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Abstract. We consider kinetic vehicular traffic flow models of BGK type
[24]. Considering different spatial and temporal scales, those models allow to

derive a hierarchy of traffic models including a hydrodynamic description. In
this paper, the kinetic BGK–model is extended by introducing a parametric

stochastic variable to describe possible uncertainty in traffic. The interplay of

uncertainty with the given model hierarchy is studied in detail. Theoretical
results on consistent formulations of the stochastic differential equations on

the hydrodynamic level are given. The effect of the possibly negative diffusion

in the stochastic hydrodynamic model is studied and numerical simulations of
uncertain traffic situations are presented.

1. Introduction. The mathematical description of vehicular traffic flow is possible
at different spatial and temporal scales ranging from models for individual cars
[17] up to a description of aggregated quantities like the traffic density [3, 11, 16,
33]. Recent works present models on those scales as well as methods to traverse
the existing hierarchy, see e.g. [1, 4, 12, 15, 23, 25] and references therein. We
are particularly interested in two scales, the hydrodynamic or fluid–like models
for aggregated quantities and a statistical description of traffic as e.g. proposed
in [6, 22, 28, 29]. Our contribution is mainly based on the recently introduced
hierarchy [24] where in particular a class of BGK (Bhatnagar, Gross and Krook [5])
models have been considered. The fluid–like models considered are second-order
Aw-Rascle-Zhang type models [1, 49]. The hierarchy presented in [24] has been
deterministic assuming that all model parameters and initial data are known exactly.
However, often there is need to take uncertainties into account, e.g. due to noisy
measurements and due to variations in the behavior of vehicular traffic leading to
uncertainties. Then, it is necessary to extend the concepts to the stochastic case to
consider probability laws or statistical moments. The treatment of stochastic models
can be either non–intrusive, e.g., based on sampling (Monte–Carlo) [32, 41, 42] or
based on collocation [2], or intrusive [31, 46]. In the later approach, stochastic input
is represented by a series of orthogonal functions, known as generalized polynomial
chaos (gPC) expansions [7, 45, 47], substituted in the governing equations and then
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projected using a Galerkin projection. We follow this intrusive approach in order
to investigate how uncertainty propagates between the kinetic and the fluid flow
hierarchy of description. The possible links are depicted in Figure 1. Recently,
results using the intrusive approach for kinetic equations have been presented and
we refer to [8, 9, 26, 27, 40, 48, 50] for corresponding results. For hyperbolic models
on the fluid type description there have also been recent results [10, 14, 18, 20, 21,
35, 37, 30] – mostly centered at the question of hyperbolicity of the underlying gPC
expanded system of partial differential equations. For the presented investigation we
in particular refer to [19] where a gPC expansion for the Aw-Rascle-Zhang has been
established. Therein, it has been shown that for a particular choice of orthogonal
functions, the resulting expanded system is hyperbolic, see [19, Theorem 2.2]. In
this paper we will investigate the link between stochastic BGK and stochastic second
order traffic flow models. In [24] the diffusivity coefficient has been used to classify
possible unstable traffic regimes. We will show that the discussion translates to the
stochastic case and allows to characterize possible traffic zones of high risk. Here,
we also investigate the dynamic case compared with the previous publication. Our
presentation follows the diagram shown in Figure 1, in particular, the indicated
blue connections.

The propagation of uncertainty through hierarchies has also been explored e.g. in
the case of the Vlasov-Poisson-Fokker-Planck system [27]. Contrary to the approach
here, however, the resulting diffusive system has been shown to be well–posed with-
out further assumptions. Due to the nonlinear hyperbolic structure the presented
results therein do not extend directly to the present case. Moreover, uncertainty
across different scales of observation is investigated in [44], where a different equi-
librium density has been derived. Also, in [43] the propagation of uncertainty is
discussed but the origin and treatment of uncertainty is very different to the pre-
sented work.

BGK ARZ µ(ρ)

BGK(ξ) ARZ(ξ) µ(ρ(ξ))

Kinetic level Fluid level

Sec. 2 Thm. 2.2

Sec. 2.1

Sec. 2.2

Sec. 2.2

Figure 1. Outline of the model hierarchy. The left two columns
indicate the kinetic and fluid description of traffic flow as presented
in [24]. The third column refers to the diffusion coefficient µ(ρ) to
classify traffic instabilities. The green hierarchy is deterministic
while the blue includes a parametric uncertainty ξ. The indicated
links are established in this paper.

2. Hierarchical stochastic traffic flow models. A kinetic traffic flow model
reads

∂tf(t, x, v) + v∂xf(t, x, v) =
1

ε
Q[f, f ](t, x, v), (1)
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where f(t, x, v) : R+×R× [0, VM ] → R+ is the mass distribution function of traffic.
The operator Q encodes the detailed car–to–car interactions and it will be modeled
in the following as a linear operator of BGK type. The quantity ε is positive, and
yields a relaxation rate weighting the relative strength between the convective term
and source term. The spatial variable is denoted by x ∈ R and the velocity v is
assumed to be bounded by zero and a maximum speed VM . Finally, t ≥ 0 is the
time and we assume w.l.o.g. that the initial datum f0(x, v) is such that the density
ρ0 is bounded by one, i.e.,∫ VM

0

f0(x, v)dv =: ρ0(x) ≤ 1 ∀x ∈ R. (2)

BGK type collision operators prescribe a relaxation to equilibrium at rate ε. In
the space homogeneous case, the equilibrium is characterize by a function Mf (v; ρ)
called Maxwellian possibly depending on ρ = ρ0. The Maxwellian defines the mean
speed of vehicles at equilibrium through the relation

U(ρ) =
1

ρ

∫ VM

0

vMf (v; ρ)dv. (3)

The precise modeling of Q as well as the existence of suitable Maxwellians has been
discussed intensively in the literature and we refer e.g. to [24, 38]. Integrating

equation (1) in velocity space, and provided that
∫ VM

0
Q[f, f ]dv = 0, and one

obtains the evolution equation for the density ρ(t, x) =
∫ VM

0
f(t, v, x)dv as

∂tρ(t, x) + ∂x

(∫ VM

0

vf(t, x, v)dv

)
= 0. (4)

If the system approaches equilibrium, f → Mf , then

∂tρ(t, x) + ∂x (ρ(t, x)U(ρ(t, x))) = 0. (5)

The previous equation and the initial data ρ(0, x) = ρ0(x) provides a level of descrip-
tion on an aggregated, fluid–like level. If, however, the system is not at equilibrium,
the equation (4) is still coupled to the kinetic equation (1). In the case ε → 0, the
interactions of cars are so frequent to instantaneously relax f to the local equilib-
rium distribution Mf . Instead, we expect that if ε > 0 is small but positive, we are
in a regime where the kinetic equation is given by an extended continuum hydrody-
namic system of equations as for example the Aw-Rascle and Zhang model [1, 49].
Studying stability properties of traffic patterns in terms of an asymptotic analysis
in terms of the parameter ε has been conducted e.g. [24, 39] using a Chapman-
Enskog expansion. The Aw–Rascle–Zhang equations are a system of hyperbolic

equations for traffic density ρ and (average) velocity v = v(t, x) = q(t,x)
ρ(t,x) for ρ > 0.

Here, q(t, x) is the flux. Moreover in the Aw–Rascle–Zhang model, the function
h(ρ) : R+ → R+ is introduced and is an increasing, differentiable function of the
density called hesitation or pressure function [16].
For some given equilibrium velocity V eq : R+ → R+ decreasing in its argument, the
equations read for ρ = ρ(t, x) and q = q(t, x) with x ∈ R, t ∈ R+ :

∂tρ+ ∂x(q − ρh(ρ)) = 0, (6)

∂tq + ∂x

(q2
ρ

− qh(ρ)
)
=

1

ϵ
(ρVeq(ρ) + ρh(ρ)− q) . (7)
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In the limit ϵ → 0 we formally obtain a (first–order) consistent approximation of
solutions to (6) to (4) by defining for ρ ≥ 0

V eq(ρ) = U(ρ). (8)

In the following we are interested in the link between (6) and (1), resp. (11) in
the stochastic case. A key observation in the deterministic analysis [24] has been
the link between a discretization of the kinetic equation (1) using a finite number
of particles and the Aw–Rascle–Zhang traffic flow model. This connection has been
established using the variable w ∈ W = [wmin,∞)

w = v + h(ρ). (9)

Here, wmin = h(0). For h(ρ), we assume that for γ ∈ {1, 2}

h(ρ) = ργ . (10)

The quantity of w can be understood as a driver’s preference that is Lagrangian
quantity [1, Section 4]. Based on a particle description the link between the kinetic
equation for g : R+ × R×W → R+ is

∂tg(t, x, w) + ∂x

[
(w − h(ρ(t, x)))g(t, x, w)

]
=

1

ε

(
Mg(w; ρ(t, x))− g(t, x, w)

)
, (11)

and the Aw–Rascle–Zhang equations (6) for the density ρ and flux q

ρ(t, x) =

∫
W

g(t, x, w)dw, q(t, x) =

∫
W

w g(t, x, w)dw (12)

have been established using asymptotic analysis in ε. The Maxwellian Mg can be
related to Mf , which is assumed to fulfill for any ρ ∈ R

∫
W

Mg(w; ρ) dw = ρ, (M1)∫
W

w Mg(w; ρ) dw = ρVeq(ρ) + ρh(ρ). (M2)

The function Veq : R → R+
0 is the previously introduced equilibrium velocity. As

discussed we are interested in the description of vehicular traffic on the kinetic
(11) and fluid–dynamic (6) level in the presence of parametric uncertainty ξ. This
uncertainty may have many origins but for now we simply assume that it can be
described by a (possibly multi-dimensional) random variable ω. Let the random
variable ω be defined on the probability space (Ωω,F(Ω),P). Further, we denote by
ξ = ξ(ω) : Ωω → Ω ⊂ Rd a (possibly d-dimensional) real-valued random variable.
Assume further that ξ is absolutely continuous with respect to the Lebesgue measure
on Rd and denote by pΞ(ξ) : Ω → R+ the probability density function of ξ. For
simplicity we assume that the uncertainty enters only in the initial data g0(x,w, ω)
that is now random field defined on R ×W × Ωω that is denoted by g0(x,w, ξ) =
g0(x,w, ξ(ω)) : R×W×Ω → R. Further, we assume that g0(x,w, ·) ∈ L2(Rd, pΞ) a.e.
in (x,w). Then, we are interested in the evolution of the random field g(t, x, w, ξ) :
R+ × R ×W × Ω governed by a BGK–kinetic equation (11) with uncertain initial
data g0. For the following derivations it is sufficient to assume that first and second
moment g w.r.t. to ω exist as well as up to second moment in ξ. Further, the
derivation is based on the assumption that the random field g fulfills (13) pointwise
a.e. in (t, x, w) as well as pΞ a.s. in ξ :
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∂tg(t, x, w, ξ) + ∂x

[
(w − h(ρ(t, x, ξ)))g(t, x, w, ξ)

]
=

1

ε

(
Mg(w; ρ(t, x, ξ))− g(t, x, w, ξ)

)
,

(13)

g(0, x, w, ξ) = g0(x,w, ξ), (14)

ρ(t, x, ξ) =

∫
W

g(t, x, w, ξ)dw. (15)

Next, we turn to the description of the intrusive approach in order to establish
the hierarchy indicated in Figure 1. A random field g(t, x, w, ·) ∈ L2(Ω, pΞ) can be
expressed by a spectral expansion [7]

g(t, x, w, ξ) =

∞∑
k=0

g̃i(t, x, w)ϕi(ξ), (16)

where ϕi ∈ L2(Ω, pΞ) are basis functions, typically chosen orthonormal with respect
to the weighted scalar product, and {g̃i(t, x, w)}∞i=0 is a set of coefficients:

g̃i(t, x, w) =

∫
Ω

g(t, x, w, ξ)ϕi(ξ)pΞ(ξ)dξ. (17)

The previous expansion is truncated at K to obtain an approximation with K + 1
moments. The projection of g(t, x, w, ·) to the span of the K + 1 base functions is
denoted by

GK(g(t, x, w, ·))(ξ) :=
K∑
i=0

g̃i(t, x, w)ϕi(ξ) a.e. ξ ∈ Ω. (18)

The expansion (16) is called generalized polynomial chaos expansion (gPC). In
particular, for kinetic equations, also more involved than the given BGK equation,
this has been explored recently in a series of papers, see e.g. [8, 9, 26, 27, 40, 48, 50].
Therein, also conditions on {g0,i}∞i=0 have been developed to allow for existence of
a (weak) stochastic solution g.

Next, we establish the connection between the random BGK model (11) and the
stochastic Aw–Rascle–Zhang system. Assume g is a pointwise a.e. and integrable
solution to the system (13). Then, the density ρ and the flux q allow for gPC
expansion for all i ∈ N :

ρ(t, x, ξ) =

∫
W

g(t, x, w, ξ)dw =

∞∑
i=0

ρ̃iϕi(ξ), ρ̃i = ρ̃i(t, x) =

∫
W

g̃i(t, x, w)dw,

(19)

q(t, x, ξ) =

∫
W

wg(t, x, w, ξ)dw =

∞∑
i=0

q̃iϕi(ξ), q̃i = q̃i(t, x) =

∫
W

wg̃i(t, x, w)dw.

(20)

As in [20, 35, 36] we introduce the Galerkin production for any finite K > 0 and
any u, z ∈ L2(Ω, pΞ), ũ = (ũi)

K
i=0, z̃ := (z̃i)

K
i=0 and for all i, j, ℓ = 0, . . . ,K :
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GK [u, z](t, x; ξ) :=

K∑
k=0

(ũ ∗ z̃)k(t, x)ϕk(ξ),

(ũ ∗ z̃)k(t, x) :=
K∑

i,j=0

ũi(t, x)z̃j(t, x)Mℓ,

(Mℓ)i,j :=

∫
Ω

ϕi(ξ)ϕj(ξ)ϕℓ(ξ)pΞ(ξ)dξ.

Note that Mℓ is a symmetric matrix of dimension (K + 1)× (K + 1) for any fixed
ℓ ∈ {0, . . . ,K}. The Galerkin product GK is not the only possible projection of
the product of random variables u, z on the subspace span{ ϕ0, . . . , ϕK}. However,
this choice (and additional assumptions on the base functions) have shown to be
sufficient to guarantee hyperbolicity of the p−system [20] as well as the Aw–Rascle–
Zhang system [19]. Furthermore, we have ũ ∗ z̃ = P(ũ)z̃ for P ∈ RK+1×K+1 and
ũ ∈ RK+1 defined by

P(ũ) :=

K∑
ℓ=0

ũℓMℓ. (21)

The Galerkin product is symmetric, but not associative [13, 34, 41]. Finally, we
assume that the chosen functions {ϕi}i fulfill the following properties [18, A1-A3]

(A1) The matrices Mℓ and Mk commute for all ℓ, k = 0, . . . ,K.
(A2) The matrices P(û) and P(z̃) commute for all ũ, z̃ ∈ RK+1.
(A3) There is an eigenvalue decomposition P(ũ) = VD(ũ)V T with constant eigen-

vectors V .

It has been shown that for example the one–dimensional Wiener–Haar basis and
piecewise linear multiwavelets fulfill the previous assumptions, but, Legendre and
Hermite polynomials do not fulfill those requirements.

Similar to [26, 40] and for any fixed K we derive a system of equations for the
evolution of g̃i(t, x, w) : R+×R×W → R for i = 0, . . . ,K by projection the operators
of equation (13) to the space span{ϕi : i = 0, . . . ,K }. We further assume that the
set of base functions is orthonormal and fulfills the assumptions (A1)–(A3).

∂t g̃i(t, x, w) + ∂x

((
wId− P (h(ρ̃ (t, x)))

)
g̃(t, x, w)

)
i
=

1

ε

(
M̃i (w; ρ̃(t, x))− g̃i(t, x, w)

)
,

(22)

g̃i(0, x, w) =

∫
Ω

g0(t, x, w, ξ)ϕi(ξ)pΞ(ξ)dξ (23)

In the derivation of the previous system (22) we have used the following results:
Under assumptions (A1)-(A3) h, as given by equation (10), fulfills [19]:

K∑
j=0

∫
Ω

h

(
K∑
ℓ=0

ρ̃ℓϕℓ(ξ)

)
g̃jϕj(ξ)ϕi(ξ)pΞ(ξ)dξ = (P(h(ρ̃))g̃)i , ∀i = 0, . . . ,K. (24)

Further, we define for i = 0, . . . ,K
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M̃i (w; ρ̃(t, x)) :=

∫
Ω

Mg

(
w;

K∑
ℓ=0

ρ̃ℓ(t, x)ϕℓ(ξ)
)
ϕi(ξ)pΞdwdξ, (25)

M̂g(w, ρ̃(t, x), ξ) :=Mg

(
w;

K∑
i=0

ρ̃i(t, x)ϕi(ξ)

)
. (26)

2.1. Derivation of stochastic Aw–Rascle–Zhang model. In [24] a connection
between two levels of description, i.e., (11) and (6) has been established under the
assumption that the Maxwellian fulfills (M1) and (M2). The next lemma shows
that those assumptions extend directly to the stochastic case.

Lemma 2.1. Let K > 0. Consider a base functions ϕi and i = 0, . . . ,K fulfilling
(A1)–(A3). Furthermore, assume that the functions Mg, V

eq fulfill the assumptions
(M1)-(M2). Let g be expanded in a gPC series with K+1 modes as given by equation

(16). Then, M̃g defined by (26) fulfill for any i = 0, . . . ,K, t ≥ 0, and x ∈ R :

∫
W

M̃i (w; ρ̃(t, x)) dw = ρ̃i(t, x), (UM1)∫
W

w M̃i (w; ρ̃(t, x)) dw =
(
P(Veq(ρ̃(t, x)))ρ̃(t, x) + P(h(ρ̃(t, x)))ρ̃(t, x)

)
i
. (UM2)

Proof. Due to (M1)-(M2) and (19) we obtain for a.e. (t, x, ξ) ∈ R+ × R× Ω.

∫
W

Mg(w; ρ(t, x, ξ)) dw = ρ(t, x, ξ), (27)∫
W

w Mg(w; ρ(t, x, ξ)) dw = ρ(t, x, ξ)Veq(ρ(t, x, ξ)) + ρ(t, x, ξ)h(ρ(t, x, ξ)). (28)

Integration with respect to dw yields

∫
W

M̃i(w, ρ̃(t, x)) dw =

∫
Ω

∫
W

Mg

(
w;

K∑
j=0

ρ̃j(t, x)ϕj(ξ)
)
ϕi(ξ)dwpΞ(ξ)dξ =

∫
Ω

K∑
j=0

ρ̃j(t, x)ϕj(ξ)ϕi(ξ)pΞ(ξ)dξ = ρ̃i(t, x).

The similar computation yielding (UM2) is omitted.

In the following result we derive a gPC formulation of the fluid model obtained by
the stochastic BGK model (13). Further, we compare this model with the stochastic
Aw–Rascle–Zhang model derived in [19]. The theorem shows that under assumption
(29) the derived gPC model is equivalent to the stochastic model of [19]. Therein,
it has also been shown that the partial differential equation is hyperbolic.

Theorem 2.2. Let K > 0, ϵ > 0. Assume the base functions {ϕ0, . . . , ϕK} fulfill
(A1)–(A3) and assume that the functions Mg, V

eq fulfill the assumptions (M1)-(M2)
and let h(·) fulfill (10). Let g̃i be a strong solution to (22) and (25) for i = 0, . . . ,K.
Further, assume that for i = 0, . . . ,K and (t, x) ∈ R+ × R
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W

w2 g̃i(t, x, w)dw = (P(q̃(t, x))P−1(ρ̃(t, x))q̃(t, x))i, (29)

where (ρ̃, q̃)i are the first and second moment of g̃i as in (19)–(20) and P is defined
by (21).

Then, the functions (ρ̃, q̃) formally fulfill pointwise in (t, x) ∈ R+ ×R and for all
i = 0, . . . ,K the second–order traffic flow model

∂tρ̃i(t, x) + ∂x [q̃i(t, x)− (P(ρ̃(t, x))ρ̃(t, x))i] = 0 (30a)

∂tq̃i(t, x) + ∂x
[
(P(q̃(t, x))P−1(ρ̃(t, x))q̃(t, x))i − (P(ρ̃(t, x))q̃(t, x))i

]
= (30b)

1

ϵ

((
P(Veq(ρ̃(t, x)))ρ̃(t, x) + P(h(ρ̃(t, x)))ρ̃(t, x)

)
i
− q̃i(t, x)

)
(30c)

ρ̃i(0, x) =

∫
W

g̃0,i(t, x, w)dw, (30d)

q̃i(0, x) =

∫
W

w g̃0,i(t, x, w)dw. (30e)

The system (30) is hyperbolic for ρ̃i > 0.
Let the random fields (ρ, q) = (ρ, q)(t, x, ξ) : R+×R×Ω → R2 be a pointwise a.e.

solution with second moments w.r.t. to ξ of the stochastic Aw–Rascle–Zhang system
with random initial data:

∂tρ+ ∂x(q − ρh(ρ)) = 0, (31a)

∂tq + ∂x

(q2
ρ

− qh(ρ)
)
=

1

ϵ
(ρVeq(ρ) + ρh(ρ)− q) , (31b)

ρ(0, x, ξ) = ρ0(x, ξ), q(0, x, ξ) = q0(x, ξ). (31c)

Under the previous assumptions on the base functions { ϕ0, . . . , ϕK} and provided
that for all i = 0, . . . ,K∫

Ω

ρ0(x, ξ)ϕi(ξ)pΞdξ =

∫
W

g̃0,i(t, x, w)dw,

∫
Ω

q0(x, ξ)ϕi(ξ)pΞdξ =

∫
W

wg̃0,i(t, x, w)dw,

(32)

we have

GK (ρ(t, x, ·)) (ξ) =
K∑
i=0

ρ̃i(t, x)ϕi(ξ) and GK (q(t, x, ·)) (ξ) =
K∑
i=0

q̃i(t, x)ϕi(ξ),

(33)

where (ρ̃, q̃) fulfill equation (30).

Some remarks are in order. The assumption (29) is a closure relation and has
been presented in the deterministic case [24]. The result on hyperbolicity of the
system (30) has been presented in [19]. Therein, also the system for the coefficients
ρ̃, q̃ of a gPC expansion of the stochastic case of (6) has been derived, i.e., the
system (30). Condition (32) states the consistency of initial data of both systems.

Proof. The proof is similar to [24] and given here for completeness. For a pointwise
a.e. solution g̃ and corresponding densities ρ̃ and fluxes q̃ according to (19)–(20) we
obtain for each i ∈ {0, . . . ,K} by (22) and after integration on W



UNCERTAINTY QUANTIFICATION IN HIERARCHICAL VEHICULAR FLOW MODELS 247

∂t

∫
W

g̃i(t, x, w)dw + ∂x

∫
W

wg̃i(t, x, w)−
(
P(h(ρ̃(t, x)))g̃(t, x, w)

)
i
dw (34)

=
1

ε

(∫
W

M̃i(w; ρ̃(t, x))− g̃i(t, x, w)dw

)
. (35)

Since g̃ → P(ρ̃)g̃ is linear and by equation (UM1) of Lemma 2.1

∂tρ̃i(t, x) + ∂x

(
q̃i(t, x)−

(
P(h(ρ̃(t, x)))ρ̃(t, x)

)
i

)
= 0. (36)

Furthermore, we integrate (22) w.r.t. to w dw on W to obtain

∂t

∫
W

wg̃i(t, x, w)dw + ∂x

∫
W

w2g̃i(t, x, w)− w
(
P(h(ρ̃(t, x)))g̃(t, x, w)

)
i
dw (37)

=
1

ε

(∫
W

wM̃i(w; ρ̃(t, x))− wg̃i(t, x, w)dw

)
. (38)

This yields

∂tq̃i(t, x) + ∂x

∫
W

w2g̃i(t, x, w)dw −
(
P(h(ρ̃(t, x)))q̃(t, x)

)
i

(39)

=
1

ε

(∫
W

wM̃i(w; ρ̃(t, x))dw − q̃i(t, x)

)
. (40)

Using now (29) and equation (28) of Lemma 2.1 we obtain the momentum equation
of the second–order traffic flow model (30).

Under the assumptions (A1)–(A3) we obtain that (30) is hyperbolic as proven in
[19]. Therein, also the assertion (33) has been established.

Remark 1. Introducing stochasticity also allows for more general Maxwellians.
In particular, the Maxwellian Mg could also depend on ξ directly. Hence, we may
assume that

Mg(w; ρ, ξ) := M(w; ρ(t, x, ξ), ξ). (41)

The previous derivation can be also conducted for Maxwellians of the previous type.
In order to conserve mass it is necessary to assume that M fulfills (UM1). Then,
we obtain a gPC expansion in coefficients ρ̄ = (ρ̄i)

K
i=0 and q̄ = (q̄i)

K
i=0 as

∂tρ̄i(t, x) + ∂x [q̄i(t, x)− (P(ρ̄(t, x))ρ̄(t, x))i] = 0 (42a)

∂tq̄i(t, x) + ∂x

[∫
W

w2ḡi(t, x, w) dw − (P(ρ̄(t, x))q̄(t, x))i

]
=

1

ϵ

(∫
W

wM i dw − q̄i(t, x)
)

(42b)

ρ̄i(0, x) = ρ̃i(0, x) q̄(0, x) = q̃i(0, x), M i =

∫
Ω

M(w; ρ(t, x, ξ), ξ)ϕi(ξ)pΞ(ξ)dξ. (42c)

Clearly, applying assumption (29) leads for the transport part of the system the
same flux as for the Aw–Rascle–Zhang system. A direct identification of the source
term with fluid dynamic quantities is no longer possible but depends on the precise
dependence of M on ρ and ξ.
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2.2. Stability analysis. We extend the stability analysis [24, Section 3.2] to the
stochastic case. Recall, the stochastic PDE (13) for the random field g = g(t, x, w, ξ)
is given by

∂tg(t, x, w, ξ) + ∂x

[
(w − h(ρ(t, x, ξ)))g(t, x, w, ξ)

]
=

1

ε

(
Mg(w; ρ)− g(t, x, w, ξ)

)
,

(43)

where we assume that Mg fulfills (M1) and (M2). The stability analysis in [24] is
based on a Chapman Enskog expansion of g in terms of ϵ. Here, we similarly assume
that

g(t, x, w, ξ) = Mg(w; ρ(t, x, ξ)) + εg1(t, x, w, ξ), (44)

where a.e. (x,w) and a.s. in ξ∫
W

g1(t, x, w, ξ)dw = 0. (45)

Up to terms of order ϵ2 the perturbation g1 fulfills

g1(t, x, w, ξ) = −∂tMg(w; ρ(t, x, ξ))− ∂x (w − h(ρ(t, x, ξ)))Mg(w; ρ(t, x, ξ)). (46)

The formal computations presented in [24, Section 3.2] extend to the above equa-
tions (43) and (46) since they only rely on integration with respect to w and the
properties (M1) and (M2). Those are independent of ξ. Hence, after integrating
(43) with respect to w, substituting g1 by (46) as well as subsequent differentiation
leads to

∂tρ+ ∂x (ρVeq(ρ)) = ϵ∂x

(
−D(ρ)∂xρ+ ∂x

∫
W

w2Mg(w, ρ)dw

)
, (47)

D(ρ) = (∂ρQeq(ρ) + ∂ρ(h(ρ)ρ)) (∂ρQeq(ρ) + h(ρ)) + ∂ρh(ρ) (Qeq(ρ) + h(ρ)ρ) (48)

Qeq(ρ) = Veq(ρ)ρ, (49)

where ρ = ρ(t, x, ξ). In [24] it is assumed that the Maxwellian Mf , see Section 2,
and Mg are related. In this case

Mf (v, ρ) := Mg(v + h(ρ), ρ) ∀v ∈ V, ρ ≥ 0, (50)

where Mf is a Maxwellian such that
∫
V
Mf (v, ρ)dv = ρ and

∫
V
vMf (v, ρ)dv =

Qeq(ρ). Using those properties equation (47) simplifies and we obtain

∂tρ+ ∂x (ρVeq(ρ)) = ϵ∂x (µ(ρ)∂xρ) , (51)

µ(ρ) =
(
−∂ρQeq(ρ)

2 − ∂ρh(ρ)∂ρQeq(ρ)ρ+Qeq(ρ)∂ρh(ρ)
)
+

∫
V

v2∂ρMf (v, ρ)dv.

(52)

Note that in the presented case µ is in fact a random field through its dependence
on ρ = ρ(t, x, ξ). Therefore, compared with the deterministic case, we may now
infer information on e.g. expectation, confidence bands or the probability of µ to
be non-positive. In particular, the later is relevant for qualitative assessment of
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traffic flow since it shows where possible instabilities may occur. Hence, for fixed
t ≥ 0 and x ∈ R consider

Pt,x(µ ≤ 0) :=

∫
Ω

H(−µ(ρ(t, x, ξ))pΞ(ξ)dξ. (53)

It has been argued in [24] that (53) indicates regions of traffic situations of high risk.
Further, points (t, x) where Pt,x(·) > 0 holds might lead to the rise of stop–and–
go waves. A numerical investigation of (53) will be presented in the forthcoming
section.

Note that the computation of (53) requires to reconstruct the stochastic field
ρ(t, x, ξ). This can be obtained by reconstruction of g given by (16) where g̃ are
given by equation (22).

For particular choices of Veq(·) and h(·) the gPC expansion of the first terms
in µ can be obtained directly using the moments ρ̃. In fact, assume h(ρ) = ρ and
Veq = ρmax − ρ. Then, Qeq = ρ(ρmax − ρ) is the flux of the Lighthill-Whitham–
Richards model and equation (51) simplifies

µ(ρ) = R(ρ) +

∫
V

v2∂ρMf (v, ρ)dv, (54)

R(ρ) := −(ρmax − 2ρ)2 − (ρmaxρ− ρ2) + ρ(ρmax − ρ). (55)

Hence, we obtain

GK(R(ρ(t, x, ·)))(ξ) =
K∑
i=0

R̃i(t, x)ϕi(ξ) (56)

where R̃ is expressed in terms of ρ̃ and ⊮ = (1, . . . , 1)T ∈ RK+1

R̃(t, x) = −P (ρmax⊮− 2ρ̃)(ρmax⊮− 2ρ̃)− ρmaxρ̃+ P (ρ̃)ρ̃+ P (ρ̃)(ρmax⊮− ρ̃)
(57)

However, in the numerical simulations we use a Maxwellian Mf obtained by a
discrete velocity model, see below for the details. Therein, ρ enters within a rational
polynomial and a simple expression as above, also for the expansion of ∂ρMf (v, ρ)dv,
seems to be not possible.

3. Computation results. Numerically, we are interested in indicating and fore-
cast regions of high risk of congestion or instabilities. For this reason we focus on
the simulation of (53). First, we perform a steady state analysis and investigate
parameters influencing regions of high probability. Secondly, we show the evolution
of this probability in time.

As Maxwellian we choose a discrete velocity distribution with nv velocities as in
[24]:

Mf (v; ρ) =

nv∑
j=1

f∞
j (ρ)δvj (v). (58)

The weights are normalized to ensure equation (27), i.e.,
∑nv

j=1 f
∞
j (ρ) = ρ for any

ρ > 0. The set of velocities is {vj}nv
j=1. Then, for fixed ρ > 0 the weights are

recursively defined by
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f∞
j =

{
0 ρ ≥ 1

2

−2(1−ρ)
∑j−1

k=1 f∞
k +(1−2ρ)ρ+

√
[(1−2ρ)ρ−2(1−ρ)

∑j−1
k=1 f∞

k ]2+4ρ(1−ρ)ρf∞
k

2(1−ρ) else
,

(59)

j = 1, . . . , nv − 1,

f∞
nv

=ρ−
nv−1∑
j=1

f∞
j . (60)

We use Veq = 1 − 2ρ and h(ρ) as indicated in the tests below. The Maxwellian
Mg is obtained through relation (50). Since the previous Maxwellian is a rational
polynomial of ρ, an explicit expression of µ(·) in terms of the moments of ρ might
not be feasible. Therefore, we evaluate (53) numerically using quadrature with Nξ

number of points.
The gPC Aw–Rascle–Zhang system is discretized as in [19], i.e., employing a

local Lax Friedrichs scheme to solve (30).
The numerical parameters are as follows. We consider the space interval x ∈

[a, b] = [0, 2] and define the uniform spatial grid of size ∆x = 2 ·10−2. Moreover, let
Tf = 1 be the final time of the simulations and ∆t the time step, which is chosen
in such a way that the CFL condition is fulfilled. By Nt we denote the number of
the time steps needed to reach Tf . The random variable ω is assumedto be uniform
distributed on (0, 1), i.e., pΞ = 1 and Ω = (0, 1). As basis functions we consider the
Haar basis, which are known to fulfill (A1)–(A3). The numerical quadrature of (53)
is conducted with a uniform discretization of (0, 1) in ξ with Nξ = 104 quadrature
nodes. Whenever necessary the random fields density and flux are approximated up

to a specified order K by ρ(t, x, ξ) =
∑K

i=0 ρ̃i(t, x)ϕi(ξ) and similarly for q(t, x, ξ).

3.1. Steady state analysis. The Maxwellian Mf depends on two parameters, the
number of discrete velocities nv governing the level of description of traffic as well
as the local density 0 < ρ < 1. In the steady state case the density ρ has been
a constant in the deterministic case [24], however, it is now a random parameter.
Since we are interested in the stability of traffic patterns we setup the steady state
problem as follows: We assume a constant traffic density ρ0 that is perturbed by a
(possibly small) perturbation

ρ(ξ) = ρ0 + σ(ξ − 1

2
), (61)

where σ > 0 controls the standard deviation and the factor 1
2 is included to have

zero mean for ξ uniformly distributed. We are interested in the probability (53) for
the previous choice of ρ and ρ0 ∈ [0.1; 0.9] with σ = 0.1. The resulting P(µ ≤ 0) is
shown in Figure 2 (red curve).

In the free flow regime, i.e., ρ0 < 1
2 , the probability of instabilities is zero, it

is increasing until its maximum transition regime, and decreasing in the congested
are ρ > 1

2 . It is interesting to observe that in the congested region the probability
of µ < 0 is close to zero with the interpretation that the traffic propagates at low
speed and and no free space to accelerate. As expected, the highest probability for
instabilities is in the transitional regime ρ0 ≈ (0.5, 0.6).

Moreover, in Figure 2, we compare the predictions for nv = 3 and nv = 10.
In case of a small and large number of discrete velocities. In case of only three
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Figure 2. Probability (53) for a Maxwellian Mf with different
number of discrete velocities: nv = 3, nv = 10. On the x-axis ρ0 is
shown, see (61).

velocities the transition region stretches up to the maximal density due to the limit
choices of velocities the drivers can attain. For nv = 10, we observe the highest
probability for ρ between 0.5 and 0.6 as detailed above.

Further, the dependence of P(µ < 0) for fixed values of ρ0 but different standard
deviations σ is shown. We observe a different behavior if we start from ρ0 = 0.4
and ρ0 = 0.6, see Figure 3.
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Figure 3. Probability (53) for different velocities samples: nv = 3
(blue line), nv = 10(red line) for different values of ρ0 = 0.4(left)
ρ0 = 0.6(right) when the standard deviation σ ranges from zero to
0.2.

In the latter, the probability is decreasing with the possible explanation that
the density is spreading far from the transition area. In the former, we are in the
opposite situation, since we approach the transition region for increasing value for
the standard deviation.
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Furthermore, we compare also the effect of different hesitation functions. In
Figure 4, h(ρ) = ρ(blue line) and h(ρ) = ρ3 are considered. The observed behavior
is very similar.
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h(;)= ;
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Figure 4. Probability (53) for different hesitation functions:
h(ρ) = ρ(blue line) and h(ρ) = ρ3(red line).

3.2. Time–dependent problems. We investigate numerically if the dynamics
amplifies the probability of instabilities starting from a Riemann problem. In order
to evaluate (53) for a temporal and spatially dependent ρ, we need to reconstruct
the density and therefore we first show the convergence in K. In all following com-
putations we set nv = 5, Nξ = 102 and define the Riemann problem:

ρ(x, 0, ξ) =

{
ρl ≡ ξ ∼ U(0.55, 0.85) x < 1

0.2 x ≥ 1
, v(x, 0, ξ) =

{
0.2 x < 1

0.7 x ≥ 1
.

(62)
First of all, we show the behavior of the mean and the variance of the density

for different values of K, which play a crucial role for computing µ. In Fig. 5 we
observe a convergence for increasing K both in the mean and in the variance at
t = Tf and initial data (62).
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Figure 5. Mean and variance of the density at t = Tf for different .
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In Figure 6 we show PTf ,x(µ < 0) for an increasing number of base functions K.
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Figure 6. Probability (53) at time t = 0 (black line), t =
Tf

2
(green line) t = T (blue line) for K = 4 (top-left), K = 8 (top-
right), K = 32 (bottom-left), K = 64 (bottom-right).

Moreover, the probability of instabilities is increasing in time and travels back-
ward. As explanation of this behavior we note that the given data leads to a
rarefaction wave in (t, x) for any fixed ρl. Hence, drivers observe a free flow area
ahead and accelerate. The 95%−confidence band of the density ρ at the final time
Tf is shown in Figure 7(right).

As second test case we consider a (random) shock wave as given by (63). Here,
the probability of instabilities increases and spreads both forward and backward. A
possible explanation might be that the vehicles have to decelerate in order to avoid
collisions leading also to backwards spreading waves.

ρ(x, 0, ξ) =

{
ρl ≡ ξ ∼ U(0.15, 0.45) x < 1

0.75 x ≥ 1
, v(x, 0, ξ) =

{
0.7 x < 1

0.3 x ≥ 1
.

(63)
In Figure 8(right) the 95%−confidence band of the density at the final time Tf is
shown. It is interesting to note that even starting from P(µ < 0) ≡ 0 does not
ensure to avoid instabilities as time evolves, see Figure 8(left). Indeed, at time
t = 0 the probability is zero. However, as the time evolves, the density enters the
transition phase and the probability of instability grows.
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Figure 7. Probability of negative diffusion coefficient in a rar-

efaction case at different time: t = 0, t =
Tf

2 ,t = Tf , K = 64, and
comparison with the confident region of the density at t = Tf .
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Figure 8. Density profile and probability of negative diffusion co-
efficient in a shock case at t = Tf , K = 64.
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