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Abstract: In the past few years, a renowned interest in the interplay between the immune system
and central nervous systems (CNS) has sparked a wealth of new experimental studies. Two recent
publications in Science shed new light on the “resident” immune cell populations in the CNS and
their functions in homeostasis and pathological status, with potential implications in understanding
CNS disease mechanisms and in designing new “intelligent” therapies.
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1. Introduction

Precincts around the central nervous system (CNS) protect neurons from the variable
chemicals and cells of the bloodstream by managing the movement of molecules and
cells between blood and CNS. These barriers also ensure that CNS can be kept under
surveillance by certain immune cells but restrict the access of blood-derived immune cells
and molecules to specific compartments at the CNS border.

Historically, it was a common concept that the brain was excluded from peripheral
immune activity and, instead, had a self-capacity regarding defence and repair [1,2]. The
classical view of a cell population in the CNS with immune-like properties defined these
cells under the term “microglia” [3,4]. Of note, microglial cells share phenotypic character-
istics (as well as lineage properties) with bone marrow-derived monocytes/macrophages,
and as the resident macrophage cells, they act as the first and main form of active immune
defense in the central nervous system (CNS) [3,4]. This simplified view of the CNS immune
system has been confuted by recent discoveries concerning the presence of an immunologi-
cally relevant lymphatic system servicing brain parenchyma and has led us to reconsider
the relationship between the immune and nervous systems in health and disease [5–12].

2. New Discoveries on CNS Leukocytes and Their Origin

On top of these new concepts, the latest studies add substantial significance to the
peculiar characteristics of the immune-cell-patrolling mammalian CNS. A recent work by
Cugurra et al. analysed the heterogeneous and somewhat conflicting function of myeloid
cells using parabiosis and several models of CNS injury [13].

Cugurra et al. [13] confirmed previous observations by Herisson et al. describing the
existence of exquisite channels connecting skull bone marrow and the dura mater [14].
Noteworthy, Cugurra et al. reported similar channels also connecting the vertebral bone
barrow with the spinal dura mater [13]. These channels likely serve as anatomical routes
for myeloid cell migration and partly contribute to parenchymal cell infiltrations observed
by Cugurra et al. in several CNS disease models, including spinal cord injury, experimental
autoimmune encephalomyelitis (EAE), and optic nerve damage [13].
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Interestingly, the CNS-infiltrating Ly6C+ monocyte population did not derive from
blood (as per weak green fluorescent protein [GFP] expression as reported in the experi-
mental procedures [13]), whereas the major contribution in the inflamed CNS was clearly
from blood with respect to neutrophils, CD4+ T cells, and Ly6C− monocytes. Ly6C+ cells
in mice identified a subpopulation of bone marrow-derived monocytes endowed with
immunosuppressive and immunoregulatory activities [15], Bronte Nat Comm 2016. An
immunohistochemistry analysis of CNS tissues in experimental settings confirmed that this
pattern was dominated by “resident” LyC6+ cell infiltration [13].

Moreover, results from single-cell RNA sequencing suggest a potential and important
non-redundant role between blood-derived and CNS-derived myeloid cell lineages, with
blood-originating cells demonstrating a more inflammatory and deleterious behaviour.

CNS border-derived myeloid cells, thus, demonstrate a less inflammatory and more
“regulatory” phenotype: this population could act as an “attenuator” of the immune and
inflammatory response with important implications for other disease states including
CNS viral and bacterial infections and in primary and metastatic tumours in the CNS
compartment.

In a companion study, Brioschi et al. studied another compartment of meningeal
immunity: meningeal B cells [16]. As with the previous study, parabiosis experiments and
single-cell RNA sequencing were utilised together with flow cytometry techniques.

The main discovery described in this study is the peculiar meningeal mouse B cell
lineage found in the dura mater (the most external meningeal layer), which showed a
phenotype and developmental pattern similar to the classical bone marrow-derived B
murine cells. Most of these cells were of the B2 type, whereas innate B cells (B1 cells) were
much less represented among lymphocyte populations. The main B cell population was
extravascular with no infiltration in the CNS parenchyma, and it was mainly localised
close to the sagittal and transverse sinuses and could exit CNS through lymphatics [16].
Furthermore, bone marrow reconstitution experiments showed that meningeal B cells were
very similar to bone marrow B cells but not to peripheral blood B cells. These B cells from
the peripheral circulation were minimally involved in colonising the mouse meninges
under physiological conditions. Resident dura mater B cells migrated along vascular
channels from the calvarial bone marrow to the mouse meninges similarly to the myeloid
cells described previously [10,11]. Likely, the same vascular channels recently described [14]
and reported also by Cugurra et al. form a direct physical interaction between calvaria and
the meningeal space [12–14] allowing the migration of B cells as demonstrated by Brioschi
et al. [16].

Lastly, Brioschi et al. also demonstrate that old mice accumulate age-associated B cells
and plasma cells in the dura mater, mainly from the peripheral blood compartment. These
cells identified as “age associated B cells” were antigen-experienced and accumulate in the
dura with age (of note, these findings were basically reproduced and confirmed recently by
Shafflick et al. and Wang et al. [17,18]). Overall, calvaria can indeed supply an early and
quick source of B cells that develop in the dura mater, resulting in a negative selection of B
cells with a high affinity for local self-epitopes. It would be of interest to further study the
various B cell populations in pathological conditions (such as in mouse models of Multiple
Sclerosis [MS]), considering the pivotal role of B cells in MS pathogenesis) [19,20].

Taken together, these studies suggest the almost revolutionary concept that cell migra-
tion through the blood–brain barrier is not required for meningeal-derived immune cell
infiltration and immune surveys of brain tissues. Figure 1A,B show a synopsis of the new
discoveries and concepts illustrated in this paragraph.
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Figure 1. New concepts in the topographical organization of the immune response in CNS.
(A) Myeloid cells and B lymphocytes normally patrolling the CNS are derived from the skull bone
marrow (red characters) and are able to migrate to meninges and to cerebral tissue by travelling
through small skull bone vascular channels (not depicted for figure clarity, represented here by dashed
arrow lines). (B) Ageing and CNS pathologies could increase tissue infiltration by myeloid cells and
B cells from the general blood circulation (represented by the solid arrow lines), altering the local
“milieu” and favouring local immune dysfunction, autoimmunity, and altered repair mechanisms
(see main text and related references for more details).

3. Conclusions

Overall, these new studies shed light on the “special” immunology of CNS. What is
the importance of these new anatomical concepts in neuro-immunology?

The obvious and significant impact is on the comprehension of immune privilege
and immunity in CNS in special regard to the B cells and myeloid compartment. It would
be of course very interesting also to assess the phenotype and behaviour of the T cell
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compartment in the meningeal space and to assess if T cells are using the same migration
patterns by traveling the inner skull vascular channels as well (preliminary data generated
by Brioschi et al. in their experimental model found a very low number of T cells in the
dura mater area in homeostatic conditions [16]).

Clinical implications are also compelling: as an example, we could mention gliomas
(primary brain tumour difficult to treat) that are usually infiltrated by myeloid cells. These
cells have an important role in promoting tumorigenesis and resistance to therapy [21].
A potential exploitation of the skull–meninges connection could influence myeloid cell
chemotaxis as a new immunotherapy. Another unmet medical need that could be exploited
by these new concepts is the field of traumatic brain injury due to the proven effects of
myeloid cells on vascular repair after traumatic injury [22].

More experimental procedures in animal models and carefully designed human stud-
ies can provide us with more insight on the proposed new anatomy of neuroimmunology.

In conclusion, an exciting new era for better understanding the function of dura mater
immune cells at the CNS level in physiological and pathology settings is now emerging,
thus paving a way to modulate (boosting or inhibiting) immune responses at CNS levels.
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