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Dark radiation (DR) is generally predicted in new physics scenarios that address fundamental
puzzles of the Standard Model or tensions in the cosmological data. Cosmological data has the
sensitivity to constrain not only the energy density of DR, but also whether it is interacting. In this
paper, we present a systematic study of five types of interacting DR (free-streaming, fluid, decou-
pling, instantaneous decoupling, and recoupling DR) and their impact on cosmological observables.
We modify the Boltzmann hierarchy to describe all these types of interacting DR under the relax-
ation time approximation. We, for the first time, robustly calculate the collision terms for recoupling
scalar DR and provide a better estimation of the recoupling transition redshift. We demonstrate the
distinct features of each type of DR on the CMB and matter power spectra. We perform MCMC
scans using the Planck 2018 data and BAO data. Assuming no new physics in the SM neutrino
sector, we find no statistically significant constraints on the couplings of DR, although there is a
slight preference for the fluid-like limit of all the cases. In the case of instantaneous decoupling
DR, this limit corresponds to a late transition redshift around recombination. The ∆Neff constraint
varies marginally depending on the type of DR.

I. INTRODUCTION

The Standard Model (SM) of particle physics is a great success because it unifies all elementary particles we have
detected and passes extensive experimental tests. The SM, however, is not complete, because of several fundamental
puzzles, such as the existence of cold dark matter (CDM), the Higgs hierarchy problem, and non-zero neutrino
masses. Physics beyond the SM (BSM) is needed to resolve these puzzles. Many BSM models that are proposed to
address these fundamental puzzles predict some light particles that behave like radiation during the epochs probed
by the Cosmic Microwave Background (CMB). Since these light particles typically have negligible interactions with
the SM, they are usually called dark radiation (DR). For example, some well-motivated models addressing the Higgs
hierarchy problem tend to generate dark radiation, e.g., Twin Higgs models [1–4] and N-naturalness models [5]. On
the cosmological side, the so-called ΛCDM model describes the evolution of our universe extremely well and explains
the cosmological data across many scales [6]. Despite this success, there are tensions between CMB measurements
and late universe measurements. For example, the Hubble and S8 tensions, referring to disagreement between the
predicted values of today’s expansion rate of the Universe and matter clustering from CMB data in comparison with
locally determined quantities (see, e.g., [7–9] for reviews on the Hubble tension and Ref. [10] for a study of the S8

tension), have attracted significant attention. Many BSM models that attempt to alleviate one or both of these two
tensions involve dark radiation (see, e.g., [11–41]). Constraining the properties of dark radiation is therefore crucial
to test BSM models that address puzzles of the SM, with a potential link to tensions in cosmological data.

Since dark radiation has extremely weak couplings with the SM particles, it is challenging to constrain it directly
from terrestrial and astrophysical measurements. Cosmological data, however, is sensitive to components that only
have gravitational interactions with the SM sector. For example, CMB datasets can determine the dark matter density
as well as the density of any decoupled radiation, including dark radiation. One well-known example of such decoupled
radiation is SM neutrinos, which decouple from the SM bath when the temperature of the universe is around the
MeV scale, much earlier than the time of CMB decoupling. Therefore, SM neutrinos only have gravitational effects
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on the CMB. The current constraints from Planck collaboration on the energy density of decoupled radiation, usually
denoted as Neff , assumes such radiation is free-streaming. This is because SM neutrino interactions become negligible
by the epochs probed by the CMB so the particles propagate freely at the speed of light. The effect of radiation on
the CMB power spectrum is to increase damping of the higher ℓ modes, and free-streaming radiation additionally
introduces a phase shift in the CMB peaks, due to the fact that free-streaming radiation propagating super-sonically
pushes the SM sound horizon towards a larger scale [42, 43]. Current CMB data has the precision to resolve this
damping and phase shift, so it is able to distinguish whether the decoupled radiation is free-streaming or interacting.

Going beyond the SM, neutrinos or dark radiation can have non-trivial self-interactions that prevent them from free-
streaming. Non-standard neutrino interactions can generate strong self-interactions among neutrinos. One example
is the Majoron model, where the Majoron is the Goldstone boson from lepton number breaking and is related to
the generation of neutrino masses [44–46]. The Majoron will mediate self-interactions among SM neutrinos. If the
coupling is strong, neutrinos behave as a coupled fluid and the constraints on Neff vary compared to the free-streaming
case due to the distinct signatures on the CMB power spectrum [47–51]. More generally, these same type of models
can also generate decoupling and recoupling features in neutrinos depending on the mass of the Majoron [52–70].
Recently, these models are studied extensively in the literature because they were also proposed to solve the Hubble
tension [71–73]. However, it has been shown that the decoupling neutrino models do not solve the Hubble tension
[64–66]. Separately, these models are generally in conflict with other terrestrial and astrophysical constraints because
they tend to modify SM neutrino interactions significantly [74–77].

Much more freedom is allowed if we study interacting dark radiation and assume no new physics in the neutrino
sector. Practically, we fix the Neff of neutrinos to its SM prediction and study constraints on additional contributions
to DR (∆Neff). In this paper, we present a systematic study of five types of DR, categorized by the behavior of their
self-interactions. We first discuss the standard free-streaming and fluid DR. We then study decoupling DR, which
are light dark fermions mediated via a heavy scalar mediator. We also study instantaneous decoupling DR, that can
arise from models with dark recombination or dark sector confinement. For the recoupling case, we choose to study
a self-interacting scalar DR model that can originate from models with axion-like particles. There is another popular
scenario for recoupling DR: the Majoron-like model with a light mediator. In this scenario, the light mediator is
unavoidably generated in the process of recoupling, leading to additional signatures that we do not consider here.

To describe the effects of these different kinds of DR on the perturbations in the CMB we modify the Boltzmann
equations to account for these interactions. Refs. [78, 79] provide the general framework to calculate the collision
terms due to interactions using the relaxation time approximation. Under this approximation, the collision term is
proportional to the product of thermally averaged interaction rate ⟨Γ⟩ and some numerical coefficient α, we dub the
relaxation time coefficient, that needs to be calculated for different type of interactions. Refs. [78, 79] calculated the
coefficient α for the decoupling case and so far no calculation is done for the recoupling case. In this work, we, for
the first time, calculate the relaxation time coefficient for the recoupling case with scalar DR. Only after this can one
provide a robust map between the particle physics model parameters and the cosmological constraints. Moreover, the
general expectation of the relaxation time coefficient is order unity, which is the case for decoupling DR. However, we
found the relaxation time coefficient for the recoupling case is nearly one order of magnitude smaller than unity. This
means the naive estimation of the time of the transition will also be modified by including this coefficient. In this
paper, we provide a new definition of the transition time (redshift) by setting α⟨Γ⟩ = H instead of usual ⟨Γ⟩ = H.
We demonstrate that this new definition gives a better estimate of the transition redshift according to numerical
calculations of the DR behavior.

We modify the public Boltzmann solver CLASS [80–82] to account for each type of interacting DR, and show the
changes to the CMB temperature, polarization and lensing power spectra, together with matter power spectrum. We
discuss different features of these observables for each type of DR and also give an intuitive physical understanding of
how they arise. After performing MCMC scans using current CMB and BAO data, we place a updated constraints on
BSM models with dark radiation. We find no statistically significant bounds on the coupling constants of DR, although
we find a slight preference for a late transition redshift for instantaneous decoupling DR at around recombination,
and for the fluid-like limit of all the cases. The data exhibits interesting features at some specific times/redshifts in
the early universe, but more constraining data is required to derive statistically significant bounds. The constraints
on ∆Neff also differ marginally under different assumptions.
The rest of this paper is organized as the follows. In Sec. II, we discuss the qualitative effect of five kinds of DR on

the CMB, including free-streaming, fluid, decoupling, instantaneous decoupling and recoupling DR. We also present
example particle physics models of these types of DR. In Sec. III, we derive the Boltzmann hierarchy that can account
for all these types of DR, under the relaxation time approximation. We calculate the relaxation time coefficient for
decoupling and recoupling cases (with more details in Appendix A) and present a better way to estimate the redshift
of the transition. In Sec. IV, we present the CMB temperature, polarization and lensing spectra, together with the
linear theory matter power spectrum from CLASS. In Sec. V, we show the results of MCMC scans based on Planck
2018 data and BAO data. We conclude in Sec. VI. In Appendix B, we discuss a simple model for scalar DR that has
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the feature of recoupling DR. In Appendix C, we show more details of the MCMC scans.

II. DARK RADIATION MODELS

For the purpose of this work, we classify DR according to its gravitational effects on cosmological perturbations.
The energy density of DR contributes to the parameter Neff, which is defined by

ρr = ργ + ρν + ρDR ≡ ργ

[
1 +

7

8

(
4

11

)4/3

Neff

]
, (1)

where ρr denotes the energy density of total radiation in the early universe and ργ is the energy density of photons,
ρν the energy density of neutrinos, and ρDR the energy density of DR. We fix the SM neutrino contribution to Neff

to the ΛCDM value of 3.0461 and dub the contribution from DR as ∆Neff. That is, we define

Neff = 3.046 + ∆Neff . (2)

Since SM neutrinos decouple from the photon bath much earlier than CMB decoupling, neutrinos can be treated as
free-streaming for CMB analysis. The primary constraints on free-streaming neutrinos from CMB power spectrum
arise from the phase shift of the peaks and suppression of high ℓ modes [86]. If the DR is also free-streaming, it has
similar effects on CMB as neutrinos, and the size of the effects is controlled by ∆Neff.
More generically, DR may have non-negligible self-interactions or interactions with other particles that prevent DR

from free-streaming. For example, DR can behave as a tightly coupled fluid if interactions are always strong compared
to the Hubble rate. One key difference between free-streaming and tightly coupled fluid is that tightly coupled fluid
has vanishing quadrupole and higher multipoles of its density perturbation, while these moments are nonzero and
have non-trivial time evolution if DR is free-streaming (see Sec. III for more detail). Because of this, tightly coupled
DR generates different signatures compared to the free-streaming case with the same ∆Neff [48].

In many theoretical models, DR may have additional features that are not captured in the above two cases. For
example, the rate of interactions that keep DR in equilibrium are typically temperature-dependent and can therefore
drop below the Hubble rate at an early time or a later time. Depending on the type of interactions, DR may be
tightly coupled in the early universe and starts to free-stream later (the decoupling case), or the other way around (the
recoupling case). The effects of these types of DR on observables should therefore be between those of free-streaming
and tightly coupled cases with the same ∆Neff. Moreover, due to different properties before and after the transition,
decoupling/recoupling DR leaves distinct features on the spectrum that depend on the transition time. These features
are discussed in detail in Sec. IV.

In what follows, we will identify DR by the behavior during epochs probed by CMB and large-scale structure (LSS)
data.2 We classify DR into five groups according to their interactions and for each discuss examples of particle physics
models that can lead to these types of DR. Note that our analysis in this paper is not restricted to the specific model
we present. It can be generalized to other models where the interaction rate has the same temperature dependence.

1. Free-streaming: This type of DR does not have any self-interactions or the interaction strength is negligible
compared to the Hubble rate during epochs probed by CMB and LSS data. This kind of DR behaves identically
to massless SM neutrinos. Free-streaming DR is therefore a natural consequence of BSM models involving light
sterile neutrinos. Gravitational waves are another example of free-streaming DR. The effect of free-streaming
DR on cosmological observables can be described by ΛCDM model with additional ∆Neff.

2. Fluid: We refer to DR as a fluid or fluid-like if it has strong self-interactions (the interaction rate is always large
compared to the Hubble parameter) during the whole cosmological time of interest. For example, non-Abelian
gauge fields in the dark sector can behave like fluid DR [13]. Moreover, fluid DR is the strong coupling limit
of the decoupling and recoupling DR mentioned below. Due to these strong interactions, the anisotropic stress
and all higher multiples of fluid DR are dynamically set to zero.

1 Note that more recent calculations prefer 3.044 [83–85].
2 While big bang nucleosynthesis probes cosmic history at an earlier time than the CMB, relic abundances are sensitive to the total
amount of radiation rather than the perturbations to the radiation. BBN is therefore not generically sensitive to interactions in DR.



4

3. Decoupling: If the self-interactions among DR are mediated by a heavy mediator, the thermal averaged
interaction rate Γ may scale as T 3 or T 5, depending on the particle nature of DR and the mediator. In the
early universe, this interaction rate can be larger than the Hubble rate, which scales as T 2/Mpl, so DR interacts
strongly and is tightly coupled. However, if Γ drops below the Hubble rate at a later time, this interaction
decouples and DR starts to free-stream. We dub this case decoupling.

Many particle physics models predict decoupling DR. To be concrete, we consider the example of DR that is an
effectively massless Majorana fermion χ that couples to a massive mediator ϕ. The Lagrangian can be written
as

−L ⊃ 1

2
m2

ϕϕ
2 +

1

2
gϕϕχ̄χ, (3)

where mϕ is the mass of ϕ and gϕ is the Yukawa coupling between ϕ and χ. This Lagrangian is similar to that of
Majoron models, where the scalar ϕ couples to SM neutrinos instead of DR χ. At T ≪ mϕ, ϕ can be integrated
out and we obtain an effective Lagrangian with 4-fermi interactions

−L ⊃ 1

8
Geffχ̄χχ̄χ, (4)

where Geff ≡ g2ϕ/m
2
ϕ. This term generates self-interactions among DR and the thermally averaged interaction

rate scales as G2
effT

5, which can lead to decoupling.

4. Instantaneous Decoupling: This is a special type of decoupling DR, which undergoes much faster transition
than the case discussed above. In this case, we can simply treat the DR as a fluid before a certain redshift zdec,
which characterizes the time of decoupling, and free-streaming after zdec. Such DR can arise in models that
contain a complex dark sector with a bound state that is neutral to DR. DR may decouple from the bath of
the dark sector when dark sector particles form bound states, either a dark atom similar to recombination in
the SM sector or dark baryons similarly to the QCD phase transition (see, for example, Atomic Dark Matter
models [87–89] and Twin Higgs models [90]). In these cases, the interaction rate includes a factor exp(−B/T ),
where B is the binding energy of the dark atom or the confinement scale of dark baryons.3 This exponential
factor changes decoupling qualitatively, making the duration of the decoupling transition much shorter than
the standard decoupling described above. We assume dark atoms or dark baryons form only a small fraction of
dark matter so we can ignore any changes to cold dark matter perturbations due to interactions between dark
atoms and DR. That is, our instantaneous case only changes the behavior of ∆Neff and no other cosmological
parameters.

5. Recoupling: Recoupling radiation free-streams in the early universe and becomes tightly coupled at a later
time. In this paper, we model recoupling DR as a light scalar (ϕ) with ϕ4 interaction

−L ⊃ λϕ

4!
ϕ4, (5)

where λϕ is the dimensionless coupling constant. We present one explicit realization of such DR in models of
axion-like particles (ALPs) in Appendix B. The interaction in Eq. (5) leads to a thermal averaged rate that
scales as λ2

ϕT , which decreases more slowy than the Hubble rate. Therefore, this type of DR has the desired
recoupling feature: the interaction rate can be smaller than the Hubble rate initially but become stronger later.

We note that the recoupling DR can also arise in models with fermionic DR that interact with a light mediator.
For example, using the same Lagrangian in Eq. (3) but setting mϕ → 0, the rate of self-interactions among DR
(χ) can be estimated to be ∼ g4ϕT , which has the right T dependence for recoupling. However, the light mediator

ϕ will be produced via χχ → ϕϕ, and will come into equilibrium with χ after recoupling [67]. Therefore, the
abundance and perturbations of ϕ, which are not covered in our analysis in this paper, can potentially have
important impact on cosmological observables.

The qualitative effects of decoupling or recoupling DR on cosmological observables can be viewed from the time
dependence of their interactions. The opacity of DR provides an intuitive way to visualize the time dependence of

3 T here is the temperature of dark radiation, which may be different from the photon temperature.



5

103104105106

z

0.0

0.2

0.4

0.6

0.8

1.0

O
p
ac

it
y Decoupling

Instantaneous Decoupling

Recoupling

FIG. 1: The opacity for decoupling DR (orange), instantaneous decoupling DR (orange dashed), and recoupling DR (blue)
as a function of redshift z. Couplings Geff and λϕ are chosen such that zdec,rec ∼ 104. In this paper, we define the decou-
pling/recoupling transitions in terms of the perturbations, rather than the background opacity, which leads to the visual offset
of the transitions above. Our precise definition of the decoupling/recoupling redshift will be given in Sec. III (see Eq. (20)),
once we discuss the perturbations to dark radiation.

different types of interactions. We define the opacity for decoupling and recoupling DR as

Odec(t) = 1− exp

[
−
∫ t0

t

⟨Γ⟩dt
]
, (6)

Orec(t) = 1− exp

[
−
∫ t

0

⟨Γ⟩dt
]
, (7)

where ⟨Γ⟩ is the thermal averaged interaction rate and t0 is the time today (the exact definition of Γ for the models
above will be given below in Eq. (15)). The opacity indicates the fraction of particles that have been scattered from
the time t to the time today t0 for decoupling cases, or from the start of the universe to the time t for recoupling
cases. Zero opacity means DR is free-streaming, while fluid DR corresponds to opacity being unity. For decoupling
and recoupling cases, the opacity will start from 1 and evolve to 0 (decoupling) or vice versa (recoupling).

The opacity (Odec,rec) for three difference cases (decoupling, instantaneous decoupling and recoupling DR) is shown
as a function of redshift in Fig. 1. We have chosen a step function to model Odec(z) for the instantaneous decoupling
case where the transition occurs at z = 104, and selected values of the coupling constants (Geff , λϕ for decoupling
and recoupling cases) such that they lead to the same transition redshift zdec,rec = 104 (our precise definition of
zdec,rec = 104 will be given later in Eq. (20)). While the instantaneous decoupling transition is much faster than
standard decoupling, it is also clear from Fig. 1 that the transition of the recoupling case is slower than the decoupling
case. This can be understood from the fact that decoupling rate has a stronger T dependence (∝ T 5) than that of
recoupling (∝ T ). As we shall see, the time dependences visible in the opacity in Fig. 1 will lead to distinct signatures
on observables.

III. BOLTZMANN EQUATIONS FOR SELF-INTERACTING DARK RADIATION

In this section, we present the Boltzmann equations relevant for self-interacting dark radiation. We use the syn-
chronous gauge and write perturbations around a flat Friedmann-Robertson-Walker metric written as

ds2 = a2(τ)(−dτ2 + (δij +Hij)dx
idxj), (8)
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where τ is the conformal time and a(τ) is the scale factor. The metric perturbation Hij has the following expression
in Fourier space,

Hij(k, τ) = k̂ik̂jh(k, τ) +

(
k̂ik̂j −

1

3
δij

)
6η(k, τ), (9)

where h and η denotes the trace and traceless longitudinal part of Hij respectively. Here k ≡ kk̂ is Fourier conjugate
to comoving position x. We consider the phase space distribution of DR f(q,k, τ), which can be decomposed as

f(q,k, τ) ≡ f̄(q, τ)(1 + Ψ(q,k, τ)), (10)

where f̄(q, τ) is the averaged phase space distribution and q ≡ qq̂ is the comoving momentum of DR, which is related
to the physical momentum p as q = ap. In this work, we demand that all kinds of DR in our analysis have nearly
thermal distributions, which means the averaged phase space distribution is set to the equilibrium distribution,

f̄(q, τ) ≈ f̄ eq(q) = Ne−q/TD,0 , (11)

where TD,0 is the temperature of DR today. Here, we use the Maxwell-Boltzmann distribution as an approximation,
and the normalization factor N is chosen to match the energy density between the Maxwell-Boltzmann and Bose-
Einstein/Fermi-Dirac distribution:

∫
dq q3f̄ eq(q) =

∫
dq q3fBE/FD(q). Therefore, we will get N = π4/90 for bosons

and N = 7π4/720 for fermions.
Since the equilibrium distribution is independent of time, all non-trivial time evolution due to self-interactions is

encoded in the perturbation Ψ(q,k, τ). The nearly thermal condition can be simply achieved in decoupling DR,
because strong self-interactions keep DR in equilibrium before decoupling and the later evolution only generates
perturbations. For the recoupling case, however, self-interactions cannot keep DR in equilibrium initially. To satisfy
this condition, we assume DR is a thermal relic (like SM neutrinos) that inherits a thermal distribution from other
processes. We present an example of a scalar DR model in Appendix B that predicts recoupling DR with thermal
initial conditions.

As mentioned before, the non-trivial time evolution of f(q,k, τ) appears in the perturbation Ψ(q,k, τ) defined in
Eq. (10). The Boltzmann equation for Ψ is given as:

Ψ̇ + ikP1(k̂ · q̂)Ψ +
d ln f̄

d ln q

[
− ḣ

6
− P2(k̂ · q̂)

3
(ḣ+ 6η̇)

]
= C[f ], (12)

where Pℓ are the Legendre polynomials and ˙ denotes the derivative respect to τ . C[f ] is the collision term that
accounts for self-interactions. The full expression of C[f ] was derived in [78, 79] and is summarized in Appendix A.
Since we deal with purely relativistic particles, it is convenient to use F instead of Ψ in the analysis,

F (k, q̂, τ) ≡
∫
dqq3f̄Ψ∫
dqq3f̄

≡
∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Fℓ(k, τ)Pℓ(k̂ · q̂). (13)

The explicit expression for C[f ] is complicated, we then use the relaxation time approximation [91] to simplify
the formula. The basic assumption is that the leading order contribution in C[f ] is linear in F : C[f ] ∝ −F . It
has been checked in [79] that this approximation agrees well with the exact results for the decoupling case. To our
knowledge, the explicit check for the recoupling case has not been performed yet. However, for both cases the key
approximations are the same: i) keeping only linear order in perturbations and ii) applying the separable ansatz:

Ψℓ(k, q, τ) ≈ − 1
4
d ln f̄
d ln qFℓ(k, τ) [79], which can be easily derived for radiation using the separate universe argument:

the only x dependence of Ψ is in temperature T (x). Therefore, we expect the approximation works for the recoupling
case as well.

Under the relaxation time approximation, the full Boltzmann hierarchy for Fℓ can be simplified as

Ḟ0 = −kF1 −
2

3
ḣ,

Ḟ1 =
k

4
F1 −

k

2
F2,

Ḟ2 =
2k

5
F1 −

3k

5
F3 +

4

15
ḣ+

8

5
η̇ − α2a ⟨Γ⟩F2,

Ḟℓ =
k

2ℓ+ 1
[ℓFℓ−1 − (ℓ+ 1)Fℓ+1]− αℓa ⟨Γ⟩Fℓ, ℓ ≥ 3, (14)
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where ⟨Γ⟩ is the thermally averaged rate for self-interactions and αℓ is the relaxation time coefficient. The above
formula is general and can be applied to all kinds of self-interacting DR. As we discuss below, different types of
interactions will lead to different values of ⟨Γ⟩ and αℓ.

The thermal averaged rate for a 2 → 2 self-interaction process (p1 + p2 → p3 + p4) is simplified under assumption
of f̄(E) ≪ 1 [66]:

⟨Γ⟩ ≡ 1

n̄

∫
dΠ1dΠ2dΠ3dΠ4f̄(E1)f̄(E2)(1± f̄(E3))(1± f̄(E4))⟨|M|2⟩(2π)4δ(4)(p1 + p2 − p3 − p4)

≈ g2

n̄

∫
d3p1

(2π)3
d3p2

(2π)3
f̄(E1)f̄(E2)σ2→2vrel (15)

where pi = (Ei,pi) is the 4-momentum of each particle and dΠi ≡ gd3pi

(2π)32Ei
with spin degeneracy g, n̄ ≡

g
∫
d3p/(2π)3f̄(E) is the equilibrium number density and we use n = gNT 3/π2 for massless particles. The quantity

σ2→2 is the cross section for 2 → 2 self-interaction and vrel = s/(2E1E2) is the relative velocity of initial particles.
The matrix element squared ⟨|M|2⟩ is averaged over initial and final spins of all particles, and includes a factor
1/(Ni!Nf !) that removes the double counting of identical particles, as well as a factor of Ni, because the number of
initial identical particles changes by Ni units per interaction in the Boltzmann equations. Here Ni(Nf ) denotes the
number of identical particles in the initial (final) states. In our case, we always consider 2 ↔ 2 process of all identical
particles. Therefore, this factor becomes Ni/(Ni!Nf !) = 1/2. We will show the analytical expression of ⟨Γ⟩ for the
different cases below.

The calculations of the relaxation time coefficients αℓ are shown in Appendix A, where we follow calculations in
[78, 79].4 We note that for all models, α0 = α1 = 0 due to energy and momentum conservation.

We summarize the thermal averaged rate and the relaxation time coefficients for our DR scenarios below.

1. Free-streaming: Free-streaming DR has no self-interactions, therefore we should set ⟨Γ⟩ = 0 in Eq. (14). This
result coincides with the Boltzmann hierarchy for free-streaming neutrinos.

2. Fluid: Fluid DR has very strong self-interactions and is always tightly coupled. This corresponds to the limit
⟨Γ⟩ → ∞ in Eq. (14). In this limit, the term −αℓa ⟨Γ⟩Fℓ dominates in the time evolution, and the solution is
Fℓ ∝ exp(−αℓ

∫
a ⟨Γ⟩ dτ) for ℓ ≥ 2. This indicates that all ℓ ≥ 2 modes will be dynamically set to zero for the

whole thermal history. Therefore, we can set Fℓ(k, τ) = 0 for ℓ ≥ 2 for all τ . This means that the anisotropic
stress and all higher multiples of DR are always zero.

3. Decoupling: As mentioned in Sec. II, we consider a Majorana fermion χ with a heavy scalar mediator ϕ as
a model for decoupling DR. The Lagrangian is given in Eq. (4) with Geff ≡ g2ϕ/m

2
ϕ being the effective Fermi

constant. We assume the mediator is heavy for the interest of cosmological evolution and thus its abundance can
be neglected. The only effect of the heavy mediator is that it generates self-interactions among dark radiation.
This case will lead to,

a ⟨Γ⟩ =
7πG2

effT
5
D,0

576a4
, (16)

in Eq. (14), where TD,0 is the temperature of the DR today. Note that a ⟨Γ⟩ ∝ a−4 blows up for very small a (early
times). Physically, this limit corresponds to the radiation behaving as a fluid, but to avoid numerical issues,
we set a cut-off on a ⟨Γ⟩: a ⟨Γ⟩ = Min[7πG2

effT
5
D,0/(576a

4),Λ], with Λ chosen be 100/Mpc. We have checked

numerically that the observables are not very sensitive to the precise value of Λ chosen, for Λ ≥ 100/Mpc.
The relaxation time coefficients are α2 = 1.39, α3 = 1.48, α4 = 1.57, α5 = 1.62 in this model (see details in
Appendix A). Since the αℓ are very similar in value and αℓ>2 have weaker effects on observables, we simply set
αℓ = α2 (2 ≤ ℓ ≤ ℓmax), where ℓmax = 17 is the standard cut-off on the number of moments in CLASS. We
verify that this approximation, compared to setting α2 = 1.39, α3 = 1.48, α4 = 1.57, αℓ(5≤ℓ≤ℓmax) = 1.62, makes
a negligible effect on the CMB and matter power spectra we consider.

4. Instantaneous Decoupling: Instantaneous decoupling dark radiation behaves like a coupled fluid at early
times, and rapidly transitions to free-streaming radiation at some redshift zdec. This case mimics the transition
of photons in the SM sector that behave as an interacting fluid due to interactions with free electrons, but

4 Note we define αℓ with respect to the thermal averaged rate, not the rate from the dimensional analysis used in [78, 79].
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quickly transition to free-streaming after hydrogen formation. As mentioned before, the fluid regime can be
modeled as Fℓ = 0 (ℓ ≥ 2), while the free-streaming case corresponds to setting ⟨Γ⟩ = 0 in Eq. (14). To account
for both regions, we set the initial condition for Fℓ as Fℓ≥2 = 0 and modify the Boltzmann equation in Eq. (14)
to be

Ḟ2 =

(
2k

5
F1 −

3k

5
F3 +

4

15
ḣ+

8

5
η̇

)
g(z, zdec),

Ḟℓ =

(
k

2ℓ+ 1
[ℓFℓ−1 − (ℓ+ 1)Fℓ+1]

)
g(z, zdec), ℓ ≥ 3, (17)

where g(z, zdec) is a function of z and zdec, which has the feature that g = 0 for z > zdec and g = 1 for z < zdec.
We choose a smooth function for g(z, zdec):

g(z, zdec) =
1

2

[
tanh

(
zdec − z

∆zdec

)
+ 1

]
, (18)

with ∆zdec = 0.01zdec. Typically, the decoupling width ∆zdec for instantaneous decoupling cases is a few percent
of zdec, but the observables we show are not particularly sensitive to ∆zdec for values of ∆zdec/zdec <∼ 0.1, as we
discuss in Sec. IV. We have checked that the results from Eq. (17) are almost identical to those from the general
Eq. (14) with a large ⟨Γ⟩ at z > zdec and ⟨Γ⟩ = 0 for z < zdec. We note that the above choice of g(z, zdec) can
also model decoupling DR with heavy mediators, with the choice of ∆zdec = 0.4zdec [66].

5. Recoupling: As mentioned in Sec. II, we consider a light scalar with a ϕ4 self-interaction as a model for
recoupling DR. This type of recoupling DR (with Lagrangian shown in Eq. (5)) can be described by Eq. (14)
with,

a ⟨Γ⟩ =
πλ2

ϕTD,0

23040
, (19)

and α2 = 0.188, α3 = 0.294, α4 = 0.356, α5 = 0.395 (see Appendix A for details). Since Γ ∝ T and H ∝ T 2 in
radiation dominated era, the self-interaction rate will be significant compared to the Hubble rate at late times,
leading to recoupling. This means dark radiation is free-streaming at early times, but behaves as a fluid at late
times. Similar to the case of decoupling DR, we make the approximation: αℓ = α2 (2 ≤ ℓ ≤ ℓmax) for recoupling
DR, which we have checked (compared to setting α2 = 0.188, α3 = 0.294, α4 = 0.356, αℓ(5≤ℓ≤ℓmax) = 0.395) does
not affect physical observables.

While all expressions above allow for a general TD,0, for simplicity in all numerical calculations from here on we will
set TD,0 = Tν,0, where Tν,0 is the SM neutrino temperature today.

We choose adiabatic initial conditions at superhorizon scales for DR perturbations assuming that DR is free-
streaming [42, 128]. This initial condition provides the correct free-streaming limit when the rate ⟨Γ⟩ goes to zero. If
the rate ⟨Γ⟩ is large around the initial time, i.e., the fluid limit, the higher moments Fℓ≥2 of DR are dynamically set
to zero rapidly and remain zero as long as ⟨Γ⟩ is large (for the instantaneous decoupling case we simply set Fℓ≥2 = 0
as discussed before). As a result, other perturbations (e.g. F1 and metric perturbation η in the synchronous gauge)
will also deviate from free-streaming values and quickly approach the fluid limit of the corresponding perturbations.
As long as the mode evolution begins sufficiently early (kτ ≪ 1), this is equivalent to setting initial conditions that
treat DR as fluid directly. We have checked that these two types of initial conditions agree in the fluid limit.

To develop insight into the physical effects of DR, it is helpful to study the time dependence of self-interactions
and identify the time, or redshift, of de/re-coupling transitions. The opacity given in Eqs. (6) and (7), and shown
in Fig. 1, is one way of doing this and characterizes the average scattering of DR particles. The observable effects
of interacting DR, however, are due to changes to the behavior of DR perturbations. Therefore, we will define the
transition redshift based on the effects on DR perturbations

As shown in the general Boltzmann hierarchy, Eq. (14), the time dependence of self-interactions comes from αℓa⟨Γ⟩.
Since the dominant effect comes from ℓ = 2 moment, we define the zdec/rec as

α2⟨Γ⟩(z) = H(z)
∣∣∣
z=zdec/rec

. (20)

We note that this is different than the usual definition ⟨Γ⟩ = H by a relaxation time coefficient α2. These two
definitions are similar if α2 is close to unity, as in the decoupling DR case. For recoupling DR, however, α2 is nearly
one order of magnitude smaller than unity and the rate has only weak z dependence (⟨Γ⟩ ∝ z), resulting a big shift



9

102103104105106

z

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
σ

d
ec
/σ

fs

Decoupling

Geff =0.87/(MeV)2

Geff =0.021/(MeV)2

Geff =6.1×10−4 /(MeV)2

Geff =1.9×10−5 /(MeV)2

102103104105106

z

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ
re

c/
σ

fs

Recoupling

λφ =2.2×10−12

λφ =5.2×10−12

λφ =1.5×10−11

λφ =4.8×10−11

102103104105106

z

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ
d
ec
/σ

fs

Instantaneous Decoupling

inst. zdec =103

inst. zdec =104

inst. zdec =105

inst. zdec =106

(a) (b) (c)

FIG. 2: The ratio of anisotropic stress of decoupling (a), recoupling (b) and instantaneous decoupling (c) DR to that of free-
streaming DR (σdec,rec/σfs) as a function of redshift z. In all panels we choose k = 10−3/Mpc and a cosmology with ∆Neff = 0.5
in interacting DR compared with free-streaming DR. Panel (a) shows multiple values of Geff for the decoupling case and panel
(b) multiple values of λϕ for the recoupling case. Vertical lines show the estimate of zdec (a) and zrec (b) from our definition
α2⟨Γ⟩ = H (solid lines, in both panels chosen to be zdec/rec = 103, 104, 105, 106) and the usual definition ⟨Γ⟩ = H (dashed
lines). The two estimates are similar for decoupling DR, but for the recoupling case the standard definition (⟨Γ⟩ = H) produces
estimates of the recoupling redshift that are significantly larger (note that the dashed line for λϕ = 2.2 × 10−12 is nearly
overlapping with the solid line for λϕ = 5.2× 10−12). Panel (c) shows the same ratio for the instantaneous decoupling case, for
which the two estimates of zdec are identical.

of the value of zdec/rec. More generally, α2 might be different than one for other types of interactions, and thus a
dedicated calculation of α2 is needed to determine zdec/rec.
To illustrate the time dependence of self-interactions on perturbations and the estimate of zdec/rec, we present in

Fig. 2 the ratio of the anisotropic stresses from interacting DR and free-streaming DR, σdec,rec/σfs, where σ = 2F2.
These are shown for different choices of Geff for the decoupling case and λϕ for the recoupling case. Plotted are
the ratios of the k = 10−3/Mpc modes, which are super-horizon for the times shown and clearly illustrate the time-
dependent changes to the behavior of DR. Fluid-like DR should have σ = 0, whereas free-streaming DR will have
non-zero σ. Normalizing by the anisotropic stress of the free-streaming case removes the additional cosmological time
dependence.

The ratio in Fig. 2 has the expected behavior, evolving from 0 to 1 for the decoupling cases and 1 to 0 for the
recoupling cases. The vertical grid lines show two definitions of zdec/rec: our definition α2⟨Γ⟩ = H (solid) and the usual
definition ⟨Γ⟩ = H (dashed). In the decoupling panel (a) in Fig. 2, the two definitions of zdec provide similar results
because α2 here is close to one and ⟨Γ⟩ ∝ z5. For the recoupling case in panel (b), however, the two definitions of zrec
differ by nearly one order of magnitude. Our definition gives a better estimate of the transition time for σrec/σfs. For
comparison we also plot the ratio of σdec/σfs for the instantaneous decoupling case in panel (c). For instantaneous
decoupling, the interaction rate has a sharp transition around the parameter zdec in Eq. (17) with a large ⟨Γ⟩ at
z > zdec and ⟨Γ⟩ = 0 for z < zdec. Both definitions (α2⟨Γ⟩ = H or ⟨Γ⟩ = H) therefore provide the identical results:
the parameter zdec naturally denotes the decoupling redshift.

IV. IMPACT ON OBSERVABLES

In this section, we discuss how the interacting dark radiation scenarios described in Sec. II affect the CMB tem-
perature and polarization power spectra, and the matter power spectrum. While the physical effects of fluid-like,
decoupling, and recoupling radiation on CMB power spectra are discussed in, e.g., [42, 47, 48, 50, 60] and on matter
power spectra in [71], we will review them here for completeness. Our focus in this section is to extend the analysis
of the effects of interacting DR on CMB and matter power spectra to describe the different changes made by dif-
ferent types of interactions. The main new results are a discussion of the differences between interacting scenarios
with radiation that decouples instantaneously versus via a slower transition described by decoupling from four-Fermi
interaction, or radiation that starts out as free-streaming and recouples at a later time. As we shall see, each of the
five examples raised in Sec. II – free-streaming, fluid, decoupling, instantaneous decoupling, and recoupling – leave a
distinct imprint on the CMB and matter power spectra.

The CMB and matter power spectra are sensitive to interactions in relativistic dark-sector particles because interac-
tions change the behavior of linear perturbations in the stress-energy tensor of the DR, and the DR is gravitationally
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FIG. 3: The evolution of perturbations in the Newtonian gauge dark radiation energy density, δDR, plotted as a function of kτ ,
with k = 1/Mpc. The left plot compares free-streaming and fluid-like radiation perturbations to decoupling models with values
of Geff = 0.87/(MeV)2, 0.021/(MeV)2, and 6.1× 10−4/(MeV)2, corresponding to decoupling at zdec ∼ 103, 104, 105. The center
plot illustrates perturbations that decouple instantaneously at zdec ∼ 103, 104, 105. The right plot compares free-streaming
and fluid-like radiation perturbations to recoupling models with values of λϕ = 5.2 × 10−12, 1.5 × 10−11, and 4.8 × 10−11,
corresponding to recoupling at zrec ∼ 104, 105, 106. The recoupling curve with λϕ = 5.2×10−12 is nearly indistinguishable from
the free-streaming curve.

coupled to the photon and matter perturbations we observe in the CMB and large-scale structure. We first review
physics of the two extreme cases, free-streaming and fluid DR, before moving on to discuss radiation that transitions
between the two extremes.

Radiation with frequent interactions can be characterized as fluid-like. Perturbations in a relativistic fluid are
completely characterized by the equation of state w = P/ρ and sound speed cs = δp/δρ. For a tightly coupled
relativistic fluid, these quantities take simple values, w = c2s = c2/3. The only non-zero quantities in the fluid stress-
energy tensor are the energy density and pressure, the fluid anisotropic stress and all higher moments vanish, and fluid
perturbations propagate at cs = c/

√
3. On the other hand, perturbations in relativistic free-streaming particles will

have the same equation of state w = 1/3, and adiabatic sound speed cs = Ṗ /ρ̇, but perturbation fronts propagate at c.
Free-streaming particles also have significant anisotropic stress and the full Boltzmann hierarchy, rather than just the
continuity equation, is required to describe the evolution of perturbations. Decoupling or recoupling DR transitions
between these two regimes. As shown in Figs. 1 and 2, the duration of the transition varies with the model. The
process of decoupling from self-interactions is relatively slow in comparison with instantaneous DR decoupling and
the process of recoupling is even slower.

Differences in the duration of the transition between fluid-like and free-streaming change the evolution of pertur-
bations in the DR energy density. Figure 3 illustrates these differences for perturbations to the DR energy density,
δDR = δρDR/ρDR, with wavenumber k = 1/Mpc.5 The horizon-crossing transition occurs at cskτ ∼ 2π, which for
this mode is around z ∼ 105, deep in the radiation-dominated era. For each DR example, we show a range of
de/re-coupling times corresponding to transitions occurring prior to horizon crossing, during horizon-crossing, and
after horizon crossing. If the decoupling or recoupling transition is complete prior to horizon crossing, then the DR
perturbations match the free-streaming and fluid-like cases exactly and we do not show those curves. As expected,
the DR perturbations that decouple instantaneously show a nearly immediate transition between following fluid and
free-streaming curves. On the other hand, the decoupling radiation with slower transition begins to deviate from
the fluid-like curve at an earlier time and takes longer time to approach the free-streaming solution. Finally, the
recoupling DR transition is sufficiently slow that even for zrec ∼ 106 (λϕ = 4.8× 10−11), the evolution does not fully
match the fluid solution.

The DR perturbations couple gravitationally to the photon and matter perturbations that generate CMB and matter
power spectra. Fluid DR will undergo acoustic oscillations along with the photon-baryon fluid (see Fig. 3), enhancing
the amplitude of acoustic oscillations in photon-baryon fluid, and therefore CMB temperature and polarization power
spectra. Free-streaming particles do not participate in acoustic oscillations, and thereby suppress the amplitude of
oscillations in CMB power spectra. Additionally, since perturbations in a relativistic fluid to propagate at a speed

5 For figures in this section we use a larger cut-off Λ = 108/Mpc in order to achieve good accuracy at very high kτ (see discussion below
Eq. (16)).
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cs < c, while perturbations in free-streaming radiation propagate at c, there is a slight difference in horizon crossing
times. This subtle difference, just barely visible as a shift to the right for the interacting cases in Fig. 3, induces a
phase shift in the acoustic peaks in CMB power spectra. This phase shift is a particularly distinct signature that is
hard to mimic via changes in other cosmological parameters [42, 48].

For DR that transitions between fluid-like and free-streaming during the radiation dominated era, the observables
acquire a scale-dependence, with the behavior of each mode depending on the behavior of the DR around horizon
crossing. For instance, photon perturbations that cross the horizon while the DR is fluid-like (k ≫ (csτdec)

−1 or
k ≪ (csτrec)

−1) will have larger amplitude oscillations and no phase shift, while those that cross while the species
is free-streaming (k ≪ (csτdec)

−1 or k ≫ (csτrec)
−1) will have reduced oscillation amplitude, and a phase shift with

respect to the fluid-like case [47, 50, 71]. Modes that cross the horizon during the transition have intermediate
behavior. This is visible in Fig. 3. Consider the decoupling case in panel (a), the curve with Geff ≥ 0.021 (zdec <∼ 104)
matches the fluid curve through horizon crossing and only later starts to depart. The curve with Geff = 6.1 × 10−4

(zdec ∼ 105) matches the fluid case as it begins to oscillate, then gradually switches to follow the free-streaming curve
before the first oscillation is complete. Similar features are visible in panel (b), though the transition between fluid
and free-streaming behavior is much more abrupt. The recoupling scenarios are shown in panel (c). Recoupling is so
gradual that none of the curves follow the fluid one exactly, though for the earliest recoupling case, λ = 4.8× 10−11

corresponding to zrec ∼ 106, the DR is sufficiently coupled to undergo acoustic oscillations.
The impact of DR on primary CMB power spectra is plotted in Fig. 4. Each panel illustrates the changes to

the CMB power spectra between cosmologies with common background evolution with same total energy density in
radiation, Neff = 3.046 +∆Neff, with ∆Neff = 0.5, but differ in the behavior of perturbations of the DR contributing
to ∆Neff. The different curves compare ∆Neff = 0.5 in interacting DR, relative to ∆Neff = 0.5 in free-streaming
radiation. As expected, the amplitude of CMB spectra is enhanced at for all interacting DR and the oscillatory
features demonstrate that the location of the peaks is shifted slightly. The enhancement is largest for DR that is
interacting for longer, either decoupling at a later time, or recoupling at an earlier time. After matter-radiation
equality, the fractional contribution of DR to the energy density drops as 1/a and whether the DR is interacting or
not is increasingly less relevant. For instance, recoupling transition at z ∼ 1000, the effect of the power spectra is
very small. For decoupling at z >∼ 106 (Geff

<∼ 10−5/MeV2) the power spectra in this ℓ-range are indistinguishable
from the purely free-streaming case.

In Fig. 4, the primary difference between the decoupling and instantaneous decoupling scenarios is the amplitude of
the change to the power spectra: since the decoupling model begins the transition to free-streaming earlier (see Fig. 1
and Fig. 2), the effect on CMB spectra is smaller. As noted in [66], there is some degeneracy between the width of the
decoupling transition and the amplitude of the effect. There are, however, additional features that are distinct between
the two scenarios. The CMB spectra at multipole ℓ have peak sensitivity to wavenumber k ∼ πℓ/(2dLSS), where dLSS is
the distance to the surface of last-scattering. For instantaneous decoupling at zdec = 104 , the decoupling transition is
visible as a relatively sharp change in the CMB spectra around ℓdec ≈ (2/π)kdecdLSS ≈ 2200, where kdec = 2π/(csτdec).
For the earlier decoupling redshifts this feature as at too high of ℓ to be detectable in the foreseeable future. For the
standard decoupling model the more gradual transition washes this feature out.

During the radiation-dominated era, perturbations in radiation dominate the gravitational potential on large scales.
The CDM perturbations are evolving in these potentials and are therefore also sensitive to the different behaviors of
interacting DR. To understand how DR impacts CDM, it is helpful to look at the time average of the DR perturbations,
which is a better estimate of the net source to the gravitational potential driving CDM. In Fig. 5, we show the time
average (⟨δDR(τ)⟩ ≡

∫ τ

0
dτ ′δDR/τ) of the radiation perturbations plotted in Fig. 3. It is clear that while the interacting

cases have a larger amplitude around horizon crossing, at later times the free-streaming perturbations are larger and
therefore source a larger gravitational potential. This means that we expect CDM perturbations entering the horizon
during the radiation dominated era to be larger in cosmologies with free-streaming DR in comparison to those with
fluid DR. The case where DR decouples around horizon crossing is special, the time-average of the DR is larger at
horizon crossing, yet does not decrease subsequently (see Fig. 3) and at late times is slightly larger than the free-
streaming case. We will see that the CDM perturbations that cross the horizon around decoupling indeed experience
a slight boost.

The effect of DR on the CDM perturbations is illustrated in Fig. 6. Plotted is the fractional change in the amplitude
of the Newtonian gauge CDM perturbation, δcdm, when ∆Neff = 0.5 in DR is made interacting, as opposed to free-
streaming. Each panel shows a range of k-values corresponding to modes that cross the horizon at a variety of
epochs relative to the de/re-coupling transitions and matter radiation equality. On super-horizon scales and during
the radiation-dominated era, the matter perturbation in the Newtonian gauge is slightly larger in a cosmology with
interacting DR (see e.g., [42] and note that this difference disappears in the synchronous gauge). Interacting radiation
experiences a larger boost at horizon crossing (Fig. 3) relative to free-streaming radiation that is transmitted to the
CDM. Eventually, however, δcdm modes that cross the horizon during the radiation-dominated era with interacting
DR experience suppressed growth because, time-averaged over an oscillation, the source to the gravitational potential
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FIG. 4: Fractional changes in the primary CMB power spectra when an additional interacting component of DR is added with
∆Neff = 0.5 compared to power spectra for a cosmology with the total Neff entirely composed of free-streaming radiation.
Panels (a) and (b) show the fractional change in CTT

ℓ and CEE
ℓ for the decoupling model and for a fluid-like species that never

decouples. Panels (c) and (d) show the fractional change in CTT
ℓ and CEE

ℓ for the instantaenous decoupling model (dashed
lines) along with the fluid case for comparison. The values of zdec in (c) and (d) are chosen to match the decoupling redshifts
for each value of Geff used in (a) and (b). Panels (e) and (f) show the fractional change in CTT

ℓ and CEE
ℓ for recoupling species

and a fluid-like species.

is smaller than for free-streaming radiation (see Fig. 5). Modes that cross the horizon near the decoupling transition
experience a mixture of effects, a boost in amplitude at horizon crossing while the DR is interacting, but then a
decreased subsequent decay as the radiation transitions to free-streaming before a full oscillation is complete. This
is visible in the k = 0.1/Mpc mode in panel (a). A similar feature occurs as the Universe transitions to matter
domination. Modes that cross the horizon during this transition may experience an initial boost due to interactions,
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FIG. 5: The time average value of the Newtonian gauge dark radiation energy density, ⟨δDR⟩, plotted as a function of kτ ,
with k = 1/Mpc. The left plot compares free-streaming and fluid-like radiation perturbations to decoupling models with
values of Geff = 0.021/(MeV)2, and 6.1 × 10−4/(MeV)2, corresponding to decoupling at zdec ∼ 104, 105. The center plot
illustrates perturbations that decouple instantaneously at zdec ∼ 104, 105. The right plot compares free-streaming and fluid-like
radiation perturbations to recoupling models with values of λϕ = 1.5× 10−11, and 4.8× 10−11, corresponding to recoupling at
zrec ∼ 105, 106.
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FIG. 6: Fractional change the evolution of dark matter density perturbations of different wavelengths when a component of
the radiation density is in decoupling species (left), recoupling species (middle), or fluid-like species (right). The effect on the
dark matter density perturbation depends on whether the modes reached kτ ∼ 1 before or after the decoupling or recoupling
transition, and for fluid-like radiation the matter-radiation equality time. These times are marked as vertical lines on each plot.

but the subsequent suppression in amplitude does not occur as the radiation perturbations cease to dominate the
gravitational potential. This is visible for the k = 0.1/Mpc and k = 0.01/Mpc modes in the recoupling and fluid plots
in panels (b) and (c).
The scale-dependent time evolution in Fig. 6 leads to scale-dependent features in the matter power spectrum.

Figure 7 illustrates the k-dependent changes to the matter power spectrum when an additional DR contribution
of ∆Neff = 0.5 is interacting instead of free-streaming. For the decoupling cases, the matter power spectrum is
suppressed at high k, corresponding modes that entered the horizon both during radiation domination and while
the DR was interacting. In the cases where decoupling occurs during the radiation-dominated era, a peak appears
around wavenumber k ∼ π/(csτdec) corresponding to the scales that have just reached their first maximum after
horizon crossing. As the Universe transitions from radiation to matter domination whether the relativistic species are
fluid-like or free-streaming becomes less relevant to the evolution of the matter perturbations and the low-k matter
power spectra agree for all scenarios. The time-dependent change from radiation to matter domination leads to a
scale-dependent feature near keq that is qualitatively similar to the feature caused by the decoupling transition even
for a fluid-like species that never decouples. Finally, the change in the power spectra for the recoupling scenarios
show a mix of behavior. The highest k-modes are identical to the free-streaming case. As k decreases, they begin
following the fluid curves below krec ∼ π/(csτrec), but then agree with the free-streaming case for k ≪ keq. Finally,
the duration of the de-/recoupling transition is also important. If the transition from fluid-like to free-streaming is
instantaneous, a ringing feature is visible in the matter power spectrum. This occurs because modes that have entered
the horizon prior to decoupling oscillate, along with the photon-baryon fluid, and an instantaneous transition will
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FIG. 7: Fractional changes in the matter power spectrum at z = 0 when an additional DR contribution of ∆Neff = 0.5 is
interacting instead of free-streaming. The left panel shows ∆Pmm(k)/Pmm(k) for the decoupling model, the center panel for
the instantaneous decoupling model, and the right panel for the recoupling model. The values of Geff and λϕ are chosen to give
de/re-coupling redshifts of z ∼ 103, 104, 105, 106.
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FIG. 8: Fractional changes in the CMB lensing power spectrum when an additional DR contribution of ∆Neff = 0.5 is interacting
instead of free-streaming. The left panel shows ∆Cϕϕ

ℓ /Cϕϕ
ℓ (k) for the decoupling model, the center panel for the instantaneous

decoupling model, and the right panel for the recoupling model. The values of Geff and λϕ are chosen to give de/re-coupling
redshifts of z ∼ 103, 104, 105, 106, the same values used for instantaneous decoupling in the center panel.

imprint these oscillatory features on the final matter power spectrum. For the more gradual decoupling transition
these features are washed out. The recoupling models we consider have very gradual transitions from free-streaming to
fluid-like and overall a much smaller imprint on the matter power spectrum. We note that while we have implemented
instantaneous decoupling as a transition of width ∆zdec/zdec = 0.01 (see Eq. 18), the ringing features seen in Fig. 7
are nearly unchanged for decoupling transitions as wide as ∆zdec/zdec = 0.1.

The changes to the matter power spectrum in Fig. 7 lead to similar, but less pronounced changes to the CMB
lensing power spectrum. Figure 8 shows the fractional change to the CMB lensing spectum when an additional DR
contribution of ∆Neff = 0.5 is interacting instead of free-streaming. For each scenario the qualitative features are
similar to the changes to the matter power spectrum, but suppressed in amplitude and sharp spectral features are
washed out, due to the fact that CMB lensing at a given multipole moment depends on the matter power spectrum

at a range of k. Nevertheless the suppression at high ℓ is apparent, as is the peak in ∆Cϕϕ
ℓ near ℓdec and ℓeq. The

instantaneous and standard decoupling cases, however, do not have distinguishable features.
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V. MCMC ANALYSIS

In this section, we present constraints on five interacting DR scenarios we have discussed. For the Markov chain
Monte Carlo (MCMC) analysis we use the Metropolis-Hastings algorithm6 [92, 93] of the cosmological sampling
package MontePython v3.27 [94, 95], connected to an altered version of the Boltzmann Solver CLASS v2.78 [80–82].
We impose a Gelman-Rubin convergence criterion of R − 1 <∼ 0.01 for determining when the MCMC chains are
converged.

We use the following dataset combination:

• CMB: Planck 2018 CMB temperature and polarization auto- and cross-correlation, both high-ℓ and low-ℓ [96],
and with the full set of nuisance parameters, as well as Planck 2018 CMB lensing9 [97].

• BAO10: The Six-degree Field Galaxy Survey (6dFGS, z = 0.106) [99], the Sloan Digital Sky Survey Data Release
7 Main Galaxy Sample (SDSS DR7 MGS, z = 0.15) [100], and the Baryon Oscillation Spectroscopic Survey
Data Release 12 (BOSS DR12, z = 0.38, 0.51, 0.61) three redshift bin sample [101] (containing the CMASS and
LOWZ galaxy samples [102]).

We make the following notable modelling choices (unless otherwise specified): Three degenerate massive free-steaming
neutrinos, as a good approximation to either the normal or inverted hierarchy [103], with a varying neutrino mass
sum and a prior

∑
mν > 0 eV. The neutrinos contribute 3.046 to Neff. The helium fraction is inferred from Big

Bang Nucleosynthesis and we make other standard ΛCDM assumptions, such as spatial flatness and a cosmological
constant. All CMB power spectra (including lensing reconstruction) are modelled using linear theory, since we do
not have an accurate non-linear prescription for the interacting DR models and all publicly available non-linear
methods assume free-streaming DR. In any case, differences due to non-linear modelling are expected to be smaller
than the errorbars for Planck on all scales, but this point needs to be carefully considered for future data. While we
have seen in Sec. IV that DR can also impact the amplitude and shape of the high-k matter power spectrum, we
do not include any datasets that probe this directly. We expect that the current bounds on ∆Neff from CMB will
be stronger than those available from, e.g. current Lyman-α forest data [104, 105], but these signatures would be
interesting to explore in the future.

The main results are shown in Table I and Fig. 9. In Table I, we show mean values and 68%CL intervals
(unless otherwise noted) for each parameter. We also show the best-fit values for ∆Neff and the interaction
parameters as well as the minimum effective chi-squared and the chi-squared contribution from each likelihood.

In Fig. 9, we show posterior distributions (1-σ and 2-σ intervals as dark and light shaded contours, respectively)
for our Decoupling (top left, in green), Instantaneous Decoupling (top right, in purple) and Recoupling (bottom,
in yellow) cases, compared to Free-streaming (in red) and Fluid (in blue) reference cases in each subplot. As the
most interesting parameters for these models, we opted to show the angular scale of the CMB, θs, the amount of
DR beyond standard neutrinos, ∆Neff, and the Hubble parameter today, H0, in addition to the relevant interaction
parameters: Geff in units of (MeV)−2 and an estimate of zdec for Decoupling (see Eq. 20 and surrounding text), zdec
for Instantaneous Decoupling (as a model parameter, in this case), and λϕ and an estimate for zdec for Recoupling

6 As we will see in the following, the posterior distribution for the coupling parameters show local minima and maxima, which can be
difficult for the Metropolis-Hastings to properly sample and care should be taken. However, in all our cases, no parts of the coupling
parameter space is ruled out with any notable significance, so we know all possible values are allowed and have been sampled, with
chains moving freely through different parts of parameter space, and we can be confident no modes have been missed by the sampling
algorithm. We note that problems are known to arise when modes are clearly separated in parameter space and the MCMC chains are
unable or unlikely to jump from one mode to another, in which case Metropolis-Hastings is not a suitable algorithm for exploring the
posterior space and alternatives should be used, such as, e.g., nested sampling algorithms.

7 Find the new MontePython v3.5 at https://github.com/brinckmann/montepython public
8 Get the most recent CLASS v3.2 at https://github.com/lesgourg/class public
9 Although the data in our MCMC runs do include the changes to the CMB lensing spectra shown in Fig. 8, we expect those features are
too small to be resolved with current data and do not contribute to our constraints.

10 It is, in principle, possible that constraints using BAO data could be biased for models of self-interacting dark radiation, as these models
introduce a phase shift in the acoustic peaks. However, Ref. [98] studied this problem for a number of extensions to the ΛCDM model,
including a fraction dark matter interacting with neutrinos, a model with a similar phase-shifting property. Therefore, for current BAO
data combined with other probes, such as CMB in our case, models of self-interacting dark radiation is not likely to exhibit a bias
in constraints derived using standard BAO likelihoods. For future data, this conclusion may be different, and it may be necessary to
include BAO data, or full shape power spectrum information, in the analysis in a consistent way, or at least check that it is not a
problem in a way similar to Ref. [98].
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(see Eq. 20). For the set of full triangle plots see Appendix C. In the bottom right panel of each subplot, we highlight
interesting points in parameter space with arrows, e.g. transition points and peaks in the 1-d marginalized posterior
distribution, discussed in the following.

Decoupling (Fig. 9, top left, green):

• Looking at the ∆Neff vs θs panel (first column, 2nd from the top), we see that the posterior for the Decoupling
case neatly extends across the Free-streaming to the Fluid case. This comes from no strong preference by the
datasets being considered for either model, so an MCMC exploration is allowed to freely vary across the full
parameter space.

• This is further illustrated by the 1-d posterior panel for log10(Geff) (bottom right), where the posterior is flat
towards smaller log10(Geff) (larger zdec) values – with the free-streaming regime to the far left of the plot and
smaller values asymptoting to the Free-steaming case – through intermediate decoupling redshifts, until there’s
a small (but not statistically significant) preference for a late decoupling beginning right around recombination,
i.e. around the leftmost arrow at log10(Geff) ≈ −0.15 [corresponding to log10(zdec) ≈ 3.05] and peaking at
log10(Geff) ≈ 0.85 [corresponding to log10(zdec) ≈ 2.5]. We cut the posterior exploration a bit after this point,
since large values of log10(Geff) (small zdec) asymptote to the Fluid case. This is because when decoupling
happens sufficiently far after recombination, we are no longer sensitive to the decoupling behavior with the
current datasets and the posterior would remain flat except for MCMC noise. Indeed, due to the notable
decoupling width, we can understand why the posterior of the Decoupling case is not flat beyond recombination
(as opposed to the Instantaneous Decoupling case), but instead peaks after recombination.

• Considering log10(Geff) vs θs (bottom row, 1st panel) and log10(Geff) vs ∆Neff (bottom row, 2nd panel), we see
a change in the preferred values for θs when the interaction strength gets larger [larger log10(Geff), smaller zdec]
and that ∆Neff bounds are somewhat relaxed towards larger log10(Geff) values. This can be understood from
the fact that interacting DR does not cause a phase-shift of the acoustic peaks like free-streaming DR, or DR
with intermediate decoupling redshifts causes a reduced phase-shift. This feature brings the model into slightly
better agreement with the data, allowing for a larger contribution of the species, and causes the preferred value
for θs to shift towards larger values.

• Finally, there is no notable impact on the Hubble parameter (bottom row, 3rd panel), beyond a slight widening
of the posterior for a late decoupling towards the Fluid asymptote, far from enough to be relevant in terms of
resolving tensions.

Instantaneous Decoupling11 (Fig. 9, top right, purple):

• Considering the ∆Neff vs θs panel (first column, 2nd from the top), we see the posterior for Instantaneous
Decoupling mostly tracks that of the Fluid comparison case. This can be easily understood from the 1-d posterior
panel for log10(zdec) (bottom right), where we see a preference for low decoupling redshift values, asymptoting to
the Fluid case once we get beyond recombination. This preference dominates the other marginalized posterior
distributions. Two transition points are indicated with arrows, one at log10(zdec) ≈ 3.55, from where the
preference starts to increase for lower decoupling redshifts, and one at log10(zdec) ≈ 2.8, where we are fully
beyond recombination and have reached the Fluid case asymptote and the posterior flattens to just MCMC
noise. There appears to be a peak (albeit not statistically significant) at log10(zdec) ≈ 3.15, so the data seems
to prefer a decoupling just before recombination.

• Considering log10(zdec) vs ∆Neff (bottom row, 2nd panel) we see the ∆Neff bound is significantly relaxed for late
decoupling times (small zdec) from near recombination onwards, leading to larger uncertainty for the Hubble
parameter (bottom row, 3rd panel). Note that since the 1-d marginalized posterior distributions for ∆Neff and
H0 include the high decoupling redshift part, the relaxed bounds are less apparent there.

Recoupling (Fig. 9, bottom, yellow):

• Looking at the ∆Neff vs θs panel (first column, 2nd from the top), we see the recoupling case nearly spans the
posterior space of the Free-streaming and Fluid comparison cases, like the Decoupling case. The reason is the

11 The MCMC results in this section parameterize instantaneous decoupling as a transition of width ∆zdec = 0.01zdec, as discussed in Sec.
II. We have, however, checked that our parameter constraints are virtually unchanged for a decoupling width of ∆zdec = 0.1zdec.
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FIG. 9: MCMC-derived posterior distributions for select parameters, with 1-σ and 2-σ intervals as dark and light shaded
contours, respectively. All: Planck 2018 primary CMB anisotropies and lensing plus BAO. Free-streaming ∆Neff in red and an
always self-interacting Fluid ∆Neff in blue. For comparison, we show the H0 measurement from Ref. [106] as grey bounds (note
only the edge of the 1- and 2-σ range is visible). Top left: Decoupling ∆Neff in green. Arrows on the bottom right sub-panel
indicate the transition point at log10(Geff) ≈ −0.15 [corresponding to log10(zdec) ≈ 3.05] and the peak at log10(Geff) ≈ 0.85
[corresponding to log10(zdec) ≈ 2.5]. Top right: Instantaneous Decoupling ∆Neff in purple. Arrows on the bottom right
sub-panel indicate the first transition point at log10(zdec) ≈ 2.8 and the second transition point at log10(zdec) ≈ 3.55, while
the peak is at log10(zdec) ≈ 3.15. Bottom: Recoupling ∆Neff in yellow. Arrows on the bottom right sub-panel indicate the
transition point at log10(λϕ) ≈ −11.4 [corresponding to log10(zdec) ≈ 3.7] and the peak at log10(λϕ) ≈ −11.0 [corresponding
to log10(zdec) ≈ 4.6].

same as before, because we have a mostly unconstrained parameter space, with a neat transition between the
two asymptotes. Indeed, considering the 1-d posterior panel for log10(λϕ) (bottom right) we see a mostly flat
posterior, with a small increase in probability starting from log10(λϕ) ≈ −11.4 [corresponding to log10(zrec) ≈
3.7], indicated by an arrow, towards larger values of the coupling strength, corresponding to an earlier recoupling.
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Interestingly, there appears to be a small peak (not statistically significant) at intermediate recoupling redshifts,
around log10(λϕ) ≈ −11.0 [corresponding to log10(zdec) ≈ 4.6], indicated by a second arrow, but we clearly need
more sensitive datasets to constrain this model.

• Considering the other bottom row panels, we see a similar shift in θs (first panel) as we did for the Decoupling
case. This is not surprising, larger values of the coupling parameters in both examples, corresponding to earlier
recoupling or later decoupling, asymptote to the Fluid case whereas the late recoupling, or early decoupling,
models asymptote to the Free-streaming case. In the second of the bottom panels, we see the bound on ∆Neff

is relaxed for models recoupling early or at intermediate redshifts, while late recoupling bounds are similar
to the Free-streaming bounds. Finally, for the Hubble parameter (third panel), we see a slight relaxation of
the confidence interval compared to the Free-streaming asymptote, but not enough to play a role in resolving
cosmological tensions.

Free-streaming Fluid Decoupling Instantaneous Dec. Recoupling

ωb 0.02250 ± 0.00015 0.02254 ± 0.00017 0.02250 ± 0.00016 0.02252 ± 0.00016 0.02252 ± 0.00017

ωcdm 0.1214 ± 0.0017 0.1219 ± 0.0019 0.1215 ± 0.0018 0.1217 ± 0.0018 0.1216 ± 0.0018

100 × θs 1.04167 ± 0.00036 1.04204 ± 0.00031 1.04185 ± 0.00036 1.04195 ± 0.00033 1.04188 ± 0.00035

ln(1010As) 3.051 ± 0.016 3.046 ± 0.015 3.049 ± 0.015 3.047 ± 0.015 3.049 ± 0.015

ns 0.9697 ± 0.0050 0.9674 ± 0.0040 0.9685 ± 0.0046 0.9676 ± 0.0043 0.9691 ± 0.0049

zreio 7.85 ± 0.76 7.91 ± 0.75 7.86 ± 0.76 7.89 ± 0.75 7.89 ± 0.75

log10(Geff) — — unbounded — —

log10(zdec) — — — unbounded —

log10(λϕ) — — — — unbounded

∆Neff < 0.304 (95%CL) < 0.324 (95%CL) < 0.311 (95%CL) < 0.314 (95%CL) < 0.320 (95%CL)∑
mν < 0.120 (95%CL) < 0.125 (95%CL) < 0.122 (95%CL) < 0.127 (95%CL) < 0.123 (95%CL)

H0

[
(km/s)
Mpc

]
68.5 ± 0.7 68.7 ± 0.8 68.6 ± 0.8 68.6 ± 0.8 68.6 ± 0.8

S8 0.831 ± 0.012 0.828 ± 0.011 0.829 ± 0.012 0.829 ± 0.012 0.829 ± 0.012

Best fit

∆Neff 0.050 0.012 0.0046 0.0087 0.069

log10(Geff) — — -1.62 — —

log10(zdec) — — — 2.61 —

log10(λϕ) — — — — -10.1

P18 highTTTEEE 2347.1 2346.5 2345.9 2345.3 2347.3

P18 lowTT 23.3 23.6 23.6 23.8 23.1

P18 lowEE 395.9 395.9 396.8 398.4 396.2

P18 lensing 8.9 8.8 8.7 8.7 8.9

P18 total 2775.3 2774.9 2775.1 2775.4

BAO 5.2 5.5 5.2 5.2 5.4

χ2
eff 2780.4 2780.4 2780.2 2781.4 2780.8

∆χ2
eff — 0.0 -0.2 +1.0 +0.4

TABLE I: Statistical information for all models. χ2
eff = −2 lnL is the minimum effective chi square, ∆χ2

eff is with regards to
the corresponding free-streaming case. All credibility intervals are 68%CL centered around the mean unless otherwise noted.
The clustering parameter S8 is defined as S8 = σ8(Ωm/0.3)0.5.

It is worth remembering that our choice for how to implement the neutrino mass sum,
∑

mν , impacts the bounds
on ∆Neff, as there’s a direct correlation between neutrino mass sum and allowed values of ∆Neff. In many works, the
neutrino mass sum is taken to be fixed (a common choice is around the minimal allowed value for a normal hierarchy
neutrino configuration with two low mass and one more massive neutrino,

∑
mν = 0.06 eV), but the absolute scale

of the neutrino mass sum is not known, only the mass difference between states. To reflect this uncertainty, we allow
the neutrino mass sum to vary in our main analysis, which impacts bounds on ∆Neff compared to fixing the neutrino
mass sum, as shown in Tables II (fixed neutrino mass sum) and III (varying neutrino mass sum).

For the fixed neutrino mass sum comparison in Table II, we limit the scope to only the Free-streaming and Fluid
reference cases, as they can be considered the boundary cases for self-interacting dark radiation. In this case, we
consider

∑
mν = [0, 0.06, 0.11] eV to cover massless neutrinos, minimum normal hierarchy mass in two configurations

(degenerate masses, denoted “deg”, and a normal hierarchy approximation with two massless and one massive neutrino,
denoted “2 massless”), and minimum inverted hierarchy mass (only degenerate masses).

In Table III, we allow the neutrino mass sum to vary, with two common choices, one remaining agnostic about
the mass of cosmological neutrinos freely varying the neutrino mass sum

∑
mν > 0 (acknowledging that new physics

could allow for different
∑

mν in cosmology compared to that from terrestrial measurements, see, e.g., [107–115]) and
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the other imposing a minimal allowed neutrino mass sum roughly corresponding to the minimal mass sum allowed in
a normal hierarchy configuration with

∑
mν > 0.06 eV. In both cases, we consider degenerate massive neutrinos, as

the difference compared to more realistic configurations is very small [103].

∑
mν prior 0 eV 0.06 eV (deg) 0.06 eV (2 massless) 0.11 eV

Free-streaming ∆Neff (95%CL) < 0.285 < 0.314 < 0.314 < 0.334

Fluid ∆Neff (95%CL) < 0.298 < 0.325 < 0.336 < 0.363

TABLE II: Bounds on the effective number of extra relativistic species, ∆Neff, for different choices of a fixed neutrino mass
sum

∑
mν .

∑
mν prior Free-streaming Fluid Decoupling Instantaneous Decoupling Recoupling

> 0 eV ∆Neff (95%CL) < 0.304 < 0.324 < 0.311 < 0.314 < 0.320

> 0.06 eV ∆Neff (95%CL) < 0.325 < 0.339 < 0.340 < 0.346 < 0.338

TABLE III: Bounds on the effective number of extra relativistic species, ∆Neff, for different choices of a varying neutrino mass
sum

∑
mν . In both cases the neutrino mass is implemented as three degenerate states with mνi =

∑
mν/3.

We find differences of order 10% in the bounds on ∆Neff for common choices used in the literature for how to treat
neutrino masses, a difference that increases for less common choices. For simplicity, throughout the paper we assumed
the standard neutrinos behave as expected with a contribution to Neff of 3.046, but somewhat different results might
be obtained if this assumption is relaxed and all of Neff is varied.

As a side note, if a very large neutrino mass sum were to be detected from cosmology, ∆Neff bounds would
dramatically change. This has been hinted at by some recent analyses, e.g. an analysis that factors out the Planck
lensing anomaly12 found

∑
mν = 0.51+0.21

−0.24 eV at 68% CL from a combination of BOSS and Planck [117] (see also the
ACT DR4+WMAP results [118], as well as Ref. [119], for similarly large neutrino mass sum bounds from cosmology
when avoiding the Planck lensing anomaly). As a rudimentary check, fixing

∑
mν = 0.5 we find a Free-streaming

∆Neff < 0.738 and a Fluid ∆Neff < 0.727 at 95%CL, wildly different from conventional results. Of course, a proper
analysis with the full lensing-anomaly treated likelihoods and varying neutrino mass sum should be conducted, but if
a large neutrino mass were to be a reality, all Neff bounds would change accordingly.

VI. DISCUSSION AND CONCLUSIONS

Dark radiation commonly arises in BSM scenarios and may contribute a detectable level of radiation density in
the Universe in addition to photons and neutrinos. This contribution is typically parametrized with ∆Neff and can
be constrained by cosmological data. Yet, the signatures of DR can vary depending on the nature of DR and the
parameter ∆Neff, which solely characterizes the energy density, is insufficient to capture the full range of scenarios.
More generally, DR will have perturbations, along with the SM particles, and their energy density, pressure, and
anisotropic stress evolve differently depending on whether the DR is interacting with itself or another constituent. In
general, interaction rates evolve differently from the Hubble parameter, and dark radiation can decouple or recouple
from interactions during cosmic history. In this paper, we explore the cosmological signatures of and constraints on
DR with interactions that modify the time-dependence of the sound speed and anisotropic stress of DR and thereby
leave distinct signatures in cosmological observables.

We classify DR into five interaction types: free-streaming, fluid-like, decoupling, instantaneous decoupling, and
recoupling. Free-streaming and fluid-like DR are the usual scenarios in which radiation is either non-interacting
or interacting for the whole observable cosmic history. The free-streaming case is part of standard cosmological
analyses (e.g. [6]) and the fluid-like case have been studied by, e.g. [48, 51]. Decoupling DR is the case where its
self-interaction is through a heavy mediator, so that interactions cease and radiation transitions from fluid-like to
free-streaming, as with SM neutrinos. In this case, the decoupling transition happens smoothly as Γ/H ∝ T 3. In
contrast, instantaneous decoupling occurs suddenly due to the presence of a heavier or bound state that exponentially
suppresses the scattering rate, similar to SM hydrogen recombination. Recoupling DR arises in scenarios with a light
mediator or a renormalizable self-interaction term such as ϕ4 theory. In this case, the DR is initially free-streaming
but interactions change the behavior of DR to behave more like a fluid (for decoupling and recoupling types of

12 See, e.g., Refs. [6, 116] for discussions on the Planck lensing anomaly.
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models, see, e.g., [47, 50, 60, 71]). These scenarios are described in Sec. II. We implemented the DR scenarios above
in the Boltzmann equations, using the relaxation time approximation to include the collision terms in the Boltzmann
hierarchy. The interaction terms include the thermal averaged interaction rate and the relaxation time coefficient,
which are carefully calculated in this work for different interaction benchmarks. Since the relaxation time coefficients
depend on multipole ℓ, the time at which moments in the Boltzmann hiearchy transition between fluid-like and free-
streaming also depends on ℓ. We define decoupling and recoupling with respect to the ℓ = 2 moment in the Boltzmann
hierarchy, related to the anisotropic stress, and provide a precise relation between parameters in the DR Lagrangian
and the decoupling or recoupling redshift. Our approach is described in Sec. III and the details of calculations are
given in Appendix A.

We have shown that the DR scenarios lead to distinct signatures on CMB and matter power spectra. These
signatures, along with a detailed discussion of the physical mechanisms, are presented in Sec. IV. A summary of the
changes to CMB power spectra is in Fig. 4, on the matter power spectra in Fig. 7, and on CMB lensing in Fig. 8. Of
particular interest is the sensitivity of the matter power spectrum to the duration of the decoupling transition, visible
by comparing panels (a) and (b) in Fig. 7. We anticipate that for currently allowed values of ∆Neff, the signature in
the matter power spectrum is too small to be detected. Yet, it would be interesting to explore whether these features
can be exploited to detect or constrain DR with future large-scale structure datasets. We leave this to future work.

We derive MCMC constraints from Planck 2018 CMB data and BAO data on these DR scenarios, using the
cosmological sampling package MontePython interfaced with a modified version of the Boltzmann solver CLASS, in
which the Boltzmann hierarchy with the relaxation time approximation is implemented for each of our interacting
DR cases. The 1- and 2-d marginalized posterior distributions for each of our cases are shown for select parameters
in Fig. 9 and for the full cosmological parameter space in Appendix C. In Table I, we show bounds for each of our
cosmological parameters along with information on the best-fitting model. We find no statistically significant bounds
on the coupling constants of DR, although we find a slight preference for a late transition redshift for instantaneous
decoupling DR at around recombination, and for the fluid-like limit of all the cases. The data exhibits interesting
features at some specific times/redshifts in the early universe, but more constraining data is required to derive
statistically significant bounds. The constraints on ∆Neff differ marginally for the different cases, but only at the
order of about 5− 10%. We note that the models of interacting DR considered here do not help resolve the H0 and
σ8 tensions, as Planck CMB bounds on ∆Neff do not allow for a signifcant deviation from the standard prediction, a
situation that is unchanged by the presence of interactions, and therefore the models under consideration are unable
to alleviate these cosmological tensions. Finally, in Tables II and III, we consider how our prior choice for the neutrino
mass sum affects bounds on ∆Neff for our DR cases, finding a difference of order 10%, comparable or larger than
the differences due to interactions, highlighting the importance of being clear on prior assumptions when reporting
results.

Although current data are only able to provide hints towards preferred couplings of interacting DR, without placing
statistically significant bounds, future experiments and surveys will be able to detect the small scale signatures of
interacting DR discussed in Sec. IV. Upcoming CMB experiment Simons Observatory [120], the future CMB-S4
experiment [121], and possibly CMB-HD [122] will delve into increasingly smaller scales of the CMB anisotropies,
potentially bringing signatures of interacting radiation within reach (compare to signatures of interactions seen in
primary CMB in Fig. 4, increasing significantly towards smaller scales, as well as CMB lensing in Fig. 8). These
future datasets will simultaneously aid in detecting novel signatures of interactions and constraining Neff to much
better precision, with nearly an order of magnitude improvement expected by CMB-S4 over current constraints.
Concurrently, data from current and near-term galaxy surveys such as DESI [123], Euclid [124], the Roman Telescope
[125], and the Rubin Observatory [126] will dramatically improve our measurements of the linear-theory matter
power spectrum. The signatures of interacting radiation shown in Fig. 7 present an interesting target worthy of
further exploration. In the longer term, gravitational waves present a clean and complementary probe of the DR
interaction history [127]. In summary, the prospects of confirming or ruling out non-standard interactions in the
neutrino and DR sector are excellent.
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Appendix A: Details of the collision terms in Boltzmann equations

In this appendix, we present more details of the collision terms C[f ] in the Boltzmann equation (Eq. 12) in Sec. III.
As shown in [78], for the case of 2 ↔ 2 scattering process, where we label the momenta of initial (final) particles being
q, l (q′, l′), the collision term C[f ] that is first order in Ψ is defined as

C[f ]2↔2(k,q, τ) =
g3

2q(2π)5

∫
d3l

2l

∫
d3q′

2q′

∫
d3l′

2l′
δ4(q + l − q′ − l′)

×⟨|M|2⟩
[
f̄ eq(q′)f̄ eq(l′)[Ψ(k,q′, τ) + Ψ(k, l′, τ)]− f̄ eq(q)f̄ eq(l)[Ψ(k,q, τ) + Ψ(k, l, τ)]

]
,(A1)

where g is the degree of freedom of the particle.
To get Eq. (A1) and analytic expressions for the collision terms after integration, we made several approximations.

First, we assume all kinds of DR in our analysis have nearly thermal distributions: f̄(q, τ) = f̄ eq(q). Second, we
assume f̄ eq(q) has a Maxwell-Boltzmann distribution instead of a Bose-Einstein or Fermi-Dirac distribution. Third,
we neglect Pauli blocking or Bose enhancement of final state particles. The validity of the first assumption is discussed
in Sec. III (see discussion below Eq. (10). The last two assumptions are appropriate for all cases we study because
we consider non-degenerate initial and final states.

Now we are ready to calculate the C[f ] for the different DR scenarios listed in Sec. II. Our ultimate goal is to obtain
the relevant Γ and αℓ in Eq. (14).

1. Decoupling

We first consider Majorana fermions as decoupling DR, which has self-interactions mediated by a heavy mediator
(see discussion in Sec. II). In this case, we can get

〈
|M|2

〉
= 1

16G
2
eff(s

2 + t2 + u2), where Geff is the effective Fermi
constant (see Eq. (4)) and s, t, u are Mandelstam varibles. Then Boltzmann hierarchy for Ψ can be written as [78, 79]:

Ψ̇0(q) = −kΨ1(q) +
1

6

∂ ln f̄

∂ ln q
ḣ− 10

3

NT 4
D,0G

2
eff

a4(2π)3
qΨ0(q)

+
NG2

eff

2a4(2π)3

∫
dq′

[
Km

0 (q, q′)− 10

9
q2q′2e−q/TD,0

]
q′f̄(q′)

qf̄(q)
Ψ0(q

′) (A2)

Ψ̇1(q) = −2

3
kΨ2(q) +

1

3
kΨ0(q)−

10

3

NT 4
D,0G

2
eff

a4(2π)3
qΨ1(q)

+
NG2

eff

2a4(2π)3

∫
dq′

[
Km

1 (q, q′)− 5

9
q2q′2e−q/TD,0

]
q′f̄(q′)

qf̄(q)
Ψ1(q

′) (A3)

Ψ̇2(q) = −3

5
kΨ3(q) +

2

5
kΨ1(q)−

∂ ln f̄

∂ ln q

(
2

5
η̇ +

1

15
ḣ

)
− 10

3

NT 4
D,0G

2
eff

a4(2π)3
qΨ2(q)

+
NG2

eff

2a4(2π)3

∫
dq′

[
Km

2 (q, q′)− 1

9
q2q′2e−q/TD,0

]
q′f̄(q′)

qf̄(q)
Ψ2(q

′) (A4)

Ψ̇ℓ>2(q) = − k

2ℓ+ 1
[ℓΨℓ−1(q)− (ℓ+ 1)Ψℓ+1(q)]−

10

3

NT 4
D,0G

2
eff

a4(2π)3
qΨℓ(q)

+
NG2

eff

2a4(2π)3

∫
dq′Km

ℓ (q, q′)
q′f̄(q′)

qf̄(q)
Ψℓ(q

′). (A5)

Here, TD,0 is the temperature of the DR today. The quantity f̄ denotes the averaged phase space distribution and
Ψℓ is the Legendre decomposition of Ψ,

Ψ(k,q, τ) =

∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Ψℓ(k, q, τ)Pℓ(cos ϵ) (A6)
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where cos ϵ = k · q/(kq) and Pℓ(cos ϵ) is a Legendre polynomial of order ℓ. The function Km
ℓ (q, q′) is defined as

Km
ℓ (q, q′) =

∫ 1

−1

d cos θKm(q, q′, cos θ)Pℓ(cos θ), (A7)

where

Km(q, q′, cos θ) =
T 4
D,0

16P 5
e−(Q−+P )/2(Q2

− − P 2)2
[
P 2(3P 2 − 2P − 4) +Q2

+(P
2 + 6P + 12)

]
, (A8)

with P = |q − q′|/TD,0 and Q± = (q ± q′)/TD,0. As mentioned above, to get the Boltzmann equations, we assume
that the background density follows a Maxwell-Boltzmann instead of Bose-Einstein/Fermi-Dirac distribution:

f̄(q, τ) ≈ f̄ eq(q) = Ne−q/TD,0 , (A9)

where the normalization factor N is chosen to match the energy density from Maxwell-Boltzmann and Bose-
Einstein/Fermi-Dirac distribution:

∫
dq q3f̄ eq(q) =

∫
dq q3fBE/FD(q). Therefore, we will get N = π4/90 for bosons

and N = 7π4/720 for fermions. Fℓ is defined by

F (k, cos ϵ, η) =

∫
q3dqf̄(q)Ψ∫
q3dqf̄(q)

=

∞∑

ℓ=0

(−1)ℓ(2ℓ+ 1)Fℓ(k, η)Pℓ(cos ϵ). (A10)

To get the Boltzmann hierarchy for Fℓ, we further use the relaxation time approximation. This can be achieved by
making the following approximation [79]:

Ψℓ(k, q, τ) ≈ −1

4

d ln f̄

d ln q
Fℓ(k, τ). (A11)

We then integrate the Boltzmann hierarchy for Ψℓ in Eqs. (A2-A5) to get the Boltzmann hierarchy for Fℓ shown in
Eq. (14). With the definition of ⟨Γ⟩ in Eq. (16), we can find the coefficients αℓ. We get α0 = α1 = 0 which is consistent
with energy and momentum conservation. For higher order αℓ, we get α2 = 1.39, α3 = 1.48, α4 = 1.57, α5 = 1.62.

2. Recoupling

For the recoupling case, we consider scalar DR with a ϕ4 interaction (see Sec. II). In this case, the averaged matrix
element can be calculated as

〈
|M|2

〉
= 1

2λ
2
ϕ, and the Boltzmann equations for Ψ read
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1
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ḣ

)
−

Nλ2
φT

2
D,0

128π3q
Ψ2(q)

+
Nλ2

φ

128π3

∫
dq′K0

2 (q, q
′)
q′f̄(q′)

qf̄(q)
Ψ2(q

′) (A14)

Ψ̇ℓ>2(q) = − k

2ℓ+ 1
[ℓΨℓ−1(q)− (ℓ+ 1)Ψℓ+1(q)]−

Nλ2
φT

2
D,0

128π3q
Ψℓ(q)

+
Nλ2

φ

128π3

∫
dq′K0

ℓ (q, q
′)
q′f̄(q′)

qf̄(q)
Ψℓ(q

′) (A15)
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where

K0(q, q′, cos θ) =
e−(Q−+P )/2

P
. (A16)

To get the Boltzmann hierarchy for Fℓ in Eq. (14), we integrate Eqs. (A12-A15) with the approximation in Eq. (A11).
Based on the definition of ⟨Γ⟩ in Eq. (19), we can get the αℓ coefficients for the recoupling case: α2 = 0.188, α3 =
0.294, α4 = 0.356, α5 = 0.395. Again, α0,1 = 0 due to energy and momentum conservation. Note that α2 for the
recoupling case is much smaller than unity. This means naively setting αℓ = 1 will generate a relatively large deviation
in the estimation of zrec as shown in Eq. (20).

Appendix B: A model for self-interacting scalar dark radiation

Here we present a model for dark radiation that consists self-interacting light scalars. We consider axion-like
particles (ALP) in the dark sector, denoted as ϕ, which are Goldstone bosons from a global dark U(1) symmetry
breaking. Below the spontaneously breaking scale f , we demand the leading coupling between ϕ and other fields
be ϕ

fGDG̃D, where GD is the field strength of a dark SU(N) gauge field. This coupling can be rewritten as a total

derivative. Therefore, the ALP mass is protected by a shift symmetry at perturbative level and can be naturally light.
After the dark SU(N) field confines, ϕ acquires a potential non-perturbatively as

Lϕ ⊃ Λ4 cos

(
ϕ

f

)

≈ Λ4 − Λ4

2f2
ϕ2 +

Λ4

24f4
ϕ4

≈ Λ4 −
m2

ϕ

2
ϕ2 +

m2
ϕ

24f2
ϕ4 (B1)

where Λ characterizes the energy scale of the confinement. In the second and third lines of the above equation, we
neglect terms from the expansion that contain ϕn, (n > 4), because their effects will be suppressed by fn−4. The third

line of Eq. (B1) shows the ALP model predicts a naturally light scalar field with mϕ ≡ Λ2/f and a
λϕ

24 ϕ
4 interaction

with λϕ ≡ m2
ϕ/f

2.

To check whether the ALP model can be a model for the recoupling dark radiation, we need to demand i) ϕ is a
thermal relic (similar to SM neutrinos) during the cosmic history relevant for CMB measurements, and ii) it has the
correct self-interaction strength for recoupling near recombination. Since we are interested in the case of low f and
Λ (see below), ϕ and SU(N) gauge fields are in thermal equilibrium for TD > Λ . The first condition can be achieved
when TD drops below Λ, where a confinement phase transition occurs in dark SU(N) theory. Since ϕ is the only light
particle after the phase transition, all SU(N) gauge degrees of freedom will eventually convert into ϕ. This conversion
is fast given the low f and Λ we consider, so it is plausible to treat ϕ as a thermal relic when TD

<∼ Λ. Moreover, Λ
needs to be high enough that ϕ remains as a thermal relic during the history relevant for CMB measurements. This
translates to a constraint of Λ >∼ O(100) eV, where O(100) eV roughly corresponds to the highest temperature scale
that current CMB data can probe.

For the second condition, we need the coupling strength of the order of λϕ ∼ 10−12 to achieve recoupling around
z ∼ 103 (see discussion in Sec. II). Given that mϕ and f are correlated for fixed λϕ (λϕ ≡ m2

ϕ/f
2), an arbitrary

small mϕ leads to too small f and Λ, violating the first condition. Assuming the temperature of the dark sector is
roughly the temperature of SM neutrino bath (TD ∼ Tν), we need mϕ

<∼ 0.1 eV to ensure ϕ remains as radiation
before recombination. Saturating mϕ ∼ 0.1 eV, we can infer that f ∼ 0.1 MeV and Λ ∼ 100 eV. Therefore, the ALP
model satisfies both conditions and we use it as a benchmark model for recoupling dark radiation.

Appendix C: Full MCMC results

Figures 10, 11, and 12 show the full cosmological parameter space of the results in Fig. 9 top left, top right, and
bottom, respectively. At the edge of the parameter space of the clustering parameter S8 = σ8(Ωm/0.3)0.5 we show a
galaxy survey bound from KiDS-1000 [129] for comparison (in purple, note only the edge of the 1- and 2-σ range is
visible). We also show a bound on H0 from Ref. [106] in grey at the edge of the H0 parameter space (note only the
edge of the 1- and 2-σ range is visible).
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FIG. 10: Full cosmological parameter space for the Free-streaming, Fluid, and Decoupling cases.
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