

XXIII CONVEGNO GRUPPO ITALIANO DI MECCANICA COMPUTAZIONALE X CONVEGNO GRUPPO MECCANICA DEI MATERIALI II CONVEGNO GRUPPO BIOMECCANICA

GIMC GMA GBMA 2023 BOOK OF ABSTRACTS

12-14 LUGLIO 2023

UNIVERSITÀ DEGLI STUDI MEDITERRANEA DI REGGIO CALABRIA

ISBN 978-88-99352-95-0

Edizioni Centro Stampa di Ateneo Università degli Studi di Reggio Calabria "Mediterranea" Ufficio Comunicazione Istituzionale, Relazioni con il pubblico, Editoria Viale Amendola 8/B - 89124 Reggio Calabria www.unirc.it XXIII CONVEGNO GRUPPO ITALIANO DI MECCANICA COMPUTAZIONALE X CONVEGNO GRUPPO MECCANICA DEI MATERIALI II CONVEGNO GRUPPO BIOMECCANICA

BOOK OF ABSTRACTS

Paolo Fuschi Aurora Angela Pisano Editors

INDICE

09.	Bigoni D.
	Solids trom structures
10.	Bisegna P.
	Microfluidic systems for single-cell biophysical characterization
11.	Perego U., Marengo A.
10	On Phase-rield Modeling of Ductile Fracture
12.	Machanics of soborivo interface damage, contact, interlocking, dilataney
18	Corti A
10.	Multiscale modeling of vascular adaptation
20.	Opreni A.
	Model order reduction of nonlinear vibratory systems through direct
	parametrisation of invariant manifolds
ว ว	Loroppi A Elock N Bardolla I
22.	Coupling mechanics with species diffusion in engineering modelling
23	Kumar Asur P., E Peffermann H., Reinoso J.
20.	Variational Methods to Fracture- Phase field Approach
25.	Ninni D.
	Development of a multi-GPU solver for atmospheric entry flows with gas-surface interactions
27.	Roscini F., Nerilli F.
	FE and IGA techniques for the analysis of the axial-symmetric masonry
30.	Ferri G.,Ignesti D., Marino E.
	An efficient isogeometric formulation for geometrically exact viscoelastic beams
32.	Morganti S., Torre M., Reali A.
	Mixed isogeometric collocation methods with application to cardiac electromechanics
33.	Mallardo V., Iannuzzo A.
	Crack patterns in masonry panels coupled with the soil
35.	Greco L., Castello D., Cuomo M.
26	A new invariant conforming finite element formulation based on the Kirchhoff-Love beam model
50.	Static response bounds of steel frames with uncertain semi-rigid connections
38	Placidi L., di Girolamo F., Fedele R.
50.	Study of a bi-mass chain with a band app, and an engineering implementation based on tensegrity prisms
40.	Marasciuolo N., Trentadue F., De Tommasi D.
	Instabilities at different scales in an innovative metamaterial
42.	Rosso M., Ardito R., Corigliano A.
	Advances in frequency up-conversion of vibration energy harvesters
44.	Mingazzi L., Freddi F.
	A multi-physic predictive model for corrosion in concrete
45.	Nardinocchi P.
	Self-contractile biopolymer gels a continuum mechanics perspective
46.	Paggi M., Bonari J.
	Digital twin models for high-fidelity contact mechanics simulations
48.	marulli m.k., Bonari J., Keinosi J., Paggi M.
50	A coupled approach to predict cone-cracks in spherical indentation
50.	Frequencies of the second fracture mode partitioning of the Lintegral
	Energeneary or mogonal nacione mode parmioning of me s-megral

52.	Noselli G., Ciccionofri G., Damioli V.
	Spontaneous nonreciprocal oscillations in polyelectrolyte gel filaments
54.	Signorile S., De Marinis D., Mantegazza A., de Tullio M.D.
	A coupled Lattice-Boltzmann and Langevindynamics method for simulating transport
	of nanoscale vesicles in microchannels
56.	Collia D., Pedrizzetti G.
	Analysis of the distribution and orientation of oxygenated and non-oxygenated blood in a
	Double Outlet Right Ventricle
58.	Astore M., Gasparotti E., Vignali E., Celi S., Marino M.
	Modeling and experimental analysis of the relationship between mechanical response and microstructure in arterial tissues
60.	Bonfanti A., Pandolifi A.
	A predictive model of epi-off UVA-riboflavin crosslinking treatment on porcine corneas
62.	Ledda P.G., Angius F., Badas M.G., Rossi T., Querzoli G.
	Silicone oil tamponade flow dynamics following everyday movements
64.	Dimitri R., Rinaldi M., Trullo M., Tornabene F., Fai C.
	Advanced computational modeling of the failure behaviour of FRCM composites
66.	Placidi L., D'Annibale F.
	Formulation of inelastic laws in hemivariational and thermodynamic frameworks
67.	Fantoni F., Bosco E., Bacigalupo A.
	Multifield hierarchical metadevices with filtering functionalities
68.	Pancella F., Zulli D., Luongo A.
	Linear mechanics of rectangular box-girder bridges
69.	Liguori F.S., Zucco G., Madeo A.
	Multi-objective optimisation of variable angle tow composite bridge structures using a
	multimodal Koiter algorithm
72.	Giacobbe V.
	Onde armoniche piane in miscela sature di terreni
73.	Brighenti R., Cosma M.P.
	Shape morphing in constrained swelling of hydrogels
75.	Rodella A., Favata A., Vidoli S.
	A phase-field model for fibrous materials exhibiting an emerging anisotropy with plastic memory effects
76.	Bardella L., Panteghini A.
	Electrochemo-poromechanics of ionic polymer metal composites: Theory and Numerics
78.	Alhasadi M.F., Sun Q., Grillo A., Federico S.
	Rate-Independent Elastoplastic Ferroelectric Solids
80.	Serpelloni M., Salvadori A., Cabras L.
	Electro-thermo-chemo-mechanical model and numerical investigations of solid state lithium-ion batteries:
	theoretical framework
82.	Cabras L., Serpelloni M., Salvadori A.
	Solid state lithium battery, thermo–electro–chemo–mechanical numerical modeling
84.	Monaldo E., Hille H.C., De Lorenzis L.
	Modelling of extrusion-based bioprinting via Floating Isogeometric Analysis (FLIGA)
86.	Rotini F., Alaimo G., Marconi S.
	3D printed PEEK cristallinity prediction: a tinite element based numerical workflow
88.	Cremonesi M., Ferrara L., Rizzieri G.
	A Particle Finite Element Method for the Simulation of 3D Concrete Printing
89.	Bianchi D., Zoboli L., Falcinelli C., Gizzi A.
	Optimizing structure of 3D printed flexible Insoles through homogenization and finite element analysis
91.	

Mechanical modelling of polymers for tissue bioprinting applications

92.	Elefante G., De Bellis M.L., Bacigalupo A.
	Electrically-tunable active metamaterials for damped elastic wave propagation control
93.	Giorgio I., Ciallella A., D'Annibale F.
	A metamaterial made of a lattice shell of two orthogonal logarithmic spiral families of fibers
94.	Addessi D., Di Re P., Gatta C., Parente L., Sacco E.
	Corotational force-based beam finite element with rigid joint offsets
	for the analysis of geometrically nonlinear lattice systems
96.	Cuomo M., Pannitteri C., Boutin C.
	Discrete homogenization in large deformations for plane beams lattices
98.	Addessi D., Di Re P., Gatta C., Parente L., Sacco E.
	Micromechanical analysis of soft lattice metamaterials accounting for randomly distributed imperfections
100.	Pandolifi A., Stainer L., Ortiz M.
	An optimal-transport finite-particle method for mass diffusion
101.	Molica Bisci G.
	Variational and Topological Methods for Nonlocal Problems
102.	Marfia S., Monaldo E.
	Virtual element method for the analysis of cohesive crack propagation
104.	Bertani G., Patruno L., D'altri A.M., Castellazzi G., de Miranda S.
	A continuum approach inspired by a block-based model for the analysis of masonry structures
105.	Addessi D., Benvenuti E., Gatta C., Nale M., Sacco E.
	Enhanced Virtual Element formulation for large displacement analysis
107.	Parenti-Castelli V., Dellabartola L., Avellone G., Fava M., Conconi M., Sancisi N.
	A new advanced fully mechanical tool for manual mini-invasive surgery
109.	Benvenuti E., Reho G.A., Palumbo S., Fraldi M.
	Durotaxis of tensegrity cell units incorporating asymmetry
111.	Salvadori A., Bonanno C., Serpelloni M., Arricca M., McMeeking R.
	Actin based motility unveiled: how chemical energy is converted into motion
113.	Gaziano P., Marino M.
	A computational model of cell motility in biodegradable hydrogel scaffolds for tissue engineering applications
114.	Chirignni F., Vairo G., Marino M.
	An in-silico approach for process desian in extrusion-based bioprinting
116.	Pirrotta A., Proppe C.
	Extension of the novel Line Element-less Method for plates shaped with re-entrant anales
117.	Garcea G., Leonetti L., Maaisano D.
	A generalized fiber model for the elastoplastic analysis of steel beams including normal stressshear stresses interaction
118.	Tornabene F., Viscoti M., Dimitri R.
	Higher order theories for the structural analysis of anisotropic shells of arbitrary shape
	with general boundary conditions
120.	Liauori S.F., Zucco G., Madeo A.
	A self-equilibrated assumed stress solid-shell finite element for large deformations problems
121.	Terravecchia S.S., Zito M.
	Shear deformable plate with substructuring approach in the SGBEM: displacement method
123.	Maaisano D., Corrado A., Leonetti L., Kiendl J., Garcea G.
	Large deformation Kirchhoff-Love shell model hierarchically enhanced with ziazag effects
	and its spline-based discretization
124.	Falcinelli C., Pisano A.A., Vasta M., Fuschi P.
	A computed tomography-based limit analysis approach to investigate the mechanical behaviour of the human femur
	prone to fracture
126	Gianbanco G., Puccia M., Sacco E., Spada A.
120.	Numerical simulation of crack propagation using interphases and a FFM-VFM environment

128.	Petrini L., Brambilla A., Berti F., Patriarca L.
120	Fatigue life prediction of Ni-Ti peripheral stents using a fracture mechanics approach: a proof of concept
130.	Experiments and fracture mechanics based modeling on the puncturing of soft bulk solids and membranes
132	Pozzi G., Ciarletta P.
101	Geometric control by active mechanics of epithelial app closure dynamics
134.	Serpilli M., Lenci S., Zitti G., Dellabella M., Castellani D., Morettini M., Burattini L.
	A preliminary assessment of a new surgical procedure for the treatment of primary bladder neck obstruction through
	a numerical biomechanical model
135.	Rossi P.
	Isogeometric analysis: advances and applications with a special focus on dynamic problems
136.	Ferri G., Marino E.
	An improved isogeometric collocation method for the explicit dynamics of geometrically exact beams
138.	Nodargi N.A, Bisegna P.
	An event-driven approach for the nonlinear timehistory analysis of multi-block masonry structures under seismic excitation
140.	Greco L., Patton A., Marengo A., Negri M., Perego U., Reali A.
	A detailed study of high-order phase-field modeling for brittle fracture
142.	Califano F., Ciambella J.
	Integrating Neural Networks into the Parallel Rheological Framework for Improved Constitutive Modeling of Elasto-
	mers
144.	D'Altri A.M., Pereira M., de Miranda S., Glisic B.
	Nonperiodic masonry pattern generation and numerical analysis of cultural heritage structures
146.	Contratatto L., Gazzo S., Calderoni D.
	A sustainable Portland pozzolana cement with recycled volcanic ash
148.	Gazzo S., Contratatto L., Cuomo M.
140	Rechanical behaviour and strain concentration in lattice material evaluated by means of discrete homogenization
149.	A linear theory for granular meterials with retating grains
150	Ciambella I, Lucci G, Nardinocchi P
10.	An affine viscoelastic fully anisotropic model for composite materials with distributed fibres
151	Grazioli D., Nicola L., Simone A.
191.	Mechanical-electrical failure correlation in metal nanowire electrodes
153.	Cavuoto R., Cutolo A., Deseri L., Fraldi.
	Distal and non-symmetrical crack nucleation in reduced order peridynamic plate theory
154.	Belardinelli P., Lenci S.
	Non-smooth dynamics of tapping mode AFM
156.	Sessa S., Vaiana N., Pellecchia D.
	Parameter identification strategies for new classes of phenomenological hysteretic models
158.	Muscolino G., Sofi A.
	Improved pseudo-force method for time domain analysis of fractional oscillators under stochastic excitation
160.	Cuomo M., Scalisi S.
	Dynamic identification of slender structures by means of stochastic subspace identification method
161.	Di Tullio M.T.
	Energy Approach both for Fatigue Limit and Life Expectation of Rod Lift Systems
162.	Vitucci G.
	A validated biaxial test specimen design for simplifying results interpretation
164.	Tomassetti G., Tambroni N., Repetto R.
	A fluid structure interaction problem of the vibration frequencies of the eye bulb
165.	Recrosi F.
	Active dynamics of self-contracting polymer gels subject to different chemo-mechanical environments

7

166.	Boiardi A.S., Noselli G.
	Swimming of active filaments emerging from mechanical instabilities
167.	Lenarda P., Preve D., Bianchi D., Gizzi A.
	Phase field modeling and FEM simulation of bone fracture occurring in human vertebra after screws fixation procedure
168.	Bernard C., Carotenuto R.A., Argenziano M., Zingales M., Fraldi M., Deseri L.
	Investigating the influence of chemo-mechanical coupling in the remodelling of lipid membranes
169.	Valoroso N.
	Graded damage VS phase-field for modeling quasi-brittle fracture
170.	Panteghini A.
	A simple method to compute a closed-form spectral decomposition of a symmetric second order tensor
171.	Chianese C., Marmo F., Rosati F.
	Form Finding of Membrane Shells with Isogeometric Analysis
173.	Leonetti L.
	Material point method and isogeometric analysis
175.	Ongaro G., Pingaro M., Trovalusci P., Bertani R.
	Multiscale strategy for identification of elastic and fracture properties of polymer-based nanocomposites
177.	Gatta C., Pingaro M., Addessi D., Trovalisci P.
	Modeling of polycrystalline composites coupling virtual elements and nonlinear interface finite elements
179.	Ruocco E., Musone V., Iannuzzo A.
	Artificial Neural Networks for evaluation of cracks in masonry arches
181.	Parrinello F.
	Analysis of fracture propagation by the Hybrid Equilibrium Element formulation
182.	Ricci M., Carrara P., Flaschel M., Kumar S., Marfia S., De Lorenzis L.
	Validating the EUCLID Approach for Unsupervised Discovery of Hyperelastic Constitutive Laws Using Experimental
	Data
184.	Palladino S., Esposito L., Zona R., Minutolo V., Sacco E.
	Crack propagation procedure for designing hollowed structures
188.	Farhadi S., Corrado M., Ventura G.
	Pre-stressed wire breakage detection using Back Propagation Neural Networks with experimental and numerical datasets
190.	Zona R., Esposito L., Palladino S., Minutolo V.

Limit Analysis through Residual dislocation based Finite Elements and nonlinear compatibility domain secant approximation with penalty factor

Durotaxis of tensegrity cell units incorporating asymmetry

Elena Benvenuti¹, Gino A. Reho¹, Stefania Palumbo², Massimiliano Fraldi² ¹Engineering Department, University of Ferrara, Italy E-mail: elena.benvenuti@unife.it, ginoantonio.reho@unife.it

²Department of Structures for Engineering and Architecture, University of Napoli Federico II, Italy E-mail: stefania.palumbo@unina.it,massimiliano.fraldi@unina.it

Keywords: Cell mechanobiology, Durotaxis, Cellular tensegrity, Nonlinear elasticity.

The present contribution focuses on some recent results obtained by the authors concerning durotaxis of cell units anchored to the substrate through focal adhesion plaques, a phenomenon which is relevant to cell locomotion [1]. A mechanical pre-strained tensegrity model obeying a Neo-Hookean stress-strain law recently devised by the authors [2, 3, 4] is exploited to investigate how substrate stiffness gradients and asymmetric geometry affect the cell contractility and the growth of the focal adhesion plaque. The cytoskeleton is purposely reduced to its main components, that is actin filaments and microtubules forming a contractile mechanical system obeying the so-called tensegrity self-equilibrium principle [5]. The system contraction is triggered by means of inelastic pre-strains, that simulate pre-contraction and polymerization. In the adopted tensegrity, an element representative of the actomyosin complex is taken in parallel with another element corresponding to the microtubule [2, 3]. The former can only elastically elongate or inelastically contract without bending, while the latter is a compression-bearing buckling-prone element that can also polymerize.

Figure 1: A contractile cell where the cytoskeleton is replaced by the adopted tensegrity and the cell contractility induces two equal forces at the leading and trailing edges of the cell where the plaques of the focal adhesions are located.

A scheme of the adopted mechanical framework is shown in Figure 1. The cell contractile activity produces two equal forces at the leading and trailing edges of the cell where the plaques of the focal adhesions are considered to be located. These forces, in turn, induce a thermodynamically consistent polymerization/depolymerization process of the focal adhesion plaques. As an effect of the mechanosensitivity of the devised structural system, the displacement Δ_s at the edge lying upon the softer substrate will be generally different from Δ_h detected at the edge placed on the hard part of the substrate. The cell net displacement Δ_N can be hence computed as [1] $\Delta_N = \Delta_s - \Delta_h$. The contractile system illustrated in Figure 1 exemplifies the positive durotaxis concept with the cell advancing towards the stiffer side. However, recently, it has been observed that some cells may migrate towards softer substrates [6], thus suggesting the existence of a negative durotaxis, or mollitaxis, effect.

The present contribution shows that both "classical" positive durotaxis and more recently unveiled mollitaxis can be retraced by means of the proposed essential model, the switching from one mechanism to the other depending on the combination of geometrical asymmetry, stiffness gradients, and inelastic pre-strains. Advantageously, the present model allows us to parametrically investigate the effect of a wide range of asymmetric configurations and stiffness gradients on the cell kinematics and how these affect the process of assembly and disassembly of the focal adhesion plaques subjected to the force exerted by the system.

References

- [1] Sunyer, R. and Trepat, X., Durotaxis, Current Biology, 30(9), R383-R387, (2020).
- [2] Palumbo, S., Benvenuti, E., Fraldi, M., "Actomyosin contractility and buckling of microtubules in nucleation, growth and disassembling of focal adhesions", Biomech. Model. Mechanobiol., 21, 1187–1200 (2022).
- [3] Benvenuti, E., Reho, G.A., Palumbo,S., Fraldi, M., "Pre-strains and buckling in mechanosensitivity of contractile cells and focal adhesions: A tensegrity model", J. Mech. Behav. Biomed. Mater., 135, 105413 (2022).
- [4] Benvenuti, E., Reho, G.A., Palumbo, S., Fraldi, M., "Mechanics of tensegrity cell units incorporating asymmetry and insights into mollitaxis", J. R. Soc. Interface, to appear (2023).
- [5] Ingber, D. E., Wang, N., Stamenović, D "Tensegrity, cellular biophysics, and the mechanics of living systems", Rep. Progress Phys., 77(4), 046603 (2014).
- [6] Isomursu, A. and Park, KY. and Hou, J. and et al., "Directed cell migration towards softer environments", Nat. Mat., 21, 1081–1090, (2022)