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Abstract

A new family of 3T1R parallel manipulators (PMs) with self-aligning property, named
TetraFLEX, is presented. 3T1R manipulators have many applications in different
fields. Moreover, self-aligning property refers to the presence of passive joints in the
PM limbs that are conceived to compensate for possible misalignments between the
sliding directions of the actuated prismatic(P)-pairs. This property allows the fixation
of the limbs in different frame geometries. Thus, this advantage broadens the PM
applications to field robotics in several scenarios. Here, the position and singularity
analyses of the new family of self-aligning PMs is addressed with a unified approach.
The results are that both the direct and the inverse position analyses have simple
closed-form solutions and that wide free-from-singularity regions of TetraFLEX PMs'

workspace exist. The effectiveness of the technical proposal is also illustrated by
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1 | INTRODUCTION

Many manipulation tasks and in situ operations (e.g., pick-and-place
tasks of a crane, 3D printing of civil-building elements, etc.) usually
require spatial translations combined with rotations around axes with
one given direction. This type of motion, named Schoenflies motion,
constitutes a four-dimensional (4D) sub-group of the displacement
group (Hervé, 1994, 1999) and the kinematic chains that generate it
are named Schoenflies-motion generators (SMGs) (Lee & Hervé,
2009b). SMGs can be used on their own or combined with other
types of kinematic chains (Lee & Hervé, 2009a) to conceive archi-
tectures for manipulators with 4-degrees-of-freedom (DOF), usually
named 3T1R manipulators, that perform Schoenflies motion.

In Lee and Hervé (2009b), Lee and Hervé enumerated all

the serial SMGs containing only lower pairs and/or parallelograms

discussing their design criteria and kinetostatics performances in a case study.

4-DOF PMs, kinematic analysis, motion simulation, Schoenflies motion, self-aligning,

(m joints) and gave them the name of “primitive SMGs.” The most
known serial SMG is of RRRP type since it was used in the first 3T1R
manipulator, the SCARA robot (Makino, 1982).

Parallel manipulators (PMs) have been also proposed as 3T1R ma-
nipulators. PMs feature the end effector (platform) connected to the
frame (base) through a number of kinematic chains (limbs). A simple way
of obtaining 3T1R PMs is the addition of a fourth limb, for instance, of
type R UPUR, which works as a transmission shaft to make the gripper
rotate, to a translational PM (Carricato, 2005; Clavel, 1990; Lee & Hervé,
2009c¢). An additional rotational DOF can also be added to a translational
PM by introducing an articulated platform together with a fourth limb
similar to the other limbs (Krut et al., 2003, 2004; Pierrot & Company,
1999; Pierrot et al., 2006). Hereafter, PMs' limb topology is indicated
through the string of capital letters associated to the joint types en-
countered by moving from the base to the platform. In such strings the
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underlined letters denote the actuated joints. Also, PMs' topology is de-
noted as nyString, — nyString, —...— ngStringg where ny, fork = 1, ..., g,
indicates the number of limbs of type Stringy that are present in the PM.

Nevertheless, 3T1R PMs can also be obtained through ad hoc
architectures. In the literature, somehow exhaustive enumerations of
these architectures have been presented (see, for instance, Amine
et al, 2013; Carricato, 2005; Kong & Gosselin, 2004; Lee &
Hervé, 2011). Listing possible architectures for 3T1R PMs does not
provide many pieces of information on their characteristics and
specific kinematic and dynamic analyses are necessary to highlight
their qualities and defects. Therefore, many papers were published
which address the analyses of particular 3T1R PMs or of 3T1R PM's
classes (see, for instance, Arian et al., 2020; Gallardo-Alvarado
etal, 2017; Lee & Lee, 2012, 2016; Tu et al., 2018) and the research
on 3T1R PM is still alive. A simplified architecture, the possibility of
putting on the base the motors that drive the actuated joints, and
wide free-from-singularity workspace regions are the main sought-
after features that bring to have a 3T1R PM with good performances.

In this context, these authors analyzed single-loop 3T1R archi-
tectures with actuators on the base (Di Gregorio, 2017, 2018; Simas & Di
Gregorio, 2019). Also, some of the authors introduced the concept of
self-aligning property with reference to a family of translational PMs,
named TriFLEX (Maletz et al, 2019; Simas et al., 2017; Simoni
et al., 2014, 2015). Self-aligning property refers to the presence of passive
joints in the limbs that do not affect the platform motion and work only to
compensate the possible presence of a misalignment between the sliding
directions of the actuated P-pairs located on the base. Such a property
makes the fixation of the limbs to the base easier and has potential
application in several scenarios related to field robotics.

This paper presents a family of 3T1R PMs, named TetraFLEX,
with self-aligning property that have four limbs with only one ac-
tuated P-pair per limb, which is located on the base. The actuated
P-pairs on the base together with the self-aligning property warranty
that TetraFLEX PMs can be mounted on site by using rails that do not
need special manufacturing care as it is usual in field robotics.

Here, the position and the singularity analyses of TetraFLEX PMs
are addressed with a unified approach. These analyses will show that
both the direct and the inverse position analyses have simple closed-
form solutions and that wide free-from-singularity regions of Tetra-
FLEX PMs' workspace exist.

The paper is organized as follows. Section 2 describes the Tet-
raFLEX family and the used notation. Sections 3 and 4 address the
position and the singularity analyses, respectively. Then, Section 5
illustrates design criteria adoptable for TetraFLEX PMs and the si-
mulation results for this family. Eventually, Section 6 discusses the

results and Section 7 draws the conclusions.

2 | THE TETRAFLEX FAMILY

The TetraFLEX family is constituted of 3T1R PMs of type P XYZ-3P
QVWU. In the PXYZ limb, X, Y, and Z stand for any type of single-
DOF pairs so connected that the XYZ kinematic chain is a 3-DOF

planar chain whose motion plane is perpendicular to the sliding di-
rection of the P-pair. Thus the PXYZ limb has 4-DOF and is a serial
SMG (Lee & Hervé, 2009b). In the three PQVWU limbs, Q, V, and W
stand for any type of single-DOF pairs that suitably combined with a
P-pair on the frame and an U-joint on the distal link give a 6-DOF
serial kinematic chain that, when the P-pair is locked, constrains the
center of the U-joint to lie on a plane perpendicular to the sliding
direction of the P-pair without limiting the orientation of the distal
link and the motion of the U-joint center on the same plane

In the above-mentioned P XYZ-3P QVWU architectures, the PXYZ
limb, which is a primitive SMG (Lee & Hervé, 2009b), constrains the
platform to perform only Schoenflies motions and the other three limbs
of PQVWU type do not reduce further the platform mobility since their
connectivity—“connectivity” of a limb is the DOF number that the plat-
form would have if it were connected to the base only through that limb
(Davidson & Hunt, 2004)-is equal to six (i.e., it is equal to the DOF
number of a not-constrained rigid body). As a consequence, the PXYZ-
3PQVWU mechanisms, the TetraFLEX family is based on, are 4-DOF not-
overconstrained SMGs, which can control the platform motion by ac-
tuating the four P-pairs adjacent to the base whatever be the platform
geometry provided that the sliding directions of the P-pairs are not par-
allel to a unique plane (i.e., they are self-aligning 3T1R PMs).

Two examples of TetraFLEX PMs are the P RRR-3P RRS of
Figure 1a, where, in each limb, the R-pairs' rotation axes are all
parallel to the sliding direction of the actuated P-pair, and the P RRR-
3P RCU of Figure 1b, where, in each limb, the R-pairs' rotation axes
are all parallel to the sliding direction of the actuated P-pair and, in
the three P RCU limbs, the C-pair axis passes through the center of
the U-joint and is perpendicular to the R-pair axis.

With reference to Figure 1, A;, fori = 2, 3, 4, are the centers of
the U-joints and A; is a platform point that lies on the axis of the Z
joint. These four platform points uniquely define the platform geo-
metry. The four lines, (O, n;), with the directions of the unit vectors n;
and passing through the base points O;, for j = 1, ..., 4, are fixed in the
base and are parallel to the sliding directions of the four actuated
P-pairs. These four lines uniquely define the base geometry. Also, a
Cartesian reference O1 - X1 y1z1 (A1X, Yp2p), fixed to the base (the
platform), with the z (z,) coordinate axis parallel to ny is introduced.

It is worth noting that, since the XYZ chain is a planar kinematic chain
with motion plane perpendicular to nq, the direction of n, is fixed with
respect to the platform, too. As a consequence, the x; y;-coordinate
plane of the base reference is always parallel to the Xx, y,-coordinate
plane of the platform reference and the orientation of Aqx, y,z, with
respect to O1 - X1 Y12 is uniquely determined by the angle y between
the axes x; and x, (see Figure 1). Thus, the platform pose is uniquely
determined by the angle y and the coordinates (A1, A1y, A1) of point A
measured in the base reference O1 - x4 Y12, and the rotation matrix 1Rp
that transforms the components of a vector measured in A;x, y,2, into

the components of the same vector measured in O = X1 y12 is

¢ -5, O
R, =|sy ¢ Of, (1)
0 0 1
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FIGURE 1 Two examples of TetraFLEX PMs: (a) P RRR-3P RRS architecture and (b) P RRR-3P RCU architecture

where s, and ¢, stand for siny and cosy, respectively. Eventually, since
each limb constrains the corresponding platform-attachment-point, A;,
for j = 1,..., 4, to lie on a plane perpendicular to the sliding direction of
the actuated pair of the same limb (i.e., perpendicular to n;), the actuated-
joint variables can be chosen equal to the distances, d;, for j = 1, ..., 4, of
the base points, O;, for j=1,..,4, from these motion planes (see

Figure 1). In Figure 1, the points P;, for j = 1, ..., 4, are the feet of the
perpendiculars to such motion planes from the corresponding base points
O;. From a geometric point of view, the j-th actuated-joint variable, d;, is
equal to the length of the segment @

The introduced notations/definitions are common to all the
members of the TetraFLEX family no matter which type of pairs the
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X, Y,Z, Q,V, and W are. So, all the kinematic relationships deduced
by using only these notations/definitions hold for any 3T1R PM
belonging to this family. In the next two sections, the position and the
singularity analyses of TetraFLEX PMs will be addressed by using
only these notations/definitions thus providing general results that
hold for any member of the TetraFLEX family.

3 | POSITION ANALYSIS

Position analysis consists in the solution of two problems: the For-
ward position analysis (FPA), and the Inverse position analysis (IPA). The
FPA is the determination of all the platform poses compatible with
assigned values of the actuated-joint variables. Vice versa, the IPA, is
the determination of actuated-joint variables' values compatible with

an assigned platform pose.

3.1 | Forward position analysis

In the case of a TetraFLEX PM, the platform pose is uniquely iden-
tified by the 4-tuple p = (A1, Aqy, A1z, Y. As a consequence, its FPA
is the determination of the p values compatible with an assigned
value of the 4-tuple q = (d;, dy, d3, ds)', which collects all the
actuated-joint variables.

The fact that each platform point A; must lie on a specific motion
plane makes the equations of these four motion planes coincide with
the closure equations of a TetraFLEX PM. Such equations are

(Aj-Oj) . n,- = dj, j = 1, veey 4. (2)
The replacement, into Equation (2), of the following relationships
pA; .
Aj = A +1 Rp 7, ji=1,..,4 ©)
yields, after the introduction of formula (1) and the expansion of the
resulting formulas, the following equation system (ny, nj,, and nj, are

the components of nj measured in O - x; y12):

b e \p P 2c\n + APn. - O
Ag-nyt (Aixcv AjYSV)nIX + (ijsv + Ajycv)”}y + Ay - G

, @
‘nj=d,j=1,..4
which can be rewritten as follows:
A, =dy, (5a)
A1anx + A1yn,»y + gicy + bjSV = kj j=2,3,4, (5b)
with
g; = A}injx + Aﬁ,njy = hjCaj, (63)
b]' = A]’-f(n,-y - Aﬁ,n,-x = hjSa]., (6b)

ki=0j-m+d - (Ajpz + di)”iz (60)

where h; and o; are geometric constants defined as follows:

hj = V/[(Af;)z + (Aj”y)z](nj%( + njzy), (7a)

o = atan2(Af’Xn,-y - Al i, Abny + Afyn,»y). (7b)

From a geometric point of view, h; is the product of the magni-
tudes of the projections of the two constant vectors PA; and n; onto
the x; y1-coordinate plane; whereas, o; is the angle between the
projections onto the x; y; -coordinate plane of the constant vectors
PA; and n; (see Figures 1 and 2).

In the FPA, the coefficients q;, b; and k; are known cons-
tants since they depend only on geometric constants and on the
values of the actuated joint variables, which are assigned.
Therefore, system (5) is linear in the platform-position variables,
Aix, A1y, and Ay;, and depend on depend on y (i.e., on the platform
orientation) through simple trigonometric functions. The linear
elimination of the platform-position unknowns from the first
three equations of system 5 yields the following explicit expres-
sions of them

A = (k2 — axCy — szV)n3y - (k3 - azcy — b3sv)n2y (8 )
1x ~ ’ a
Nox N3y = N2y N3y

A = (ks = asc, - bssy)ny — (ko = axcy = bys,)ns,
e Nox N3y = N2y N3y ’ (8b)

Ay, = dy, (8c)

whose introduction into the fourth equation of system (5) gives

the following univariate trigonometric equation:

accy + besy = ke, (9)

FIGURE 2 Geometric definition of the angle o; (A; and nj are the
projections onto the x; y; -coordinate plane of A; and n;, respectively)
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where

ac = az(N3xNay = NgyNax) + az(nayNax = NocNay)

(10a)
+ a4 (naxngy = Ngynsy),
be = ba(n3cnay = NgyNay) + bz(ngynay = Npcnay)
(10b)
+ ba(noxng, = ngynzy),
ke = ko (naxna, = ngynay) + ks(ngynax = nognay)
(10c¢)

+ ka(noxngy — naynsy).

From a geometric point of view, the coefficients (nxns, = Ny Ne)
with r,s € {2, 3, 4Ir # s} that appear in Equation (10) are equal to
zero when the projections onto the x; y; -coordinate plane of the two

unit vectors n, and n, are parallel to one another.

_ 12
The introduction of the trigonometric identities ¢, = i}ffiz and
2t
1+t27
some algebraic manipulations, transforms it into the quadratic

Sy = where t = tan% with y € ] - i, it], into Equation (9), after

equation:

(ke + a)t2 - 2b.t + (k. — a;) = O, (11)

which gives the following two solutions for t:

Pkt (-1 b2 + a2 - k2

= . 12
n ke + . ,n=1,2 (12)

Accordingly, the values of y that solve Equation (11) are two:

Yo = 2arctan(t,), n = 1, 2. (13)

The back-substitution of these two values of y into formulas (8)
gives as many values for the platform-position variables
(A1x, A1y, A1;). Therefore, the conclusion is that the FPA of any Tet-
raFLEX PM has two solutions, which can be determined through the
explicit formulas (8) and (13).

3.2 | Inverse position analysis

The IPA of a TetraFLEX PM is the determination of the actuated-
joint-variables' values (i.e., of q = (dy, dy, ds, d4)') compatible with one
assigned platform pose (e, for one assigned value of
P = (Aix, Ay, Arz, ¥)T). Since the closure Equations (4) are explicit
expressions of the actuated-joint variables as functions of the geo-
metric constants and of the platform-pose variables, the IPA solution

is unique and trivial.

4 | INSTANTANEOUS KINEMATICS
ANALYSIS

The analysis of the instantaneous kinematics of a PM deals with the
determination and the analysis of its instantaneous input/output
relationship. The instantaneous input/output relationship in general

states a one-to-one correspondence between the tuple collecting the
actuated-joint rates and the platform twist or, as an alternative, the
tuple collecting the first time-derivatives of the variables that un-
iquely determine the platform pose. It is always a linear and homo-
geneous system whose coefficient matrices depend only on the PM
configuration. It is the system to solve for solving the two problems
of PMs' instantaneous kinematics: the forward instantaneous kine-
matics problem (FIKP) and the inverse instantaneous kinematics
problem (IIKP). The FIKP is the determination of the platform twist
(or, the first time-derivatives of the variables that uniquely determine
the platform pose) once the actuated-joint rates are assigned. Vice
versa, The IIKP is the determination of the actuated-joint rates once
the platform twist (or, the first time-derivatives of the variables that
uniquely determine the platform pose) is known.

In the case of a TetraFLEX PM, the instantaneous input/output re-
lationship must relate g = (dy, dy, d3, da)7 to p = (Awx, Ary, Agz, y). It
can be deduced by time-differentiating closure-equation system (5). In so

doing, the following instantaneous input/output relationship is obtained

Ay, = dy, (14a)

Alxnjx + Alynjy + hj(sai Cy — CajSV)}" = dj - dlnjz j=2,8,4,

(14b)
whose matrix form is
Mp = N¢g (15)
with

0O 0 10 1 000

~ nax Nay 0 haSig,-y) |72 100
" |nax nay O hs3sg-y| " |-nz 0 1 Of (16)

Nax Nay O haSg,-y) ~nz; 0 01

where the trigonometric identities sig-y) = (5q;¢y — Cq;Sy), for

j=2,3,4, have been used.

4.1 | Singularity analysis

The PM configurations where the instantaneous input/output re-
lationship fails to state a one-to-one correspondence between plat-
form twist and actuated-joint rates are named singularities. PM
singularities are usually collected into three sets (Gosselin &
Angeles, 1990): the ones that make the IIKP unsolvable (type-I sin-
gularities), the ones that make the FIKP unsolvable (type-Il singula-
rities), and those that make both the IIKP and the FIKP unsolvable
(type-lll singularities). From a kinematic point of view (Agrawal,
1991), the instantaneous mobility of the platform is reduced at a
type-l singularity, which involves that type-| singularities occurs at
the workspace boundaries; whereas, the actuators are not able to
control the platform twist any longer at a type-II singularity, which, in
lower-mobility PMs, may correspond to a local increase of the plat-

form instantaneous mobility (Di Gregorio, 2020). Lower-mobility PMs
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are those whose DOF number is lower than six, 3T1R PMs are lower-
mobility PMs. Also, a special case of type-Il singularities, named
“constraint singularities,” can make the platform of a lower-mobility
PM change is type of motion (Zlatanov et al., 2002); they may occur
only in lower-mobility PMs containing only limbs with connectivity
higher than the DOF number of the PM (Di Gregorio, 2020), which is
not the case of TetraFLEX PMs.

In the case of TetraFLEX PMs, system (15) states a one-to-one
correspondence between p and 4§ when both the 4 x 4 matrices M
and N are full rank. Type-I singularities occur when N is rank defi-
cient. Since N is a constant matrix with det(N) =1 (i.e., always non-
null), there are no type-1 and type-Ill singularities in TetraFLEX PMs.
Type-II singularities occur when M is rank deficient, that is, when its
determinant is equal to zero. The analysis of matrix M reveals that det

(M) can be written as follows

detM) =e - (f x g) (17)
with
h2Siay-y) bacy - azsy Nox nyy
e= h35(a3—y) = bBCy - agsy |, f= [ngx], g =Ny (18)
haS(as-y) bacy ~ assy Nax Nay

From a geometric point of view, the analysis of Equation (17)

reveals that

i. det(M) and, as a consequence, possible type-Il singularities de-
pend only on the projection on the x; y; -coordinate plane of
geometric constants of the PM;

ii. det(M) depends only on y (i.e., on the orientation of the
platform);

iii. the vectors f and g are constant; as a consequence, an archi-
tecture singularity (i.e., a special sizing of the PM that makes all
the PM configurations singular) Ma and Angeles (1991) occurs
when f and g are parallel to one another;

iv. an architecture singularity also occurs if nj = ny, = 0 for a j value
not equal to 1. Indeed, in this case, also g, = b; =0 and, as a
consequence, M has a null row (i.e., is singular);

v. out of architecture singularities, a type-Il singularity occurs when

the three vectors e, f, and g are coplanar.

From an analytic point of view, by expanding (17) and equating to
zero the resulting expression, the following singularity equation

comes out:

det(M) = b.cy - acsy = 0, (19)

where b. and a, are the constants defined by the formulas (10).

Equation (19) can be rearranged as follows:

be
tan(y) = PR (20)

C

Equation (20) reveals that, by excluding architecture singularities,

there are always (i.e., whatever be the sizing of the PM) only two

type-Il singularities, which are identified by two y values separated by
7 rad.

Such values can be numerically computed by introducing the

_t2
trigonometric identities ¢, = % ands, = 13722
y € 1-n,mn], into Equation (19), to transform it into the quadratic

where t = tan% with

equation:

bet2 + 2a.t - b, = 0, (21)

which gives the following two solutions for t:

-ac + (-1)" /a2 + b?
ty = — ; <= . n=12 (22)
(o}

Accordingly, the values of y that solve Equation (19) are
Yo = 2arctan(t,) forn =1, 2.

5 | DESIGN CRITERIA

The above-reported singularity analysis highlights that architecture
singularities can be avoided by choosing the unit vectors n;, for
j=2,3,4, so that none of them is parallel to the z -coordinate axis
(see condition (iv)), and their projections onto the x; y; -plane are not
all parallel (see condition (iii)).

Also, Equations (15) and (16) reveal that, by choosing all the unit
vectors n;, for j =2, 3,4, parallel to the x; y; -plane, matrix N be-
comes an identity matrix which simplify the kinematics model.

Eventually, the position of the two type-Il singularities identified
by Equation (20) can be located where the designer wants by suitably
choosing the values of the angles a; for j = 2, 3, 4. More than that,
singularities can be eliminated from the useful workspace by sizing
the geometry of the platform and the base of TetraFLEX.

The above-identified criteria are used in the definition of the

TetraFLEX PM's nominal geometry in following section.

5.1 | Case study

This section presents a case study to exemplify the applicability of Tet-
raFLEX in unstructured environments of field robotics. Without loosing
generality, the PRRR + 3PRRS TetraFLEX was selected to conduct the
case study. The objective is to improve the kinematic performance as
functions of the platform geometry and the directions of the actuated
joints. Beyond that, it will be demonstrated that inaccuracies in the in-
stallation of the base do not compromise the performance of the robot
and singularities can be avoided by correctly choosing the range of y.
The TetraFLEX platform is geometrically constituted by four
points A;, j =1,2,3,4 with fixed coordinates measured in the re-
ference O, - X, ¥p2,, making part of the relations that define the
differential kinematics (see Figure 1 and Equations 2 and 3). In this
sense, the platform geometry and the n; vectors, allow us to calculate

and keep TetraFLEX away from singular postures, as discussed in
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Section 4. An adequate measure of singularity distance is the Con-
ditioning Index (Cl) because it measure the amplification of the errors
between inputs and outputs in kinematic and static models (Gosselin
& Angeles, 1991; Merlet, 2006). According to Gosselin and Angeles
(1991), Cl is defined as the inverse of the condition number, k, of the
Jacobian. In the studied case, using the Euclidean norm of the Ja-

cobian, the condition number of a manipulator is defined by

k = 1M1 1M1y, (23)

which measure the ratio of the largest to the smallest singular value
of M1 Simas and Di Gregorio (2017).

Higher values for Cl = 1/k imply better kinematic performances
in terms of accuracy and distance from singularity. The highest value
for Cl is 1, which means that the robot is in an optimal configuration
called isotropic (Gosselin & Angeles, 1991).

To apply Cl as a performance index to TetraFLEX, the problem of
homogenization present in Equation (15) must be solved. This can be
done by choosing a characteristic length, I, of the platform to
define hf = hj/I, for j=2,3,4, and y*=Ily, which are used for
changing the output tuple from p to p* = [A1, y*] and the Jacobian

from M to the dimensionless Jacobian M* defined as follows:

0O 0 1 0
M- Nax Nay 0 h3say-y)
" |nax ngy O h3sis-y)| (24)

Nax Nay 0 hZS(Lm—Y)

Hereafter, the choice | = 1 l.u.—length unit—is adopted since it cor-
responds to the distance between PA; and PG,, which is a reference
size of the platform, as shown in the geometric scheme of Figure 3.
This case study makes a numerical search of the geometrical
variables of the platform and n; vectors, to control and limit distances
from singularities, using the Cl as a parameter to be optimized.
Consider the geometric scheme for the platform shown in
Figure 3 in which PA;=(0,0,0), PG, =(1,0,0), PG, =(0,1,0).
Also, let r, and r, be two support lines. Line ry, defined by the points

s

Gb

>
-

A,

FIGURE 3 Geometry scheme of the platform for CI' optimization

PG, and PG,, will serve as reference to set the points PA;, PA4, and

the point PG, calculated by the linear parameter u as follows.

PG, = (1 - u) PG, + (U)PGy. (25)

Line r, defined by the points PA; and PG, will serve as re-
ference to the coordinates of PA; (see Figure 3).
The coordinates of PA,, PAz and PA4 are given by

PA; = (1 - V) PG, + (v) PGy, (26)
PA; = (1 - w) PA; + (W) PG, (27)
PAs=(1-V) PGy + (v) PG, (28)

where v and w together with u are real parameters that make the
platform geometry change during optimization.

A triangular geometry of the platform is obtained fixing u = 0.5
andw = 1 and computing PA; and PA4 by changing the parameter v.
A quadrilateral geometry is obtained by computing the coordinates of

PA; changing the values of u (Equation 25) and w. Triangular and

quadrilateral geometries are a common proposition for platforms of
PMs in several works (Briot & Bonev, 2009; Briot & Bonev, 2010;
Gosselin, 2009; Gosselin et al., 2007; Pierrot et al., 2009; Rat
et al., 2010; Simas & Di Gregorio, 2019; Simoni et al., 2014, 2015;
Simas et al., 2017).

According to the above definitions, ny = (0,0, 1) is the unity
vector of z -axis (see Equation 3). In this optimization, n, is fixed and
equal to (1,0,0). The remain part of the geometry is defined as
functions of the following six variables: €3, €4, v, U, v and w. The
search ranges of these variables are chosen as follows:

e u,v,wel-2;2],
e €3, €4€0; n],
e ye [-n/2; n/2].

These values have been chosen after a trial-and-error procedure.

An initial analysis searches for the maximum value of Cl in the
case of a triangular platform withw = 1.0 and u = 0.5. Figure 4 shows
the results, with the reference to Figure 4 the maximum Cl value is
0.809, forv = -0.35,€3 = 2.1rad, €4 = 1.05rad, y = -0.2708 rad. The
search algorithm based on nested loops ran in a Notebook Intel-Core
i3 2.20 GHz, with 20 Gb RAM, in the processing time of 147 s.

Figure 5 shows the top view of the 3D diagram of Figure 4 with
the contour curves. In Figure 5, the region highlighted in yellow keeps
CI>0.6 which provides TetraFLEX manipulators with acceptable ki-
nematic performances (Gosselin & Angeles, 1991).

Now changing u and w in the range [-2, 2], the platform can
assume quadrilateral shape. Again, another search algorithm based on
nested loop was applied to study the individual influence of u and w
on Cl.

Figure 6 presents the Cl as a function of u and y.

It is worth noting that (see Figure 6) the maximum Cl does not
change for the same y with respect to the parameter u, but the edges
of the surface assume higher values for Cl for u = 0.5. Thus the
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FIGURE 4 Cl as a function of €3, €4 and yfor
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support line r, should be perpendicular to r, when u = 0.5. By this
way, keeping u = 0.5 and varying w and y we have the Cl shown in
Figure 7.

Summarizing, Cl reaches the maximum value for a triangular
platform with u=0.5, w=1, v=-0.35, €3 = 2.1rad, €4 = 1.05rad,
andy = -0.27 rad. Thus PAj should be aligned with PA; and PA, for
a maximum Cl, in other words, the best geometry of the platform is

an isosceles triangle shown in Figure 8.

5.2 | Workspace analysis

The CI optimization presented in Section 5.1 yielded the moving
platform design, now allowing a performance analysis of the Tetra-
FLEX's workspace.

Considering the designed moving platform, Figure 9 shows the
3D model of the PRRR + 3PRRS TetraFLEX with Ip; = I3; = 1.5 u.l., and
the triangular base platform with length side = 3.0 u.l,, in the direc-

tions of n, and n4.

FIGURE 7 Cl as a function of w and y

e
=)

Conditioning Index
=
S

ny

€4=1.05 rad

Using the coordinates of A; as tool's reference, the shape of the
workspace depends on the angle y and the resultant coordinates of
Aj, j =2,3,4. Such workspace is obtained by intersection of four
right circular cylindrical shells due to the four P RRR-3P RRS legs (see
Figure 1a). Each cylindrical shell, i = 1, 2, 3, 4, has the axis parallel to
the n; axis and passing through the point H; computed as

Hi = (0 - A) - ((O; - A) - nj)ny; (29)

and inner outer radii equal do Iy — I3 (for Iy > I5;) and Iy + I3,
respectively.

Figure 10a shows the 3D-diagram of the workspace for
i =13 =15ul,y=-0.27rad and PA; as presented in Section 5.1.

It is interesting to note that the shape of the workspace has
symmetry with respect to the xq y;-plane (in z = 0) and that the
correspondent Cl = 0.809 is the same for any point once y = -0.27
rad is the unique variable in the M matrix (see Equation 24).

Complementary, the useful workspace is a regular geometric
object located in the region of the workspace that satisfies some

kinetostatics properties (Di Gregorio & Simas, 2016). Inspecting the

A4. N3

€3 =2.1rad

1
FIGURE 8 Optimal platform for TetraFLEX T

|
\‘ Vp

\ As
‘\ Platform \
Ai‘\\xx

jy=-0.2702 rad

- N
R
\\Az

n,

that provides the highest Cl, i.e., Cl = 0.809 Oi
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workspace the chosen useful workspace is equal to the regular cy-
linder, with axis parallel to z -axis, and delimited up and down by the
planes parallel to x; y; -plane for z = 2 and z = -2, respectively, de-
fining the top and down surfaces. The base belonging to the cylinder
is computed by maximal circle defined by three points on the re-
sultant top and/or down surface. Figure 10b shows the corre-
sponding useful workspace for the workspace.

Changing v in the range [-1,0.5] rad, Figure 11 presents the
correspondent computed volume of the cylindrical useful workspace

as a function of y.

5.3 | Inaccuracy due to base installation

Inaccuracies can happen when installing the base platform of Tetra-
FLEX due mainly to the possible self-alignment variations, that im-
plies in Cl variations and consequently interfere with its performance,
that is, due to the direction of the n3 and n4 vectors considering n;
and n, vectors as reference vectors as discussed in previous sections.

Selecting the optimal triangular moving platform discussed in
Figure 8, that is, setting u=0.5, w=1 v=-0.35, €3=2.1rad,
€4 = 1.05 rad, and -1 < y < 0.5rad, Figure 12 presents the maximal
range of Cl as a function of the inaccuracies around 1%, 5%, and 10%

FIGURE 9 CAD model of the PRRR+ 3PRRS
TetraFLEX assembled according to the second

solution of the FPA for the assigned active-joint
positions (here, the angle y does not correspond
to the one (y = -0.27 rad) that maximizes the Cl)

FIGURE 10 (a) Workspace volume of the
PRRR + 3PRRS TetraFLEX and (b) chosen useful
workspace

of the nominal values of €3 and €4. In other words the direction of
vectors nz and n4 were varied randomly by the desired percentage
extracting the minimal maximal Cl for each y value.

Figure 12 shows the Cl's range of variation, as a function of the
geometry of the base for 10% of inaccuracy in blue, 5% results in
green, and 1% in the red.

Choosing Cl =0.6 as the minimum performance limit, it is ob-
served in Figure 12 that the available range of y (Ay) that guarantees
such performance index, decreases as the percentage of imprecision
of €3 and €4 increases. This analysis shows that it is necessary to
control the accuracy of the base platform installation to guarantee a
good range of platform orientation with good performance indices.

6 | DISCUSSION

The simple kinematics of TetraFLEX PMs makes it possible to con-
ceive fast and easy calibration procedures. Indeed, the base geo-
metric constants that appear in the above-reported kinematic
analyses are ny, nj,, nj;, and (Q; - n;), for j = 2, 3, 4. It is worth noting
that the geometric constants of the platform refer to coordinates of
points that belong to the same rigid body, which do not need to be
redetermined when the machine is installed in a different place.
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FIGURE 11 Volume of cylindrical useful 7.0
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These constants are the only ones that a calibration procedure must
determine when the TetraFLEX PM is installed in a new place. Such a

procedure could be organized as follows:

- both the tuples p and q are measured for four different config-
urations of the TetraFLEX PM, and Equations (4) are written four
times, once for each configuration;

- for each value of the j index greater than 1, the four corre-
sponding equations are extracted from the ones written in the
previous step;

- for each value of the j index greater than 1, the system of four
equations, isolated in the previous step, which is linear in the four

calibration unknowns ny, ny,, n;;, and (Q; - ny), is solved.

As an alternative, a better calibration procedure, which takes into
account the presence of measurement errors, consists in measuring p

and g for more than four different configurations, and, then, in using

-0.7 -0.4 -0.1 02 Y(rad) 0.5

more than four equations to compute the best estimate of nj, ny,, n;,,
and (O;-n) with the least squares method (Rencher &
Christensen, 2012). Having an easy-to-implement calibration proce-
dure is relevant in field robotics applications where the calibration
procedure must be frequently repeated.

An other issue that deserves to be discussed is “How many types
of TetraFLEX PMs can be identified?”. The analysis that brings to
identify all the possible mechanism topologies that satisfy assigned
requirements is named type synthesis. There are several approaches
for type synthesis. Evolutionary morphology (Gogu, 2008) virtual
chain (Kong & Gosselin, 2007), displacements groups (Hervé, 1994),
graphs and screw theory (Tsai, 1999) are the most known. Below, the
approach proposed by Tsai (1999) is used.

The number of PM types that enter in the above-introduced
generic topology P XYZ-3P QVWU depends on how many XYZ and
QVW kinematic chains can be conceived. The XYZ chain is, by
definition, a 3-DOF planar kinematic chain constituted by three
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single-DOF pairs; as a consequence, if only P and R pairs are con-
sidered, there are only seven types of these chains: RRR, RPR, RRP,
RPP, PRR, PPR, and PRP, where all the R-pairs (P-pairs) have their
axes (their sliding directions) perpendicular (parallel) to the motion
plane of the XYZ chain. It is worth reminding that, in a 3-DOF serial
planar chain, no more than 2 P-pairs can be included. The QVW
chain, by definition, constrains the center of the ending U-joint to
move on a plane without limiting the platform orientation. If only P
and R pairs are considered, the free motion of a point on a plane can
be obtained by four 2-DOF planar chains: RR, PR, RP, and PP, where
all the R-pairs (P-pairs) have their axes (their sliding directions) per-
pendicular (parallel) to the plane the point moves on. Then, the ad-
dition to any of these four 2-DOF chains of a third R-pair, as W pair,
so disposed that it forms an S-pair with the ending U-joint (i.e., with
the axis passing through the U-joint center and lying on the plane this
center moves on) yields four kinematic chains that satisfy all the
motion constraints imposed to the QVW chain. Such chains, when
combined with the ending U-joint, give the following four QVWU
kinematic chains: RRS, PRS, RPS, and PPS, where all the R-pairs
(P-pairs) have their axes (their sliding directions) perpendicular (par-
allel) to the plane the S-pair center moves on. Particular cases of
these four QVWU chains can be obtained by combining a passive RP
or PR sub-chain into a C pair when the axis of the R-pair is parallel to
the sliding direction of the P-pair (see Figure 1b). In short, these
simple considerations bring to identify 28 (= 7 x 4) different types of
TetraFLEX PMs for which all the above-deduced results hold un-
changed. This number can be further increased if the fact that
nothing changes when the three PQVWU limbs have different
topologies is considered and, over P and R pairs, other types of
single-DOF pairs (e.g., 7 joints) are taken into account.

Eventually, it is worth stressing that the actuated P-pairs located
on the base can be manufactured in many different ways according to
the particular context the TetraFLEX PM has to work. For instance, in
field robotics applications, they could be obtained through a trolley
that moves on a rail track and has bilateral contacts with the rail;
indeed, such a layout allows the fixation of the rails on different
terrains and with different arrangements, which is a sought-after
feature when a crane has to be mounted in a building site. Differ-
ently, in industrial applications, they could be obtained through pre-
cise linear guides embedded in a unique link that constitutes a fixed-
geometry base. Also, a full rotation of a possible gripper mounted on
the platform can be obtained through suitable rotation amplifiers like
the simple one described in Simas and Di Gregorio (2017, 2019),
which uses a toothed-belt transmission. Therefore, TetraFLEX PMs
lend themselves to a wide variety of applications.

Regarding the simulations, as it can be seen in Section 5.1, Tet-
raFLEX has good performance in several configurations of the base
and the platform. This characteristics is due to the self-aligning and it
is relevant to install TetraFLEX in an unstructured environment of
field robotics. Also, once TetraFLEX is installed, the angles ¢,
j=2,3,4 are defined and a correct variation of y must to be set to
improve the performance and to avoid singularities (see details in
Figures 4, 5, and 12). Such results also shows TetraFLEX robot is

robust enough to keep out of singular postures even with in-
accuracies in the axis of sliding joints in the base.

Regarding applications, TetraFLEX can be used in unstructured
environments of field robotics for complex tasks, for example,
building, mining, rescue, as well as for pick and place in industrial
applications. As discussed in the text, the self-aligning property
makes TetraFLEX easy to mount and calibrate because once it has the
n;, j =1, 2,3, 4 linearly independent it works according to the model
developed in this paper.

Another advantage of TetraFLEX that is relevant for applications
in remote environments of field robotics is its prismatic actuation
with sliding direction fixed to the base. Indeed, such feature makes
the structure of the limbs conceivable as foldable and deployable
trusses (e.g., like a building crane) that, when folded, are compact and
easy to transport and, when deployed on site, can be assembled and
calibrated to operate. Foldable/deployable machines, over in building
sites, are of particular interest in aerospace missions.

7 | CONCLUSION

A new family of 3T1R PMs, named TetraFLEX, has been identified. The
PMs of this family have the same finite and instantaneous kinematics. In
particular, they share the same closure equations and instantaneous in-
put/output relationship, which made it possible to present a unique ki-
nematics analysis and singularity determination for all of them.

These analyses proved that their position analysis has reachable
solution in closed form and that they have no constraint singularity
with only two type-Il singularities easy to find and avoid. Also, their
architecture singularities have been all identified and how to exclude
them during design has been explained.

The simplicity of their kinematics has allowed to present simple
calibration procedures, which is a sought-after feature in field ro-
botics. Moreover, the design criteria that optimize their kinematic
performances/accuracies have been proposed and applied to a case
study. The case study proved that TetraFLEX PMs are self-aligning
PMs, that is, they compensate possible installation inaccuracies for a
wide range of base-geometry perturbations, which is another ap-
pealing feature in field robotics.

The design of the TetraFLEX PMs family, with all its properties,
leads us to several future developments, including the development
of prototypes, experiments for performance evaluation in the fields
of robotics with unstructured environments such as civilian con-
struction, mining, welding structures (ship hulls, for example) and
special applications, make the most of the self-alignment property.

In a complementary way, advancing the TetraFLEX family in
dynamic models and the proposition of control strategies in physical
prototypes allows new application propositions to turn it into a future
product.
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