
Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Augmented fluid-structure interaction systems for viscoelastic
pipelines and blood vessels

Giulia Bertaglia ∗

∗ Department of Mathematics and Computer Science
University of Ferrara

Ferrara, Italy
e-mail: giulia.bertaglia@unife.it

Key words: fluid–structure interaction, compliant ducts, viscoelastic effects, finite volume
methods, IMEX Runge–Kutta schemes

Abstract: In this work, innovative 1D hyperbolic models able to predict the behavior of the
fluid-structure interaction mechanism that underlies the dynamics of flows in different compliant
ducts are presented. Starting from the study of plastic water pipelines, the proposed tool is then
applied to the biomathematical field to reproduce the mechanics of blood flow in both arteries
and veins. With this aim, various different viscoelastic models have been applied and extended
to obtain augmented fluid-structure interaction systems in which the constitutive equation of
the material is directly embedded into the system as partial differential equation. These systems
are solved recurring to Finite Volume Methods that take into account the recent evolution in the
computational literature of hyperbolic balance laws systems. To avoid the loss of accuracy in
the stiff regimes of the proposed systems, asymptotic-preserving Implicit-Explicit Runge-Kutta
schemes are considered for the time discretization, which are able to maintain the consistency
and the accuracy in the diffusive limit, without restrictions due to the scaling parameters.

1 INTRODUCTION

Mathematical models and numerical methods are a powerful resource for better understand-
ing phenomena and processes throughout the fluid dynamics field, allowing significant reduction
in the costs, which would otherwise be required to perform laboratory experiments, and even
allowing to obtain useful data that could not be gathered through measurements.

The correct characterization of the interactions that occur between the fluid and the wall
that surrounds it is a fundamental aspect in all contexts involving deformable ducts, which
requires the utmost attention at every stage of both the development of the computational
method and the interpretation of the results and their application to cases of practical interest.
Concerning flexible plastic pipes, which are playing an increasingly important role in hydraulic
systems due to their cost-effectiveness and ease of installation, it has been demonstrated that
the choice to characterize the fluid-structure interaction (FSI) behavior through a simple elastic
law leads to consistent errors in the predictions of the pressure trends when studying hydraulic
transients phenomena [7]. In fact, almost without exceptions, polymers manifest a viscoelastic
behavior, responding to external forces in an intermediate way between the behavior of an
elastic solid and a viscous liquid [19], and the adoption of a proper viscoelastic constitutive law
for the definition of the FSI mechanism results fundamental [11].

Viscoelasticity is characterized by 3 primary features [14]:

1. Creep, which describes a material in continuous deformation over time when it is main-
tained under constant stress;

2. Stress relaxation, which refers to the decrease of stress over time when it is maintained
under constant strain;
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Figure 1: Scheme of the Standard Linear Solid Model with Kelvin-Voigt unit.

3. Hysteresis, which describes the dissipation of energy when a material undergoes cyclic
loading and unloading.

Similarly, also biological tissues manifest viscoelastic properties. Thus, arteries and veins
can be seen, with the due corrections specifically provided by hemodynamics, as highly flexible,
viscoelastic tubes, tending almost to collapse under certain physiological conditions in the case
of veins, hence leading to deal with highly non-linear systems [16]. Even though frequently, in
hemodynamics models, the viscosity of vessels is neglected for simplicity, there is an increasing
number of contributions showing the benefits of modeling the mechanical behavior of the vessel
wall using a viscoelastic rheological characterization [1].

2 MATHEMATICAL MODELS

2.1 General one-dimensional models

The system of balance laws governing the motion of a compressible fluid through a flexible
tube is obtained averaging the 3D compressible Navier-Stokes equations over the cross-section
under the assumption of axial symmetry of the geometry of the conduct and of the flow. The
resulting 1D non-linear hyperbolic system of partial differential equations (PDEs), composed
by the continuity equation and by the momentum equation, reads [17]:

∂t(Aρ) + ∂x(Aρu) = 0 (1a)

∂t(Aρu) + ∂x(Aρu
2 + Ap)− p ∂xA = FR, (1b)

where x is the space, t is the time, A is the cross-sectional area of the tube, ρ is the cross-
sectional averaged density of the fluid, u is the averaged fluid velocity, p is the averaged fluid
pressure and FR is a model of the friction between fluid and tube wall, which can either account
only for quasi-steady friction effects or both quasi-steady and unsteady ones (for further details
the reader can refer to [2]).

Notice that when an incompressible fluid is considered (as for the case of blood flow studies)
the system can be written as follows [16]:

∂tA+ ∂x(Au) = 0 (2a)

∂t(Au) + ∂x(Au
2) +

A

ρ
∂xp =

FR
ρ
. (2b)

To close system (1), an equation of state (EOS) and a constitutive law (also called tube law)
must be introduced. In most of the technical applications it is usually sufficient to assume a
barotropic behavior of the fluid, therefore ρ = ρ(p). Nevertheless, taking into account cavitation
phenomena may be necessary. An EOS for barotropic flows which accounts also for cavitation
effects is presented in [10]. On the other hand, to solve system (2), only a proper tube law is
needed.
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2.2 The augmented fluid-structure interaction systems

The tube law describes the relationship between the tube cross-section and the internal
pressure, containing all the information about the mechanical behavior of the pipe material.
To correctly model the compliance and the flexibility of plastic ducts, in this work the Standard
Linear Solid (SLS) model is considered, being the simplest viscoelastic rheological model able
to describe the three main features of viscoelastic materials [14]. Hence, we assume that the
mechanical behavior of the wall is defined by the interaction of a linear spring in series with a
Kelvin-Voigt unit, composed of a linear spring in parallel with a linear dash-pot, as presented
in Figure 1.

Evaluating the constitutive equation of the SLS model, expressed in terms of stress σ and
strain ε,

dtσ = E0 dtε−
1

τr
(σ − E∞ε), (3)

the three parameters of the model, namely the instantaneous Young modulus E0, the asymptotic
Young modulus E∞, and the relaxation time τr, are so defined (referring to Figure 1):

E0 = E1, E∞ =
E1E2

E1 + E2

, τr =
η

E1 + E2

. (4)

From equation (3), concerning a compressible fluid and a mildly non-linear system (1),
applying Barlow’s formula, introducing the linearized kinematic relation between the strain
and the non-dimensional cross-sectional area rescaled with respect to its reference value α =
A
A0

= (1 + ε2) ≈ 1 + 2ε, and recurring to the continuity equation (1a), the following PDE form
of the SLS rheological law is obtained [2, 13]:

∂tA+ d1 ∂x(Aρu) = S1, (5)

where

d1 =
2c2s

2ρc2s +Kα
, S1 =

1

τr

[
2A

2ρc2s +Kα
(p− p0)−

E∞
E0

AK

2ρc2s +Kα
(α− 1)

]
.

Here, K represents the stiffness of the material, which accounts for the instantaneous Young

modulus E0, the wall thickness and the radius of the tube, cs =
√

∂p
∂ρ

is the celerity contribute

related to the compressibility of the fluid, which results equal to the sound speed when cavitation
does not occur [2], and p0 is the equilibrium pressure.

It can be observed that the relaxation time τr, and therefore the viscosity coefficient η,
affects only the source term S1. In fact, the viscous information about the FSI mechanism are
all embedded in the term S1, which defines viscoelastic damping effects. Interestingly, if we let
τr → 0, entering in the diffusive and stiff regime of the system, from equation (3) we recover
exactly the Laplace law, which is the standard elastic law used in literature [13]. Therefore,
the hyperbolic augmented fluid-structure interaction (a-FSI) system for compressible fluids
and mildly non-linear systems, capable of describing from simple elastic to viscoelastic FSI
mechanisms, results

∂t(Aρ) + ∂x(Aρu) = 0 (6a)

∂t(Aρu) + ∂x(Aρu
2 + Ap)− p ∂xA = FR (6b)

∂tA+ d1 ∂x(Aρu) = S1. (6c)

Notice that to allow a formally correct treatment of possible discontinuous longitudinal
changes of the reference cross-section or of the mechanical parameters of the wall, it is possible
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to account for trivial equations which simply states that the interested variables are constant
in time [2, 3].

A similar procedure can be followed also when considering blood flow models, hence an
incompressible fluid and a highly non-linear setting, as in system (2), which leads to analogous
results. Indeed, defining ε = αm−αn, where parameters m and n are associated to the specific
behavior of the vessel wall, whether arterial or venous [15], and using this definition in equation
(3) together with Barlow’s formula, recurring also to the continuity equation (2a), the following
PDE of the SLS model is obtained [3, 4]:

∂tp+ d2 ∂x(Au) = S2, (7)

with

d2 =
K

A
(mαm − nαn) , S2 =

1

τr

[
E∞
E0

K (αm − αn)− (p− p0)
]
.

The reader is invited to observe the similarities between d1, S1 and d2, S2. In particular,
also in this configuration, the source term S2 accounts for all the viscoelastic information of
the FSI mechanism, and if we consider the diffusive limit letting τr → 0, we recover again the
corresponding elastic tube law [3, 5]. Hence, the final hyperbolic a-FSI system for blood flow
results:

∂tA+ ∂x(Au) = 0 (8a)

∂t(Au) + ∂x(Au
2) +

A

ρ
∂xp =

FR
ρ

(8b)

∂tp+ d2 ∂x(Au) = S2 (8c)

It is worth to underline that the choice of inserting the tube law in PDE form straight inside
the system of equations results advantageous if compared to approaches generally followed in
literature [1, 15]. Indeed, if the classical formulation is adopted choosing to characterize the
FSI with the Kelvin-Voigt viscoelastic model (which, anyhow, lacks in the description of the
relaxation process of the stress [14]), a second order derivative in space of the flow rate Au
arises, which leads to deal with a non-hyperbolic system and consequent numerical issues.

Finally, to obtain more flexible models, it is possible to extend the number of Kelvin-Voigt
units in the SLS configuration, obtaining the so-called Kelvin-Voigt chain [14]. Theoretically,
the more elements we have, the more accurate our model will be in describing the real response
of the material. Conversely, the more complex the model is, the more parameters that must be
calibrated there are. The extension for the case of water pipelines is presented in details in [2].

3 NUMERICAL METHODS

Initially, to solve system (6), three different numerical schemes have been chosen and com-
pared: the widely used Method of Characteristics (MOC) [7], an explicit path-conservative finite
volume (FV) method associated with the Dumbser-Osher-Toro (DOT) Riemann solver [9], and
a semi-implicit (SI) FV method specifically developed for axially symmetric compressible flows
in compliant tubes [10].

On the other hand, to solve system (8), which can result stiff under physiological conditions,
an Implicit-Explicit (IMEX) Runge-Kutta scheme, proposed for applications to hyperbolic sys-
tems with stiff relaxation terms, is considered [18]; while, for the space discretization, the same
FV method with DOT solver previously mentioned is used. In particular, the second-order
IMEX-SSP2(3,3,2) scheme is adopted [18]. The chosen numerical scheme is asymptotic pre-
serving (AP) and asymptotic accurate in the zero-relaxation limit (i.e. when τr → 0), which
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Figure 2: Comparison of the numerical results obtained with MOC, DOT and SI schemes against the exper-
imental solution (EXP) of the water hammer test when using the SLS model (left) or the Kelvin-Voigt chain
(right). Pressure p(Nx) at the downstream end.
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Figure 3: Results of the efficiency analysis for the water hammer test with the SLS model (left) and Kelvin-
Voigt chain (right), in terms of L2 norm with respect to the CPU time tCPU .

allows to preserve the consistency of the scheme in the equilibrium, elastic limit as well as
the order of accuracy, without restrictions due to the scaling parameters [5]. Another advan-
tage of the chosen scheme lays in the possibility to analytically linearize each Runge-Kutta
step to obtain a totally explicit algorithm, avoiding the adoption of iterative procedures like
Newton-Raphson method, with a consequent consistent reduction of the computational cost
[3].

4 NUMERICAL RESULTS AND DISCUSSION

To validate the proposed methodologies, different numerical tests have been designed. To
compare the numerical methods used to solve system (6), a water hammer test case is here
presented, with reference experimental data taken from [12], for which both the SLS model and
the Kelvin-Voigt chain with 5 units are used.

Concerning the a-FSI blood flow model (8), targeted comparisons between numerical results
and literature benchmarks have been performed with respect to close to reality test cases in
single portions of vessels. In addition, patient-specific tests are considered, for which it has
been possible to compare numerical results with available pressure data recorded in-vivo, from
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Figure 4: Baseline upper thoracic aorta case. Results obtained solving the 1D a-FSI system with the IMEX
FV scheme with elastic tube law compared to six 1D and one 3D benchmark solutions. Results presented in
terms of pressure at the midpoint (left) and flow rate at the midpoint (right).

9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

80

100

120

140

160

In-vivo data subject A

IMEX elastic

IMEX viscoelastic

9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

80

100

120

140

160

In-vivo data subject C

IMEX elastic

IMEX viscoelastic

Figure 5: Patient-specific common carotid artery cases. Results obtained solving the 1D a-FSI system with
the IMEX FV scheme, with elastic and viscoelastic tube law, for a 29 years old subject (left) and a 44 years
old subject (right), in terms of pressure, compared with measured data.

different volunteers’ common carotid arteries [4].

4.1 Water hammer tests

Following [12], a DN50 (22.0 mm radius) high-density polyethylene (HDPE) pipe is con-
sidered, with length 203.3 m and a flow rate of 2.0 l/s. In order to experimentally generate
the transient wave, a closure maneuver was performed to a valve positioned downstream of the
pipeline, with a closure time of 0.1 s. For this test, viscoelastic parameters have been calibrated
using the SCE-UA (Shuffled Complex Evolution - University of Arizona) algorithm [8]. From
Figure 2, it can be verified that the three numerical methods reproduce similar results, both
using the SLS model or the extended Kelvin-Voigt chain. At the same time, it is observed that
the increment of viscoelastic parameters does not return a consistent increase in the quality of
the final result, weighing, on the other hand, in terms of computational cost and difficulty of
calibration of the parameters. In fact, for the same water hammer test, an efficiency analysis
has been computed to evaluate the performance of each numerical scheme adopted. Observing
results shown in Figure 3, it is visible that the increment of viscoelastic parameters to char-
acterize the material mechanics leads to an inevitable increment of computational costs not
balanced by a comparable error reduction.

4.2 Blood flow tests

A baseline upper thoracic aorta test case is simulated, following [6], using a purely elastic
wall model to allow comparisons with benchmark data available in literature. Figure 4 shows
a comparison of the numerical results obtained solving the a-FSI system with the IMEX FV
scheme with respect to six 1D and one 3D benchmarks [6]. It can be noticed that, for both
pressure and flow rate, IMEX results are in perfect agreement with benchmarks.

Because no reference solutions of blood flow simulations on single vessels assuming a vis-
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coelastic FSI are available in literature, flow velocity and pressure data measured in-vivo from
four common carotids and two femoral arteries of volunteer subjects have been used to set up
patient-specific test cases, to validate the proposed model in its viscoelastic configuration. The
velocity wave extrapolated from each of the six subjects, obtained by Doppler measurements,
is prescribed as inlet condition, while the post-processed pressure wave, measured recurring to
the Arterial Tonometry technique, is used for comparisons with numerical results [4]. These
simulations have been performed using both the elastic model and the viscoelastic law, to eval-
uate the effects of viscoelasticity in arterial hemodynamics. Viscoelastic parameters have been
calibrated following [4]. Results of the test cases obtained for two patient-specific common
carotid arteries are here reported in Figure 5, from which the excellent agreement between
in-vivo measured and numerical pressure wave, obtained with the proposed methodology, can
be observed. Indeed, these results confirm the capability of the proposed model to reproduce
realistic pressure signals and the importance of taking into account the viscosity of the vessel
wall in order not to overestimate systolic pressure values.
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