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Solids from structures 
Davide Bigoni1  

1Instabilities Lab, University of Trento, Trento, Italy 
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Keywords: Flutter instability; Non-Hermitian mechanics; Homogenization 
 
Proper design of architected materials made up with elastic structures is believed to yield 
unchallenged mechanical properties in terms of stiffness, anisotropy, dynamic characteristics, and 
toughness. When the structure is elastic and periodic, homogenization becomes the formal procedure 
to obtain the response of an equivalent elastic solid. Homogenization of periodic grids of elastic 
rods, prestressed with axial forces and deformed incrementally under bending lead to prestressed 
elastic solids, which may show the emergence of material instabilities such as shear band formation 
[1]. A design paradigm is established for artificial materials where follower micro-forces, so far 
ignored in homogenization schemes, are introduced as loads prestressing an elastic two-dimensional 
grid made up of linear elastic rods (reacting to elongation, flexure and shear). A rigorous application 
of Floquet-Bloch wave asymptotics yields an unsymmetric acoustic tensor governing the 
incremental dynamics of the effective material [2]. The latter is therefore the incremental response 
of a hypo-elastic solid, which does not follow from a strain potential and thus does not belong to 
hyper-elasticity. The solid is shown to display flutter, a material instability corresponding to a Hopf 
bifurcation, which was advocated as possible in plastic solids, but never experimentally found and 
so far believed to be impossible in elasticity [2]. In elastic structures flutter can be originated from 
different loading systems [3], which can be used to architect new discrete materials. The discovery 
of elastic materials capable of sucking up or delivering energy in closed strain cycles through 
interaction with the environment paves the way to realizations involving micro and nano 
technologies and finds definite applications in the field of energy harvesting. 
 
Acknowledgements Financial support from ERC-ADG-2021-101052956-BEYOND is gratefully 
acknowledged.  
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- with the same logic of telemanipulators, therefore in an extremely intuitive way, the 
surgeon outside moves a knob making the same movements of the head inside; 
- in any configuration of the tool it is possible to realize rotations around the incident axes 
at point B of unit vector u1, (yaw) [+ 45°,-45°], and of unit vector u2 (e.g., for suture) of [0°, 
360°] respectively, and opening-closing of the gripper of an angle α in the field [0°,90°]; 
- by a simple manoeuvre, it is possible to reconfigure the instrument to perform the rotation 
about the axis of unit vector u4 (pitch) [+ 45°,-45°]. 
     Therefore, the tool is highly dextrous, possessing 4 additional free dofs. The tests carried 
out with the prototype gave very positive results. 

 
a)                                                                         b) 

Figure 1: a) trocar with four free dofs; b) schematic of the tool 
 
 

 
Figure 2: The tool prototype inserted in the trocar 

 
Conclusions 

This paper presents an instrument for minimally invasive surgery and a prototype that has 
highlighted its operational dexterity. The prototype satisfied the desired characteristics, and 
it is now in the stage of its engineering design. 
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Durotaxis of tensegrity cell units incorporating asymmetry
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Keywords: Cell mechanobiology, Durotaxis, Cellular tensegrity, Nonlinear elasticity.

The present contribution focuses on some recent results obtained by the authors concerning duro-
taxis of cell units anchored to the substrate through focal adhesion plaques, a phenomenon which is
relevant to cell locomotion [1]. A mechanical pre-strained tensegrity model obeying a Neo-Hookean
stress-strain law recently devised by the authors [2, 3, 4] is exploited to investigate how substrate
stiffness gradients and asymmetric geometry affect the cell contractility and the growth of the focal
adhesion plaque. The cytoskeleton is purposely reduced to its main components, that is actin fila-
ments and microtubules forming a contractile mechanical system obeying the so-called tensegrity
self-equilibrium principle [5]. The system contraction is triggered by means of inelastic pre-strains,
that simulate pre-contraction and polymerization. In the adopted tensegrity, an element representa-
tive of the actomyosin complex is taken in parallel with another element corresponding to the mi-
crotubule [2, 3]. The former can only elastically elongate or inelastically contract without bending,
while the latter is a compression-bearing buckling-prone element that can also polymerize.

ks kh

ks kh

Force Force

Δs Δh

Figure 1: A contractile cell where the cytoskeleton is replaced by the adopted tensegrity and the cell
contractility induces two equal forces at the leading and trailing edges of the cell where the plaques
of the focal adhesions are located.
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A scheme of the adopted mechanical framework is shown in Figure 1. The cell contractile
activity produces two equal forces at the leading and trailing edges of the cell where the plaques of
the focal adhesions are considered to be located. These forces, in turn, induce a thermodynamically
consistent polymerization/depolymerization process of the focal adhesion plaques. As an effect of
the mechanosensitivity of the devised structural system, the displacement ∆s at the edge lying upon
the softer substrate will be generally different from ∆h detected at the edge placed on the hard part
of the substrate. The cell net displacement ∆N can be hence computed as [1] ∆N = ∆s − ∆h.
The contractile system illustrated in Figure 1 exemplifies the positive durotaxis concept with the
cell advancing towards the stiffer side. However, recently, it has been observed that some cells
may migrate towards softer substrates [6], thus suggesting the existence of a negative durotaxis, or
mollitaxis, effect.

The present contribution shows that both ”classical” positive durotaxis and more recently un-
veiled mollitaxis can be retraced by means of the proposed essential model, the switching from one
mechanism to the other depending on the combination of geometrical asymmetry, stiffness gradients,
and inelastic pre-strains. Advantageously, the present model allows us to parametrically investigate
the effect of a wide range of asymmetric configurations and stiffness gradients on the cell kinemat-
ics and how these affect the process of assembly and disassembly of the focal adhesion plaques
subjected to the force exerted by the system.
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