of information that are relevant in evaluating both how the 
variation of the generalized coordinate affects the variations of all the other joint variables (i.e., the kinematic performance of the 
mechanism) and how the generalized torque that controls the generalized coordinate affects/equilibrates the other loads applied to the 
mechanism links (i.e., the static performance of the mechanism). 

5. Conclusions 

The spatial extension of the Aronhold-Kennedy (EAK) theorem has been combined with a corollary of the EAK theorem, named 
four-axes (FA) theorem, with geometric/kinematic conditions that complement the EAK theorem and with the taxonomy of the 
geometric constraints on instantaneous screw axes (ISAs) due to the kinematic pairs for devising a geometric and analytic technique 
that determines the ISAs directly from the mechanism configuration in single-DOF spatial mechanisms. 

The proposed technique is the spatial extension of those techniques used for the determination of the instant centers (ICs) directly 
from the mechanism configuration in planar single-DOF mechanisms. In particular, as those techniques, it uses circle diagrams for 
finding the sequence with which the ISAs must be computed and, when the circle diagram is not able to find this sequence, it brings one 
to determine a system of equations (compatibility system) to solve for simultaneously determine a number of ISAs that restart the 
sequential determination. 

A result of the analysis that supports the proposed technique is that “indeterminate” mechanisms are much more frequent among 
spatial single-DOF mechanisms than among planar single-DOF mechanisms. Despite this, the proposed geometric and analytic tech-
nique keeps many appealing features to exploit in mechanism design. 

The proposed technique has been also applied to two relevant spatial single-DOF mechanisms: the RCCC mechanism and the 5-US 
parallel mechanism. As far as this author is aware, even though the background concepts involved in the formulation of the proposed 
approach are known, their combination into a self-standing procedure for the ISA determination is novel. 
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Appendix A 

With reference to Fig. 3(a), let (Aji, uji) and (Aik, uik) be two skew lines, the following relationships hold: 

Pji = Aji + λuji
Pik = Aik + μuik

}

⇒
(
Pji − Pik

)2
=
[(

Aji − Aik
)
+ λuji − μuik

]2
= f (λ, μ) (A.1)  

where Pji (Pik) is a generic point of line (Aji, uji) (of line (Aik, uik)) 
The determination of the minimum of f(λ, μ) yields the values of λ and μ corresponding to Qji and Qik (see Fig. 3(a)). Such a 

minimum is determined by equating to zero the gradient of f(λ,μ), that is, by imposing ∇f(λ,μ) = 0, which yields the system 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂f
∂λ

= 2
[(

Aji − Aik
)
+ λuji − μuik

]
⋅ uji = 2

[
λ − μuik ⋅ uji +

(
Aji − Aik

)
⋅ uji
]
= 0

∂f
∂μ = − 2

[(
Aji − Aik

)
+ λuji − μuik

]
⋅ uik = 2

[
μ − λuik ⋅ uji −

(
Aji − Aik

)
⋅ uik

]
= 0

(A.2)  

whose solution gives the following explicit formulas 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λQji =

(
Aik − Aji

)
⋅
[
uji −

(
uik ⋅ uji

)
uik
]

1 −
(
uik ⋅ uji

)2

μQik
=

(
Aji − Aik

)
⋅
[
uik −

(
uik ⋅ uji

)
uji
]

1 −
(
uik ⋅ uji

)2

(A.3) 

The introduction of formulas (A.3) into the parametric equations of the two lines (i.e., Eqs. (A.1)) yields the following explicit 
expressions of the coordinates of Qji and Qik: 

Qji = Aji +

(
Aik − Aji

)
⋅
[
uji −

(
uik ⋅ uji

)
uik
]

1 −
(
uik ⋅ uji

)2 uji = Aji +

(
Aik − Aji

)
⋅
(
uji − uikcosαji,ik

)

sin2αji,ik
uji

Qik = Aik +

(
Aji − Aik

)
⋅
[
uik −

(
uik ⋅ uji

)
uji
]

1 −
(
uik ⋅ uji

)2 uik = Aik +

(
Aji − Aik

)
⋅
(
uik − ujicosαji,ik

)

sin2αji,ik
uik

(A.4)  

where the relationship uik ⋅ uji = cosαji,ik (see Fig. 3(a)) has been used to write the last expressions. 
It is worth noting that the relationships (Qji − Qik) ⋅ uji = 0 and (Qji − Qik) ⋅ uik = 0 are satisfied and that the distance, h, between the 

two skew line can be immediately computed through the following formula: 

h =
(
Qik − Qji

)
=
(
Aik − Aji

)
⋅ ni (A.5)  
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