

Article

Different Chromosome Segregation Patterns Coexist in the Tetraploid Adriatic Sturgeon *Acipenser naccarii*

Stefano Dalle Palle, Elisa Boscari, Simone Giulio Bordignon, Víctor Hugo Muñoz-Mora, Giorgio Bertorelle and Leonardo Congiu

Special Issue <u>Conservation Genetics of Sturgeons</u> Edited by Dr. Elisa Boscari, Dr. Peilin Cheng, Dr. Leonardo Congiu, Prof. Dr. Arne Ludwig, Dr. Nikolai Mugue, Dr. Mohammad Pourkazemi and Dr. Kim Scribner

https://doi.org/10.3390/d14090745

Stefano Dalle Palle^{1,†}, Elisa Boscari^{1,†}, Simone Giulio Bordignon¹, Víctor Hugo Muñoz-Mora², Giorgio Bertorelle² and Leonardo Congiu^{1,*}

- ¹ Department of Biology, University of Padova, Via Ugo Bassi 58b, 35121 Padova, Italy
- ² Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
- * Correspondence: leonardo.congiu@unipd.it
- + These authors contributed equally to this work.

Abstract: The Adriatic sturgeon, *Acipenser naccarii* (Bonaparte, 1836), is a critically endangered tetraploid endemism of the Adriatic region; it has been targeted, over the last 20 years, by different conservation programs based on controlled reproduction of captive breeders followed by the release of their juvenile offspring; its preservation would greatly benefit from the correct and coordinated management of the residual genetic variability available in the different captive stocks. In this sense, the setup of an efficient parental allocation procedure would allow identifying familiar groups and establishing informed breeding plans, effectively preserving genetic variation. However, being the species tetraploid, the analyses often deal with complex genome architecture and a preliminary evaluation of allele segregation patterns at different chromosomes is necessary to assess whether the species can be considered a pure tetraploid, as previously observed at some loci, or if a more complex situation is present. Here we study the segregation at 14 microsatellites loci in 12 familiar groups. Results support in different families the tetrasomic segregation pattern at 11 markers and the disomic segregation at three markers. The Adriatic sturgeon thus shows a mixed inheritance modality. In this species, and likely in other sturgeons, accurate knowledge of the loci used for paternity analysis is therefore required.

Keywords: acipensaeridae; autotertraploid; allopolyploid; Adriatic sturgeon; disomic segregation; inheritance; microsatellites; tetrasomic segregation

1. Introduction

Sturgeons are the most endangered group of species, according to the International Union for Conservation of Nature (IUCN, July 2021) (http://www.iucnredlist.org, accessed on 8 August 2022). For this reason, sturgeons are targeted by several conservation efforts that often include restocking programs with juveniles produced in captivity; these ex-situ conservation activities must necessarily be supported by studies aimed at preserving the residual genetic diversity through long-term breeding programs [1]. However, genetic analyses on sturgeons deal with complex genomes and various levels of ploidy, due to independent events of whole-genome duplication [2,3]. The first event of duplication took place in the Acipenseriformes' common ancestor starting from sixty chromosomes. Then, secondary events of duplication occurred in the Pacific and Atlantic clades leading to a total of 240 chromosomes [2]. Finally, a third event led to the unique number of 360 chromosomes observable in Acipenser brevirostrum (Lesueur, 1818) [4]. The number of chromosomes associated with the distinct levels of ploidy has been the subject of an extensive debate between two main positions. The first argues that, since the condition with 120 chromosomes results from a duplication event in the common ancestor, the species with 120 and 240 chromosomes must be considered tetraploid and octaploid, respectively. The second position, taking into account the functional reduction of ploidy that follows whole

Citation: Dalle Palle, S.; Boscari, E.; Bordignon, S.G.; Muñoz-Mora, V.H.; Bertorelle, G.; Congiu, L. Different Chromosome Segregation Patterns Coexist in the Tetraploid Adriatic Sturgeon *Acipenser naccarii*. *Diversity* 2022, 14, 745. https://doi.org/ 10.3390/d14090745

Academic Editors: Michael Wink and Simon Blanchet

Received: 13 August 2022 Accepted: 7 September 2022 Published: 10 September 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). genome duplications, attributes to the two groups a condition of diploidy and tetraploidy, respectively [5]. The two views use different criteria to define the nominal ploidy, the number of duplications and the functional activity of genes, respectively, and are both correct and fully compatible [3].

The Adriatic sturgeon, *Acipenser naccarii* (Bonaparte, 1836), a species with 240 chromosomes, is in general considered a functional tetraploid based on the analyses of 28S and 5S rDNA through in situ hybridization [6]; this is also confirmed by most of the microsatellites analysed in this species which mostly show up to 4 alleles per individuals. However, some loci consistently showed more than 4 alleles in many individuals [7]; this could be due to the duplication of the region of such microsatellites but, a still incomplete process of functional reduction following genome duplication cannot be excluded as already proposed also for other sturgeon species [8,9].

For these reasons, loci to be used for applied purposes, such as parental allocation and kinship analysis, should be carefully selected and their functional ploidy should be preliminarily assessed. Moreover, these applications require a careful preliminary investigation also on the segregation modalities which, in tetraploids, can be of different types. In fact, polyploidization can originate through the fusion of unreduced gametes at intraspecific or interspecific levels, leading to two types of conditions in tetraploids, called autotetraploidy and allotetraploidy, respectively. The origins of polyploidization have important implications on the segregation patterns of the alleles within gametes. In complete autotetraploids, there are always four homologous chromosomes, and random pairs of bivalents and quadrivalents are possible during meiosis (see Figure 1 for graphical support) [10]; this condition leads to tetrasomic inheritance, which means that all allelic combinations within gametes are possible; this is not the case in complete allotetraploids, where each tetrad is composed of two sets of homeologous chromosomes, originating from the two parental species. In this situation, the homeologous chromosomes do not form pairs, leading to disomic inheritance, where only four out of six allelic combinations are possible [10]; these are two extreme cases and intermediate conditions are observable when the chromosomes have different degrees of preferential pairing. Indeed, the inheritance may shift from tetrasomic to disomic or vice versa [10]. For example, in autotetraploids, fertility and karyotype stability can be negatively impacted by imperfect multivalent pairing, thus promoting diploidization and consequent shifting to disomy; on the contrary, in allotetraploids, the homeologous chromosomes from two distinct parental species could maintain some degree of genetic affinity permitting the competition with the homologous pair during meiotic interactions with a certain degree of tetrasomic inheritance [11]. Understanding the mechanisms of chromosomal segregation in a tetraploid species can have important conservation implications, for example when the development of parental allocation methods is required.

In the Adriatic sturgeon, allele segregation was previously investigated at only 7 loci using microsatellite markers [12]. All loci showed a tetrasomic inheritance pattern, pointing at the probable autopolyploidization origin of this species. However, as secondary differentiation of some homologous chromosomes cannot be excluded and different segregation patterns can be followed by different chromosomes, we took advantage of the recent availability of new complete family groups and new isolated and tested microsatellite loci not yet explored, to provide a deeper insight into the mode of chromosome segregation in this species.

This is a key step not only to have a better understanding of the karyotype in the Adriatic sturgeon but also for the correct interpretation of the genetic analysis and parental allocation which in this species can have multiple applications. Firstly, the distinction of extremely rare individuals of wild origin from released ones. Secondly, the identification of groups of siblings existing in the different farms by assigning everyone to his pair of parents of the F0 generation. Finally, knowing the segregation patterns is crucial when the generation of virtual genotypes starting from observed genetic profiles is needed [13,14].

Figure 1. Expected segregation patterns under pure disomy (**a**) or tetrasomy (**b**), respectively expected in Autotetraploid and Allotetraploid genomes.

Thanks to the possibility of making 12 distinct crosses and raising their progeny separately within the project ENDEMIXIT (https://endemixit.com/, accessed on 8 August 2022), many new informative familiar groups became available for the analysis of segregation patterns at a much higher number of loci than those available in the past. The main purpose of the present study is therefore to exhaustively describe the modalities of microsatellite alleles inheritance in the Adriatic sturgeon with the following objectives: (a) verifying if the inferred pure tetrasomy is confirmed on a high number of loci, (b) providing a significant contribution to the management of the residua genetic diversity of this critically endangered species, and (c) shedding light on the functional ploidy level across its genome.

2. Materials and Methods

2.1. Samples and DNA Purification

Most samples analyzed in the present study were obtained from the aquaculture plant Storione Ticino (Cassolnovo, Italy). The reproduction of six females (F2, F4, F5, F6, F7, and F8) and six males (M2, M4, M5, M6, M7, and M8) was performed in different combinations. For each parent, a fin clip was collected for genotyping and, for each cross, the progeny was reared in captivity and spontaneously dead animals were collected and stored in ethanol. Moreover, five familiar groups (Nacc7 $9 \times$ Nacc5 σ , Nacc8 $9 \times$ Nacc31 σ , Nacc19 $9 \times$ Nacc17 σ , Nacc19 $9 \times$ Nacc30 σ , Nacc28 $9 \times$ Nacc23 σ) derived from crosses performed in the past and for which fingerlings were available were also used. In total, 21 adult parents (12 parent pairs) and 376 fingerlings (with about 30 individuals per family) were collected (Table 1).

Genomic DNA was extracted from breeder's fin clips (10–100 mg) and from offspring's muscular tissue, using Euroclone spinNAker Universal Genomic DNA mini kit (Euroclone) and stored at -20 °C till their processing for microsatellite analysis.

2.2. Selection of Loci and Genotyping

Loci analysed in the present study were selected based on the possibility of unambiguously tracing the genetic contribution of at least one of the two parents in at least one of the available families. For this reason, all loci in which there were no complete heterozygotes or there were individuals with more than four alleles were discarded. In fact, it is known that the Adriatic sturgeon presents a minority of loci at which more than four alleles were can be observed in different individuals; thus, segregation anomalies cannot be detected [7]; these extra numerary alleles could originate from duplication or from a locally unreduced octaploid condition. In fact, we recall that the Adriatic sturgeon is functionally a tetraploid but evolutionarily it is an octaploid [3]. Nevertheless, segregation anomalies were also observed in some individuals of each family that were accordingly excluded from the analysis.

Locus	Ref	Ta	Size	Family	Parents	Genotypes	Genotyped Fingerling (Y/N)	#
LS-39	15	52 °C	116–155	Not informative	-	-	Ν	-
AfuG113	16	Td	326-364	Not informative	-	-	Ν	-
				F5 ♀× M6 ♂	F5 ♀ M6 ♂	293/309/318/330 313/318/322	Y	32
AfuG132	16	61 °C	259–346	F6 ♀× M7 ♂	F6 ♀ M7 ♂	313/318/342 293/309/318/322	Y	32
				F8 ♀× M2 ♂	F8 ♀ M2 ♂	304/318/322 313/338/342/346	Y	30
				$F8 \mathrel{\texttt{Q}} \times M2 \mathrel{\texttt{d}}$	F8 ହ M2 ♂	212/234/293 203/255/259/285	Υ	30
				F2 ♀×M4 ♂	F2 ହ M4 ♂	247/255/259/285 212/255/293/305	Υ	30
A 6C 41	16	ER °C	154 109	F4 ♀×M4 ♂	F4 ହ M4 ở	212/217/242/259 212/255/293/305	Υ	30
AruG41	10	58 C	130-198	F6 ♀×M7 ♂	F6 ହ M7 ♂	212/242/259/278 203/225/229/259	Υ	32
				Nacc7 ♀×Nacc5 ♂	Nacc7 ♀ Nacc5 ♂	225/229/252/259 203/225/247/305	Υ	32
				Nacc8♀×Nacc 31♂	Nacc8 ♀ Nacc31 ♂	212/242/293/305 203/234/305	Υ	32
An20 *	17	62 °C	159–213	F7 ♀×M8 ♂	F7 ♀ M8 ♂	160/164/194 160/172/182/186	Y	30
Anac-15214	7	61 °C	259–285	Not informative	-	-	Ν	-
Anac-2589	7	63 °C	224–294	Not informative	-	-	Ν	-
Anac-6784	7	62 °C	311–346	Nacc19 ♀× Nacc17 ♂	Nacc19 ♀ Nacc17 ♂	311/322/330/334 322/326	Y	32
Anac-3133	7	56 °C	164–178	$F7 \ Q imes M8 \ \sigma^{*}$	F7 ♀ M8 ♂	164/174 164/166/170/172	Y	30
AnacA6 *	18	62 °C	289–313	$F5 \ ensuremath{\mathbb{Q}} \times M6 \ ensuremath{\sigma}^*$	F5 ♀ M6 ♂	307/313 293/297/301/307	Υ	32
AnacB11	18	€0 °C	132-162	$F6 \ Q imes M7 \ \sigma^a$	F6 ♀ M7 ♂	148/150 138/144/148/162	Y	32
	10	00 0	102 102	Nacc19 ♀× Nacc17 ♂	Nacc19 ♀ Nacc17 ♂	132/136/138/144 132/150/162	Y	32
AnacB7	18	€0 °C	152-198	$F6 \ \text{P} \times \ \text{M7} \ \sigma^{\text{a}}$	F6 ହ M7 ଟ	166/172/174/176 154/156/164	Y	32
	10	00 0	102 100	Nacc19 ೪× Nacc30 ೆ	Nacc19 ♀ Nacc30 ♂	156/166/174 154/170/174/176	Y	32
AnacC11	18	50 °C	167–193	Not informative	-	-	Ν	-
AnacE4 *	18	58 °C	326–354	$F5 \ q imes M6 \ d^{*}$	F5 ହ M6 ♂	332/340/346/354 336/346	Υ	32
				$F4 \ m V imes M5 \ \sigma$	F4 ♀ M5 ♂	123/127/131/139 131/135/155	Υ	30
AoxD161	19	60 °C	111–155	F8 ♀× M2 ♂	F8 ହ M2 ଟ	123/131/135/139 127/131	Υ	30
				Nacc7 ♀× Nacc5 ♂	Nacc7 ♀ Nacc5 ♂	123/127/131/143 131/135/139	Υ	32

Table 1. Screening of microsatellite loci.

Locus	Ref	Ta	Size	Family	Parents	Genotypes	Genotyped Fingerling (Y/N)	#
				F2 ♀× M4 ♂	F2 ♀ M4 ♂	219/223/243/255 227/243	Υ	30
A av D224 *	10	52 °C	215 275	F4 ♀× M5 ♂	F4 ହ M5 ♂	227/243/247/251 235/239/255/259	Υ	30
A0XD254	19	52 C	213-275	Nacc28 ♀× Nacc23 ♂	Nacc28 ೪ Nacc23 ೆ	219/243/247/263 239/243/251/255	Υ	24
				F6 ♀× M7 ♂	F6 ହ M7 ♂	227/243/247/255 219/239/247	Υ	32
AoxD241 *	19	57 °C	156–196	F7 ♀× M8 ♂	F7 ♀ M8 ♂	168/176/180 164/172/176/184	Υ	30
AoxD64 *	19	60 °C	216-260	Not informative	-	-	Ν	-
Spl-120	20	55 °C	263-303	Not informative	-	-	Ν	-
Spl-163	20	63 °C	166–233	F2 ♀× M4 ♂	F2 ♀ M4 ♂	207/215/220 166/215/224/229	Υ	30
				F7 ♀× M8 ♂*	F7 ♀ M8 ♂	232/240/294 218/236/271/273	Υ	30
				F4 ♀× M5 ♂	F4 ହ M5 ♂	209/232/257/273 218/232/279/282	Υ	30
S-1 169	10		200.214	F6 ♀× M7 ♂	F6 ହ M7 ♂	227/236/271/286 240/245/264/269	Υ	32
Spi-168	10	63 °C	200–314	Nacc19 ೪× Nacc17 ರೆ	Nacc19 ೪ Nacc17 ೆ	218/227/269/294 227/240/286/314	Υ	32
				Nacc7 ♀× Nacc5 ♂	Nacc7 ♀ Nacc5 ♂	232/245/264/294 214/240/273/279	Υ	32
				Nacc8 ♀× Nacc31 ♂	Nacc8 ♀ Nacc31 ೆ	209/236/271/279 218/249/273/279	Y	32

Table 1. Cont.

Loci were used for genotyping of breeders for the selection of informative family/locus combinations for which progeny was also processed. References, annealing temperatures used, and size are reported. For each informative family/locus combination, the genotypes of each parent at such loci are also reported and the parent's genotypes for which the allele segregation was followed in the progeny is in bold. The total number of fingerlings processed for each informative family is reported in the last column. * Loci for which the segregation inheritance pattern was already explored in other familiar groups of the same species [12]. Y = Yes, N = Not processed. # = number of analyzed individuals.

All breeders were genotyped at 21 microsatellite loci (Table 1) [7,15–20] to select the informative Family/Locus combinations for the assessment of chromosomal segregation. For each selected combination, the progeny was also amplified and genotyped. Tracking segregation in the progeny requires the satisfaction of some features, such as (i) the complete heterozygosity (four different alleles) of at least one parent to ensure that each allele can unambiguously mark the segregation of its own chromosome and (ii) no more than an allele shared by the two parents to avoid ambiguity in following the alleles transmission to the progeny [12].

A total of 33 Family/Locus combinations were finally selected and approximately 30 fingerlings each were genotyped (Table 1). In 22 out of 33 case studies only one breeder of the parent pair was completely heterozygote and therefore informative to follow the segregation of the alleles, while for the remnant 11 Family/Locus combinations the segregation pattern was followed for both breeders of the parent pair as both they showed completely heterozygous genotypes with a single allele shared at most (Table 1).

Microsatellite loci were amplified from genomic DNA in a 10 µL reaction: 1X Master Mix Buffer (QIAGEN), 0.2 µM of each primer and about 50 ng of genomic DNA. Amplifications were performed on SimpliAmp Thermal Cycler (Thermo Fisher Scientific, Bologna, Italy). Amplifications were checked on 1.8% agarose gel in TBE1X stained with GelRed (BIOTIUM, Fremont, Canada, GelRed[™] Nucleic Acid Stain). Genotyping was performed on ABI PRISM 310 Genetic Analyzer (external service, BMR Genomics, Padova, Italy). For microsatellite scoring the software GeneMarker Version 1.95 (SoftGenetics LLC, State College, PA, USA) was used.

2.3. Data Analyses

Scoring was performed by two operators, independently, with GeneMarker Version 1.95 (SoftGenetics LLC). The final dataset was carefully checked, and each individual was controlled for perfect Mendelian inheritance within his Family/Locus combination under the assumption that the observed genotypes at a given locus should be compatible with the inheritance of two allele copies from each parent. Individuals that for different possible reasons discussed later did not match this assumption were discarded. Since discordances with the above-accepted criterion can be attributed to anomalies in chromosomal segregation in the gametes of one parent, which are independent of what happened in the mating partner's gametes, it was decided not to discard those animals whose segregation anomaly was due to a problem in the uninformative parent. Limiting our observations to those animals that met standard inheritance of two out of four alleles, we consciously excluded possible genotypes that were not necessarily derived from segregation anomalies such as the case of double reduction, a phenomenon widely observed in autotetraploid plants in which the four homolog chromosomes may form multivalents [21,22] in which identical alleles carried on the sister chromatids may enter the same gamete with consequent segregation of two copies of the same allele even if it was present in a single copy in the parental genome [23]. We have decided to limit ambiguities by disregarding this phenomenon and excluding all the individuals that could be compatible with it focusing on animals in which alleles were unambiguously traceable.

As proposed by Stift et al. (2008) [10], Likelihood Ratio Tests (LRT) with 1 df were applied to compare the null model of tetrasomy with the other alternative models intermediate between disomic and tetrasomic. For each parent-locus combination and each alternative inheritance model, the log-likelihood was estimated from constrained nonlinear regression models, using SPSS syntax as reported in the original reference [10]. The Sequential Bonferroni correction [24] was applied to adjust significance levels (p < 0.05) for multiple comparisons across loci and families.

3. Results

From 22 to 32 individuals for each family-locus combination were successfully genotyped. In some cases, a few animals were discarded for unreliable profiles or, after the allele scoring, due to the presence of segregation anomalies of alleles inherited from the informative parent (Table 2).

At 11 (AfuG132, AfuG41, An20, Anac6784, Anac3133, AnacA6, AnacB11, AnacB7, AnacE4, AoxD234, AoxD241) out of 14 informative loci the LRT did not lead to the rejection of the null model of inheritance thus supporting the hypothesis of tetrasomy. At almost all these loci, indeed, all six allele combinations were observed in almost all tested families (Figure 1a, Table 2, Figure A1 of Appendix A). The only exceptions were the loci AoxD234 and Anac-3133 at a single family each showing only five allele combinations. However, in both cases, the strict disomic inheritance was excluded after correction for multiple tests (Table 2). In these two families, the sixth combination is expected to be detectable by increasing the sample size. Five (An20, AnacA6, AnacE4, AoxD234, and AoxD241) of the 11 loci showing tetrasomic inheritance were already tested to assess the inheritance pattern in different familiar groups of Adriatic sturgeon [12] and their tetrasomy has been here confirmed. Specifically, the locus AnacA6 here analysed at a single family showed only four allele combinations but, missing combinations are not compatible with disomic inheritance modality and even in this case the null model was not rejected.

On the contrary, a significant rejection of the null model was observed at three loci, Spl163, AoxD161, and Spl168, analysed respectively at one, three and six families and never analysed before in other studies. In some cases, the analysed families have both parents informative for segregation and agree in suggesting a disomic mode of inheritance (Table 2, Figure 1b, Figure A1 Appendix A). The disomic model fitted the observed allele combination frequencies significantly better than the null model, and the parameter τ equal to zero indicates a full disomic inheritance at almost all Family/Locus combinations. The

only two exceptions were observed in the segregation of the alleles of female F8 at locus AoxD161 and male Nacc31 at locus Spl168 (Table 2). In these two cases, five combinations of alleles were present, the parameter τ assumed a very low value confirming a strong degree of preferential pairing during meiosis but the rejection of the null model was not significant after the Bonferroni correction, thus suggesting possible imperfect preferential pairing.

					Best Inte	ermedia	te Model	N/ 11	
Locus	Family	Informative Parent	N (Nd)	Null Model (I = 1) Likelihood Obs	Pairing Alleles	Т	Likelih-ood Obs	Comparison: LRT	<i>p</i> -Values
	F5 ♀× M6 ♂	F5 ♀	22 (8)	39.42	AC/BD	0.82	39.23	0.19	0.3322
Afug132	F6 ♀× M7 ♂	M7 ♂	29 (1)	51.96	AD/BC	0.83	51.74	0.22	0.3185
	F8 ♀× M2 ♂	M2 ♂	29 (1)	51.96	AB/CD	0.83	51.74	0.22	0.3185
	F8 ♀× M2 ♂	M2 ♂	27 (3)	48.38	AC/BD	0.89	48.29	0.09	0.3853
		F2 ♀	27 (3)	48.38	AB/CD	0.78	48.03	0.35	0.2776
	$F2 \ Q \times M4 \ d^{n}$	 M4 ♂	27 (3)	48.38	AB/CD	0.44	45.98	2.39	0.0609
	F4 ♀× M4 ♂	F4 ♀	29 (1)	51.96	AC/BD and AD/BC	0.93	51.93	0.03	0.4259
Afug41	+ · · · ·	M4 ♂	29 (1)	51.96	AD/BC	0.83	51.74	0.22	0.3185
0		F6 9	28 (2)	50.17	AD/BC	0.86	50.02	0.15	0.3509
	F6 ♀× M7 ♂	M7 ♂	28 (2)	50.17	AB/CD	0.86	50.02	0.15	0.3509
		Nacc7 9	28 (4)	50.17	AD/BC	0.64	49.21	0.96	0.1631
	Nacc7 ♀× Nacc5 ♂	Nacc5 d	28 (4)	50.17	AD/BC	0.75	49 71	0.46	0 2489
	Nacc8 9× Nacc 31d	Nacc8 9	31 (1)	55 54	AD/BC	0.77	55.13	0.41	0.2603
An20 *	F7 9× M8 d	M8 d	30 (0)	53.75	AD/BC	0.70	53.03	0.72	0.1984
	17 + 100 0	1410 0	50 (0)	33.73	AC/BD and	0.70	33.03	0.72	0.1704
Anac6784	Nacc19 ♀× Nacc17 ♂	Nacc19 Q	30 (2)	53.75	AC/BD and AD/BC	0.91	53.68	0.08	0.3912
Anac3133	F7 ♀× M8 ♂	M8 ♂*	29 (1)	51.96	AB/CD	0.41	49.06	2.90	0.0444 ª
AnacA6 *	$F5 \mathrel{\texttt{Q}} \times M6 \mathrel{\texttt{d}}$	M6 ♂	29 (1)	51.96	AB/CD and AC/BD	0.72	51.38	0.58	0.2225
ApacB11	F6 ♀× M7 ♂	M7 ♂	26 (4)	46.59	AB/CD	0.58	45.31	1.28	0.1290
Anachii	Nacc19 ♀× Nacc17 ♂	Nacc19 9	26 (6)	46.59	AB/CD	0.81	46.34	0.25	0.3088
A 107	F6 ♀× M7 ♂	F6 ♀	27 (3)	48.38	AB/CD	0.67	47.57	0.80	0.1849
AnacB7	Nacc19 ♀× Nacc30 ♂	Nacc30 d	32 (0)	57.34	AD/BC	0.94	57.30	0.03	0.4295
AnacE4 *	$F5 \ P \times \ M6 \ P$	F5 Q	28 (2)	50.17	AB/CD and AD/BC	0.96	50.16	0.01	0.4622
	F4 ♀× M5 ♂	F4 9	29 (1)	51.96	AB/CD	0.00	40.20	11.76	0.0003
AoxD161	F8 ¥× M2 ở Nacc7 9× Nacc5 ở	F8 ¥	30 (0)	53.75	AC/BD	0.10	45.28	12.97	0.0018 "
	F2 ♀× M4 ♂	F2 Q	27 (3)	48.38	AD/BC	0.89	48.29	0.09	0.3853
	E4.0× M5 -2	F4 ♀	28 (2)	50.17	AD/BC	0.86	50.02	0.15	0.3509
A D004 \$	1.4 * × 1MD 0	M5 ♂	28 (2)	50.17	AD/BC	0.64	49.21	0.96	0.1631
AoxD234 *		Nacc28 ♀	23 (1)	41.21	AB/CD	0.78	40.93	0.28	0.2972
	Nacc28 ♀× Nacc23 ♂	Nacc23 d	23 (1)	41.21	AC/BD	0.26	37.29	3.92	0.0239 ^a
	F6 ♀× M7 ♂	F6 ♀	29 (1)	51.96	AC/BD	0.52	50.07	1.89	0.0844
AoxD241 *	F7 ♀× M8 ♂	M8 ♂	29 (1)	51.96	AC/BD	0.72	51.38	0.58	0.2225
Spl163	F2 ♀× M4 ♂	M4 ♂	28 (2)	50.17	AC/BD	0.00	38.82	11.35	0.0004
	F7 ♀× M8 ♂	M8 ♂	26 (4)	46.59	AB/CD	0.00	36.04	10.54	0.0006
	F4 ♀× M5 ♂	F4 9	30 (0)	53.75	AB/CD	0.00	41.59	12.16	0.0002
Spl168		M5 d [*]	30 (0)	53.75	AB/CD	0.00	41.59	12.16	0.0002
	F6 ♀× M7 ♂	Y	29 (1)	51.96	AB/CD	0.00	40.20	11./0	0.0003
		Nacc19 9	23 (9)	41.21	AB/CD	0.00	31.88	9.33	0.0011
	Nacc19 ♀× Nacc17 ♂	Nacc17 d	23 (9)	41.21	AB/CD	0.00	31.88	9.33	0.0011
		Nacc17 d	23 (9)	41.21	AB/CD	0.00	31.88	9.33	0.0011
	Nacc7 ♀× Nacc5 ♂	Nacc7 ♀	32 (0)	57.34	AB/CD	0.00	44.36	12.97	0.0002
		Nacc5 of	32(0)	57.34	AB/CD	0.00	44.36	12.97	0.0002

Table 2. Likelihood Ratio Test.

		In farme etime		N11 M 4-1 (T - 1)	Best Int	termedia	te Model	Madal	
Locus	Family	Parent	N (Nd)	Likelihood Obs	Pairing Alleles	Т	Likelih-ood Obs	Comparison: LRT	p-Values
	Nacc8 2× Nacc31 d	Nacc8 ♀	29 (3)	51.96	AB/CD	0.00	40.20	11.76	0.0003
		Nacc31 ♂	29 (3)	51.96	AB/CD	0.10	43.86	8.10	0.0022 ^a

Table 2. Cont.

Results of Likelihood Ratio Test between the null model of tetrasomy (TAU = 1) and the best fitting intermediate one (TAU estimated). Significant *p*-values (after Bonferroni correction) that reject the null hypothesis of tetrasomy are highlighted in grey. ^a not significant values after Bonferroni correction for multiple tests. * Loci for which the segregation inheritance pattern was already explored in other familiar groups of the same species [12].

Expected allele combinations in tetrasomic and disomic mode of inheritance in tetraploids. (a) Observed allele combinations inherited from a complete heterozygote parent in autotetraploids in which tetrads are generated during meiosis and random segregation of allele pairs is expected. In brackets, the number of individuals carrying the relative allele combination is reported. (b) Observed allele combinations inherited from a complete heterozygote parent in allotetraploids in which a preferential pair between homologous chromosomes occurs. Only four possible gametes are expected. Alleles of the parent for which the segregation is reported in each table are marked in bold and by a letter used to indicate the observed combinations. Complete tables for all loci are reported in Appendix A. (Created with BioRender.com, accessed on 8 August 2022).

4. Discussion

The segregation pattern observed in the present study at most loci indicates that the Adriatic sturgeon can be considered predominantly tetraploid with a tetrasomic inheritance pattern. The presence of three disomic loci, however, indicates that the functional diversification process is at different stages in different parts of the genome, with some regions possibly still octaploid, most tetraploid, and some others in which the degree of divergence has gone up to a condition of double diploidy. We also observed the presence of two loci with a marked tendency to disomy with a few unexpected allele combinations, pointing to a possible imperfect preferential pairing expected at intermediate stages of functional diploidization [10,11]; this coexistence of different ploidy levels was previously described in other organisms. In plants, for example, the co-existence of different segregation patterns (e.g., tetrasomic and disomic) with different intermediate degrees of preferential pairing among chromosomes provides evidence of a process of functional reduction of ploidy which reasonably cannot occur simultaneously throughout the genome, but which is the result of a progressive differentiation [11,25].

As for the sturgeons, in other species the presence of different degrees of ploidy has been deduced based on the maximum number of alleles per individual present at the different loci [16] and, in some cases, the Mendelian transmission in the progeny has also been verified [15,26,27]. However, the selection of the cross/locus combinations to allow the traceability of every single allele and consequently to distinguish between the different modes of tetraploid segregation (e.g., disomic, tetrasomic or intermediate) has been conducted to our knowledge only on the Adriatic sturgeon.

The evidence that the level of homology between chromosomes within the Adriatic sturgeon genome is likely to vary from chromosome to chromosome and that different parts of the genome may consequently have different degrees of functional ploidy (2 to 8) should be considered when characterizing the genome of this species and probably of sturgeons in general. Genome assembly procedures must contemplate the possibility that different regions are present with a variable number of copies.

Whatever the evolutionary origin and implications of our results, which can be better investigated only when the genome of this species will be available, the identification of different inheritance pattern at different markers may have practical consequences for the conservation of the Adriatic sturgeon. In fact, our findings suggest that before developing parental allocation methods, a preliminary analysis of the loci used is recommended; this would ease the reconstruction of individual genealogies of animals kept as captive breeders and the reallocation of any individual recaptured after release. Another interesting and relatively unexplored aspect of sturgeon ex situ conservation in which a clear knowledge of the inheritance patterns at different loci could be useful is the monitoring of the genomic impact of breeding protocols. Captive breeding is usually performed following standardized protocols of hormonal induction of egg and milt release and fertilization is done in an excess of sperms. Then, the resulting viable progeny is released without verifying if the procedure used had some effect on their genomic asset, for example, by inducing aneuploidies, which are a common phenomenon in some captive sturgeon stocks [28]. The release in nature of genetically anomalous individuals should be avoided as the consequences that this can have on the following generations and on their reproductive efficiency is unknown and, in the case of animals with long generation times, could be revealed after decades. Random screening of familiar groups to verify the correct parents-to-progeny segregation at both disomic and tetrasomic loci could significantly contribute to reducing the potential impact of genomic anomalies on natural populations.

5. Conclusions

Thanks to the availability of some family groups not previously analyzed, it was possible to better investigate the patterns of chromosomal segregation in the polyploid Adriatic sturgeon. The picture that emerged is that of an extremely dynamic genome in which it is possible to find the co-existence of regions with different degrees of ploidy, some of which retain the legacy of ancient duplications and others show a dynamic reduction of functional ploidy; this pattern is probably shared with other polyploid sturgeons in which different patterns of segregation have been observed [27], but it is not known whether the same genomic regions are involved.

Additional studies are required to better characterize the distribution of ploidy across the genome; this will likely contribute to explaining some specific features of the sturgeons, such as the ability of species with different degrees of ploidy to hybridize and produce viable offspring [29]; this extreme genomic plasticity could somehow be linked to a high degree of genomic redundancy; it would also be very interesting to verify whether the regions with different segregation patterns are somehow related to the size of the chromosomes, which in sturgeons is known to be very variable, with a small number of large chromosomes and a high number of micro-chromosomes. However, until complete genomes of good quality are available, it is difficult to move beyond speculation on these topics.

Author Contributions: Conceptualization, S.D.P., E.B. and L.C.; methodology, S.D.P., E.B. and L.C.; investigation, S.D.P. and S.G.B.; writing—original draft preparation, S.D.P. and L.C.; writing—review and editing, E.B., V.H.M.-M. and G.B.; project administration, G.B. and L.C.; funding acquisition, G.B. and L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Italian PRIN 2017, grant number 201794ZXTL.

Institutional Review Board Statement: The animal study protocol was approved by the Institutional Ethics Committee of the University of Padova (OPBA)—(protocol code 421922 of 14 October 2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Province of Vicenza and the "Bacino Pesca B (VI)" for the hospitality in the "Oasi le Sorgenti" Natural Reserve and for the logistical support and the Storione Ticino aquaculture farm for performing all crosses that allowed this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Loc	us <i>Afug1</i> .	32			Pheno	otypes				Locus 2	4 <i>fug132</i>			Ph	enotyp	oes		
			А	В		С		D				304		318	322			
F5	♀ x M6 ⊲	3	293	309		318		330		F8 ♀ 2	x M2 👌		E			F	G	Н
					313	318	322						313			338	342	346
suo	A	B (2)	293	309						suo	EF (4)		313			338		
nati	A	C (3)	293			318				nati	EG (1)		313				342	
idm	A	D (6)	293					330		imbi	EH (8)		313					346
d co	В	C (2)		309		318				d cc	FG (4)					338	342	
erve	BI	D (3)		309				330		erve	FH (8)					338		346
Obs	C	D (6)				318		330		Obs	GH (4)						342	346
		- (*)									(-)							
Loc	us Afugl.	32			Pheno	otypes				Locus	Afug41			Ph	enotvr	bes		
	J 3				313	318		342			<i>J</i> *8		212	234	en orga			293
F6	♀ x M7 (7	F	F	515	G	н	512		F8 \circ :	x M2 ♂	F	212	231	F	G	н	275
_	1 .	0	293	309		318	322			- 1	0	203			255	259	285	
su	FI	F (7)	293	309		510	022			SU	FF (3)	203	-		255	237	205	
latio	E	$\frac{(7)}{(7)}$	203	507		318				latio	EG(4)	203			200	250		
nbir	E	$\frac{J(1)}{J(1)}$	203			510	377			nbir	EU (4)	203				237	285	
lcor	E		2)3	300		219	522			l coi	EII(4) EG (5)	203			255	250	205	
rved	FI	J (4)		200		510	222			rved	FU (3)				255	239	295	
Dbse		$\frac{1}{(4)}$		309		210	322			Obse	GH(7)				255	250	205	
0	U.	п (5)				510	322			0	θп(/)					239	205	
Locus	Afug41			PI	henotvi	165			1	Locus	Afug41			Pł	enotv	205		
Locus	- jug / 1		Δ	B	C					Locus	1.jug 11		Δ	B	C	n	1	
			247	255	250	285							247	255	250	285		
F2 ♀ :	x M4 ♂	F	24/	233 E	237	203	G	ц		F2 ♀	x M4 👌	Б	247	E 233	239	205	G	ц
		212	,	255			202	205				L 212		1° 255			202	205
su	A P (4)	212	247	255			293	505		su	FF(2)	212		255			293	305
atio	AD(4)		247	255	250					atio	EF(2)	212		255			202	
nbin	AC (4)		247	,	259	295				abin	EG(3) EU(7)	212					293	205
cor	AD(7)		247	255	250	205				cor	EII(7)	212		255			202	305
rved	BC (3)			255	259	295				rved	FG (5)			255			293	205
Dbse	$\frac{\text{BD}(0)}{(0)}$			233	250	203				Dbse	$\Gamma \Pi (0)$			233			202	205
	CD (3)				239	205	1		1		ОП (2)						293	305
Loone	Afra 11			DI	honotur	200			1	Loops	Afric 11			DI	anotar			
Locus	Ajug41		D		lenoty	D				Locus	Ajug41		р	C FI	lenoty	D	1	
		A	в 015			250						A 212	в 217	242		D 250		
F4 ♀ :	x M4 👌	212 E	21/	242	Б	259	C	TT		F4 ♀	x M4 👌	212 E	217	242	Б	239	C	
		E 212			Г 255		G 202	H 205				E			г 255		G 202	H 205
ls		212		,	255		293	305	-	IS	EE (C)	212			255		293	305
atior	AB (6)	212	217						-	atior	EF (6)	212			255		202	
ibin	AC (6)	212		242					-	lbin	EG (5)	212					293	
con	AD (4)	212				259			-	com	EH (3)	212			~		202	305
ved	BC (5)		217	242					-	.ved	FG (5)				255		293	
bser	BD (3)		217			259				bser	FH (6)				255			305
	JCD (5)	1	1	242	1	259	1	1	1	0	[GH (4)	1	1		1	1	293	305

Locus Af	Locus Afug132				Pheno	otypes				Locus 2	4 <i>fug132</i>			Ph	enoty	bes		
			A	В		С		D				304		318	322			
F5 ♀ x №	M6 👌		293	309		318		330		F8 ♀ 2	x M2 👌		Е			F	G	Н
					313	318	322						313			338	342	346
ions	AB (2)	293	309						ions	EF (4)		313			338		
inat	AC (3)	293			318				inat	EG (1)		313				342	
quio	AD (6)	293					330		omb	EH (8)		313					346
/ed c	BC (2)		309		318				/ed c	FG (4)					338	342	
serv	BD (3)		309				330		serv	FH (8)					338		346
ð	CD (6)				318		330		Of	GH (4)						342	346
Locus Af	ug132				Pheno	otypes	-			Locus	Afug41			Pb	enotyp	bes	1	1
		Ļ			313	318		342		_			212	234				293
F6 ♀ x №	M7 ∂	1	E	F		G	Н			F8 ♀ 3	x M2 ♂	E			F	G	Н	
¹	<u> </u>		293	309		318	322			8	1	203			255	259	285	
tion	EF (7	7)	293	309						tion	EF (3)	203			255			
bina	EG (7)	293			318				bina	EG (4)	203				259		
com	EH (4	4)	293				322			com	EH (4)	203					285	
ved	FG (4	4)		309		318				ved	FG (5)				255	259		
bser	FH (4	4)		309			322			bser	FH (4)				255		285	
0	GH (3)				318	322			Õ	GH (7)					259	285	
X 40	41								1	Ŧ	4.6 41							
Locus Ajug	41		•		enoty	pes	1			Locus	Ajug41				nenoty	bes		
			A 247	В 255	250	D 295				-			A 247	В 255	250	D 205		
$F2 \stackrel{\bigcirc}{_{\sim}} x M4$	ੇ ਸ		247	233 E	259	285	C	тт		F2 ♀	x M4 👌	Б	247	200 E	239	285	C	TT
	Е	212		Г 255			G 202	П 205				E 212		г 255			902	П 205
Z AD	(4)	212	247	255			293	303		su	EE (2)	212		255			293	305
	(4)		247	255	250					atio	EF(2) EG(5)	212		255			202	
	(7)		247		239	285				nbin	EU(3) EH(7)	212					293	305
	(7)		241	255	250	203				l cor	EII(7) EG (5)	212		255			203	303
	<u>5)</u> 6)			255	239	285				rved	FH (6)			255			293	305
	(3)			233	259	285				Obse	GH (2)			233			293	305
CD (3)				237	203			,		011(2)						270	203
Locus Afug	41			Pł	nenotvr	nes			1	Locus	Afug41			Pł	nenotvi	pes		
J.8	А		В	С		D					J *8	А	в	С		D		
	. –	212	217	242		259						212	217	242		259		
F4 ♀ x M4	ੇ E				F		G	Н		F4 ♀ :	x M4 ♂	Е			F		G	Н
	_	212			255		293	305				212			255		293	305
Ë AB (6)	212	217							suc	EF (6)	212			255		_>0	0.00
AC a	6	212	/	242						natic	EG (5)	212					293	
AD	(4)	212	<u> </u>			259				mbi	EH (3)	212						305
BC (5)		217	242						d co	FG (5)				255		293	
BD (3)		217			259				erve	FH (6)				255			305
pa	-			2.42		250		1	1	Obs	GH (4)						293	305

	ocus A6		Phenotypes					Locus B	11		Ph	nenotyp	es		
						307	313						148	150	
F5	♀ x M6 (3	E	F	G	Н			F6 ♀ x M	17 ð	Е	F	G		Н
			293	297	301	307					138	144	148		162
suc	EF	F (1)	293	297					suc	EF (2)	138	144			
natic	E	$\frac{1}{1}(7)$	293		301				natio	EG (6	138		148		
mbii	E	$\frac{1}{1}$							mbii	EH (3)	138		1.0		
d co	FC	$\frac{1}{1}(15)$		297	301				d coj	FG(4)	100	144	148		
srve	FF	$\frac{1}{10}$			001				erve	FH (8)		144	1.0		162
Obse	G	H (6)			301	307			Obse	GH (3		144		148	162
		1(0)			501	507			-	GII (5	/			140	102
Locu	s <i>B11</i>			Pheno	otypes			Loci	ıs <i>B7</i>		P	henoty	pes		
		А	В	С	D							A	в	С	D
Nacc	19♀ x	132	- 136	138	144			F6 ♀ 3	x M7 ♂			166	172	174	176
Nac	cl7d	132				150	162	·	_	154	56 164	1			
sue	AB (4)	132	136					suc	AB (3)			166	172		
natic	AC (7)	132		138				natic	AC (8)			166		174	
mbii	AD (3)	132			144			mbi	AD (6)			166	5		176
d co	BC (5)		136	138				 d co	BC (5)				172	174	
erve	BD (4)		136	100	144			erve	BD (2)				172		176
Obs	CD (3)		100	138	144			Obs	CD (3)				1.12	174	176
										I					_
Loci	us <i>B7</i>			Phen	otypes				Locus I	E4		Pł	nenotyp	es	
			156	166		174					А		В	С	D
Nac-	•190 v		1	1	-	C	н		F5 ♀ x M	16 8	222		240	246	354
Nacc	.12+ A 	Е			F	G	11			••••	332		340	340	
Nacc	ac30♂	E 154			F 170	174	176		I		332	336	340	346	
	EF (8)	E 154 154			F 170 170	174	176		suo	AB (3) 332	336	340	346	
Nacc Nac	EF (8) EG (8)	E 154 154 154			F 170 170	174 174	176		nations	AB (3 AC (5) 332	336	340	346 346 346	
Nacc Nac	EF(8) EG(8) EH(4)	E 154 154 154			F 170 170	174 174 174	176	 	mbinations	AB (3 AC (5 AD (3) 332) 332) 332) 332	336	340	346 346 346	354
id combinations	EF (8) EG (8) EH (4) FG (6)	E 154 154 154 154			F 170 170 170	174 174 174	176 176		ed combinations	AB (3 AC (5 AD (3 BC (6) 332) 332) 332) 332	336	340	346 346 346	354
ierved combinations	EF (8) EG (8) EH (4) FG (6) FH (3)	E 154 154 154			F 170 170 170 170 170	174 174 174 174	176 176 176		served combinations	AB (3 AC (5 AD (3 BC (6 BD (5) 332) 332) 332) 332) 332	336	340 340 340 340	346 346 346	354
Observed combinations	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3)	E 154 154 154			F 170 170 170 170	174 174 174 174 174	176 176 176 176		Observed combinations	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6) 332) 332) 332) 332) 332) .	336	340 340 340 340	346 346 346 346	354 354 354
Observed combinations	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3)	E 154 154 154			F 170 170 170 170	174 174 174 174	176 176 176 176		Observed combinations	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6) 332) 332) 332) 332) 332) .	336	340 340 340 340	346 346 346 346	<u> </u>
Oppserved combinations Opserved Combinations Conserved Combinations	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161	E 154 154 154		Phen	F 170 170 170 170 170 170 0types	174 174 174 174 174	176 176 176 176		Observed combinations	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6) 332) 332) 332) 332) 332)	336	340 340 340 340	340 346 346 346 9es	<u>354</u> 354 354
Opserved combinations Opserved combinations	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161	E 154 154 154	B	Phen C	F 170 170 170 170 170 0types	174 174 174 174 174	176 176 176 176		Observed combinations	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6	332) 332) 332) 332) 332) 332) 332) A	336	340 340 340 340 B	346 346 346 346 0es C	354 354 354 354
Nacc Nac suoperved compinations Descrete F4 \bigcirc :	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161 x M5 ♂	E 154 154 154 154 	B 127	Phen C 131	F 170 170 170 170 170 0types	174 174 174 174 174 D 139	176 176 176 176		Solution of the second	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 x161	332) 332	336	340 340 340 340 B 131	346 346 346 346 C 135	354 354 354 0 D
Opserved combinations Observed combinations F4 ♀ :	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) <i>Aox161</i> x M5 ♂	E 154 154 154 154 	B 127	Phen C 131	F 170 170 170 170 170 170 170	174 174 174 174 174 D 139	176 176 176 176 176		Opset/combinations F8 \bigcirc x M	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 x161	A	336	340 340 340 340 B 131 131	346 346 346 346 C 135	354 354 354 D 139
Nacc Nac Nac Nac Opserved combinations	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161 x M5 ♂	E 154 154 154 154 A 123	B 127	Phen C 131 131	F 170 170 170 170 170 170 170 170	174 174 174 174 174 D 139	176 176 176 176 176		suce the second combination of the second s	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 x161 12 ⁽³) AB (7	332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 123) 123	336 PH	340 340 340 340 340 131 131 131	346 346 346 346 346 C 135	354 354 354 0 139
Nacc Nac suoitaniations F4 ♀ :	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161 x M5 ♂ AB (0) AC (10)	E 154 154 154 154 154 154 123	B 127	Phen C 131 131	F 170 170 170 170 170 170 135	D 139	176 176 176 176 176		$\begin{array}{c} \text{nations} \\ \text{Observed combinations} \\ \text{Descrved combinations} \\ Accuracy of a state of the second state of the sec$	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 x161 12 d AB (7 AC (1	332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 332) 123) 123) 123	336 91 91 127	340 340 340 340 340 340 131 131	346 346 346 346 C 135	354 354 354 D 139
Nacc Nacc Nacc Nacc Observed combinations F4 ← F4 ←	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161 x M5 ♂ AB (0) AC (10) AD (7)	E 154 154 154 154 154 123	B 127	Phen C 131 131	F 170 170 170 170 170 170 135	D 139	176 176 176 176 176		mbinations Observed combinations Parameters Parameters <td>AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 x161 12 d AB (7 AC (1 AD (6</td> <td>332) 332) 332) 332) 332) 332) 332) 123) 123) 123) 123</td> <td>336</td> <td>340 340 340 340 340 340 340 131 131</td> <td>346 346 346 346 0es C 135</td> <td>354 354 354 D 139</td>	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 x161 12 d AB (7 AC (1 AD (6	332) 332) 332) 332) 332) 332) 332) 123) 123) 123) 123	336	340 340 340 340 340 340 340 131 131	346 346 346 346 0es C 135	354 354 354 D 139
d combinations F4 \bigcirc + 0 + + 0	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161 x M5 ♂ AB (0) AC (10) AD (7) BC (6)	E 154 154 154 154 154 1 4 123 123	B 127	Phen C 131 131 131	F 170 170 170 170 170 170 170 170 135	D 139	176 176 176 176 176		d combinations d combinations $\mathbf{V}_{\mathbf{A}}$ d combinations $\mathbf{A}_{\mathbf{A}}$	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 CD (6 AD (7 AC (1 AD (6 BC (5 AC (1) AD (6 BC (5)	332) 332) 332) 332) 332) 332) 332) 123) 123) 123) 123	336 PH	340 340 340 340 340 131 131 131 131	346 346 346 346 346 0es C 135 135	354 354 354 0 139 139
Prace Nac Nac Nac Opserved combinations F4 ♀ :	EF (8) EG (8) EH (4) FG (6) FH (3) GH (3) Aox161 x M5 ♂ AB (0) AC (10) AD (7) BC (6) BD (6)	E 154 154 154 154 154 123 123	B 127 127 127	Phen C 131 131 131	F 170 170 170 170 170 170 135	D 139 139	176 176 176 176 176		erved combinations Observed combinations $\mathbf{F8} \stackrel{\circ}{\rightarrow} \mathbf{x} \mathbf{W}$	AB (3 AC (5 AD (3 BC (6 BD (5 CD (6 CD (6 x161 12 d AB (7 AC (1 AD (6 BC (5 BD (0)	332) 332) 332) 332) 332) 332) 332) 332) 123) 123) 123) 123	336	340 340 340 340 340 340 131 131 131 131	346 346 346 346 C 135 135	354 354 354 D 139 139

Locus AoxD1	61			Pheno	otypes			Locus Aox234			Ph	enotyp	es	
		А	В	С			D			A	В		С	D
Nacc7♀ x Naco	:5 ð	123	127	131			143	F2 ♀ x M4 ♂		219	223		243	255
				131	135	139						227	243	
suo	.ug AB (24)		127					suo	AB (8)	219	223			
inati	AC (6)	123		131				inati	AC (5)	219			243	
quuc	AD (0)							qmc	AD (4)	219				255
o pe	BC (0)							po po	BC (4)		223		243	
Serv	BD (7)		127				143	serv	BD (4)		223			255
Op.	CD (5)			131			143	Ob	CD (2)				243	255

Locus	Aox234				Phene	otypes				Locus	Aox234				Phen	otypes			-
		А			В	С	D					А			В	С	D		
E4 O .	- M5 7	227			243	247	251			E4 O .	NE 7	227			243	247	251		
		Е	F				G	Н	r 4 ¥ 3	K INI S ()		Е	F				G	Н	
			235	239				255	259				235	239				255	259
suo	AB (6)	227			243					suo	EF (8)		235	239					
inati	AC (4)	227				247				inati	EG (4)		235					255	
quic	AD (6)	227					251			dmc	EH (4)		235						259
s pe	BC (2)				243	247				o pa	FG (2)			239				255	
serve	BD (7)				243		251			serve	FH (4)			239					259
Ob:	CD (3)					247	251			Obi	GH (6)							255	259

Locus Aa	x234			Pł	nenotyp	oes			Locus Aa	x234			PI	nenotyp	oes		
		А		В	С			D			А		В	С			D
Naaa290 v N	000 73 A	219		243	247			263	Naaa290 v N	1000 73 A	219		243	247			263
		E	F		G	Н			acc250		Е	F		G	Н		
			239	243		251	255					239	243		251	255	
suo	AB (4)	219		243					ons	EF (6)		239	243				
inati	AC (7)	219			247				inati	EG (2)		239			251		
quic	AD (3)	219						263	quuc	EH (6)		239				255	
oo pe	BC (4)			243	247				oo pa	FG (5)			243		251		
serv	BD (3)			243				263	serv	FH (0)							
ð	CD (2)				247			263	ð	GH (4)					251	255	

Locus Aox2.	34			Phen	otypes			Locus AoxD24	1			Pheno	types		
			А		В	С	D				168		176	180	
F6 ♀ x M7	3		227		243	247	255	F7 ♀ x M8 ♂		Е		F	G		Н
		219		239		247				164		172	176		184
suo	AB (3)		227		243			ous	EF (2)	164		172			
inati	AC (1)		227			247		inati	EG (2)	164			176		
omb	AD (8)		227				255	quue	EH (5)	164					184
o pa	BC (5)				243	247		o pe	FG (9)			172	176		
serve	BD (4)				243		255	serve	FH (5)			172			184
ð	CD (8)						255	ð í	GH (6)				176		184

Locus Spl16	3			Pheno	otypes			Locus Spi	168			Pł	nenotyp	oes		
			207	215	220						232		240			294
F2 ♀ x M4 ○	3	E		F		G	Н	F7♀xM	18 ð	Е		F		G	Н	
		166		215		224	229			218		236		271	273	
suo	EF (11)	166		215				suo	EF (0)							
inati	EG (0)							inati	EG (5)	218				271		
quuo	EH (5)	166					229	dmo	EH (6)	218					273	
eq c	FG (7)			215		224		o pa	FG (7)			236		271		
serv	FH (0)							serv	FH (8)			236			273	
Op	GH (5)					224	229	0pi	GH (0)							

Locus Sp.			PI	ienoty	oes]	Locus Sp	1168	Phenotypes										
F4 ♀ x M5 ♂		А		В	С	D					А		В	С	D						
		209		232	257	273				E4 0 - N	209		232	257	273						
			Е	F			G	Н		F4 ¥ X N		Е	F			G	Н				
			218	232			279	282					218	232			279	282			
ons	AB (0)									ons	EF (0)										
inati	AC (10)	209			257					inati	EG (7)		218				279				
quic	AD (6)	209				273				quuc	EH (2)		218					282			
served con	BC (7)			232	257					oo pe	FG (13)			232			279				
	BD (7)			232		273				serv	FH (8)			232				282			
qõ	CD (0)									QP,	GH (0)										

Locus	Spl168				Phen	otypes					Locus Spl168 Phenotypes									
		А	В					С	D				А	В					С	D
FC O	• M7 2	227	236					271	286		EC O	• M7 1	227	236					271	286
FO ¥ X WI7 (Е	F	G	Н				го ұ				Е	F	G	Н		
				240	245	264	269								240	245	264	269		
ons	AB (0)										suo	EF (0)								
inati	AC (6)	227						271			ed combinati	EG (3)			240		264			
quic	AD (4)	227							286			EH (15)			240			269		
ed c	BC (9)		236					271				FG (6)				245	264			
serve	BD (10)		236						286		serv	FH (5)				245		269		
Ob	CD (0)										Ob	GH (0)								

Locus Sp			Pl	ienotyp	oes			Locus Spl	168		Phenotypes								
Nacc19♀ x Nacc17♂		А	В		С		D				А	В		С		D			
		218	227		269		294		Naaa100 v N	aaa17 7	218	227		269		294			
			Е	F		G		Н	Nacci9º x Nacci7o			Е	F		G		Н		
			227	240		286		314				227	240		286		314		
suo	AB (0)								ons	EF (0)									
inati	AC (4)	218			269				inati	EG (4)		227			286				
omb	AD (7)	218					294		omb	EH (5)		227					314		
o pa	BC (3)		227		269				ed c	FG (8)			240		286				
serve	BD (9)		227				294		serv	FH (6)			240				314		
Oþ	CD (0)								ŐP	GH (0)									

Locus Spl168 Phenotypes										Locus	Spl168				Phen	otypes												
			А		В	С			D				А		В	С			D									
Nacc7♀ x Nacc5♂			232		245	264			294		Nacc7♀ x		Nacc7♀ x		Nacc7♀ x		Nacc7♀ x		Nacc7♀ x			232		245	264			294
		Е		F			G	Н			Nac	c5∂	Е		F			G	Н									
		214		240			273	279					214		240			273	279									
suo	AB (0)										suo	EF (0)																
inati	AC (12)		232			264					inati	EG (8)	214					273										
quic	AD (9)		232						294		dmc	EH (7)	214						279									
ed c	BC (5)				245	264					o pa	FG (7)			240			273										
serve	BD (6)				245				294		serv	FH (10)			240				279									
q	CD (0)										Ő	GH (0)																

Locus Spl168				Ph	nenotyp	bes			Locus Spl	168	Phenotypes									
Nacc8♀ x Nacc 31♂		А		В		С		D			А		В		С		D			
		209		236		271		279	Naaa90 w Na	aa 21 7	209		236		271		279			
			E		F		G	Н	Nacco¥ x Na			Е		F		G	Н			
			218		249		273	279				218		249		273	279			
ons	AB (0)								suo	EF (1)		218		249						
inati	AC (9)	209				271			inati	EG (8)		218				273				
dmc	AD (7)	209						279	dmc	EH (4)		218					279			
served co	BC (6)			236		271			o pe	FG (11)				249		273				
	BD (7)			236				279	serv	FH (5)				249			279			
Obs	CD (0)								Obs	GH (0)										

Figure A1. Total segregation results. Single-locus microsatellite inheritance for each studied sturgeon family. Microsatellite alleles of parents are reported as sizes in bp. For families in which both parents are informative, two different schemes are shown. The 4 alleles of the informative parents are highlighted in bold and marked with capital letters A, B, C, D for females and E, F, G, H for males, also used to label allele combinations observed in the progeny. The number of F1 in which each combination has been observed is reported in brackets. Missing combinations are marked in grey.

References

- 1. Ludwig, A. A Sturgeon View on Conservation Genetics. Eur. J. Wildl. Res. 2005, 52, 3–8. [CrossRef]
- 2. Peng, Z.; Ludwig, A.; Wang, D.; Diogo, R.; Wei, Q.; He, S. Age and Biogeography of Major Clades in Sturgeons and Paddlefishes (Pisces: Acipenseriformes). *Mol. Phylogenetics Evol.* **2007**, *42*, 854–862. [CrossRef] [PubMed]
- Fontana, F.; Congiu, L.; Mudrak, V.A.; Quattro, J.M.; Smith, T.I.; Ware, K.; Doroshov, S.I. Evidence of Hexaploid Karyotype in Shortnose Sturgeon. *Genome* 2008, 51, 113–119. [CrossRef] [PubMed]
- 4. Kim, D.S.; Nam, Y.K.; Noh, J.K.; Park, C.H.; Chapman, F.A. Karyotype of North American Shortnose Sturgeon Acipenser Brevirostrum with the Highest Chromosome Number in the Acipenseriformes. *Ichthyol. Res.* 2005, 52, 94–97. [CrossRef]
- Fontana, F.; Zane, L.; Pepe, A.; Congiu, L. Polyploidy in Acipenseriformes: Cytogenetic and Molecular Approaches. In *Fish Cytogenetics*; Pisano, E., Ozouf-Costaz, C., Foresti, F., Kapoor, B.G., Eds.; Science Publisher, Inc.: Enfield, NH, USA, 2007; pp. 385–403.
- Fontana, F.; Lanfredi, M.; Chicca, M.; Congiu, L.; Tagliavini, J.; Rossi, R. Fluorescent in Situ Hybridization with rDNA Probes on Chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes, Acipenseriformes). *Genome* 1999, 42, 1008–1012. [CrossRef]
- Boscari, E.; Vidotto, M.; Martini, D.; Papetti, C.; Ogden, R.; Congiu, L. Microsatellites from the Genome and the Transcriptome of the Tetraploid Adriatic Sturgeon, Acipenser naccarii (Bonaparte, 1836) and Cross-Species Applicability to the Diploid Beluga Sturgeon, Huso huso (Linnaeus, 1758). J. Appl. Icht. 2015, 31, 977–983. [CrossRef]
- Ludwig, A.; Belfiore, N.M.; Pitra, C.; Svirsky, V.; Jenneckens, I. Genome Duplication Events and Functional Reduction of Ploidy Levels in Sturgeon (Acipenser, Huso and Scaphirhynchus). *Genetics* 2001, 158, 1203–1215. [CrossRef]
- Havelka, M.; Hulák, M.; Bailie, D.A.; Prodöhl, P.A.; Flajšhans, M. Extensive Genome Duplications in Sturgeons: New Evidence from Microsatellite Data. J. Appl. Ichthyol. 2013, 29, 704–708. [CrossRef]
- Stift, M.; Berenos, C.; Kuperus, P.; van Tienderen, P.H. Segregation Models for Disomic, Tetrasomic and Intermediate Inheritance in Tetraploids: A General Procedure Applied to Rorippa (Yellow Cress) Microsatellite Data. *Genetics* 2008, 179, 2113–2123. [CrossRef]
- Soares, N.R.; Mollinari, M.; Oliveira, G.K.; Pereira, G.S.; Vieira, M.L.C. Meiosis in Polyploids and Implications for Genetic Mapping: A Review. *Genes* 2021, 12, 1517. [CrossRef]
- 12. Boscari, E.; Barbisan, F.; Congiu, L. Inheritance pattern of Microsatellite Loci in the Polyploid Adriatic Sturgeon (Acipenser naccarii). *Aquaculture* **2011**, *321*, 223–229. [CrossRef]
- Congiu, L.; Pujolar, J.M.; Forlani, A.; Cenadelli, S.; Dupanloup, I.; Barbisan, F.; Galli, A.; Fontana, F. Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (*Acipenser naccarii*). *PLoS ONE* 2011, 6, e18249. [CrossRef] [PubMed]
- 14. Boscari, E.; Pujolar, J.M.; Dupanloup, I.; Corradin, R.; Congiu, L. Captive Breeding Programs Based on Family Groups in Polyploid Sturgeons. *PLoS ONE* **2014**, *9*, e110951. [CrossRef] [PubMed]
- 15. May, B.; Krueger, C.C.; Kincaid, H.L. Genetic Variation at Microsatellite Loci in Sturgeon: Primer Sequence Homology in Acipenser and Scaphirhynchus. *Can. J. Fish. Aquat. Sci.* **1997**, *54*, 1542–1547. [CrossRef]
- 16. Welsh, A.B.; Blumberg, M.; May, B. Identification of Microsatellite Loci in Lake Sturgeon, Acipenser Fulvescens, And Their Variability in Green Sturgeon, A. medirostris. *Mol. Ecol. Notes* **2002**, *3*, 47–55. [CrossRef]
- 17. Zane, L.; Patarnello, T.; Ludwig, A.; Fontana, F.; Congiu, L. Isolation and Characterization of Microsatellites in the Adriatic Sturgeon (Acipenser naccarii). *Mol. Ecol. Notes* **2002**, *2*, 586–588. [CrossRef]

- Forlani, A.; Fontana, F.; Congiu, L. Isolation of Microsatellite Loci from the Endemic and Endangered Adriatic Sturgeon (Acipenser naccarii). Conserv. Genet. 2007, 9, 461–463. [CrossRef]
- 19. Henderson-Arzapalo, A.; King, T.L. Novel Microsatellite Markers for Atlantic Sturgeon (Acipenser oxyrinchus) Population De-Lineation and Broodstock Management. *Mol. Ecol. Notes* **2002**, *2*, 437–439. [CrossRef]
- McQuown, E.C.; Sloss, B.L.; Sheehan, R.J.; Rodzen, J.; Tranah, G.J.; May, B. Microsatellite Analysis of Genetic Variation in Sturgeon: New Primer Sequences for Scaphirhynchus and Acipenser. *Trans. Am. Fish. Soc.* 2000, 129, 1380–1388. [CrossRef]
- 21. Sybenga, J. Chromosome Pairing Affinity and Quadrivalent Formation in Polyploids: Do Segmental Allopolyploids Exist? *Genome* **1996**, *39*, 1176–1184. [CrossRef]
- Lloyd, A.; Bomblies, K. Meiosis in Autopolyploid and Allopolyploid Arabidopsis. *Curr. Opin. Plant Biol.* 2016, 30, 116–122. [CrossRef] [PubMed]
- Choudhary, A.; Wright, L.; Ponce, O.; Chen, J.; Prashar, A.; Sanchez-Moran, E.; Luo, Z.; Compton, L. Varietal Variation and Chromosome Behaviour During Meiosis in Solanum Tuberosum. *Heredity* 2020, 125, 212–226. [CrossRef] [PubMed]
- 24. Rice, W.R. Analyzing tables of statistical tests. *Evolution* 1989, 43, 223–225. [CrossRef] [PubMed]
- Scott, A.D.; Van de Velde, J.D.; Novikova, P.Y. Inference of Polyploidy Origin and Inheritance Mode from Population Genomic Data. *BioRxiv*. [CrossRef]
- Pyatskowit, J.D.; Krueger, C.C.; Kincaid, H.L.; May, B. Inheritance of Microsatellite Loci in the Polyploid Lake Sturgeon (Acipenser fulvescens). *Genome* 2001, 44, 185–191. [CrossRef]
- 27. Rodzen, J.A.; May, B. Inheritance of Microsatellite Loci in the White Sturgeon (Acipenser transmontanus). *Genome* 2002, 45, 1064–1076. [CrossRef]
- Schreier, A.D.; Van Eenennaam, J.P.; Anders, P.; Young, S.; Crossman, J. Spontaneous Autopolyploidy in the Acipenseriformes, with Recommendations for Management. *Rev. Fish Biol. Fish.* 2021, *31*, 159–180. [CrossRef]
- 29. Birstein, V.J. Sturgeon Species and Hybrids: Can Hybrids Produce Caviar. Environ. Policy Law 2002, 32, 210–214.