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Abstract. Fix positive integers d,m such that m2+4m+6
6

≤ d < m2+4m+6
3

(the so-called Range A for space curves). Let G(d,m) be the maximal genus of

a smooth and connected degree d curve C ⊂ P3 such that h0(IC(m− 1)) = 0.

Here we prove that G(d,m) = 1 + (m − 1)d −
(m+2

3

)
if m ≥ 13.8 · 105. The

case m2+4m+6
4

≤ d < m2+4m+6
3

was known by work of Fløystad [14, 15]

and joint work of Ballico, Bolondi, Ellia, Mirò-Roig; see [2]. To prove the

case m2+4m+6
6

≤ d < m2+4m+6
4

we show that in this range for large d every

integer between 0 and 1 + (m − 1)d −
(m+2

3

)
is the genus of some degree d

smooth and connected curve C ⊂ P3 such that h0(IC(m− 1)) = 0.

MSC 2020: 14H51
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1. Introduction

Fix integers m ≥ 2 and d ≥ 3. Let G(d,m) be the maximal genus of a smooth and
connected curve, of degree d, C ⊂ P3 with h0(IC(m− 1)) = 0. A classical problem
which goes back to Halphen [17], is the computation of the integer G(d,m) ([18,
Problem 3.1], [19]). For this problem the set of all (d,m) ⊂ N2 was divided in the
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following 4 regions (ranges ∅, A, B and C) ([2, 14, 18, 19]), because both the integer
G(d,m) and the geometric properties of the curve with maximal genera are very
different in different regions. Set

GA(d,m) := 1 + (m− 1)d−
(
m+ 2

3

)
.

If d < m2+4m+6
6 , then no such curve exists ([18, Theorem 3.3]). Hence this is called

the Range ∅. Range A is when

(1)
m2 + 4m+ 6

6
≤ d < m2 + 4m+ 6

3

In Range A it is easy to see that G(d,m) ≤ GA(d,m) ([18, Theorem 3.3]) and it
was conjectured that equality holds ([22, page 364]). This conjecture is known to

be true for all d,m such that m2+4m+6
4 ≤ d < m2+4m+6

3 ([14], [2, Corollary 2.4]).
We also mention [15] and [22] which settle a few cases just on the right of the last
inequality of (1). In this paper we prove the following result.

Theorem 1. Fix an integer m ≥ 13.8 · 105. Let d be any integer satisfying (1).
Then G(d,m) = GA(d,m).

Fix m and d in the Range A, i.e. satisfying (1). By [18, first part of the proof
of Theorem 3] any curve C ⊂ P3 with degree d and genus g with g = GA(d,m)
has h1(OC(m − 1)) = 0, i.e. h2(IC(m − 1)) = 0. Since h0(IC(m − 1)) = 0 and
(m− 1)d+ 1− g =

(
m+2

3

)
, Riemann-Roch gives h0(OC(m− 1)) =

(
m+2

3

)
and hence

hi(IC(m−1)) = 0 for all i ∈ N. Thus the curves proved to exist in Theorem 1 have
some nice cohomological properties. Now we add the stronger assumption that
h1(OC(m− 2)) = 0, i.e. h2(IC(m− 2)) = 0. Since dimC = 1, the exact sequence

0→ IC(t)→ OP3(t)→ OC(t)→ 0

gives hi(IC(m − i)) = 0 for all i ≥ 3. Thus the Castelnuovo-Mumford’s lemma
gives h1(IC(t)) = 0 for all t ≥ m, that IC(m)) is globally generated and that the
homogeneous ideal of C is generated by forms of degree m ([26, p. 99], [4, §3]).
Thus with this additional assumption we would get strong geometrical properties
of C. In the next theorem we will prove that h1(OC(m − 2)) = 0 and hence the
homogeneous ideal of C is generated by degree m forms.

For any scheme X ⊂ P3 let NX denote its normal sheaf. Our main result is the
following one.

Theorem 2. Fix positive integers m and d such that m2+4m+6
6 ≤ d < m2+4m+6

4

and GA(d,m) ≥ 0.34 · 1015. Then G(d,m) = GA(d,m) and there is a smooth and
connected curve C ⊂ P3 of degree d and genus G(d,m) such that h1(OC(m−2)) = 0,
hi(IC(m− 1)) = 0, i = 0, 1, and h1(NC(−1)) = 0.

We will get Theorem 1 from Theorem 2 with a small argument.

In the statement of Theorem 2 we assumed that d < m2+4m+6
4 , because the range

m2+4m+6
4 ≤ d < m2+4m+6

3 is covered by [2, Proposition 2.2 and Corollary 2.4]. In
the range of [2, Corollary 2.4] our proof of Theorem 2 is very bad (it gives examples
of nice curves C, but not enough to cover all d). We stated in Theorem 2 that
the solution C satisfies h1(NC(−1)) = 0, because this vanishing has the following
interesting geometrical consequences. Since h1(NC(−1)) = 0, we have h1(NC) = 0
and hence the Hilbert scheme Hilb(P3) is smooth and of dimension 4d at [C] ([27,
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§1]). Let Γ be the unique irreducible component of Hilb(P3) containing [C]. Fix a
a plane H ⊂ P3. Since h1(NC(−1)) = 0, for a general S ⊂ H with cardinality d
there is X ∈ Γ such that X ∩ Γ = S ([25], [27, Theorem 1.5]).

Take (d,m) in the Range A and an integer g such that 0 ≤ g < GA(d,m).
Is there a smooth and connected curve C ⊂ P3 of degree d and genus g with
h0(IC(m− 1)) = 0 ? In the upper half of Range A we know it only if GA(d,m)− g
is small ([2, Proposition 4.3]). In the lower half of the Range A we adapt the proof
of Theorem 2 to prove the following result.

Theorem 3. Fix integers m, d, g such that m ≥ 13.8 · 105, m2+4m+6
6 ≤ d <

m2+4m+6
4 and 0 ≤ g ≤ GA(d,m). Then there is a smooth and connected curve

C ⊂ P3 of degree d and genus g such that h0(IC(m− 1)) = 0 and h1(NC(−1)) = 0.

As an easy corollary of Theorem 3 we get the following result.

Corollary 1. Fix integers d,m such that m ≥ 13.8·105 and d ≥ m2+4m+6
4 . Set δ :=

bm
2+4m+5

4 c. Fix an integer g such that 0 ≤ g ≤ GA(δ,m). Then there is a smooth

and connected curve C ⊂ P3 of degree d and genus g such that h0(IC(m− 1)) = 0
and h1(NC(−1)) = 0.

There are a few natural questions related to the topic of this paper. Fix positive
integers d,m. We recall that if d > m(m − 1) (the so-called Range C) we have
G(d,m) = 1 + [d(d+m2 − 4m)− r(m− r)(m− 1)]/2m, where r is the only integer
such that 0 ≤ r ≤ m − 1 and d + r ≡ 0 (mod m), and equality holds if and only
if the curve is linked to a plane curve of degree r by the complete intersection of
a surface of degree m and a surface of degree d + r ([16]). For d � m we have
GC(d,m) ∼ d2/2m and hence G(d,m) = GC(d,m)� GA(d,m). Now assume

m2 + 4m+ 6

3
≤ d ≤ m2 −m

(the Range B). R. Hartshorne and A. Hirschowitz proved that G(d,m) ≥ GB(d,m),
where GB(d,m) is a complicated explicit function ([22, Th. 5.4]); the integer
GB(d,m)−GA(d,m) is clearly described as a sum of two terms in [22, Th. 5.4]. For
this, using reflexive sheaves with prescribed Hilbert function ([20, 24]), they con-
structed curves C achieving this bound. Moreover they conjectured that G(d,m) =
GB(d,m) in this range. There are some partials results ([10, 11, 20, 29, 30]), but
this conjecture is still widely open.

Question 1. Take d,m in the Range B. Is every integer g such that 0 ≤ g ≤
GB(d,m) the genus of a smooth curve C ⊂ P3 such that deg(C) = d and h0(IC(m−
1)) = 0?

Remark 1. Theorem 3 says that for the pair (d,m) listed in its statement all the
genera up to the maximal one are realized. In the range C for the pairs (d,m) very
near to the maximum genus G(d,m) there are well-known gaps (called Halphen’s
gaps) for the genera of degree d smooth space curve C with h0(IC(m−1)) = 0 ([9],
[5, Theorem 3.3]). If we use the unknown integer G(d,m) instead of GB(d,m), then
Question 1 asks a proof of the non-existence of Halphen’s gaps in the Range B. We
also conjecture that Halphen’s gaps do not arise in the Range A. We conjecture
that Question 1 has a positive answer, except at most for a tiny set of pairs (d,m)
near the Range C. For the Range C we conjecture that all (d, g,m) with (d,m) in
the Range C and 0 ≤ g ≤ GC(d,m+ 1) are realized by some smooth curve C ⊂ P3.
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We explained before and after Theorem 2 the geometric properties (Hilbert func-
tion, Hilbert function of its general hyperplane section and the smoothness of the
Hilbert scheme) satisfied by any curve C as in the statement of Theorem 2. All
curves C realizing G(d, s) in the range C are arithmetically Cohen-Macaulay and
in particular they have maximal rank and the Hilbert scheme Hilb(P3) is smooth at
[C] of known dimension h0(NC) ([12]). In almost all cases h0(NC) > 4d. In general
we may ask:

Question 2. Is it true that any curve, C, of degree d, genus G(d, s), with h0(IC(s−
1)) = 0, is of maximal rank and is a smooth point of the Hilbert scheme ?

For given d, s, do these curves belong to the same irreducible component of the
Hilbert scheme ?

See [6] for partial results. In section 2 we briefly describe the proof, describe the
main novelties of this paper, e.g. the difference with [3] and the main numerical
obstructions arising for small m. The proofs of our theorems use an inductive proof,
called the Horace Method, first used by A. Hirschowitz ([23]).

We thank the referee for many useful comments and suggestions.

2. A roadmap

In section 3 we describes curves Ct ⊂ P3 and the union Ct,k, t ≥ k, of a curve Ct
and a curve Ck. Their main properties is that hi(ICk,t

(k+ t− 1)) = 0 for all i ≥ 0.
Curves Ct are used in [2, 8, 14, 15]. The curves Ct,t and Ct,t−1 are the starting
point of the inductive proof of the existence of curves with maximal rank given in
[3] for ranges of pairs (d, g) with g of order d3/2, i.e. very far from the Brill-Noether
range. In the present paper we use all curves Ct,k with, say, t ≤ 200k. In Example
1 we explain why a key inductive step does not work if, for a fixed k, we try to use
the curves Ct,k with t� k.

Then we add inductively non-special curves in the following way. For all integers
s ≥ k + t + 1 such that s ≡ k + t − 1 (mod 2) we construct a non-special curve
Ys ⊂ P3 with a certain degree a(s, t, k) and genus g(s, t, k) such that Ys ∩ Ct,k = ∅
and hi(ICt,k∪Ys

(s)) = 0 for all i ≥ 0. Setting gt := h1(OCt
) and gt,k := gt + gk

the smooth curve Ct,k ∪ Ys has 3 connected components and h1(OCt,k∪Y ) = gt,k +
g(s, t, k). Since lims→+∞ g(s, t, k) = +∞ (Lemma 4), for each fixed genus g we may
find s� 0 with gt,k + g(s, t, k) > g.

The novel part of this paper are essentially sections 7 and 10 (or, rather that
section 7 allows us to conclude the proof of all theorems in section 10). We need
to prove the theorems of the introduction for a fixed very large m. We fix m and
d and take g := GA(d,m). For large d,m we may assume that g ≥ g1000,1000.
To be sure that for large m and hence (since we are in the Range A a large d)
we may take a very large g (g with order m3 � d) we use [3]. We take t, k such
that gt,k ≤ g ≤ gt,k+2 and t + k ≡ m (mod 2). Then we get a maximal integer
y ≡ t+k−1 (mod 2) such that gt,k+g(y, t, k) ≤ g. A key numerical lemma is that
for a large m we have y ≤ m−7 (Lemma 26). Then for x ≥ y+2 and x ≡ y (mod 2)
we get a smooth connected curve Xx such that Xx ∩ Ct,k = ∅, pa(Xs) + gt,k = g
and h1(ICt,k∪Xx

(x)) = 0 (Assertion B(x, t, k) and its proof in Lemmas 27 and 28).
We use a modification B′(m− 3, t, k) of B(m− 3, t, k) to get in one step a smooth
and connected curve X such that hi(IX(m − 1)) = 0 for all i and X has degree
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d and genus g = GA(d,m). Small modifications of this last step give all theorems
stated in the introduction.

In the construction we allow a parameter α and so the reader will met a(s, t, k)α
and g(s, t, k)α. From section 7 on we just take α := 202 and the integers a(s, t, k)
and g(s, t, k) are just the integers a(s, t, k)α and g(s, t, k)α with α = 202.

3. Preliminaries

We work over an algebraically closed base field with characteristic zero. By [2,
Corollary 2.4] we only look at (d,m) in the Range A and with d < (m2 +4m+6)/4.

For any o ∈ P3 let 2o denote the zero-dimensional subscheme of P3 with (Io)2 as
its ideal sheaf. The scheme 2o ⊂ P3 is a zero-dimensional scheme with deg(2o) = 4
and 2ored = {o}. Let Q ⊂ P3 be a smooth quadric. For any scheme X ⊂ P3 the
residual scheme ResQ(X) of X with respect to Q is the closed subscheme of P3 with
IX : IQ as its ideal sheaf. For any t ∈ Z we have an exact sequence (often called
the residual sequence of X and Q):

0→ IResQ(X)(t− 2)→ IX(t)→ IX∩Q,Q(t)→ 0

Now assume o ∈ Xred ∩ Q and the existence of a neighborhood U of o in P3 such
that X ∩ U = 2o ∪ T with T a nodal curve, T ⊂ Q, and o a singular point of T .
Then ResQ(X) ∩ U = {o}; see [23] for many pictures, which explain how to use
the Horace lemma with respect to Q. We do a similar proof in several key lemmas
(with T a union of e ≤ 202 lines in a ruling of Q and δ− e lines in the other ruling
of Q).

Fix an integer t > 0. Let Ct ⊂ P3 denote any curve fitting in an exact sequence

(2) 0→ tOP3(−t− 1)→ (t+ 1)OP3(−t)→ ICt
→ 0

Each Ct is arithmetically Cohen-Macaulay and in particular h0(OCt) = 1. By
taking the Hilbert function in (2) we get

deg(Ct) = t(t+ 1)/2, pa(Ct) = 1 +
t(t+ 1)(2t− 5)

6
,

h1(OCt
(t − 2)) > 0 and h1(OC(t − 1)) = 0. Hence hi(ICt

(t − 1)) = 0, i = 0, 1, 2.
Note that pa(Ct) = 1 + deg(Ct)(t−1)−

(
t+2

3

)
. The set of all curves Ct fitting in (2)

is an irreducible variety and its general member is smooth and connected. Among
them there are the stick-figures called Kt in [2, 14, 15] (see [14, Lemma 2.11]), but
we only use the smooth Ct. Since h1(NCt(−2)) = 0 ([8, proof of Proposition 2],
[14], [2, page 4592]), for a general S ⊂ Q with #(S) = t(t+ 1) we may find Ct with
Ct ∩ Q = S ([27, Theorem 1.5]). Set Ct,0 := Ct. For all positive integers t, k let
Ct,k denote any disjoint union of a curve Ct and a curve Ck. If t > 0 and k > 0,
then deg(Ct,k) = t(t+ 1)/2 + k(k + 1)/2, h0(OCt,k) = 2 and h1(OCt,k

) = 2 + t(t+

1)(2t − 5)/6 + k(k + 1)(2k − 5)/6. Since h1(NCt,k
(−2)) = 0, for a general S ⊂ Q

with #(S) = t(t+ 1) + k(k+ 1) there is some Ct,k with Ct,k ∩Q = S. Equivalently,
for a general Ct,k the set Ct,k ∩Q is general in Q. We have hi(ICt,k

(t+ k− 1)) = 0
([3]). For reader’s sake we reproduce the statement and the proof from [3].

Lemma 1. ([3, Lemma 2.1]) We have hi(ICt,k
(t+ k − 1)) = 0, i = 0, 1, 2.

Proof. ([3, Lemma 2.1]) Since Ct ∩ Ck = ∅, we have Tor1
OP3

(ICt
, ICk

) = 0 and

ICt
⊗ ICk

= ICt,k
. Therefore tensoring (2) with ICk

(t+ k − 1) we get

(3) 0→ tICk
(k − 2)→ (t+ 1)ICk

(k − 1)→ ICt,k
(t+ k − 1)→ 0
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We have h2(ICk
(x)) = h1(OCk

(x)) and the latter integer is zero for all integers
x ≥ k − 2, because k − 3 is the maximal integer z with h1(OCk

(z)) > 0. We have
h1(ICk

(k−1)) = 0, because Ck is arithmetically Cohen-Macaulay. Taking k instead
of t in (2) we get h0(ICk

(k − 1)) = 0. Hence (3) gives hi(ICt,k
(t + k − 1)) = 0,

i = 0, 1, 2. �

If t > 0 and k > 0 set

gt := pa(Ct) = 1 +
t(t+ 1)(2t− 5)

6
,

gt,k := gt + gk = h1(OCt,k
),

dt,k := deg(Ct,k) = t(t+ 1) + k(k + 1).

Remark 2. Let D0 ⊂ P3 be a smooth curve such that h1(OD0
(1)) = 0. Fix

distinct lines Di, 1 ≤ i ≤ k, such that D0 ∪ D1 ∪ · · · ∪ Dk is nodal and 1 ≤
#((D0∪· · ·∪Di−1)∩Di) ≤ 2 for each i = 1, . . . , k. Then D0∪· · ·∪Dk is smoothable
([21], [28]). A Mayer-Vietoris exact sequence gives h1(OD0∪···∪Dk

(1)) = 0 and hence
D0 ∪ · · · ∪Dk may be deformed to a non-special smooth curve.

We fix integers m ≥ 5, α > 0 and take positive integers t, k such that t+ k ≡ m
(mod 2) and t ≥ k. For all integers s ≥ t + k − 1 with s ≡ t + k − 1 (mod 2)
we define the integers a(s, t, k)α, b(s, t, k)α and g(s, t, k)α in the following way. Set
a(t+ k − 1, t, k)α = b(t+ k − 1, t, k)α = g(t+ k − 1, t, k)α = 0. Define the integers
a(t+ k + 1, t, k)α and b(t+ k + 1, t, k)α by the relations

(t+ k + 1)(dt,k + a(t+ k + 1, t, k)α) + 3− gt,k

+ b(t+ k + 1, t, k)α =

(
t+ k + 4

3

)
, 0 ≤ b(t+ k + 1, t, k)α ≤ t+ k(4)

Set g(t+k+1, t, k)α := 0. Hence if s ∈ {t+k−1, t+k+1} the integers a(s, t, k)α,
b(s, t, k)α and g(s, t, k)α do not depend on α. Fix an integer s ≥ t + k + 3 with
s ≡ t+ k+ 1 (mod 2) and assume defined the integers a(s− 2, t, k)α, b(s− 2, t, k)α
and g(s− 2, t, k)α. Define the integers a(s, t, k)α and b(s, t, k)α by the relations

2(dt,k + a(s− 2, t, k)α) + (s− 1)(a(s, t, k)α − a(s− 2, t, k)α) + α+

+ b(s, t, k)α − b(s− 2, t, k)α = (s+ 1)2, 0 ≤ b(s, t, k) ≤ s− 2(5)

Set g(s, t, k)α = g(s− 2, t, k)α + a(s, t, k)α − a(s− 2, t, k)α − α. We claim that

(6) s(dt,k + a(s, t, k)α) + 3− gt,k − g(s, t, k)α + b(s, t, k)α =

(
s+ 3

3

)
To prove the claim use induction on s; add the equation in (5) to the case s′ = s−2
of (6); start the inductive assumption with the case s = t + k + 1 true by (4), (7)
and (8)). We have b(t+ k + 1, t, k)α ≤ t+ k, b(s, t, k)α ≤ s− 2 if s ≥ t+ k + 3 and
g(s, t, k)α = a(s, t, k)α − a(t+ k+ 1, t, k)α −α(s− t− k− 1)/2 for all s ≥ t+ k+ 3.

Later (from Lemma 16 on), we will assume α = 202 and write a(s, t, k), b(s, t, k)
and g(s, t, k) instead of a(s, t, k)202, b(s, t, k)202 and g(s, t, k)α.

All our constructions work for any α ≥ 105, but we would get far worst bounds in
some key numerical lemma taking α = 105. The culprits are the numerical lemmas,
which give upper bounds for a certain integer e. We always need to take α ≥ e+ 1.
To get e ≤ 104 (resp. e ≤ 201) in Lemmas 14 and 15 (resp. Lemmas 8 and 10)
we need t + k ≥ 1113636 and s ≥ 1157520 (resp. t + k ≥ 42040 and s ≥ 42674).
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Taking α = 202 we get far better bounds for all results stated in the introduction
(e.g. if we used α = 105 in Theorem 1 we would need roughly m ≥ 5 · 106), but
it is certainly not an optimal choice. It is not necessary to quote [3] to obtain our
results (e.g. a very weak form of [1] would suffice), but the bounds would be far
worse (roughly you square all lower bounds assumptions); here the culprit is the
last part of the proof of Theorem 2.

Remark 3. Under suitable assumptions on t, k and α we have g(s, t, k)α ≥ 26
for all s ≥ t + k + 3 with s ≡ t + k − 1 (mod 2) (Lemma 13). Hence a general
curve Y of genus g(s, t, k)α and degree a(s, t, k)α satisfies h1(NY (−2)) = 0 ([27,
page 67, inequality DP (g) ≤ g + 3]). We have g(t + k + 1, t, k)α = 0. A general
smooth rational space curve T of degree x ≥ 3 has balanced normal bundle, i.e.
NT is a direct sum of two line bundles of degree 2x − 1 ([7, Proposition 6]), i.e.
h1(NT (−2)) = 0. Fix integers q and z ≥ q + 3 such that a general non-special
smooth curve C ⊂ P3 of degree z and genus q satisfies h1(NC(−2)) = 0 and
hence (since χ(NC(−2)) = 0) h0(NC(−2)) = 0. Fix a smooth quadric Q ⊂ P3

and take a general B ⊂ Q with #(B) = 2z. By [27, Theorem 5.12] there is a
non-special smooth curve Y ⊂ P3 of degree z and genus q such that B = Y ∩ Q.
The assumption “g(s, t, k)α ≥ 26 ” was the assumption made in [3]. After [3] was
completed E. Larson proved a far better result ([25, Theorem 1.4], [31, Theorem
1.4]). Using it we could get slightly weaker numerical assumptions in all results in
[3] (and hence in the results of this paper), but without lowering the bounds in the
assumption by an order of magnitude.

Remark 4. Lemma 19 shows that to carry over all our steps we cannot have t� k,
say we need t ≤ 200k. Lemma 18 shows that to carry over the last few steps we
also need t ≥ 30k.

4. Assertions A(s, t, k)α and A(s, t, k)

As in section 3 we fix an integer m ≥ 5, a positive integer α and take positive
integers t, k such that t+ k ≡ m (mod 2).

For any integer s ≥ t+ k+ 1 with s ≡ t+ k+ 1 (mod 2) we define the following
Assertion A(s, t, k)α (we use the lemmas in the next section to make sense of it).
We will prove A(s, t, k)α for the quadruples (α, s, t, k) we need in section 6.

Let Q be a smooth quadric and W ⊂ P3 a reduced curve such that Q ∩W is
formed by 2 deg(W ) points and no line of Q contains two or more points of W . Let
E ⊂ Q be a finite set. Take positive integers a, b. An (a, b)-grid of Q adapted to
(W,E) is a union T ⊂ Q of a+ b distinct lines of Q, a of them of bidegree (1, 0), b
of them of bidegree (0, 1), each line of T contains a point of W ∩Q, no two lines of
T contain the same point of W ∩Q and T ∩E = ∅. Obviously the existence on an
(a, b)-grid for (W,E) implies 2 deg(W ) ≥ a+ b. We have Sing(T ) = (a− 1)(b− 1).
Since no two lines of T contain the same point of W ∩Q, we have Sing(T )∩W = ∅.

Assertion A(s, t, k)α, s ≥ t+k+1 with s ≡ t+k+1 (mod 2): Set δ := a(s+
2, t, k)α − a(s, t, k)α. Let e be the maximal positive integer such that b(s, t, k)α >
(e − 1)(δ − e − 1) and e ≤ δ/2. Let Q be a smooth quadric. Fix Ct,k intersecting
transversally Q and such that Q ∩ Ct,k is formed by 2dt,k general points of Q. We
call A(s, t, k)α the existence of a triple (Y, T, S) with the following properties:
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(1) Y is a smooth and connected curve of degree a(s, t, k)α and genus g(s, t, k)α
such that Y ∩ Ct,k = ∅, Y intersects transversally Q and (Ct,k ∪ Y ) ∩Q is
general in Q.

(2) T is a grid of type (e, δ − e) for (Y,E), where E := Ct,k ∩Q. S ⊂ Sing(T ).
(3) hi(IY ∪Ct,k∪S(s)) = 0, i = 0, 1.

In the next section we collect the numerical lemmas needed to prove A(s, t, k)α
for certain quadruples (α, s, t, k).

The proof is by induction on s. We may give a rough outline with the following
two pictures in the next page. Look at the first one.

We consider Z = X∪(∪iLi)∪(∪jRj)∪χ∪S. Here χ denotes the set of nilpotents
(pictured with a black square). Assume F is a form of degree s+ 2 vanishing on Z.
We look at F |Q: it vanishes on D = (∪iLi)∪ (∪jRj), on the points of X ∩ (Q \D)
and on the points of S. We check that this implies F |Q = 0. It follows that
F = QG, where G is a form of degree s vanishing on the residual scheme ResQ(Z).
This residual scheme is given in the second picture.

Observe that the set of points χred lies on a grid (build by the lines Li, Rj) on
Q. Since we have taken X ∪ χred satisfying A(s, t, k), we get G = 0. Hence F = 0.
Then we show that X ∪ (∪iLi)∪ (∪jRj)∪χ is smoothable. By semi-continuity this
shows A(s, t, k)⇒ A(s+ 2, t, k).

We explain here the numerical restriction needed just to know that A(s, t, k)α is
well-defined (e.g. we need δ ≥ 0 and if b(s, t, k)α > 0 we also need e ≤ δ/2.

(1) For s ≥ t+k+3 we need the existence of a non-special curve Y with degree
d(s, t, k)α and genus g(s, t, k)α such that Y ∩Q is formed by 2a(s, t, k)α gen-
eral points of Q. To get this property it is sufficient to use that g(s, t, k)α ≥
26 (Remark 3) and quote [27, page 67, inequality DP (g) ≤ g + 3]). Since
(Y ∪Ct,k ∩Q is general in Q, no two points of it are contained in the same
line of Q.

(2) We need δ ≥ 0 and this is true by Lemma 4.
(3) When b(s, t, k)α > 0 we need e ≤ δ/2. For this we use Lemmas 4, 14 and

8.
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Figure 1. The residue scheme with respect to Q.

(4) We need 2a(s, t, k)α ≥ δ to get a degree δ grid T ⊂ Q such that each
irreducible component of T contains a point of T ∩Q.

Now we explain with examples why we need lower bounds on k to have a chance
that A(s, t, k)α is true when s − t − k is small. In Lemma 19 we will show that it
is important that t is not too large with respect to k.

Example 1. First take k = 1. We have dt,1 = dt + 2 and gt,1 = gt. Since

tdt,1 + 2 − gt,1 =
(
t+3

3

)
and

(
t+5

3

)
−
(
t+3

3

)
= (t + 1)2, (4) gives 2dt,1 + (t + 2)a(t +

2, t, 1)α+ b(t+2, t, 1)α) = (t+3)2 and hence a(t+2, t, 1)α ≤ 5, which is not enough
to attach any grid to Y ∩Q when deg(Y ) = a(t+ 2, t, 1)α.

Now take k arbitrary. We show that if t� k we cannot find a grid T ⊂ Q with
deg(T ) = δ and with #(Sing(T )) ≥ s − 2 and thus if b(s, t, k) is large there is no
S ⊆ Sing(T ) with #(S) = b(s, t, k). The maximum integer #(Sing(T )) for grids of
bidegree (e, δ− e) is bδ/2cdδ/2e. We take s = t+ k+ 3 and any fixed α. For t� k
we get a(t+k+1, t, k)α ∼ 4k and δ := a(t+k+3, t, k)α−a(t+k+1, t, k)α ∼ 8k � s.
There are other numerical problems if t � k, most of them arising in the part in
which g is used (Lemma 19).

5. Numerical lemmas, I

For any integer s ≥ t+ k − 1 set It,k(s) := h0(ICt,k
(s)). Since deg(Ct,k) = dt,k,

h1(OCt,k
) = gt,k and h1(ICt,k

(s)) = 0 for s ≥ t+ k − 1, we have

(7) It,k(s) =
(s− t− k + 1)

6
[(s−t−k+3)(s−t−k+2)+3(t+k)(s−t−k+2)+6kt]

Note that It,k(t+ k − 1) = 0. By (4) we have

(8) (s− 1)a(s, t, k)α + b(s, t, k)α = It,k(s)− 4− α(s− t− k − 1)/2

Lemma 2. We have

It,k(s+ 2)− It,k(s) = (s+ 3)2 − (t2 + k2 + t+ k)

Albanian J. Math. Vol. 15 (2021), no. 1, 10-38

http://albanian-j-math.com/vol-15.html


Edoardo Ballico and Philippe Ellia 19

and if u ∈ N and s = t+ k + 1 + 2u then

It,k(s) =
4

3
u3 + (6 + 2(t+ k))u2 + (

26

3
+ 5(t+ k) + 2tk)u+ 4 + 3(t+ k) + 2kt

Proof. Let Q be a general quadric surface and consider the exact sequence:
0→ IC(s)→ IC(s+ 2)→ IC∩Q(s+ 2)→ 0 (where C := Ct,k). Since hi(IC(m)) =
0, if m ≥ t + k − 1, 1 ≤ i ≤ 2, we get: I(s + 2) − I(s) = h0(IC∩Q(s + 2)) =
h0(OQ(s+ 2))− 2dt,k = (s+ 3)2 − (t2 + t+ k2 + k).

For the second assertion one can make a direct computation or proceed by in-
duction using: 0 → IC(s) → IC(s + 1) → IC∩H(s + 1) → 0, where H is a general
plane, and taking into account that h0(IC∩H(s+ 1)) = h0(OH(s+ 1))− dt,k. �

We fix an integer α ≥ 0. Write s = t+ k + 1 + 2u with u ∈ N. By (8) we have

a(s, t, k)α(2u+ t+ k) + b(s, t, k)α =

4u3

3
+ [6 + 2(t+ k)]u2 + [

26

3
+ 5(t+ k) + 2kt]u+ 4 + 3(t+ k) + 2kt− αu

By (5) we have

(9) (s− 1)a(s, t, k)α + b(s, t, k)α = It,k(s)− 4− α(s− t− k − 1)/2

We compare a(s, t, k)α, s = t+ k + 1 + 2u, with the function

ψ(u) :=
2u2

3
+ [

2(t+ k)

3
+ 3]u+ t+ k

Lemma 3. If t ≥ 4 and k ≥ 4, then a(s, t, k)α ≤ ψ(u), i.e.

a(s, t, k)α ≤
s2 + 7s

6
− (t+ k)2

6
− 3(t+ k)

6
− 8

6

Proof. Note that

(2u+ t+ k)ψ(u) =
4u3

3
+ [2(t+ k) + 6]u2 + [

2(t+ k)2

3
+ 5(t+ k)]u+ (t+ k)2

Since b(s, t, k)α ≥ 0 and αu ≥ 0, we get

(10) (2u+t+k)(ψ(u)−a(s, t, k)α ≥ [
2(t+ k)2

3
−2kt− 26

3
]u+(t+k)2−3(t+k)−2kt

We have 2(t+k)2

3 − 2kt− 26
3 ≥ 0 ⇔ 2(t+ k)2 ≥ 6kt+ 26 ⇔ (t− k)2 + t2 + k2 ≥ 26,

which is satisfied if t ≥ 4 and k ≥ 4. We have (t + k)2 − 3(t + k) − 2kt ≥ 0 ⇔
t2 + k2 − 3(t+ k) ≥ 0 ⇔ t(t− 3) + k(k − 3) ≥ 0, which is true if k ≥ 3 and t ≥ 3.
Thus the right hand side of (10) is non-negative. For the last assertion we use that

ψ(u) = (s−t−k−1)
6 [(s−k−t−1)+2(t+k)+9]+(t+k) = (s−t−k−1)(s+t+k+8)

6 +t+k. �

Lemma 4. Fix integers α ≥ 0, u ≥ 0, and set s := t + k + 1 + 2u and δ :=
a(s + 2, t, k)α − a(s, t, k)α. Assume t ≥ k ≥ t/200 (resp. t ≥ k ≥ t/3 and k ≥ 4).
Then

δ >
s

102
− α

s+ 1

(resp. δ > s
3 −

α
s+1 ). In particular, if s + 1 > α, then δ > −1 + s

102 (resp.

δ > −1 + s
3).
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Proof. Taking the difference of (9) and the same equation for the integer s′ = s+2,
we get

(11) (s+ 1)δ + 2a(s, t, k)α + b(s+ 2, t, k)α − b(s, t, k)α = It,k(s+ 2)− It,k(s)− α
By Lemma 2 we have

(s+ 1)δ + 2a(s, t, k)α + b(s+ 2, t, k)α − b(s, t, k)α = (s+ 3)2 − (t2 + k2 + t+ k)− α
We have b(s, t, k)α ≥ 0, b(s+ 2, t, k)α ≤ s and 2a(s, t, k)α ≤ [(s2 + 7s)− (t+ k)2 −
3(t+ k)− 8]/3 (Lemma 3). Thus

(s+ 1)δ ≥ (s+ 3)2− (t2 + k2 + t+ k)− 2(s2 + 7s)

3
+

2(t+ k)2

3
+ 2(t+ k) +

16

3
−α,

i.e.

(s+ 1)δ ≥ (s2 + s)

3
− (t2 + k2 − 4tk − 3t− 3k − 1)

3
− α.

We obviously have 3t+ 3k+ 1 ≥ 0. If t ≤ 3k, then (t2 + k2− 4tk− 3t− 3k− 1) < 0

(more precisely, it is sufficient to assume t < 4k+3+
√

12k2+36k+73
2 ) and hence we

conclude in this case. Now assume only t ≤ 200k. Since s ≥ t + k, it is sufficient
to prove that t2 + k2 − 4tk ≤ 33

34 (t + k)2, i.e. t2 + k2 − 202tk ≤ 0. This is true if

t ≥ k > 0 and t/k ≤ 101 +
√

1012 − 1. �

Note that a(t+ k + 1, t, k)α and b(t+ k + 1, t, k)α do not depend from α.

Lemma 5. Let A and B be positive rational numbers. Assume t+k ≥ 4A+2B and
(s−1)dt,k+It,k(s) ≥ As2+Bs, for some s ≥ t+k+1. Then (s+1)dt,k+It,k(s+2) ≥
A(s+ 2)2 +B(s+ 2).

Proof. By Lemma 2, we have I(s+ 2)− I(s) = (s+ 3)2 − (t2 + k2 + t+ k) (where
I(m) := It,k(m)). It follows that:

(s+ 1)dt,k + I(s+ 2) = (s− 1)dt,k + I(s) + 2dt,k + (s+ 3)2

− (t2 + k2 + t+ k) ≥ As2 +Bs+ 2dt,k + (s+ 3)2 − (t2 + k2 + t+ k)(12)

So it is enough to prove:

(13) 2dt,k + (s+ 3)2 − (t2 + k2 + t+ k) = (s+ 3)2 ≥ 4As+ 4A+ 2B

But s2 + 6s ≥ 4As + 4A + 2B ⇔ s + 6 ≥ 4A + 4A+2B)
s and this last inequality

follows from: s+ 6 > s ≥ 4A+ 4A+2B
s , since s ≥ t+ k + 1 > 4A+ 2B. �

Lemma 6. Let C > 0 and D be rational numbers. Assume t ≥ k ≥ 2C and
t + k ≥ 4C + 2|D − C + α + 2|. Then we have a(s, t, k) + dt,k ≥ Cs + D for any
s ≥ t+ k + 1, s ≡ t+ k + 1 (mod 2).

Proof. By definition a(s)(s − 1) + b(s) = I(s) − 4 − α(s − t − k − 1)/2, with
0 ≤ b(s) ≤ s− 2 (we drop the indices t, k in a, b, I). Using b(s) ≤ s− 2, we get:

(14) a(s)(s− 1) ≥ I(s)− 2− α(s− t− k − 1)

2
− s ≥ I(s)− s(α+ 2

2

By dividing by s− 1 and using s(α+ 2)/2(s− 1) ≤ α+ 2, we get:

a(s) ≥ I(s)/(s− 1)− (α+ 2)

So it is enough to show: dt,k + I(s)/(s− 1) ≥ Cs+D + α+ 2, which is equivalent
to:

(15) (s− 1)dt,k + I(s) ≥ As2 +Bs ,
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where A = C and where B = D − C + α + 2. Note that B can be negative so we
will consider the following inequality:

(16) (s− 1)dt,k + I(s) ≥ As2 + |B|s .
Clearly (16) implies (15). According to Lemma 5, if t+ k ≥ 4A+ 2|B|, it is enough
to prove this inequality for s = t + k + 1. Since I(t + k + 1) = 2tk + 3(t + k) + 4,
for s = t+ k + 1 (16) reads like:

t2(t+ 1)/2 + k2(k + 1)/2 + tk(t+ k + 2)/2 + 2tk + 3(t+ k) + 4

≥ At2 +Ak2 + 2Atk + (t+ k + 1)(2A+ |B|)−A
(17)

We have t2(t/2) ≥ At2, k2(k/2) ≥ Ak2 (because t ≥ k ≥ 2A). For the same reason,
we also have tk(t+ k + 2)/2 ≥ tk(2A+ 1). It remains to show the inequality

(t2 + k2)/2 + 3tk + 3(t+ k + 1) + 1 ≥ (t+ k + 1)(2A+ |B|)−A.
Note that

(t2 + k2)/2 + 3tk + 3(t+ k + 1) + 1 = (t+ k + 1)2/2 + 2tk + 2t+ 2k + 7/2

Since (t+ k + 1)/2 ≥ 2A+ |B|+ 1/2 by assumption, we get inequality (16), hence
also inequality (15). �

Corollary 2. Let M be a positive rational number. Assume t ≥ k ≥ M + 6 and
t+k ≥ 2M +α+18, then δ := a(s+2)−a(s) < s−M , ∀s ≥ t+k+1, s ≡ t+k+1
(mod 2).

Proof. We have: 2(dt,k + a(s)) + (s + 1)δ + α + b(s + 2) − b(s) = (s + 3)2 by
(5). If δ ≥ s − M , since b(s + 2) ≥ 0 and b(s) ≤ s − 2, we get: (s + 3)2 ≥
2(dt,k+a(s))+(s+1)(s−M)+α−s+2, i.e. s(M+6)+M−α+7 ≥ 2(dt,k+a(s)).

Using Lemma 6 with C = M
2 + 3 and D = M−α

2 + 4, we get a contradiction. �

Lemma 7. Assume t ≥ k ≥ 4 and t ≤ 200k (resp. t ≤ 3k). Then a(t + k +
1, t, k)α ≥ t+k

102 (resp. a(t + k + 1, t, k)α ≥ t+k
3 ). If α ≤ −1 + t+k

102 (resp. α ≤
−1 + t+k

3 ), then

a(t+ k + 3, t, k)α − a(t+ k + 1, t, k)α ≤ 1 + 2a(t+ k + 1, t, k)α.

Let e be the minimal integer x such that

1 ≤ x ≤ δ := a(t+ k + 3, t, k)α − a(t+ k + 1, t, k)α

and b(t+ k + 1, t, k)α ≤ (x− 1)(δ − x− 1).

Assume α ≤ −1 + t+k
102 and t+ k ≥ 1113636 (resp. α ≤ −1 + t+k

3 and t+ k > 78).
Then e ≤ 104 (resp. e ≤ 5).

Proof. Since (t + k + 2)2 − (t2 + k2 + t + k) = 2tk + 3t + 3k + 4, Lemma 2 for
s = t+ k − 1 gives

(t+ k + 1)a(t+ k + 1, t, k)α + 1 + b(t+ k + 1, t, k)α = 2tk + 3t+ 3k + 4.

Since b(t+ k + 1, t, k)α ≤ t+ k, we get

(18) (t+ k + 1)a(t+ k + 1, t, k)α ≥ 2tk + 2t+ 2k + 3

If a(t+ k+ 1, t, k)α ≤ t+k−1
102 (resp. a(t+ k+ 1, t, k)α ≤ t+k−1

3 , then (t+ k+ 1)(t+
k− 1) ≥ 102(2tk+ 2t+ 2k+ 3) (resp. (t+ k+ 1)(t+ k− 1) ≥ 6tk+ 12t+ 12k+ 18),
which is false for all positive k if t ≤ 200k (resp. t ≤ 3k).
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Now assume α ≤ −1 + t+k
102 (resp. α ≤ −1 + t+k

3 ). To prove the second assertion
of the lemma it is sufficient to prove that a(k+ t+3, t, k)α+1 ≤ 3a(k+ t+1, t, k)α.
We have

It,k(t+ k + 3) =
4

6
[(30 + 15(t+ k) + 6kt] = 20 + 10(t+ k) + 4kt

and

a(t+ k + 3, t, k)α ≤
(It,k(t+ k + 3) + 4)

t+ k + 2
=

20 + 10(t+ k) + 4kt

t+ k + 2
,

while a(t+ k + 1)α ≤ It,k(t+k+1)−1−t−k
t+k+1 = 2 t+k+tk

t+k+1 .

Since b(t + k + 1, t, k)α ≤ t + k, to prove the last assertion of the lemma it is
sufficient to observe that 103(δ − 202) ≥ t + k (resp. 4δ ≥ 24 + t + k) by the case
s = t + k + 1 of Lemma 4 and the assumption t + k ≥ 1113636 = 106 · 103 · 102,
which gives that 103(−1 + t+k+1

102 − 202) ≥ t+ k. �

Lemma 8. Assume 200k ≥ t ≥ k ≥ 4, α ≤ −1 + t+k
102 and t+ k ≥ 42040. Let e be

the minimal integer x such that 1 ≤ x ≤ δ := a(t+ k+ 3, t, k)α − a(t+ k+ 1, t, k)α
and b(t+ k + 1, t, k)α ≤ (x− 1)(δ − x− 1). Then e ≤ 201.

Proof. Assume e ≥ 202. Since b(t+ k + 1, t, k)α ≤ t+ k, we get 201(δ − 203)
ek+ t−1. Since δ ≤ −1+ t+k

102 by Lemma 14, we get 99(k+ t) ≤ 203 ·201 ·102−102,
which is false if k + t ≥ 42040. �

Lemma 9. Fix integers α ≥ 0, u ≥ 0, and set s := t + k + 1 + 2u and δ :=
a(s + 2, t, k)α − a(s, t, k)α. Assume s + 1 > α. Assume t ≥ k ≥ t

200 , k ≥ 4 and

s ≥ 1157520 (resp. s > 78, t ≥ k ≥ t
3 and k ≥ 4). Let e be the minimal integer

x such that 1 ≤ x ≤ δ and b(s, t, k)α ≤ (x − 1)(δ − x − 1). Then e ≤ 104 (resp.
e ≤ 5).

Proof. The integer e is defined by Lemma 4. Since b(s, t, k)α ≤ s−2, it is enough to
check that s−2 ≤ 103(δ−202) (resp. s−2 ≤ 4(δ−6), which is true, because Lemma
4 gives δ ≥ −1 + s

102 (resp. δ > −1 + s
3 ) and we assumed s ≥ (2 + 103 · 106) · 106 =

1157520 (resp. s > 78). �

Lemma 10. Fix integers α ≥ 0, u ≥ 0, and set s := t + k + 1 + 2u and δ :=
a(s + 2, t, k)α − a(s, t, k)α. Assume s + 1 > α, t ≥ k ≥ t

200 , k ≥ 4 and s ≥ 42674.
Let e be the minimal integer x such that 1 ≤ x ≤ δ and b(s, t, k)α ≤ (x−1)(δ−x−1).
Then e ≤ 201.

Proof. The integer e is defined by Lemma 4. Since b(s, t, k)α ≤ s−2, it is enough to
check that s− 2 ≤ 98(δ− 203), which is true, because Lemma 4 gives δ ≥ −1 + s

102
and we assumed s ≥ 42674. �

Lemma 11. If t ≥ k and k2 ≥ (α+ 5)(k + 2), then 2tk ≥ (α+ 5)(t+ k + 4).

Proof. Set γ(t, k) := 2tk−(α+5)(t+k+4). We have γ(k, k) ≥ 0 if k2 ≥ (α+5)(k+2).
To get the lemma use that ∂tγ(t, k) = 2k − α− 5. �

Lemma 12. Assume k ≤ t ≤ 200k, 2tk ≥ (α + 5)(t + k + 4), α ≤ −1 + t+k
102 and

take an integer s ≥ t+ k + 1 with s ≡ t+ k + 1 (mod 2). Then:

(a) δ := a(s+ 2, t, k)α − a(s, t, k)α ≤ 2a(s, t, k)α − α;
(b) τ := a(s+ 4, t, k)α − a(s+ 2)α ≤ 2a(s, t, k)α + α− 1.
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Proof. Assume δ ≥ 2a(s, t, k)α−α+2. Since b(s+2, t, k)α ≥ 0 and b(s, t, k)α ≤ s−1,
(21) gives

(19) 2dt,k + (2s+ 4)a(s, t, k)α ≤ (s+ 3)2 + α(s+ 1)− s− 3

First assume s = t+ k + 1. In this case (19) is equivalent to

(20) (2t+ 2k + 6)a(t+ k + 1, t, k)α ≤ α(t+ k + 2) + 2tk + 6t+ 6k + 12

From (18) we get 4a(t + k + 1, t, k)α + 2tk ≤ α(t + k + 2) + 2t + 2k + 6, which is
false if 2tk ≥ (α+ 2)(t+ k + 2).

Now assume s ≥ t + k + 3 and that (19) is false for the integer s − 2. Since
(s+ 3)2 + α(s+ 1)− (s+ 1)2 − α(s− 1) = 4s+ 2α + 8, it is sufficient to use that
(2s+ 4)a(s, t, k)α− 2s · a(s− 2, t, k)α = 4a(s− 2, t, k)α + (2s+ 4)(a(s, t, k)α− a(s−
2, t, k)α) ≥ 4(k + 3) + 4s by Lemmas 14 and 4.

Now assume τ ≥ 2a(s, t, k)α + 2 − α. From (5) for the integer s′ = s + 4 and
using that b(s + 4, t, k)α ≤ s + 2 and b(s + 2, t, k)α ≥ 0 and 2a(s + 2, t, k) ≥
2a(s, t, k)− 2 + s/51, we get

(21) 2dt,k − 2 +
s

51
+ (2s+ 8)a(s, t, k)α + 2s+ 6− (s+ 3)α ≤ (s+ 5)2

First assume s = t+ k + 1. In this case (21) is equivalent to

(22) (2t+ 2k+ 10)a(t+k+ 1, t, k)α ≤ α(t+k+ 4) + 2tk+ 9t+ 9k+ 30− t+ k + 1

51

From (22) we get

8a(t+ k + 1, t, k)α + 2tk ≤ α(t+ k + 4) + 5t+ 5k + 24− t+ k + 1

51
,

which is false if 2tk ≥ (α+ 5)(t+ k + 4).
Now assume s ≥ t + k + 3 and that (21) is false for the integer s − 2. Since

(s+ 5)2 − (s+ 3)2 = 4s+ 16 and 2s+ 8− 2(s− 2)− 8 = 4, to get that (21) is false
for the integer s it is sufficient to use that a(s, t, k)α−a(s− 2, t, k)α ≥ 2 +α, which
is true by Lemma 4 and the assumption s ≥ t+ k+ 3, our assumptions on t, k and
α. �

Lemma 13. Assume t ≥ k ≥ t
200 and t + k ≥ 102(α + 27). Then we have

g(s, t, k)α ≥ 26.

Proof. We first do the case s = t + k + 3. We have g(t + k + 3, t, k)α = a(t + k +
3, t, k)α−a(t+k+1, t, k)α−α. Lemma 4 gives a(t+k+3, t, k)α−a(t+k+1, t, k)α >
−1+ t+k+1

102 (resp. a(t+k+3, t, k)α−a(t+k+1, t, k)α > −1+ t+k+1
3 ). Now assume

s ≥ t+k+5. By induction on s it is sufficient to prove that g(s, t, k)α ≥ g(s−2, t, k)α,
i.e. a(s, t, k)α − a(s− 2, t, k)α ≥ α, which is true by Lemma 4. �

Lemma 14. Assume t ≥ k ≥ 4 and t ≤ 200k. Then a(t + k + 1, t, k)α ≥ t+k
102 . If

α ≤ −1 + t+k
102 , then

a(t+ k + 3, t, k)α − a(t+ k + 1, t, k)α ≤ 1 + 2a(t+ k + 1, t, k)α.

Let e be the minimal integer x such that 1 ≤ x ≤ δ := a(t + k + 3, t, k)α − a(t +
k+ 1, t, k)α and b(t+ k+ 1, t, k)α ≤ (x− 1)(δ− x− 1). Assume α ≤ −1 + t+k

102 and
t+ k ≥ 1113636. We have e ≤ 104.
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Proof. Since (t+k+2)2−(t2+k2+t+k) = 2tk+3t+3k+4, Lemma 2 for s = t+k−1
gives (t+ k+ 1)a(t+ k+ 1, t, k)α + 1 + b(t+ k+ 1, t, k)α = 2tk+ 3t+ 3k+ 4. Since
b(t+ k+ 1, t, k)α ≤ t+ k, we get (t+ k+ 1)a(t+ k+ 1, t, k)α ≥ 2tk+ 2t+ 2k+ 3. If
a(t+k+1, t, k)α ≤ (t+k−1)/102, then (t+k+1)(t+k−1) ≥ 102(2tk+2t+2k+3),
which is false for all positive integers k if t ≤ 200k.

Now assume α ≤ −1 + (t+ k)/102. To prove the second assertion of the lemma
it is sufficient to prove that a(k + t + 3, t, k)α + 1 ≤ 3a(k + t + 1, t, k)α. We have
It,k(t + k + 3) = 4

6 [(30 + 15(t + k) + 6kt] = 20 + 10(t + k) + 4kt and a(t + k +
3, t, k)α ≤ (It,k(t+ k+ 3) + 4)/(t+ k+ 2) = (20 + 10(t+ k) + 4kt)/(t+ k+ 2), while
a(t+ k + 1)α ≤ (It,k(t+ k + 1)− 1− t− k)/(t+ k + 1) = 2(t+ k + tk)/(t+ k + 1).

Since b(t + k + 1, t, k)α ≤ t + k, to prove the last assertion of the lemma it
is sufficient to observe that 103(δ − 202) ≥ t + k by the case s = t + k + 1 of
Lemma 4 and the assumption t + k ≥ 1113636 = 106 · 103 · 102, which gives that
103(−1 + t+k+1

102 − 202) ≥ t+ k. �

Lemma 15. Fix integers α ≥ 0, u ≥ 0, and set s := t + k + 1 + 2u and δ :=
a(s+2, t, k)α−a(s, t, k)α. Assume s+1 > α, t ≥ k ≥ t/200, k ≥ 4 and s ≥ 1157520.
Let e be the minimal integer x such that 1 ≤ x ≤ δ and b(s, t, k)α ≤ (x−1)(δ−x−1).
Then e ≤ 104.

Proof. The integer e is defined by Lemma 4. Since b(s, t, k)α ≤ s−2, it is enough to
check that s−2 ≤ 103(δ−202), which is true, because Lemma 4 gives δ ≥ −1+ s

102
and we assumed s ≥ (2 + 103 · 106) · 106 = 1157520 . �

6. Proofs of A(s, t, k)α and A(s, t, k)

Remark 5. Assume b(s, t, k)α > 0. Assume that A(s, t, k)α is true and take
(Y,Q, T1) satisfying it. Set δ := a(s + 2, t, k)α − a(s, t, k)α. Let e be the maximal
positive integer such that b(s − 2, t, k) > (e − 1)(δ − e − 1) and e ≤ δ/2. Write
T1 = R1∪· · ·∪Re∪M1∪· · ·∪Mδ−e with Rj ∈ |OQ(1, 0)| and Mh ∈ |OQ(0, 1)|. Now
we modify T1 to a new grid T ∈ |OQ(e′, δ−e′)|, e′ ∈ {e, e+1}, in which some of the
lines of T does not meet Y ∩Q. In each case we also describe a very specific set S ⊆
Sing(T1) with #(S) = b(s− 2, t, k)α and show why we have h1(ICt,k∪Y ∪S(s)) = 0,
i = 0, 1, although S is not a subset of Sing(T1). In each case we will say that T is
the grid adapted for A(t, s, k). We have deg(Y ∪ T ) = a(s + 2, t, k)α. In all cases
we will check that we have χ(OY ∪T∪χ) = g(s+ 2, t, k)α − gt,k.

(a) Assume (e− 1)(δ − e− 1) + α− e ≤ b(s− 2, t, k)α ≤ e(δ − e− 1). In this
case we will have e′ = e+ 1. Take distinct lines Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ δ − e− 1,
such that Li = Mi if α − e ≤ i ≤ b(s, t, k)α − (e− 1)(δ − e− 1), while Li ∩ Y = ∅
in all other cases. Take R0 ∈ |OQ(1, 0)| containing a point of Y ∩ (Q \ T1). We
take T := R0 ∪ · · · ∪ Re ∪ L1 ∪ · · · ∪ Lδ−e−1. We take as S the union of all points
Rj ∩ Li with either j > 1 or j = 1 and 1 ≤ i ≤ b(s− 2, t, k)α − (e− 1)(δ − e− 1).
Each Lj moves in a family of lines of Q with Mj in its limit. In this degeneration
of some of the lines of T to some of the lines of T1 the set S degenerate to a
subset S1 ⊆ Sing(T1) (although T and T1 are grids with different bidegrees). By
A(s, t.k)α we have hi(ICt,k∪Y ∪S1

(s)) = 0, i = 0, 1. By the semicontinuity theorem

we have hi(ICt,k∪Y ∪S1
(s)) = 0, i = 0, 1. We have T ∈ |OQ(e + 1, δ − e − 1)|,

#(Sing(T )) = (e + 1)(δ − e− 1) and #(Y ∩ T )) = 1 + #(Y ∩ (T \ R0)) = 1 + e +
b(s, t, k)− (e−1)(δ−e−1)−α+1+e = b(s, t, k)− (e−1)δ+e2 +2e−α+1. Hence
1−χ(OY ′) = pa(Y )−#(S) + #(Sing(T ∪R0)) + #(Y ∩ (T ∪R0))−deg(R0 ∪T ) =
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g(s, t, k)− b(s, t, k) + b(s, t, k)− (e− 1)δ+ e2 + 2e−α+ 1 + (e+ 1)(δ− e− 1)− δ =
g(s, t, k)α + δ − α = g(s+ 2, t, k)α.

(b) Assume (e−1)(δ−e−1)+e−1 ≤ b(s−2, t, k)α ≤ (e−1)(δ−e−1)+α−1−e.
We have (e−1)(δ− e) ≤ b(s−2, t, k)α ≤ (e−1)(δ− e) +α−2. We take e′ = e with
Li = Mi if either i > α− e or 1 ≤ i ≤ b(s, t, k)α− (e− 1)(δ− e), while for the other
indices i’s Li is a general deformation of M . We take as S the union of all points
Rj ∩Li with either j > 1 or j = 1 and 1 ≤ i ≤ b(s−2, t, k)α− (e−1)(δ−e). In this
degeneration of some of the lines of T to some of the lines of T1 (Lj degenerates to
Mj) S moves to a subset S1 ⊆ Sing(T1). By A(s, t, k)α we have hi(ICt,k∪Y ∪S1

(s)) =

0, i = 0, 1. By the semicontinuity theorem we have hi(ICt,k∪Y ∪S1(s)) = 0, i = 0, 1.
Set Y ′ := Y ∪ χ∪ T . We have deg(T ) = δ, #(Sing(T )) = e(δ− e) and #(Y ∩ T ) =
b(s, t, k)α − (e − 1)(δ − e) + δ − α + e = b(s, t, k)α − (e − 2)δ + e2 − α. Thus
1 − χ(OY ′) = pa(Y ) − b(s, t, k)α + e(δ − e) + b(s, t, k)α − (e − 2)δ + e2 − α − δ =
g(s, t, k)α + δ − α = g(s+ 2, t, k)α.

(c) Assume (e− 1)(δ− e− 1) < b(s− 2, t, k)α ≤ (e− 1)(δ− e− 1) + e− 2 and
hence e ≥ 3. We have b(s − 2, t, k)α < (e − 1)(δ − e). Since e ≤ α − 1, Lemma 4
gives δ ≥ e and δ ≥ 2α−2 ≥ 2e−4 and hence (e−1)(δ−e−1)+1 ≥ (e−2)(δ−e).
Thus b(s − 2, t, k)α ≥ (e − 2)(δ − e). Take Li = Mi if 1 ≤ i ≤ δ − e and Li a
small deformation of Mi not intersecting Y ∩ Q. Let S be the union of all points
Rj ∩ Li with either j > 1 or j = 1 and 1 ≤ b(s, t, k)α − (e − 2)(δ − e). In this
degeneration of some of the lines of T to some of the lines of T1 the set S degenerates
to a subset S1 ⊆ Sing(T1). By A(s − 2, t.k)α we have hi(ICt,k∪Y ∪S1(s − 2)) = 0,

i = 0, 1. By the semicontinuity theorem we have hi(ICt,k∪Y ∪S1
(s−2)) = 0, i = 0, 1.

Set Y ′ := Y ∪ T ∪ R0 ∪ χ. We have R0 ∪ T ∈ |OQ(e, δ − e)|, deg(R0 ∪ T ) = δ,
#(Sing(R0 ∪ T )) = e(δ − e) and #(Y ∩ (R0 ∪ T )) = 1 + #(Y ∩ T ) = 1 + e −
1 + b(s, t, k)α − (e − 2)(δ − e) − α + e = b(s, t, k)α − (e − 2)δ + e2 − α. Thus
1 − χ(OY ′) = pa(Y ) − b(s, t, k) + e(δ − e) + b(s, t, k)α − (e − 2)δ − α + e2 − δ =
g(s, t, k)α + δ − α = g(s+ 2, t, k)α

From now on we take α = 202 and write a(s, t, k), b(s, t, k) and A(s, t, k) instead
of a(s, t, k)202, b(s, t, k)202 and A(s, t, k)202.

Lemma 16. Assume k ≤ t ≤ 200k, t+ k > 102 · 229 and k2 ≥ 207 · (k + 2).
(i) A(t+ k + 1, t, k) is true.
(ii) Fix an integer s ≥ t+ k + 1 such that s ≡ t+ k + 1 (mod 2) and assume

that A(s, t, k) is true. Then A(s+ 2, t, k) is true.

Proof. We first prove (ii). We will show in step (d) the small modification needed
to get A(t+ k + 1, t, k). Set δ := a(s+ 2, t, k)− a(s, t, k). By assumption we have
t + k − 1 ≥ 102 · 229. We take Y of degree d(s, t, k) and genus g(t, s, k) such that

for all S̃ in some grid and with cardinality b(s, t, k) we have hi(ICt,k∪Y ∪S̃(s)) = 0,

i = 0, 1. We will only use a very specific S̃ described separately in each case. In
steps (a) and (b) we will construct the curve Y ′ appearing (as Y ) in the statement of
A(s+2, t, k). In step (c) we will construct the grid T1 such that for all S′ ⊆ Sing(T1)
with #(S′) = b(s+ 2, t, k) we have hi(ICt,k∪Y ′∪S′(s+ 2)) = 0, i = 0, 1.

(a) Assume b(s, t, k) > 0.Take e′ ∈ {e, e + 1} as in Remark 5 so that T is

union of e′ lines Rj ∈ |OQ(1, 0)| and δ − e′ lines Lj ∈ |OQ(0, 1)|. Take as S̃ the
set S ⊆ Sing(T ), the one considered in Remark 5. Set χ := ∪o∈S2o; to make the
construction of Remark 5 we need that 2a(s, t, k) = #(Y ∩Q) is at least the number
of lines Rj and Li containing a point of Y ∩Q; since the latter number is at most
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δ, it is sufficient to quote Lemma 12. In all cases we have Y ′ := Y ∪ T ∪ χ with
T ∈ |OQ(e′, δ − e′)| and T ∩ Ct,k = ∅. Set Ψ := Y ∩ (Q \ T1).

Claim 1: We have 2dt,k + #(Ψ) + b(s+ 2, t, k) = (s+ 3− e′)(s+ 3− δ + e′).
Proof of Claim 1: First assume that we are in case (a) of Remark 5. In this

case we have e′ = e+ 1 and #(Ψ) = 2a(s, t, k)− b(s, t, k) + (e− 1)δ− e2− 2e+ 201.
By (5) we have (s+ 2− e)(s+ 4− δ + e) = (s+ 3)2 − 1− (s+ 2− e)δ − 2e− e2 =
2dt,k+2a(s, t, k)+(s+1)δ+202+b(s+2, t, k)−b(s, t, k)−1−(s+2−e)δ−2e−e2 =
2dt,k + #(Ψ) + b(s+ 2, t, k).

Now assume that we are in case (b) of Remark 5. We have e′ = e and #(Ψ) =
2a(s, t, k)− b(s, t, k)+(e−2)δ−e2 +202. By (5) we have (s+3−e)(s+3−δ+e) =
(s + 3)2 − (s + 3 − e)δ − e2 = 2dt,k + 2a(s, t, k) + (s + 1)δ + 202 + b(s + 2, t, k) −
b(s, t, k)− (s+ 3− e)δ − e2 = 2dt,k + b(s+ 2, t, k) + #(Ψ).

Now assume that we are in case (c) of Remark 5. We have a′ = e and #(Ψ) =
2a(s, t, k)− b(s, t, k)+(e−2)δ−e2 +202. By (5) we have (s+3−e)(s+3−δ+e) =
(s + 3)2 − (s + 3 − e)δ − e2 = 2dt,k + 2a(s, t, k) + 202 + (s + 1)δ + b(s + 2, t, k) −
b(s, t, k)− (s+ 3− e)δ − e2 = 2dt,k + b(s+ 2, t, k) + #(Ψ). �

By Claim 1 and the generality of Ψ∪ (Ct,k ∩Q) we have hi(Q, ICt,k∪Y ′∪S′,Q(s+
2)) = 0. Since ResQ(Ct,k ∪Y ′∪S′) = Ct,k ∪Y ∪S, the residual sequence of Q gives
hi(ICt,k∪Y ′∪S′(s + 2)) = 0, i = 0, 1. In step (c) we will prove that we may find S′

and a deformation of Y ′ to get A(s+ 2, t, k).

Claim 2: Y ′ is a flat limit of a family of connected smooth curves of degree
a(s+ 2, t, k) and genus g(s+ 2, t, k).

Proof of Claim 2: Fix any two skew lines D1, D2 ⊂ P3 and any p ∈ P3 \ (D1 ∪
D2). The linear projection from p shows that there is a unique line L with p ∈ L,
L ∩ D1 6= ∅ and L ∩ D2 6= ∅. If D1, D2 and p depend continuously from certain
parameters, then the line L depends continuously from the same parameters.

We assume that A(s, t, k) is in case (a) of Remark 5 (the cases described in
(b) and (c) of Remark 5 are done in the same way). Take as a parameter space an
integral affine curve ∆ and fix o ∈ ∆. Set Y ′(o) := Y ′, Rj(o) := Rj and Li(o) := Li.
Take an algebraic family {Rj(z)}z∈∆ of lines of P3 with Rj(z) transversal to Q if
z 6= o and Rj ∩ Y ∈ Rj(z) for all z, and an algebraic family {Li(z)}z∈∆, 202− e ≤
i ≤ b(s, t, k)− (e− 1)(δ− e− 1), of lines of P3 with Li(z) transversal to Q if z 6= o,
Li ∩ Y ∈ Li(z) for all z and Li(z) ∩ Rj(z) 6= ∅ if and only if j = 0, 1. Changing if
necessary ∆ we may find an algebraic family {Li(z)}z∈∆, 1 ≤ i ≤ 202 − 1 − e, of
lines with Li(z)∩Rj(z) 6= ∅, z ∈ ∆\{o}, if and only j = 0, and an algebraic family
{Li(z)}z∈∆, b(s, t, k)−(e−1)(δ−e−1) < i ≤ δ−e−1, of lines with Li(z)∩Rj(z) 6= ∅
if any only if j = 0, 1. For any z ∈ ∆ \ {o} set Y ′(z) := Y ∪

⋃
Rj(z)∪

⋃
Li(z). The

family {Y ′(z)}z∈∆ is flat. Then we use Remark 2 to smooth Y ∪
⋃
Rj(z)∪

⋃
Li(z)

for some z ∈ ∆ \ {o}. �

(b) Assume b(s, t, k) = 0, i.e. S = ∅. Instead of lines Rj and Lj we take a
line R0 ∈ |OQ(1, 0)| with R0 ∩ Y 6= ∅ and Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ δ − 1, such
that Li ∩ Y 6= ∅ if and only if i ≥ 202; we are using that δ ≥ 202 (Lemma 12).
We assume Li ∩ Ct,k = ∅ for all i. In this case we have a1 = 1, b1 = δ − 1 and
#(Ψ) = 2a(s, t, k)−δ+201. By (5) we have (s+2)(s+4−δ) = (s+3)2−1−(s+2)δ =
2dt,k+2a(s, t, k)+(s+1)δ+201+b(s+2, t, k)−(s+2)δ = 2dt,k+#(Ψ)+b(s+2, t, k).
The union Y ′ of Y and all lines Rj and Li is smoothable by Remark 2.
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Claim 3: Fix S′′ ⊂ Q such that #(S′′) = b(s+ 2, t, k) and S′′ ∩Q ∩ (T ∪ Y ∪
Ct,k) = ∅. If h1(Q, IS′′,Q(s+2−e′, s+2−δ+e′)) = 0, then hi(ICt,k∪Y ′∪S′′(s+2)) =
0, i = 0, 1.

Proof of Claim 3: We have ResQ(Ct,k∪Y ′∪S′′) = Ct,k∪Y ′∪S and Q∩(Ct,k∪
Y ′ ∪ S′′) = (Q \ T ) ∩ (Ct,k ∪ Y ) ∪ S′′. By A(s, t, k) we have hi(ICt,k∪Y ′∪S(s)) = 0.
Therefore the residual exact sequence of Q shows that it is sufficient to prove that
hi(Q, I(Q\T )∩(Ct,k∪Y )∪S′′∪T (s + 2, s + 2)) = 0, i = 0, 1, i.e., to prove that we have

hi(Q, I(Q\T )∩(Ct,k∪Y )∪S′′∪T (s+2−e′, s+2−δ+e′)) = 0, i = 0, 1 for some Ct,k and Y
for a fixed S′′. We may deform Ct,k∪Y (keeping fixed S′′) so that (Q\T )∩(Ct,k∪Y )
are general. Thus it is sufficient to observe that in parts (a) and (b) we proved that
#((Q \ T ) ∩ (Ct,k ∪ Y )) = (s+ 3− e′)(s+ 3− δ + e′)− b(s+ 2, t, k). �

(c) If b(s + 2, t, k) = 0, then S′ = ∅ and hence parts (a) and (b) prove A(s +
2, t, k), because we proved that Y ′ is smoothable (Claim 2 for the case b(s, t, k) > 0)
and Claim 3 with S′′ = ∅ gives hi(ICt,k∪Y ′(s + 2)) = 0, i = 0, 1. Now assume
b(s + 2, t, k) > 0. We prove A(s + 2, t, k), but with exchanged the two rulings of
Q. Set τ := a(s + 4, t, k) − a(s + 2, t, k). Let f be the maximal positive integer
such that (f − 1)(τ − f − 1) < b(s + 2, t, k). A(s + 2, t, k) is as in one of the
cases (a), (b) or (c) of Remark 5 with τ instead of δ and f instead of e. We call
T1 the grid of bidegree (τ − f ′, f ′), f ′ ∈ {f, f + 1} called T in in Remark 5, but
with exchanged the 2 rulings of Q, i.e. in all cases we take S′ ⊆ Sing(T1) with
T1 unions of τ − f ′ distinct lines of bidegree (1, 0) and f ′ distinct lines of bidegree
(0, 1). h1(Q, ISing(T1),Q(s + 2 − e′, s + 2 − δ + e′)) = 0. If A(s + 2, t, k)α is in case
(a) (resp. (b) or (c) of Remark 5 we take f ′ = f + 1 (resp. f ′ = f). We have
h1(Q, ISing(T2),Q(s + 2 − f ′, s + 2 − δ + e′)) = 0 (and hence h1(Q, IS′,Q(s + 2 −
e′, s + 2 − δ + e′)) = 0 for each S′ ⊆ Sing(T1)), because e′ + δ − e′ ≤ s + 2 and
f ′1 + δ ≤ s+ 2, (we use that e+ 1 + τ ≤ τ +α+ 1 ≤ s+ 2 and f + 1 + δ− 1 ≤ s+ 2
use Corollary 2). Claim 3 gives A(s+ 2, t, k).

(d) Now we prove A(k + t + 1, t, k). We have hi(ICt,k
(t + k − 1)) = 0. Since

g(t + k + 1, t, k) = 0, we need to add a smooth rational curve of degree a(t +
k + 1, t, k). We start with a general F ∈ |OQ(a(t + k + 1, t, k) − 1, 1)|. Thus
F ∩ Ct,k = ∅ and F is a smooth rational curve. Since Ct,k ∩ Q is general in Q,
for any set S ⊂ Q \ (F ∪ (Ct,k ∩ Q)) such that #(S) = b(k + t + 1, t, k) and
h1(Q, IS(t+ k, t+ k+ 2− a(t+ k+ 1, t, k) + 2)) = 0, the residual exact sequence of
Q gives hi(ICt,k∪F∪S(t+k+1)) = 0, i = 0, 1. If b(t+k+1, t, k) = 0, it is sufficient to
deform F to a general smooth rational curve Y of degree a(t+k+1, t, k) and use that
h1(NY (−2)) = 0, because a(t+k+1, t, k) ≥ 3. Now assume b(t+k+1, t, k) > 0. We
may take S in a grid T of bidegree (e, δ− e) as in the statement of A(t+k+ 1, t, k),
because we may deform F to a curve transversal to Q and fixing one point for each
irreducible component of the grid T . We use that δ ≤ a(t+ k + 1, t, k) by Lemma
14. �

Remark 6. The inductive proof of Lemma 16 gives the following statement stronger
that A(s, t, k) but that we proved to be equivalent to it. Set δ := a(s + 2, t, k)α −
a(s, t, k)α. Let e be the maximal positive integer such that b(s, t, k) > (e − 1)(δ −
e− 1) and e ≤ δ/2. Let Q be a smooth quadric. Fix Ct,k intersecting transversally
Q and such that Q ∩ Ct,k is formed by 2dt,k general points of Q. There is a pair
(Y, T ) with the following properties. Y is a smooth and connected curve of degree
a(s, t, k)α and genus g(s, t, k)α such that Y ∩Ct,k = ∅, Y intersects transversally Q
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and (Ct,k∪Y )∩Q is general in Q and T is a grid of Q adapted to (Y,Ct,k∩Q) such
that for every S ⊆ Sing(T ) we have h0(ICt,k∪Y ∪S(s)) = max{0, b(s, t, k) − #(S)}
and h1(ICt,k∪Y ∪S(s)) = max{0,−b(s, t, k) + #(S)}.

7. The genus enters into the playground

Now we fix m, d and take g := 1+d(m−1)−
(
m+2

3

)
. Recall that we take α = 202.

Remark 7. Since g = 1 + (m − 1)d −
(
m+2

3

)
and d < m2+4m+6

4 , we have g <
m3+3m2+2m−18

12 .

From now on we assume g ≥ g1000,1000 = 1 + 1000 · 1001 · 1995/3. Let t be the
maximal integer such that gt ≤ 999999

1000000g. The maximality of t gives gt+1 >
999999
1000000g

and so 999999
1000000g − (t + 1)(3t + 1)/3 < gt ≤ 999999

1000000g. Since g ≥ g1000,1000, we
have t ≥ 1000. Let k be the maximal positive integer such that gt,k ≤ g and
t + k ≡ m (mod 2); k exists, because g2 = 2 ≤ g/1000000 ≤ g − gt. Since

2gt ≥ 2 999999
1000000g − 2 (t+1)(3t+1)

3 ≥ g, we have k ≤ t. The minimality of k gives
gt,k+2 > g ≥ gt,k, i.e.

(23) gt,k ≤ g ≤ gt,k + 2k2 + 2k

We use A(s, t, k) for these integers t, k. A key tool that we need to cover all interval
for the genus and the degrees in Theorems 1, 2 and 3 (and not just prove for many
(d, g) the existence curves C with h0(IC(m− 1)) = 0 and (degree, genus) = (d,g)),
is that in (23) the interval depends only on k and it is quadratic on k, while we
take t� k, say t ≥ 30k (Lemma 18).

Let y be the maximal integer s ≥ t + k + 1, s ≡ t + k + 1 (mod 2) such that
g(s, t, k) + gt,k ≤ g; y exists because g(t+ k + 1, t, k) = 0, gt,k ≤ g and g(s, t, k) >
g(s−2, t, k) for all s ≥ t+k+3 by Lemma 4 and the inequality t+k+3 ≥ 202×102+2.
Note that y ≡ m− 1 (mod 2). For all integers x, y such that x ≥ y + 2 and x ≡ y
(mod 2) we define the integers u(x, t, k) and v(x, t, k) by the relations

(24) x(dt,k + u(x, t, k)) + 3− g + v(x, t, k) =

(
x+ 3

3

)
, 0 ≤ v(x, t, k) ≤ x− 1

The integers y, u(x, t, k) and v(x, t, k) depend on g, but we do not put g in their
symbols.

Remark 8. The main actor of this section is a a general smooth curve Y of genus
g−gt,k and of some degree z ≥ g−gt,k+3 with z = u(x, t, k) for some x ≥ y+2 with
x ≡ y (mod 2). We need to check that hi(NY (−2)) = 0, i = 0, 1. If g − gt,k ≥ 26,
then this is true by [27, page 67, inequality DP (g) ≤ g+ 3]. If g−gt,k = 0, then we
just quote [7, Proposition 6]. Now assume 1 ≤ g − gt,k ≤ 25. In our case we have
z = u(x, t, k) ≥ u(y+ 2, t, k) ≥ a(y, t, k) + 202 ≥ 202 (Lemmas 12 and 13). See [27,
page 106-107] for the best published results (we only need them for z ≥ 202). Fix a
general A ⊂ Q such that #(A) = 2a. Since h1(NC(−2)) = 0 for a general smooth
curve of genus g−gt,k and degree z, we may find a smooth curve Y of genus g−gt,k
and degree z intersecting transversally Q and with A = Y ∩Q.

For any integer x ≥ y + 2 with x ≡ y (mod 2) define the following Assertion
B(x, t, k).

Assertion B(x, t, k): Let Q be a smooth quadric. Fix Ct,k intersecting
transversally Q and such that Q ∩ Ct,k is formed by 2dt,k general points of Q.
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Set δ := u(x + 2) − u(x, t, k). Let e be the maximal positive integer such that
v(x, t, k) > (e − 1)(δ − e) and e < δ/2. We call B(x, t, k) the existence of a pair
(Y, T ) with the following properties:

(1) Y is a smooth and connected curve of degree u(x, t, k) and genus g − gt,k
such that Y ∩ Ct,k = ∅, Y intersects transversally Q and (Ct,k ∪ Y ) ∩Q is
general in Q;

(2) T is a grid T ∈ |OQ(e, δ − e)|;
(3) for each S ⊆ Sing(T ) with #(S) = v(x, t, k) we have hi(ICt,k∪Y ∪S(x)) = 0,

i = 0, 1.

Remark 9. We use Remark 8 for the existence of Y . Lemmas 20 shows that e
exists and that e ≤ 201.

Remark 10. As in Remark 6 proving inductively B(x, t, k) we will also prove that
for all S ⊆ Sing(T ) we have h0(ICt,k∪Y ∪S(v)) = max{0, v(x, t, k) − #(S)} and

h1(ICt,k∪Y ∪S(x)) = max{0,−v(x, t, k) + #(S)}.

8. Numerical lemmas, II

In this section we collect the numerical lemmas related to section 7 and used
in the next sections. We take m, d and g as in section 7 and in particular we are
forced to assume t ≥ 1000.

The next lemma only use that gt < g.

Lemma 17. If t ≥ 250, then m > 1.58t.

Proof. We have 3
√

4 ≥ 1.587401, 4 − 1.583 = 0.055688 and 3 · 1.582 = 7.46892.

Remark 7 gives g < 1 + m3+3m2+2m−30
12 . Assume m ≤ 1.58t. Since g > gt, we

get 1 + 1.583t3+7.46892t2+3.16t−30
12 > 1 + t(t+1)(2t−5)

6 , i.e. 13.46892t2 + 13.16t− 30 >

0.055688t3, which is false if t ≥ 250. �

Lemma 18. If t ≥ 10005, then k ≤ t
30 .

Proof. Since gt+1 > 999999
1000000g, we have gk ≤ g − gt < g/1000000 + (t+1)(3t+1)

3 <

gt+1/999999 + (t+1)(3t+1)
3 . Assume k > t

30 . We have 303 = 27000. Even when
t/30 /∈ N we get 999999[6 ·27000+ t(t+30)(2t−150)] < 27000[6+(t+1)(t+2)(2t−
3) + 2(t+ 1)(3t+ 1)], which is false if t ≥ 100. �

Lemma 19. If t ≥ 4000, then k > t
200 .

Proof. By (23) we have gk ≥ g/1000000 − 2k2 − 2k ≥ gt/999999 − 2k2 − 2k.

If k ≤ t
200 we get (even it t

200 /∈ N, because t ≥ 1200) 1 + t(t+201)(2t−1000)
48000000 ≥

1/999999+ t(t+1)(2t−5)
5999994 − 2t2

40000−
2t

200 , a contradiction. If t ≤ 100k we get 999999(1+
k(k+1)(2k−5)

6 ) + 1999998k2 + 1999998k) ≥ 1 + 100k(100k+1)(200k−5)
6 which is false for

k ≥ 4000. �

From now on in this section we take α = 202.

Lemma 20. Assume k ≤ t ≤ 200k, t + k ≥ 102 · 229 and y ≥ 111 · 210. Fix
an integer x ≥ y + 2 such that x ≡ y (mod 2). Then u(x + 2, t, k) − u(x, t, k) ≥
−2 + x(x+1)

102(x+2) ≥ 202.
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Proof. From (24) for x+ 2 and x we get

2dt,k + 2u(x, t, k) + (x+ 2)(u(x+ 2, t, k)− u(x, t, k))+

v(x+ 2, t, k)− v(x, t, k) = (x+ 3)2(25)

Since u(x, t, k) ≤ a(x, t, k) and v(x, t, k) ≥ b(x, t, k) if u(x, t, k) = v(x, t, k), (21)
and (25) give u(x+2, t, k)−u(x, t, k) ≥ (x+1)(a(x+2, t, k)−a(x, t, k))/(x+2)−1.
Use Lemma 4. The second inequality follows from the first one, because x(x+ 1) ≥
102 · 204(x+ 2) if x ≥ 111 · 210. �

Lemma 21. Assume k ≤ t ≤ 200k, t+k ≥ 102·229. Then u(y+2, t, k)−a(y, t, k) ≥
−2 + y(y+1)

102(y+2) ≥ 202.

Proof. Recall that (y + 2)a(y + 2, t, k) + b(y + 2, t, k) − g(y + 2, t, k) − gt,k = (y +
2)u(y + 2, t, k) + v(y + 2, t, k) − g with g(y + 2, t, k) − gt,k > g ≥ gt,k + g(y, t, k),
g(y + 2, t, k) − g(y, t, k) = a(y + 2, t, k) − a(y, t, k) − 202 and hence (y + 1)(a(y +
2, t, k)−a(y, t, k)) ≤ (y+ 2)(u(y+ 2, t, k)−u(y, t, k)). Use Lemma 4 to get the first
inequality and the inequality y ≥ 111 · 210 to get the second inequality. �

Lemma 22. Assume k ≤ t ≤ 200k, t + k ≥ 102 · 229. Fix an integer x ≥ y + 2
such that x ≡ y (mod 2) and x ≥ 210 · 111. Set δ := u(x+ 2, t, k)− u(x, t, k). Let
e be the minimal integer z with (z − 1)(δ − z) ≤ v(x + 2, t, k). Then e exists and
e ≤ 201.

Proof. Since v(x+ 2, t, k) ≤ x+ 1 and δ > −2 + x(x+1)
102(x+2) (Lemma 20) it is sufficient

to check that 200(−203 + x(x+1)
102(x+2) ) ≥ x+ 1, i.e. 198x2 ≥ (203 · 102 · 200− 200)x+

400 · 203 · 102 + 102, which is true if x ≥ 210 · 111. �

Lemma 23. Assume x ≥ y + 2, k ≤ t ≤ 200k, t+ k ≥ 102 · 229 and y ≥ 111 · 210.
Fix an integer x ≥ y + 2 such that x ≡ y (mod 2). Then

2u(x, t, k) ≥ u(x+ 4, t, k)− u(x+ 2, t, k) + 202 and

2u(x, t, k) ≥ u(x+ 2, t, k)− u(x, t, k) + 202.

Proof. Assume 2u(x, t, k) ≤ u(x+ 2, t, k)− u(x, t, k) + 201. Since v(x+ 2, t, k) ≥ 0
and v(x, t, k) ≤ x− 1, (25) give

(26) 2dt,k + (2x+ 4)u(x, t, k)− 201(2x+ 4)− x+ 1 ≤ (x+ 3)2

Since (x+ 3)2− (x+ 1)2 = 2x+ 8, 201(2x+ 4)−x− 201(2(x− 2) + 4)−x+ 2 = 802
and u(x, t, k) ≥ u(x − 2, t, k) + 202 by Lemma 20, it is sufficient to disprove (26)
when x = y + 2. Since u(y + 2, t, k) ≥ a(y, t, k) + 202 by Lemma 21, it is sufficient
to prove that

(27) 2dt,k + (2y + 8)a(y, t, k) > y2 + 9y + 22

See the contradiction coming from the case y = s of (21).
Now assume 2u(x, t, k) ≤ u(x+4, t, k)−u(x+2, t, k)+201. Since v(x+4, t, k) ≥ 0,

v(x+2, t, k) ≤ x+1 and u(x+2, t, k) ≥ u(x, t, k)−2+ x(x+1
102(x+2) , the case x′ := x+2

of (25) gives

2dt,k + (2x+ 10)u(x, t, k) ≤ (x+ 5)2+

x+ 1 + 201(2x+ 4) + 2(x+ 4)− x(x+ 1)(x+ 4)

102(x+ 2)
(28)
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As in the first part of the proof we reduce to prove an inequality weaker than
(27). �

Lemma 24. Assume x ≥ y+ 2, k ≤ t ≤ 200k, k ≤ t ≤ 200k, t+ k ≥ 102 · 229 and
y ≥ 111 · 210. Then 2a(y, t, k) ≥ u(y + 2, t, k) − a(y, t, k) + 202 and 2a(y, t, k) ≥
u(y + 4, t, k)− u(y + 2) + 202.

Proof. The first inequality is true by Lemma 12, because u(y+2, t, k) ≤ a(y+2, t, k).
From (eqov4) for x′ := x + 2 and (5) for s = y + 2 we get (y + 4)(u(y + 4, t, k) −
u(y+ 2, t, k)) + v(u+ 4, t, k)− v(u+ 2, t, k) = (y+ 4)(a(u+ 4, t, k)− a(u+ 2, t, k) +
b(u+ 4, t, k)− b(u+ 2, t, k) + g(y + 4, t, k)− g(y + 2, t, k). Use Lemma 12 and that
g(y + 4, t, k)− g(y + 2, t, k) ≥ −106 + (y + 2)/102. �

Lemma 25. Assume k ≤ t ≤ 200k, t + k ≥ 102 · 229 and y ≥ 211 · 210. Set
δ := u(y + 2, t, k) − a(y, t, k) and τ := u(y + 4, t, k) − u(y + 2, t, k). Let e (resp
f) be the minimal positive integer such that (e − 1)(δ − e) ≤ v(y + 2, t, k) (resp.
(f − 1)(τ − f) ≤ v(y + 4, t, k)). Then e ≤ 201 and f ≤ 201.

Proof. The assertion on f is true by the case x = y + 2 of Lemma 22. Since
v(y + 2, t, k) ≤ y + 1, to prove the assertion on e it is sufficient to prove that
200δ ≥ 200 · 201 + y + 1. By Lemma 21 it is sufficient to prove that −400 +

200 y(y+1)
102(y+2) ≥ 200 ·201+y+1, i.e. 200y(y+1) ≥ 200 ·203 ·102(y+2)+102y(y+1),

contradicting our assumption on y. �

Lemma 26. If k ≤ t ≤ 200k and t ≥ 3 · 104, then y ≤ m− 7.

Proof. Since y ≡ m − 1 (mod 2), it is sufficient to prove that y ≤ m − 6. Lemma
17 gives m > 1.58t. Thus it is sufficient to prove that y− t− k− 1 ≤ 0.58t− k− 7.
Assume y − t− k − 1 > 0.58t− k − 7. Recall that for s = t+ k + 3, . . . , y we have
g(s, t, k)− g(s− 2, t, k) ≥ −1 + s/102 (Lemma 4). Hence g(y, t, k) ≥ −202(y − t−
k−1)/2+(y− t−k−1)(y+ t+k+3)/204 = (y− t−k−1)(y+ t+k−10707)/204 >
(0.58t − k − 8)(1.58t − 10714)/204. Since g(y, t, k) ≤ 2k2 + 2k by (23), we get
(0.58t − k − 8)(1.58t − 10714) < 408k(k + 1). Lemma 18 gives t ≥ 30k. Hence
k ≤ t

30 . We get 30(17.4t − 8)(1.58t − 10714) < 408t(t + 30), which is false if

t ≥ 3 · 104. �

9. Proof B(x, t, k)

Lemma 27. Fix integers t, k such that k ≤ t ≤ 200k, t + k ≥ 102 · 229 and
k2 ≥ 207(k+ 2). Fix an integer x ≥ y+ 2 such that x ≡ y (mod 2). If B(x, t, k) is
true, then B(x+ 2, t, k) is true.

Proof. Fix Q, Ct,k, and (Y, T1) satisfying B(x, t, k) with (if v(x, t, k) > 0) a grid
T1. Set δ := u(x+ 2, t, k)− u(x, t, k).

(a) Assume v(x, t, k) = 0. Fix p ∈ Y ∩Q and take a general E ∈ |Ip,Q(1, δ−1)|.
We have E ∩ Ct,k = ∅ and E ∩ Y = {p}. Since E intersects almost transversally
Y and at a unique point, the nodal curve Y ∪ E is smoothable ([21], [28]) and
pa(Y ∪ E) = g − gt,k. Fix any S′ ⊂ Q \ E such that #(S′) = v(x + 2, t, k), S′

contains no point of (Ct,k∪Y )∩Q. We assume that h1(Q, IS′,Q(x+1, x+3−δ)) =
0. Set Σ := ((Ct,k ∪ Y ) ∩ Q) \ {p}. Since Σ is general in Q and #(Σ ∪ S′) =
(x+ 2)(x+ 4− δ) by (25) and the equality (x+ 3)2 − (x+ 2)(x+ 4) = 1, we have
hi(Q, IE∪Σ∪S′,Q(x+ 2, x+ 2)) = 0, i = 0, 1. Since hi(ICt,k∪Y (x)) = 0, i = 0, 1, the

residual exact sequence of Q gives hi(ICt,k∪Y ∪E∪S′(x+ 2)) = 0, i = 0, 1.
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(b) Assume v(x, t, k) > 0. Let e be the maximal positive integer such that
v(x, t, k) > (e − 1)(δ − e) and e < δ/2. Lemma 22 gives that e exists and that
e ≤ 201. The definition of e gives v(x, t, k) ≤ e(δ − e − 1). The grid T1 has e
lines Rj ∈ |OQ(1, 0)| and δ − e lines Mi ∈ |OQ(0, 1)|. Each irreducible component
of T1 contains a point of Y ∩ Q. We deform T1 to a grid T ∈ |OQ(e, δ − e)| with
the same irreducible component Rj of bidegree (1, 0) and with δ − e irreducible
component Li of bidegree (0, 1) with Li = Mi for 1 ≤ i ≤ v(x, t, k)− (e− 1)(δ− e),
while the other lines Li are small deformations of Mi not intersecting Y ∩ Q. By
B(x, t, k) the set S is the union of all points Rj ∩Li with either j ≥ 2 or j = 1 and
1 ≤ i ≤ v(x, t, k)− (e−1)(δ−e); we have enough points of Y ∩Q to link all lines Rj
and the prescribed lines Li, because we only need 2u(x, t, k) ≥ δ and we use Lemma
23. Let T be the union of all lines Rj and Li. We have #(Sing(T )) = e(δ− e). Set
χ := ∪o∈S2o and Y ′ := Y ∪T ∪χ. We have deg(Y ′red) = u(x+2, t, k) and χ(OY ′) =
χ(OY )+deg(T )+#(S)−#(Sing(T ))+#(T ∩Y ) = 1−pa(Y ) = 1−g+gt,k. We have
ResQ(Ct,k∪Y ′) = Ct,k∪Y ∪S. Fix any S′ ⊂ Q\T containing no point of Q∩(Ct,k∪
Y ), with #(S′) = v(x+2, t, k) and with h1(Q, IS′,Q(x+2−e, x+2−δ+e)) = 0. Since
(x+3)2−(x+3−e)(x+3−δ+e) = v(x+2, t, k)+2dt,k+2u(x, t, k)−#(T∩Y ) by (25)
and (Y ∩Ct,k)∩Q are general inQ, we have hi(Q, IS′∪(Y ′∪Ct,k)∩Q,Q(x+2, x+2)) = 0,

i = 0, 1. The residual sequence of Q gives hi(ICt,k∪Y ′∪S′(x+2, x+2)) = 0, i = 0, 1.
We claim that Y ′ is a flat limit of a family of smooth and connected curves of genus
g− gt,k and degree u(x+ 2, t, k). Take a smooth and connected affine curve ∆ and
o ∈ ∆. Set {oj} := Rj∩Y , 1 ≤ j ≤ e, {qi} := Li∩Y , 1 ≤ i ≤ v(x, t, k)−(e−1)(δ−e),
and {eh} := R1 ∩ Lh, v(x, t, k) − (e − 1)(δ − e) < h ≤ δ − e. We may find flat
families {Rj(z)}z∈∆, 1 ≤ j ≤ e, and {Li(z)}z∈∆, 1 ≤ j ≤ δ − e, of lines with the
following properties. For all i, j and all z ∈ ∆\{o} we have Rj(o) = Rj , Rj(z) * Q,
oj ∈ Rj(z), Li(o) = Li, Li(z) * Q, qi ∈ Li(z) if 1 ≤ i ≤ v(x, t, k)− (e− 1)(δ − e),
Li(z)∩Rj(z) = ∅ for all j if 1 ≤ i ≤ v(x, t, k)− (e−1)(δ−e) and Li(z)∩Rj(z) 6= ∅,
v(x, t, k) − (e − 1)(δ − e) < i ≤ δ − e, if and only if j = 1. For all z ∈ ∆ \ {o}
set Y ′z := Y ∪

⋃
Rj ∪

⋃
Li. The family {Y ′z}z∈∆ is flat. Each Y ′z , z ∈ ∆ \ {o}

is smoothable (Remark 2). Hence Y ′z , z 6= o, is a flat limit of a family of smooth
curves of genus g − gt,k and degree u(x+ 2, t, k) (Remark 2). Hence there is a flat
family {Y ′′z }z∈Γ, with Γ an integral affine curve, o ∈ Γ, Y ′′o = Y ′, and Y ′′z smooth
and of genus g − gt,k for all z 6= o.

(c) Now we check that we may take S′ in steps (a) and (b) to get a solution
of B(x + 2, t, k), except that if v(x + 2, t, k) > 0 we shift the two rulings of Q.
Assume v(x + 2, t, k) > 0 and take Y , S, e, Rj , Li as in step (b). Set τ :=
u(x + 4, t, k) − u(x + 2, t, k). Let f be the maximal positive integer such that
v(x+ 2, t, k) > (f − 1)(τ − f) and f < τ/2. Lemma 20 gives that f exists and that
f ≤ 201. Note that v(x+ 2, t, k) ≤ f(τ − f − 1). Fix distinct lines R′j ∈ |OQ(0, 1)|,
1 ≤ j ≤ f , each of them containing a point of Y ∩ (Q \ T ). Fix distinct lines
L′i ∈ |OQ(1, 0)|, 1 ≤ i ≤ τ − f , such that L′j contains a point of Y ∩Q if and only
if 1 ≤ i ≤ v(x+ 4, t, k)− (f − 1)(τ − f). We impose that no line L′i contain a point
of Ct,k ∩ Q. We impose R′j 6= Lh and L′i 6= Rz for all i, j, h, z. So if p ∈ Y ∩ Q
we allow that it is contained in a line of T and in one of the lines R′j , L

′
i, but in

this case we assume that they are in different rulings of Q. So we may assume
that Rj 6= L′i and R′j 6= Li for all i, j. Since τ ≥ δ (use (25 for x and the integer
x′ := x+2) and e ≤ 201, it is sufficient to use that #(Y ∩Q) = 2u(x, t, k) ≥ τ+201
and that 2u(x, t, k) ≥ δ + 201 (Lemma 23). We take as S′ the union of all points
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R′j ∩ L′i with either j > 1 or j = 1 and 1 ≤ i ≤ v(x + 2t, k) − (f − 1)(τ − f). We

have h1(Q, IS′,Q(x + 2 − e, x + 2 − δ + e)) = 0, because τ − 1 ≤ x + 3 − e (since
τ ≤ x − 197 by Lemma 25). and f ≤ 201 ≤ x + 2 − δ + e (Lemma 20). Let N ′

(resp. N ′′) be the set of all points of Y ∩Q contained in some line R′j (resp. L′i).
Set N := N ′∪N ′′. Note that N ′∩N ′′ = ∅. Now take the last deformation made in
step (b) with Γ as its parameter space. Since Y is transversal to Q, restricting Γ to
a neighborhood of o and then taking a finite covering we may assume that {Y ′′z }z∈Γ

has #(N) sections mp, p ∈ N , with mp(o) = p and mp(z) ∈ Q ∩ Y ′′z for all z. For
each z ∈ Γ and any p ∈ N ′, say p ∈ Y ∩R′j (resp p ∈ N ′′, say p ∈ L′i∩Y ), let R′j(z))
(resp. L′i(z)) be the line of bidegree (0, 1) (resp. (1, 0)) containing the point mp(z).
If L′i∩Y = ∅, then set L′i(z) := Li. Taking the union of all these lines we get a grid
T1(z) ∈ |OQ(τ −#(N ′),#(N ′)| union of #(N ′) lines of bidegree (0, 1) containing
a point of Y ∩Q and τ −#(N ′) lines of bidegree (1, 0), #(N ′′) of them containing
a point of Y ∩Q. Set So := S′. For each z ∈ Γ \ {o} we get a set S′z ⊂ Q taking
the union of all R′j(z) ∩ L′i(z)) according to the rules of the cases (f, 1), (f, 0,+)
or (f, 0,−). Note that #(S′z) = v(x + 2, t, k). The family {S′z}z∈∆ is flat. The
semicontinuity theorem for cohomology gives hi(ICt,k∪Y ′′

z ∪S′
z
(x+ 2)) = 0, i = 0, 1,

for a general z ∈ Γ.
If v(x, t, k) = 0, then we take S = ∅. In this case the same construction work,

because τ ≤ x+ 2 and f ≤ x+ 3− u(x+ 2, t, k) + u(x, t, k) and 2u(x− 2, t, k) ≥ δ
(Lemma 23). �

Lemma 28. Assume k ≤ t ≤ 200k, t+ k ≥ 42040, that A(y, t, k) is true and that
either y = t+ k + 1 or A(y − 2, t, k) is true. Then B(y + 2, t, k) is true.

Proof. Remember that y ≥ t+ k + 1 and that y ≡ t+ k + 1 (mod 2).
First assume y ≥ t + k + 3. Hence A(y − 2, t, k) is true. Taking the difference

between (24) for x = y + 2 and (6) for s = y we get

2(dt,k + a(y, t, k)) + (y + 2)(u(y + 2, t, k)− a(y, t, k))

+ v(y + 2, t, k)− b(y, y, k)− g + gt,k + g(y, t, k) = (y + 3)2(29)

Set δ := u(y + 2, t, k) − a(y, t, k), γ := g − gt,k − g(y, t, k) and µ := δ − γ. Since
g ≤ gt,k + g(y + 2, t, k) we have a(y + 2, t, k) ≥ u(y + 2, t, k). By the definition of
u(y + 2, t, k) we get

(y + 2)(a(y + 2, t, k)− u(y + 2, t, k)) =(30)

v(y + 2, t, k)− b(y + 2, t, k) + gt,k + g(y + 2, t, k)− g

Claim: We have δ − γ ≥ 201.

Proof of the Claim: The integers u(y+2, t, k), v(y+2, t, k), δ, γ and µ depend
on g and we write u(y + 2, t, k)(g), v(y + 2, t, k)(g), δ(g) and µ(g) to stress their
dependence on g. They are defined for all g with gt,k + g(y, t, k) ≤ y < g(y+ 2, t, k)
by the definition of y, but we may also define them for g = gt,k + g(y + 2, t, k),
writing u(y+2, g, t, k)(gt,k+g(y+2, t, k)) := a(y+2, t, k) and v(y+2, g, t, k)(gt,k+
g(y + 2, t, k)) := b(y + 2, t, k) and still have (29) and (30). The Claim is true with
strict inequality for g = gt,k + g(y + 2, t, k) by Lemma 21. Use (30) both for g and
g − 1. When we decrease by one the genus in these two equations we decrease by
at most one the integer u(y + 2, t, k)(g). Hence we get the Claim. �

We introduce the following assertion.
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Assertion A′(y, t, k): There is a pair (Y, T1) with the following properties. Y
is a smooth and connected curve of degree a(y, t, k) and genus g(y, t, k) such that
Y ∩ Ct,k = ∅, Y intersects transversally Q and (Ct,k ∪ Y ) ∩ Q is general in Q. In
particular no line of Q contains two or more points of Y ∪ Ct,k. If b(y, t, k) = 0
we take as T any grid. Now assume b(y, t, k) > 0. Let e be the maximal positive
integer such that b(y, t, k) > (e− 1)(δ − e− 1) and e < δ/2. Lemma 25 gives that
e exists and that e ≤ 201. We take a grid T ⊂ Q of bidegree (e, δ − e) adapted to
(Y,Ct,k ∩Q) such that hi(ICt,k∪Y ∪S(y)) = 0, i = 0, 1, for each S ⊆ Sing(T1) with
#(S) = b(y, t, k).

Assertion A′(y, t, k) is proved as in Lemma 16, with the distinction of the 3 cases
introduced in Remark 5, except for the following modification in one of them, which
we now discuss as step (a).

(a) Assume (e − 1)(δ − e − 1) < b(y, t, k) ≤ (e − 1)(δ − e − 1) + e − 2 and
δ < µ + e. Since e ≤ 202, we get γ ≤ 201. Let f be the maximal integer such
that f(δ − f) ≤ γ + b(y, t, k) and f ≤ δ/2. We say that A′(y, t, k) is in case
(f, 2). We assume the existence of distinct lines Rj ∈ |OQ(1, 0)|, 1 ≤ j ≤ f , with
Rj ∩ (Y ∩ Q) 6= ∅ for all j and distinct lines Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ δ − f ,
such that Li ∩ (Y ∩ Q) 6= ∅ if and only if 1 ≤ i ≤ b(y, t, k) + γ − f(δ − f),
Li∩ (Ct,k ∩Q) = Rj ∩ (Ct,k ∩Q) = ∅ for all i, j, and let S be the union of all points
Rj ∩ Li with either j ≥ 2 or j = 1 and 1 ≤ i ≤ b(y, t, k)− f(δ − f).

By Lemma 24 we have enough points of #(Y ∩Q) ≥ δ to find the lines Rj and
Li as described in Remark 5; also we use this observation and the same in the
analogous of step (c) of the proof of Lemma 28.

(b) Note that in the case we have γ = g − g(y, t, k) − gt,k ≤ 201. In the case
γ = 0, the proof of Lemma 28 (case (c) of Remark 5) would work verbatim, while
in the case 0 < γ ≤ 201 it only requires the modifications outlined in (d), which
explains exactly which lines Li must intersect Y ∩Q. Part (c) of the proof of Lemma
27 with x = y − 2 shows how to prove that A(y − 2, t, k) implies A′(y, t, k). As in
Remark 5 and Lemmas 27 and 28 A′(y, t, k) implies B(y + 2, t, k). �

10. Proofs of Theorems 1, 2, and 3

Finishing the proof of Theorem 2: Lemma 26 gives y ≤ m−7. Hence B(m−5, t, k)
andB(m−3, t, k) are true. Since 1+(m−1)d+1−g =

(
m+1

3

)
, we have u(m−1, t, k) =

d−1 and v(m−1, t, k) = m−3. Take a solution of B(m−5, t, k) with respect to Q
and use the proof of Lemma 27 to prove the existence of a solution of the following
modification B′(m− 3, t, k) of B(m− 3, t, k):

Assertion B′(m− 3, t, k): Let Q be a smooth quadric. Fix Ct,k intersecting
transversally Q and such that Q ∩ Ct,k is formed by 2dt,k general points of Q. We
call B′(m− 3, t, k) the existence of a pair (Y, T1) with the following properties. Y
is a smooth and connected curve of degree u(m − 3, t, k) and genus g − gt,k such
that Y ∩ Ct,k = ∅, Y intersects transversally Q and (Y ∪ Ct,k) ∩ Q is general in
Q. In particular no line of Q contains two or more points of Y ∪ Ct,k. T1 is a
grid adapted to (Y,Ct,k ∩Q), which we now describe. In all cases we assume that
for all S ⊆ Sing(T1) with #(S) = v(m − 3, t, k) we have hi(ICt,k∪Y ∪S(x)) = 0,
i = 0, 1. If v(m − 3, t, k) = 0, then take as T1 any adapted grid. Now assume
v(m−3, x, t) > 0. Set δ := d−u(m−3, t, k). Let e be the maximal positive integer
such that v(x, t, k) > (e − 1)(δ − e) and e ≤ δ/2. Since d = u(m − 1, t, k) + 1,
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Lemma 25 gives that e exists and that e ≤ 201. We assume that the grid T1 has
bidegree (e, δ − e).

If v(m− 3, t, k) > 0 we write Rj , 1 ≤ j ≤ e, for the lines of bidegree (1, 0) of T1

and Mi, 1 ≤ i ≤ δ − e, for the one of bidegree (0, 1). As in the proof of Lemma
16 we deform T1 to another grid T with the same lines of bidegree (1, 0) and with
lines Li of bidegree (0, 1) only some of them containing a point of Y ∩Q.

The definition of e gives v(m−3, t, k) ≤ e(d−u(m−3, t, k)− e−1). Fix distinct
lines Rj ∈ |OQ(1, 0)|, 1 ≤ j ≤ e, with Rj ∩ (Y ∩Q) 6= ∅ for all j and distinct lines
Li ∈ |OQ(0, 1)|, 1 ≤ i ≤ δ − e, such that Li ∩ (Q ∩ (Y ∪ Ct,k)) 6= ∅ if and only if
1 ≤ i ≤ v(x, t, k) − (e − 1)(δ − e). We assume Y ∩ Rj ∩ Li = ∅ for all i, j. We
assume Rj ∩ Y = ∅ for all j , Li ∩Ct,k = ∅ if i ≤ δ − e− 2, Li ∩Ct 6= ∅ if and only
if i = δ − e− 1 and Li ∩ Ck 6= ∅ if and only if i = δ − e. Let S be the union of the
points Rj ∩ Li with either j ≥ 2 or j = 1 and 1 ≤ i ≤ v(x, t, k) − (e − 1)(δ − e).
About B′(m − 3, t, k) we only use that hi(ICt,k∪Y ∪S(x)) = 0, i = 0, 1, for this
specific set S ⊂ Sing(T ). Set χ := ∪o∈S2o. Let Y ′ be the union of Y , χ and all
lines Rj and Li. Y

′ is smoothable to a smooth and connected curve Y ′′ of genus
g− gt,k and we may find a smoothing family fixing the two points of Y ′ ∩Ct,k. For
this choice of Y ′′ the curve M := Y ′′ ∪ Ct,k is a nodal and connected curve with
arithmetic genus g and with exactly 2 nodes. Since t ≥ k, we have h1(OM (t)) = 0
and hence h1(OM (m − 2)) = 0. The vector bundle NM |Ct (resp. NM |Ck, resp.
NM |Y ′′) is obtained from NCt (resp. NCk

, resp. NY ′′) making a positive elementary
transformation at the point Y ′′∩Ct (resp. the point Y ′′∩Ck, resp. each of the two
points Y ′′∩Ct,k) in the direction corresponding to the tangent line of Y ′′ (resp. Y ′′,
resp. Ct,k) at the point Y ′′∩Ct (resp. the point Y ′′∩Ck, resp. each of the two points
of Y ′′∩Ct,k). Since h1(NY ′′(−2)) = 0, h1(NCt,k

(−2)) = 0 and #(Sing(M)) = 2, the

Mayer-Vietoris exact sequence of Y ′′ and Ct,k gives h1(NM (−1)) = 0. Hence M is
smoothable ([14, Corollary 1.2]). By the semicontinuity theorem for cohomology a
smoothing of M proves Theorem 2 for the pair (d,m), except that we must discuss
the bounds on m and g assumed in Theorem 2. We need g,m for which we may
take t ≥ 105 and some k with t/30 ≥ k ≥ t/200 (these bounds are sufficient to
use Remarks 3 and 8). For m we need m ≥ k + t + 7 and we do not need other
assumptions on m if the pair (g,m) allows us to do the construction, i.e. the
burden is shifted to g. It is sufficient to have g ≥ gt,k + g(t + k + 1, t, k). We
have gx = 1 + x(x + 1)(2x − 5)/6 ≤ x3/3 for all x ≥ 10. Since k ≤ t/30 for very
large t (Lemma 18), we assume g ≥ g105 + gb104/3c. Hence it is sufficient to assume

g ≥ 1015/3 + 1012/27. Hence it is sufficient to assume g ≥ 0.34 · 1015. �

Proof of Theorem 1: Take (d,m) in the range A and set g := 1 +m(d−1)−
(
m+2

3

)
.

By [2, Corollary 2.4] we may assume d < m2+4m+6
4 . Since m ≥ 13.8 · 105, and

d > m2+4m+6
6 , we have d ≥ 31.3 · 1010. Hence 0.02d3/2 ≥ 0.34 · 1015. We claim that

for these integers d we always have Kd3/2 − 6εd ≥ 0.02d3/2, where K := 2
3

1
10

3/2

and ε := 11
20 + 4( 1

20 )3/2. Indeed, K ≥ 0.021 and 6ε ≤ 0.6 and for d ≥ 31.3 · 1010

we have 0.001
√
d ≥ 0.6. Hence if g ≤ 0.02d3/2, then we apply [3, Corollary 1.3]. If

g ≥ 0.34 · 1015, then we apply Theorem 2. �

Proof of Theorem 3: By Theorem 1 we may assume that g < GA(d,m). We prove
Theorem 3 for the fixed integer m by induction on the integer d.
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(a) First assume that (d − 1,m) is not in the Range A, i.e. assume d − 1 ≤
m2+4m+6

6 . Since d ≤ m2+4m+6
6 +1, we haveGA(d,m) ≤ 1+m−1+ (m−1)(m2+4m+6)

6 −(
m+2

3

)
= m − 1. Since d > m2+4m+6

6 , we have g ≤ d − 3 and so it is sufficient to
quote [1] and that in this range of degrees and genera a general non-special curve
C has h1(NC(−2)) = 0 (Remark 3).

(b) Now assume that (d−1,m) is in the Range A. By the inductive assumption
for each integer q such that 0 ≤ q ≤ GA(d− 1,m) there is a smooth and connected
curve Y ⊂ P3 of genus q and degree d−1 such that h1(NY (−1)) = 0 and h0(IY (m−
1)) = 0. Let L ⊂ P3 be a general line intersecting quasi-transversally Y at a
unique point p. The vector bundle NY ∪L|Y (−1) is obtained from NY (−1) making
a positive elementary transformation at p ([21]). The vector bundle NY ∪L|L is
obtained from NL(−1) making a positive transformation at p ([21]) and hence it is
a direct sum of a line bundle of degree 1 and a line bundle of degree 0. A Mayer-
Vietoris exact sequence gives h1(NY ∪L(−1)) = 0 and hence Y ∪ L is smoothable
([14, Corollary 1.2]). If g ≤ GA(d− 1,m), then it is sufficient to take q := g. Now
assume GA(d − 1,m) < g < GA(d,m). In this range any solution C must have
h0(IC(m− 1)) = 0 and hence h1(IC(m− 1)) = GA(d,m)− g.

Assume for the moment that g ≥ 0.34 · 1015. We repeat the construction of
Theorem 2 for this integer g. Remember that the integers t, k, y, u(x, t, k) and
v(x, t, k) only depends on g and the parity of m. We have 1 + (m − 1)d − g =(
m+2

3

)
+ GA(d,m) − g. Since GA(d,m) − GA(d − 1,m) = m − 1, we have 1 ≤

GA(d,m)− g ≤ m− 2. Since 3− g+ (m− 1)u(m− 1, t, k) + v(m− 1, t, k) =
(
m+2

3

)
and 0 ≤ v(m− 1, t, k) ≤ m− 2, we have u(m− 1, t, k)− 1 ≤ d ≤ u(m− 1, t, k) + 2
and the first inequality holds only if g = GA(d,m)−1 and v(m−1, t, k) = 0. Hence
it is sufficient to adapt B′(m− 3, t, k) with the new value of d.

Now assume g < 0.34 · 1015. Since m ≥ 13.8 · 105 and d > m2+4m+6
6 , we have

d ≥ 31.3 · 1010. Hence 0.02 · d3/2 ≥ 0.34 · 1015. Thus as in the proof of Theorem 1
it is sufficient to quote [3, Corollary 1]. �

Remark 11. Fix positive integers m, d, g, m ≥ 3, such that there is a smooth,
connected and non-degenerate curve C ⊂ P3 with degree d, genus g, h0(IC(m −
1)) = 0 and h1(NC(−1)) = 0. The latter condition implies that asymptotically

for d � 0 we are not far from the generalized Range A m2+4m+6
6 ≤ d ≤ Dm :=

m(m+1)/2 of [2, Proposition 4.2]. These conditions are satisfied with g = GA(d,m)
if m� 0 and (d,m) is in the Range A (Theorem 1) or for the (m, d, g) covered by
[2, Proposition 4.2] or if m� 0 and g ≤ GA(d,m) (Theorem 3).

Claim: For each integer d1 > d there is a smooth and connected curve X ⊂ P3

with degree d1, genus g, h0(IX(m− 1)) = 0 and h1(NX(−1)) = 0.
Proof of the Claim: By induction on d1 we reduce to the case d1 = d+ 1. Fix

p ∈ C. Let L ⊂ P3 be a general line containing p. We have #(C ∩ L) = 1 and L
is not tangent to C at p. Obviously h0(IC∪L(m − 1)) = 0. As in step (b) of the
proof of Theorem 3 we get h1(NC∪L(−1)) = 0. Hence C ∪ L is smoothable ([14,
Corollary 1.2]). Use the semicontinuity theorem. �.

When d1 � d we may cover some pairs (d1, g
′) with g′ > g taking in the proof

of the Claim instead of a line a smooth rational curve D of degree d1 − d. with
#(D ∩ C) = g′ − g + 1 and D intersecting quasi-transversally C. Since any two
quintuples of points of P3 in linearly general position are projectively equivalent,
for g′ − g ≤ 4 we may see D as a general rational space curve of degree d1 − d and
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hence if d1 − d ≥ 3 we may assume that the normal bundle of D is a direct sum of
two line bundles of degree 2d1 − 2d− 1.

Proof of Corollary 1: By Theorem 3 there is a smooth, connected and non-degenerate
curve Y ⊂ P3 with degree δ, genus g, h0(IY (m − 1)) = 0 and h1(NY (−1)) = 0.
Apply the Claim in Remark 11. �

Now we discuss the weak parts of our proof of Theorem 2, since any improvement
of these parts would give huge improvements for the lower bounds assumed in
Theorem 2 and hence for the assumption of the results in the introduction. A key
point was using [2, Corollary 2.4], since for d large with respect to m our proof
is far less efficient (for a fixed m it leaves gaps in the set of all d satisfying (1).
Hence if there is some other construction of good curves covering, say, the range
m2+4m+6

4.5 ≤ d < m2+4m+6
4 , then it would be a very good help and we could use

pairs (t, k) with far lower t/k; Lemmas 4, 14 and 15 show how better are the bounds
and simplified the proofs if it is sufficient to take all (t, k) with k ≤ t ≤ 3k. Then
(as observed at the end of Remark 3) a further improvement may be obtained by
sharpening the results of [3]. The very first step for the latter project (as observed
at the end of Remark 3) is to use [25] instead of [27].
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Macaulay, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 4, 423–432.

[13] G. Ellingsrud and A. Hirschowitz, Sur le fibré normal des courbes gauches, C. R. Acad. Sci.
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