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Abstract

A new family of 3T1R parallel manipulators (PMs) with self‐aligning property, named

TetraFLEX, is presented. 3T1R manipulators have many applications in different

fields. Moreover, self‐aligning property refers to the presence of passive joints in the

PM limbs that are conceived to compensate for possible misalignments between the

sliding directions of the actuated prismatic(P)‐pairs. This property allows the fixation

of the limbs in different frame geometries. Thus, this advantage broadens the PM

applications to field robotics in several scenarios. Here, the position and singularity

analyses of the new family of self‐aligning PMs is addressed with a unified approach.

The results are that both the direct and the inverse position analyses have simple

closed‐form solutions and that wide free‐from‐singularity regions of TetraFLEX PMs'

workspace exist. The effectiveness of the technical proposal is also illustrated by

discussing their design criteria and kinetostatics performances in a case study.
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1 | INTRODUCTION

Many manipulation tasks and in situ operations (e.g., pick‐and‐place

tasks of a crane, 3D printing of civil‐building elements, etc.) usually

require spatial translations combined with rotations around axes with

one given direction. This type of motion, named Schoenflies motion,

constitutes a four‐dimensional (4D) sub‐group of the displacement

group (Hervé, 1994, 1999) and the kinematic chains that generate it

are named Schoenflies‐motion generators (SMGs) (Lee & Hervé,

2009b). SMGs can be used on their own or combined with other

types of kinematic chains (Lee & Hervé, 2009a) to conceive archi-

tectures for manipulators with 4‐degrees‐of‐freedom (DOF), usually

named 3T1R manipulators, that perform Schoenflies motion.

In Lee and Hervé (2009b), Lee and Hervé enumerated all

the serial SMGs containing only lower pairs and/or parallelograms

(π joints) and gave them the name of “primitive SMGs.” The most

known serial SMG is of RRRP type since it was used in the first 3T1R

manipulator, the SCARA robot (Makino, 1982).

Parallel manipulators (PMs) have been also proposed as 3T1R ma-

nipulators. PMs feature the end effector (platform) connected to the

frame (base) through a number of kinematic chains (limbs). A simple way

of obtaining 3T1R PMs is the addition of a fourth limb, for instance, of

type R UPUR, which works as a transmission shaft to make the gripper

rotate, to a translational PM (Carricato, 2005; Clavel, 1990; Lee & Hervé,

2009c). An additional rotational DOF can also be added to a translational

PM by introducing an articulated platform together with a fourth limb

similar to the other limbs (Krut et al., 2003, 2004; Pierrot & Company,

1999; Pierrot et al., 2006). Hereafter, PMs' limb topology is indicated

through the string of capital letters associated to the joint types en-

countered by moving from the base to the platform. In such strings the
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underlined letters denote the actuated joints. Also, PMs' topology is de-

noted as n String n String n String− −…− g g1 1 2 2 where nk , for k g= 1, …, ,

indicates the number of limbs of type Stringk that are present in the PM.

Nevertheless, 3T1R PMs can also be obtained through ad hoc

architectures. In the literature, somehow exhaustive enumerations of

these architectures have been presented (see, for instance, Amine

et al., 2013; Carricato, 2005; Kong & Gosselin, 2004; Lee &

Hervé, 2011). Listing possible architectures for 3T1R PMs does not

provide many pieces of information on their characteristics and

specific kinematic and dynamic analyses are necessary to highlight

their qualities and defects. Therefore, many papers were published

which address the analyses of particular 3T1R PMs or of 3T1R PM's

classes (see, for instance, Arian et al., 2020; Gallardo‐Alvarado

et al., 2017; Lee & Lee, 2012, 2016; Tu et al., 2018) and the research

on 3T1R PM is still alive. A simplified architecture, the possibility of

putting on the base the motors that drive the actuated joints, and

wide free‐from‐singularity workspace regions are the main sought‐

after features that bring to have a 3T1R PM with good performances.

In this context, these authors analyzed single‐loop 3T1R archi-

tectures with actuators on the base (Di Gregorio, 2017, 2018; Simas & Di

Gregorio, 2019). Also, some of the authors introduced the concept of

self‐aligning property with reference to a family of translational PMs,

named TriFLEX (Maletz et al., 2019; Simas et al., 2017; Simoni

et al., 2014, 2015). Self‐aligning property refers to the presence of passive

joints in the limbs that do not affect the platformmotion and work only to

compensate the possible presence of a misalignment between the sliding

directions of the actuated P‐pairs located on the base. Such a property

makes the fixation of the limbs to the base easier and has potential

application in several scenarios related to field robotics.

This paper presents a family of 3T1R PMs, named TetraFLEX,

with self‐aligning property that have four limbs with only one ac-

tuated P‐pair per limb, which is located on the base. The actuated

P‐pairs on the base together with the self‐aligning property warranty

that TetraFLEX PMs can be mounted on site by using rails that do not

need special manufacturing care as it is usual in field robotics.

Here, the position and the singularity analyses of TetraFLEX PMs

are addressed with a unified approach. These analyses will show that

both the direct and the inverse position analyses have simple closed‐

form solutions and that wide free‐from‐singularity regions of Tetra-

FLEX PMs' workspace exist.

The paper is organized as follows. Section 2 describes the Tet-

raFLEX family and the used notation. Sections 3 and 4 address the

position and the singularity analyses, respectively. Then, Section 5

illustrates design criteria adoptable for TetraFLEX PMs and the si-

mulation results for this family. Eventually, Section 6 discusses the

results and Section 7 draws the conclusions.

2 | THE TETRAFLEX FAMILY

The TetraFLEX family is constituted of 3T1R PMs of type P XYZ‐3P

QVWU. In the PXYZ limb, X, Y, and Z stand for any type of single‐

DOF pairs so connected that the XYZ kinematic chain is a 3‐DOF

planar chain whose motion plane is perpendicular to the sliding di-

rection of the P‐pair. Thus the PXYZ limb has 4‐DOF and is a serial

SMG (Lee & Hervé, 2009b). In the three PQVWU limbs, Q, V, and W

stand for any type of single‐DOF pairs that suitably combined with a

P‐pair on the frame and an U‐joint on the distal link give a 6‐DOF

serial kinematic chain that, when the P‐pair is locked, constrains the

center of the U‐joint to lie on a plane perpendicular to the sliding

direction of the P‐pair without limiting the orientation of the distal

link and the motion of the U‐joint center on the same plane

In the above‐mentioned P XYZ‐3P QVWU architectures, the PXYZ

limb, which is a primitive SMG (Lee & Hervé, 2009b), constrains the

platform to perform only Schoenflies motions and the other three limbs

of PQVWU type do not reduce further the platform mobility since their

connectivity—“connectivity” of a limb is the DOF number that the plat-

form would have if it were connected to the base only through that limb

(Davidson & Hunt, 2004)–is equal to six (i.e., it is equal to the DOF

number of a not‐constrained rigid body). As a consequence, the PXYZ‐

3PQVWUmechanisms, theTetraFLEX family is based on, are 4‐DOF not‐

overconstrained SMGs, which can control the platform motion by ac-

tuating the four P‐pairs adjacent to the base whatever be the platform

geometry provided that the sliding directions of the P‐pairs are not par-

allel to a unique plane (i.e., they are self‐aligning 3T1R PMs).

Two examples of TetraFLEX PMs are the P RRR‐3P RRS of

Figure 1a, where, in each limb, the R‐pairs' rotation axes are all

parallel to the sliding direction of the actuated P‐pair, and the P RRR‐

3P RCU of Figure 1b, where, in each limb, the R‐pairs' rotation axes

are all parallel to the sliding direction of the actuated P‐pair and, in

the three P RCU limbs, the C‐pair axis passes through the center of

the U‐joint and is perpendicular to the R‐pair axis.

With reference to Figure 1, Ai , for i = 2, 3, 4, are the centers of

the U‐joints and A1 is a platform point that lies on the axis of the Z

joint. These four platform points uniquely define the platform geo-

metry. The four lines, n(O , )j j , with the directions of the unit vectors nj

and passing through the base pointsOj , for j = 1, …, 4, are fixed in the

base and are parallel to the sliding directions of the four actuated

P‐pairs. These four lines uniquely define the base geometry. Also, a

Cartesian reference O x y z−1 1 1 1 (A x y zp p p1 ), fixed to the base (the

platform), with the z1 (zp ) coordinate axis parallel to n1 is introduced.

It is worth noting that, since the XYZ chain is a planar kinematic chain

with motion plane perpendicular to n1 , the direction of n1 is fixed with

respect to the platform, too. As a consequence, the x y1 1 ‐coordinate

plane of the base reference is always parallel to the x yp p ‐coordinate

plane of the platform reference and the orientation of A x y zp p p1 with

respect to O x y z−1 1 1 1 is uniquely determined by the angle γ between

the axes x1 and xp (see Figure 1). Thus, the platform pose is uniquely

determined by the angle γ and the coordinates A A A( , , )x y z
T

1 1 1 of point A1

measured in the base referenceO x y z−1 1 1 1 , and the rotation matrix Rp
1

that transforms the components of a vector measured in A x y zp p p1 into

the components of the same vector measured in O x y z−1 1 1 1 is













c s

s cR =

− 0

0

0 0 1

,p

γ γ

γ γ
1 (1)
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where sγ and cγ stand for γsin and γcos , respectively. Eventually, since

each limb constrains the corresponding platform‐attachment‐point, Aj ,

for j = 1, …, 4, to lie on a plane perpendicular to the sliding direction of

the actuated pair of the same limb (i.e., perpendicular to nj ), the actuated‐

joint variables can be chosen equal to the distances, dj , for j = 1, …, 4, of

the base points, Oj , for j = 1, …, 4, from these motion planes (see

Figure 1). In Figure 1, the points Pj , for j = 1, …, 4, are the feet of the

perpendiculars to such motion planes from the corresponding base points

Oj . From a geometric point of view, the j‐th actuated‐joint variable, dj , is

equal to the length of the segment OPj j .

The introduced notations/definitions are common to all the

members of the TetraFLEX family no matter which type of pairs the

F IGURE 1 Two examples of TetraFLEX PMs: (a) P RRR‐3P RRS architecture and (b) P RRR‐3P RCU architecture
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X, Y, Z, Q, V, and W are. So, all the kinematic relationships deduced

by using only these notations/definitions hold for any 3T1R PM

belonging to this family. In the next two sections, the position and the

singularity analyses of TetraFLEX PMs will be addressed by using

only these notations/definitions thus providing general results that

hold for any member of the TetraFLEX family.

3 | POSITION ANALYSIS

Position analysis consists in the solution of two problems: the For-

ward position analysis (FPA), and the Inverse position analysis (IPA). The

FPA is the determination of all the platform poses compatible with

assigned values of the actuated‐joint variables. Vice versa, the IPA, is

the determination of actuated‐joint variables' values compatible with

an assigned platform pose.

3.1 | Forward position analysis

In the case of a TetraFLEX PM, the platform pose is uniquely iden-

tified by the 4‐tuple A A A γp = ( , , , )x y z
T

1 1 1 . As a consequence, its FPA

is the determination of the p values compatible with an assigned

value of the 4‐tuple q = (d , d , d , d )T1 2 3 4 , which collects all the

actuated‐joint variables.

The fact that each platform point Aj must lie on a specific motion

plane makes the equations of these four motion planes coincide with

the closure equations of a TetraFLEX PM. Such equations are

⋅A O d jn( ‐ ) = , = 1, …, 4.j j j j (2)

The replacement, into Equation (2), of the following relationships

jA A R= + , = 1, …, 4j p
pA

1
1 j

(3)

yields, after the introduction of formula (1) and the expansion of the

resulting formulas, the following equation system (n n,jx jy , and njz are

the components of nj measured in O x y z−1 1 1 1 ):

⋅

⋅

( ) ( )A c A s n A s A c n A n

d j

A n O

n

+ − + + + −

= , = 1, …, 4

j jx
p

γ jy
p

γ jx jx
p

γ jy
p

γ jy jz
p

jz j

j j

1

(4)

which can be rewritten as follows:

A d= ,z1 1 (5a)

A n A n a c b s k j+ + + = = 2, 3, 4,x jx y jy j γ j γ j1 1 (5b)

with

a A n A n h c= + = ,j jx
p

jx jy
p

jy j αj
(6a)

b A n A n h s= − = ,j jx
p

jy jy
p

jx j αj
(6b)

⋅ ( )k d A d nO n= + − +j j j j jz
p

jz1 (6c)

where hj and αj are geometric constants defined as follows:







( ) ( ) ( )h A A n n= + + ,j jx

p
jy
p

jx jy

2 2
2 2 (7a)

( )α A n A n A n A n= atan2 − , + .j jx
p

jy jy
p

jx jx
p

jx jy
p

jy (7b)

From a geometric point of view, hj is the product of the magni-

tudes of the projections of the two constant vectors Ap j and nj onto

the x y1 1 ‐coordinate plane; whereas, αj is the angle between the

projections onto the x y1 1 ‐coordinate plane of the constant vectors

Ap j and nj (see Figures 1 and 2).

In the FPA, the coefficients aj , bj and kj are known cons-

tants since they depend only on geometric constants and on the

values of the actuated joint variables, which are assigned.

Therefore, system (5) is linear in the platform‐position variables,

A A,x y1 1 , and A z1 , and depend on depend on γ (i.e., on the platform

orientation) through simple trigonometric functions. The linear

elimination of the platform‐position unknowns from the first

three equations of system 5 yields the following explicit expres-

sions of them

A
k a c b s n k a c b s n

n n n n
=

( − − ) − ( − − )

−
,x

γ γ y γ γ y

x y y x
1

2 2 2 3 3 3 3 2

2 3 2 3
(8a)

A
k a c b s n k a c b s n

n n n n
=

( − − ) − ( − − )

−
,y

γ γ x γ γ x

x y y x
1

3 3 3 2 2 2 2 3

2 3 2 3
(8b)

A d= ,z1 1 (8c)

whose introduction into the fourth equation of system (5) gives

the following univariate trigonometric equation:

a c b s k+ = ,c γ c γ c (9)

F IGURE 2 Geometric definition of the angle αj (A′j and n′j are the
projections onto the x y1 1 ‐coordinate plane of Aj and nj , respectively)
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where

a a n n n n a n n n n

a n n n n

= ( − ) + ( − )

+ ( − ),

c x y y x y x x y

x y y x

2 3 4 3 4 3 2 4 2 4

4 2 3 2 3

(10a)

b b n n n n b n n n n

b n n n n

= ( − ) + ( − )

+ ( − ),

c x y y x y x x y

x y y x

2 3 4 3 4 3 2 4 2 4

4 2 3 2 3

(10b)

k k n n n n k n n n n

k n n n n

= ( − ) + ( − )

+ ( − ).

c x y y x y x x y

x y y x

2 3 4 3 4 3 2 4 2 4

4 2 3 2 3

(10c)

From a geometric point of view, the coefficients n n n n( − )rx sy ry sx

with ∈ r s r s, {2, 3, 4 ≠ } that appear in Equation (10) are equal to

zero when the projections onto the x y1 1 ‐coordinate plane of the two

unit vectors nr and ns are parallel to one another.

The introduction of the trigonometric identities c =γ
t

t

1 −

1 +

2

2 and

s =γ
t

t

2

1 + 2 , where t = tan
γ

2
with ∈γ π π] − , ] , into Equation (9), after

some algebraic manipulations, transforms it into the quadratic

equation:

k a t b t k a( + ) − 2 + ( − ) = 0,c c c c c
2 (11)

which gives the following two solutions for t:

t
b b a k

k a
n=

+ (−1) + −

+
, = 1, 2.n

c
n

c c c

c c

2 2 2

(12)

Accordingly, the values of γ that solve Equation (11) are two:

γ t n= 2arctan( ), = 1, 2.n n (13)

The back‐substitution of these two values of γ into formulas (8)

gives as many values for the platform‐position variables

A A A( , , )x y z1 1 1 . Therefore, the conclusion is that the FPA of any Tet-

raFLEX PM has two solutions, which can be determined through the

explicit formulas (8) and (13).

3.2 | Inverse position analysis

The IPA of a TetraFLEX PM is the determination of the actuated‐

joint‐variables' values (i.e., of q = (d , d , d , d )T1 2 3 4 ) compatible with one

assigned platform pose (i.e., for one assigned value of

A A A γp = ( , , , )x y z
T

1 1 1 ). Since the closure Equations (4) are explicit

expressions of the actuated‐joint variables as functions of the geo-

metric constants and of the platform‐pose variables, the IPA solution

is unique and trivial.

4 | INSTANTANEOUS KINEMATICS
ANALYSIS

The analysis of the instantaneous kinematics of a PM deals with the

determination and the analysis of its instantaneous input/output

relationship. The instantaneous input/output relationship in general

states a one‐to‐one correspondence between the tuple collecting the

actuated‐joint rates and the platform twist or, as an alternative, the

tuple collecting the first time‐derivatives of the variables that un-

iquely determine the platform pose. It is always a linear and homo-

geneous system whose coefficient matrices depend only on the PM

configuration. It is the system to solve for solving the two problems

of PMs' instantaneous kinematics: the forward instantaneous kine-

matics problem (FIKP) and the inverse instantaneous kinematics

problem (IIKP). The FIKP is the determination of the platform twist

(or, the first time‐derivatives of the variables that uniquely determine

the platform pose) once the actuated‐joint rates are assigned. Vice

versa, The IIKP is the determination of the actuated‐joint rates once

the platform twist (or, the first time‐derivatives of the variables that

uniquely determine the platform pose) is known.

In the case of a TetraFLEX PM, the instantaneous input/output re-

lationship must relate q̇ = (ḋ , ḋ , ḋ , ḋ )T1 2 3 4 to x y z γṗ = (Ȧ , Ȧ , Ȧ , ˙)T1 1 1 . It

can be deduced by time‐differentiating closure‐equation system (5). In so

doing, the following instantaneous input/output relationship is obtained

A d˙ = ˙ ,z1 1
(14a)

A n A n h s c c s γ d d n j˙ + ˙ + ( − ) ˙ = ˙ − ˙ = 2, 3, 4,x jx y jy j α γ α γ j jz1 1 1j j

(14b)

whose matrix form is

Mp Nq˙ = ˙ (15)

with
























n n h s

n n h s

n n h s

n

n

n

M N=

0 0 1 0

0

0

0

, =

1 0 0 0
− 1 0 0

− 0 1 0

− 0 0 1

,
x y α γ

x y α γ

x y α γ

z

z

z

2 2 2 ( − )

3 3 3 ( − )

4 4 4 ( − )

2

3

4

2

3

4

(16)

where the trigonometric identities s s c c s= ( − )α γ α γ α γ( − )j j j , for

j = 2, 3, 4, have been used.

4.1 | Singularity analysis

The PM configurations where the instantaneous input/output re-

lationship fails to state a one‐to‐one correspondence between plat-

form twist and actuated‐joint rates are named singularities. PM

singularities are usually collected into three sets (Gosselin &

Angeles, 1990): the ones that make the IIKP unsolvable (type‐I sin-

gularities), the ones that make the FIKP unsolvable (type‐II singula-

rities), and those that make both the IIKP and the FIKP unsolvable

(type‐III singularities). From a kinematic point of view (Agrawal,

1991), the instantaneous mobility of the platform is reduced at a

type‐I singularity, which involves that type‐I singularities occurs at

the workspace boundaries; whereas, the actuators are not able to

control the platform twist any longer at a type‐II singularity, which, in

lower‐mobility PMs, may correspond to a local increase of the plat-

form instantaneous mobility (Di Gregorio, 2020). Lower‐mobility PMs

SIMAS ET AL. | 621
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are those whose DOF number is lower than six, 3T1R PMs are lower‐

mobility PMs. Also, a special case of type‐II singularities, named

“constraint singularities,” can make the platform of a lower‐mobility

PM change is type of motion (Zlatanov et al., 2002); they may occur

only in lower‐mobility PMs containing only limbs with connectivity

higher than the DOF number of the PM (Di Gregorio, 2020), which is

not the case of TetraFLEX PMs.

In the case of TetraFLEX PMs, system (15) states a one‐to‐one

correspondence between ṗ and q̇ when both the 4 × 4 matrices M

and N are full rank. Type‐I singularities occur when N is rank defi-

cient. Since N is a constant matrix with det(N) = 1 (i.e., always non‐

null), there are no type‐I and type‐III singularities in TetraFLEX PMs.

Type‐II singularities occur when M is rank deficient, that is, when its

determinant is equal to zero. The analysis of matrixM reveals that det

(M) can be written as follows

⋅M e f gdet( ) = ( × ) (17)

with













































h s

h s

h s

b c a s

b c a s

b c a s

n
n
n

n

n

n
e f g= =

−

−

−

, = , = .

α γ

α γ

α γ

γ γ

γ γ

γ γ

x

x

x

y

y

y

2 ( − )

3 ( − )

4 ( − )

2 2

3 3

4 4

2

3

4

2

3

4

2

3

4

(18)

From a geometric point of view, the analysis of Equation (17)

reveals that

i. det(M) and, as a consequence, possible type‐II singularities de-

pend only on the projection on the x y1 1 ‐coordinate plane of

geometric constants of the PM;

ii. det(M) depends only on γ (i.e., on the orientation of the

platform);

iii. the vectors f and g are constant; as a consequence, an archi-

tecture singularity (i.e., a special sizing of the PM that makes all

the PM configurations singular) Ma and Angeles (1991) occurs

when f and g are parallel to one another;

iv. an architecture singularity also occurs if n n= = 0jx jy for a j value

not equal to 1. Indeed, in this case, also a b= = 0j j and, as a

consequence, M has a null row (i.e., is singular);

v. out of architecture singularities, a type‐II singularity occurs when

the three vectors e, f, and g are coplanar.

From an analytic point of view, by expanding (17) and equating to

zero the resulting expression, the following singularity equation

comes out:

b c a sMdet( ) = − = 0,c γ c γ (19)

where bc and ac are the constants defined by the formulas (10).

Equation (19) can be rearranged as follows:

γ
b

a
tan( ) = .

c

c
(20)

Equation (20) reveals that, by excluding architecture singularities,

there are always (i.e., whatever be the sizing of the PM) only two

type‐II singularities, which are identified by two γ values separated by

π rad.

Such values can be numerically computed by introducing the

trigonometric identities c =γ
t

t

1 −

1 +

2

2 and s =γ
t

t

2

1 + 2 , where t = tan
γ

2
with

∈γ π π] − , ] , into Equation (19), to transform it into the quadratic

equation:

b t a t b+ 2 − = 0,c c c
2 (21)

which gives the following two solutions for t:

t
a a b

b
n=

− + (−1) +
, = 1, 2.n

c
n

c c

c

2 2

(22)

Accordingly, the values of γ that solve Equation (19) are

γ t= 2arctan( )n n for n = 1, 2.

5 | DESIGN CRITERIA

The above‐reported singularity analysis highlights that architecture

singularities can be avoided by choosing the unit vectors nj , for

j = 2, 3, 4, so that none of them is parallel to the z1 ‐coordinate axis

(see condition (iv)), and their projections onto the x y1 1 ‐plane are not

all parallel (see condition (iii)).

Also, Equations (15) and (16) reveal that, by choosing all the unit

vectors nj , for j = 2, 3, 4, parallel to the x y1 1 ‐plane, matrix N be-

comes an identity matrix which simplify the kinematics model.

Eventually, the position of the two type‐II singularities identified

by Equation (20) can be located where the designer wants by suitably

choosing the values of the angles αj for j = 2, 3, 4. More than that,

singularities can be eliminated from the useful workspace by sizing

the geometry of the platform and the base of TetraFLEX.

The above‐identified criteria are used in the definition of the

TetraFLEX PM's nominal geometry in following section.

5.1 | Case study

This section presents a case study to exemplify the applicability of Tet-

raFLEX in unstructured environments of field robotics. Without loosing

generality, the PRRR+3PRRS TetraFLEX was selected to conduct the

case study. The objective is to improve the kinematic performance as

functions of the platform geometry and the directions of the actuated

joints. Beyond that, it will be demonstrated that inaccuracies in the in-

stallation of the base do not compromise the performance of the robot

and singularities can be avoided by correctly choosing the range of γ .

The TetraFLEX platform is geometrically constituted by four

points Aj , j = 1, 2, 3, 4 with fixed coordinates measured in the re-

ference O x y z−p p p p , making part of the relations that define the

differential kinematics (see Figure 1 and Equations 2 and 3). In this

sense, the platform geometry and the nj vectors, allow us to calculate

and keep TetraFLEX away from singular postures, as discussed in
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Section 4. An adequate measure of singularity distance is the Con-

ditioning Index (CI) because it measure the amplification of the errors

between inputs and outputs in kinematic and static models (Gosselin

& Angeles, 1991; Merlet, 2006). According to Gosselin and Angeles

(1991), CI is defined as the inverse of the condition number, k , of the

Jacobian. In the studied case, using the Euclidean norm of the Ja-

cobian, the condition number of a manipulator is defined by

   k M M= ,−1 (23)

which measure the ratio of the largest to the smallest singular value

ofM−1 Simas and Di Gregorio (2017).

Higher values for kCI = 1∕ imply better kinematic performances

in terms of accuracy and distance from singularity. The highest value

for CI is 1, which means that the robot is in an optimal configuration

called isotropic (Gosselin & Angeles, 1991).

To apply CI as a performance index to TetraFLEX, the problem of

homogenization present in Equation (15) must be solved. This can be

done by choosing a characteristic length, l, of the platform to

define h h l* = ∕j j , for j = 2, 3, 4, and γ lγ* = , which are used for

changing the output tuple from p to A γp* = [ , *]1 and the Jacobian

from M to the dimensionless JacobianM* defined as follows:













n n h s

n n h s

n n h s

M* =

0 0 1 0

0 *

0 *

0 *

.
x y α γ

x y α γ

x y α γ

2 2 2 ( − )

3 3 3 ( − )

4 4 4 ( − )

2

3

4

(24)

Hereafter, the choice l = 1 l.u.—length unit—is adopted since it cor-

responds to the distance between Ap 1 and Gp b , which is a reference

size of the platform, as shown in the geometric scheme of Figure 3.

This case study makes a numerical search of the geometrical

variables of the platform and nj vectors, to control and limit distances

from singularities, using the CI as a parameter to be optimized.

Consider the geometric scheme for the platform shown in

Figure 3 in which A = (0, 0, 0)p T
1 , G = (1, 0, 0)p

a
T , G = (0, 1, 0)p

b
T .

Also, let r1 and r2 be two support lines. Line r1 , defined by the points

Gp a and Gp b , will serve as reference to set the points Ap 2 , Ap 4 , and

the point Gp c calculated by the linear parameter u as follows.

u uG G G= (1 − ) + ( ) .p
c

p
a

p
b (25)

Line r2 defined by the points Ap 1 and Gp c , will serve as re-

ference to the coordinates of Ap 3 (see Figure 3).

The coordinates of Ap 2 , Ap 3 and Ap 4 are given by

v vA G G= (1 − ) + ( ) ,p p
a

p
b2 (26)

w wA A G= (1 − ) + ( ) ,p p p
c3 1 (27)

v vA G G= (1 − ) + ( ) ,p p
b

p
a4 (28)

where v and w together with u are real parameters that make the

platform geometry change during optimization.

A triangular geometry of the platform is obtained fixing u = 0.5

andw = 1 and computing Ap 2 and Ap 4 by changing the parameter v .

A quadrilateral geometry is obtained by computing the coordinates of

Ap 3 changing the values of u (Equation 25) and w . Triangular and

quadrilateral geometries are a common proposition for platforms of

PMs in several works (Briot & Bonev, 2009; Briot & Bonev, 2010;

Gosselin, 2009; Gosselin et al., 2007; Pierrot et al., 2009; Rat

et al., 2010; Simas & Di Gregorio, 2019; Simoni et al., 2014, 2015;

Simas et al., 2017).

According to the above definitions, n = (0, 0, 1)1 is the unity

vector of z1 ‐axis (see Equation 3). In this optimization, n2 is fixed and

equal to (1, 0, 0) . The remain part of the geometry is defined as

functions of the following six variables: ϵ3 , ϵ4 , γ , u, v and w . The

search ranges of these variables are chosen as follows:

• ∈u v w, , [−2; 2] ,

• ϵ3 , ϵ4∈ π[0; ] ,

• ∈γ π π[− ∕2; ∕2] .

These values have been chosen after a trial‐and‐error procedure.

An initial analysis searches for the maximum value of CI in the

case of a triangular platform withw = 1.0 and u = 0.5. Figure 4 shows

the results, with the reference to Figure 4 the maximum CI value is

0.809, for v = −0.35, ϵ = 2.13 rad, ϵ = 1.054 rad, γ = −0.2708 rad. The

search algorithm based on nested loops ran in a Notebook Intel‐Core

i3 2.20 GHz, with 20 Gb RAM, in the processing time of 147 s.

Figure 5 shows the top view of the 3D diagram of Figure 4 with

the contour curves. In Figure 5, the region highlighted in yellow keeps

CI>0.6 which provides TetraFLEX manipulators with acceptable ki-

nematic performances (Gosselin & Angeles, 1991).

Now changing u and w in the range [−2, 2] , the platform can

assume quadrilateral shape. Again, another search algorithm based on

nested loop was applied to study the individual influence of u and w

on CI.

Figure 6 presents the CI as a function of u and γ .

It is worth noting that (see Figure 6) the maximum CI does not

change for the same γ with respect to the parameter u, but the edges

of the surface assume higher values for CI for u = 0.5. Thus theF IGURE 3 Geometry scheme of the platform for CI' optimization
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F IGURE 4 CI as a function of ϵ3 , ϵ4 and γfor
the best v = −0.35

F IGURE 5 Contour curves for CI. The
highlighted region provides CI > 0.6

F IGURE 6 CI as a function of u and γ
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support line r2 should be perpendicular to r1 when u = 0.5. By this

way, keeping u = 0.5 and varying w and γ we have the CI shown in

Figure 7.

Summarizing, CI reaches the maximum value for a triangular

platform with u = 0.5, w = 1, v = −0.35, ϵ = 2.13 rad, ϵ = 1.054 rad,

and γ = −0.27 rad. Thus Ap 3 should be aligned with Ap 2 and Ap 4 for

a maximum CI, in other words, the best geometry of the platform is

an isosceles triangle shown in Figure 8.

5.2 | Workspace analysis

The CI optimization presented in Section 5.1 yielded the moving

platform design, now allowing a performance analysis of the Tetra-

FLEX's workspace.

Considering the designed moving platform, Figure 9 shows the

3D model of the PRRR + 3PRRS TetraFLEX with l l= = 1.5i i2 3 u.l., and

the triangular base platform with length side = 3.0 u.l., in the direc-

tions of n2 and n4 .

Using the coordinates of A1 as tool's reference, the shape of the

workspace depends on the angle γ and the resultant coordinates of

Aj , j = 2, 3, 4. Such workspace is obtained by intersection of four

right circular cylindrical shells due to the four P RRR‐3P RRS legs (see

Figure 1a). Each cylindrical shell, i = 1, 2, 3, 4, has the axis parallel to

the ni axis and passing through the point Hi computed as

⋅H O A O A n n= ( − ) − (( − ) )i i i i i i i (29)

and inner outer radii equal do l l−i i2 3 (for l l>i i2 3 ) and l l+i i2 3 ,

respectively.

Figure 10a shows the 3D‐diagram of the workspace for

l l= = 1.5i i2 3 u.l., γ = −0.27 rad and Ap i as presented in Section 5.1.

It is interesting to note that the shape of the workspace has

symmetry with respect to the x y1 1 ‐plane (in z = 01 ) and that the

correspondent CI = 0.809 is the same for any point once γ = −0.27

rad is the unique variable in the M matrix (see Equation 24).

Complementary, the useful workspace is a regular geometric

object located in the region of the workspace that satisfies some

kinetostatics properties (Di Gregorio & Simas, 2016). Inspecting the

F IGURE 7 CI as a function of w and γ

F IGURE 8 Optimal platform for TetraFLEX
that provides the highest CI, i.e., CI = 0.809
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workspace the chosen useful workspace is equal to the regular cy-

linder, with axis parallel to z1 ‐axis, and delimited up and down by the

planes parallel to x y1 1 ‐plane for z = 21 and z = −21 , respectively, de-

fining the top and down surfaces. The base belonging to the cylinder

is computed by maximal circle defined by three points on the re-

sultant top and/or down surface. Figure 10b shows the corre-

sponding useful workspace for the workspace.

Changing γ in the range [−1, 0.5] rad, Figure 11 presents the

correspondent computed volume of the cylindrical useful workspace

as a function of γ .

5.3 | Inaccuracy due to base installation

Inaccuracies can happen when installing the base platform of Tetra-

FLEX due mainly to the possible self‐alignment variations, that im-

plies in CI variations and consequently interfere with its performance,

that is, due to the direction of the n3 and n4 vectors considering n1

and n2 vectors as reference vectors as discussed in previous sections.

Selecting the optimal triangular moving platform discussed in

Figure 8, that is, setting u = 0.5, w = 1 v = −0.35, ϵ = 2.13 rad,

ϵ = 1.054 rad, and γ−1 ≤ ≤ 0.5 rad, Figure 12 presents the maximal

range of CI as a function of the inaccuracies around 1%, 5%, and 10%

of the nominal values of ϵ3 and ϵ4 . In other words the direction of

vectors n3 and n4 were varied randomly by the desired percentage

extracting the minimal maximal CI for each γ value.

Figure 12 shows the CI's range of variation, as a function of the

geometry of the base for 10% of inaccuracy in blue, 5% results in

green, and 1% in the red.

Choosing CI = 0.6 as the minimum performance limit, it is ob-

served in Figure 12 that the available range of γ ( γΔ ) that guarantees

such performance index, decreases as the percentage of imprecision

of ϵ3 and ϵ4 increases. This analysis shows that it is necessary to

control the accuracy of the base platform installation to guarantee a

good range of platform orientation with good performance indices.

6 | DISCUSSION

The simple kinematics of TetraFLEX PMs makes it possible to con-

ceive fast and easy calibration procedures. Indeed, the base geo-

metric constants that appear in the above‐reported kinematic

analyses are njx , njy , njz , and ( ⋅O nj j ), for j = 2, 3, 4. It is worth noting

that the geometric constants of the platform refer to coordinates of

points that belong to the same rigid body, which do not need to be

redetermined when the machine is installed in a different place.

F IGURE 9 CAD model of the PRRR+ 3PRRS
TetraFLEX assembled according to the second
solution of the FPA for the assigned active‐joint
positions (here, the angle γ does not correspond
to the one (γ = −0.27 rad) that maximizes the CI)

F IGURE 10 (a) Workspace volume of the
PRRR+ 3PRRS TetraFLEX and (b) chosen useful
workspace
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These constants are the only ones that a calibration procedure must

determine when theTetraFLEX PM is installed in a new place. Such a

procedure could be organized as follows:

– both the tuples p and q are measured for four different config-

urations of the TetraFLEX PM, and Equations (4) are written four

times, once for each configuration;

– for each value of the j index greater than 1, the four corre-

sponding equations are extracted from the ones written in the

previous step;

– for each value of the j index greater than 1, the system of four

equations, isolated in the previous step, which is linear in the four

calibration unknowns njx , njy , njz , and ( ⋅O nj j ), is solved.

As an alternative, a better calibration procedure, which takes into

account the presence of measurement errors, consists in measuring p

and q for more than four different configurations, and, then, in using

more than four equations to compute the best estimate of njx , njy , njz ,

and ( ⋅O nj j ) with the least squares method (Rencher &

Christensen, 2012). Having an easy‐to‐implement calibration proce-

dure is relevant in field robotics applications where the calibration

procedure must be frequently repeated.

An other issue that deserves to be discussed is “How many types

of TetraFLEX PMs can be identified?”. The analysis that brings to

identify all the possible mechanism topologies that satisfy assigned

requirements is named type synthesis. There are several approaches

for type synthesis. Evolutionary morphology (Gogu, 2008) virtual

chain (Kong & Gosselin, 2007), displacements groups (Hervé, 1994),

graphs and screw theory (Tsai, 1999) are the most known. Below, the

approach proposed by Tsai (1999) is used.

The number of PM types that enter in the above‐introduced

generic topology P XYZ‐3P QVWU depends on how many XYZ and

QVW kinematic chains can be conceived. The XYZ chain is, by

definition, a 3‐DOF planar kinematic chain constituted by three

F IGURE 11 Volume of cylindrical useful
workspace as a function of the angleγ

F IGURE 12 Sensitivity of the CI for the
inaccuracies of 1% (red), 5% (green), and 10%
(blue) due to the base installation
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single‐DOF pairs; as a consequence, if only P and R pairs are con-

sidered, there are only seven types of these chains: RRR, RPR, RRP,

RPP, PRR, PPR, and PRP, where all the R‐pairs (P‐pairs) have their

axes (their sliding directions) perpendicular (parallel) to the motion

plane of the XYZ chain. It is worth reminding that, in a 3‐DOF serial

planar chain, no more than 2 P‐pairs can be included. The QVW

chain, by definition, constrains the center of the ending U‐joint to

move on a plane without limiting the platform orientation. If only P

and R pairs are considered, the free motion of a point on a plane can

be obtained by four 2‐DOF planar chains: RR, PR, RP, and PP, where

all the R‐pairs (P‐pairs) have their axes (their sliding directions) per-

pendicular (parallel) to the plane the point moves on. Then, the ad-

dition to any of these four 2‐DOF chains of a third R‐pair, as W pair,

so disposed that it forms an S‐pair with the ending U‐joint (i.e., with

the axis passing through the U‐joint center and lying on the plane this

center moves on) yields four kinematic chains that satisfy all the

motion constraints imposed to the QVW chain. Such chains, when

combined with the ending U‐joint, give the following four QVWU

kinematic chains: RRS, PRS, RPS, and PPS, where all the R‐pairs

(P‐pairs) have their axes (their sliding directions) perpendicular (par-

allel) to the plane the S‐pair center moves on. Particular cases of

these four QVWU chains can be obtained by combining a passive RP

or PR sub‐chain into a C pair when the axis of the R‐pair is parallel to

the sliding direction of the P‐pair (see Figure 1b). In short, these

simple considerations bring to identify 28 (= 7 × 4) different types of

TetraFLEX PMs for which all the above‐deduced results hold un-

changed. This number can be further increased if the fact that

nothing changes when the three PQVWU limbs have different

topologies is considered and, over P and R pairs, other types of

single‐DOF pairs (e.g., π joints) are taken into account.

Eventually, it is worth stressing that the actuated P‐pairs located

on the base can be manufactured in many different ways according to

the particular context theTetraFLEX PM has to work. For instance, in

field robotics applications, they could be obtained through a trolley

that moves on a rail track and has bilateral contacts with the rail;

indeed, such a layout allows the fixation of the rails on different

terrains and with different arrangements, which is a sought‐after

feature when a crane has to be mounted in a building site. Differ-

ently, in industrial applications, they could be obtained through pre-

cise linear guides embedded in a unique link that constitutes a fixed‐

geometry base. Also, a full rotation of a possible gripper mounted on

the platform can be obtained through suitable rotation amplifiers like

the simple one described in Simas and Di Gregorio (2017, 2019),

which uses a toothed‐belt transmission. Therefore, TetraFLEX PMs

lend themselves to a wide variety of applications.

Regarding the simulations, as it can be seen in Section 5.1, Tet-

raFLEX has good performance in several configurations of the base

and the platform. This characteristics is due to the self‐aligning and it

is relevant to install TetraFLEX in an unstructured environment of

field robotics. Also, once TetraFLEX is installed, the angles ϵj ,

j = 2, 3, 4 are defined and a correct variation of γ must to be set to

improve the performance and to avoid singularities (see details in

Figures 4, 5, and 12). Such results also shows TetraFLEX robot is

robust enough to keep out of singular postures even with in-

accuracies in the axis of sliding joints in the base.

Regarding applications, TetraFLEX can be used in unstructured

environments of field robotics for complex tasks, for example,

building, mining, rescue, as well as for pick and place in industrial

applications. As discussed in the text, the self‐aligning property

makesTetraFLEX easy to mount and calibrate because once it has the

nj , j = 1, 2, 3, 4 linearly independent it works according to the model

developed in this paper.

Another advantage of TetraFLEX that is relevant for applications

in remote environments of field robotics is its prismatic actuation

with sliding direction fixed to the base. Indeed, such feature makes

the structure of the limbs conceivable as foldable and deployable

trusses (e.g., like a building crane) that, when folded, are compact and

easy to transport and, when deployed on site, can be assembled and

calibrated to operate. Foldable/deployable machines, over in building

sites, are of particular interest in aerospace missions.

7 | CONCLUSION

A new family of 3T1R PMs, named TetraFLEX, has been identified. The

PMs of this family have the same finite and instantaneous kinematics. In

particular, they share the same closure equations and instantaneous in-

put/output relationship, which made it possible to present a unique ki-

nematics analysis and singularity determination for all of them.

These analyses proved that their position analysis has reachable

solution in closed form and that they have no constraint singularity

with only two type‐II singularities easy to find and avoid. Also, their

architecture singularities have been all identified and how to exclude

them during design has been explained.

The simplicity of their kinematics has allowed to present simple

calibration procedures, which is a sought‐after feature in field ro-

botics. Moreover, the design criteria that optimize their kinematic

performances/accuracies have been proposed and applied to a case

study. The case study proved that TetraFLEX PMs are self‐aligning

PMs, that is, they compensate possible installation inaccuracies for a

wide range of base‐geometry perturbations, which is another ap-

pealing feature in field robotics.

The design of the TetraFLEX PMs family, with all its properties,

leads us to several future developments, including the development

of prototypes, experiments for performance evaluation in the fields

of robotics with unstructured environments such as civilian con-

struction, mining, welding structures (ship hulls, for example) and

special applications, make the most of the self‐alignment property.

In a complementary way, advancing the TetraFLEX family in

dynamic models and the proposition of control strategies in physical

prototypes allows new application propositions to turn it into a future

product.
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