CMBE22

7th International Conference on Computational & Mathematical Biomedical Engineering

27th - 29th June 2022 Politecnico di Milano, Campus Leonardo Milan, Italy

Edited by

Perumal Nithiarasu

Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom

Co-Edited by

Alberto Coccarelli

Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom

Neeraj K. Chakshu

Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom

Christian Vergara

LABS, Dipartimento di Chimica, Materiali e Ingegneria Chimica 'Giulio Natta', Politecnico di Milano, Milan, Italy

Igor Sazonov

Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom Published for CMBE Computational and scientific consultancy services Ltd International House 10 Churchill Way Cardiff CF10 2HE United Kingdom

O 2022 by the authors of the abstracts

First Edition, 2022 Printed in United Kingdom for CMBE

The editors and the publisher makes no guarantee or representation, express or implied, with respect to the accuracy of the contents of this work and cannot accept any legal responsibility for errors or omissions.

ISBN: 978-0-9562914-6-2 ISSN: 2227-3085 (print) ISSN: 2227-9385 (electronic)

Preface

It is a pleasure to welcome all participants of the 7th International Conference on Computational & Mathematical Biomedical Engineering to Milan. This seventh edition is hosted by one of the most prestigious universities in Italy, Politecnico di Milano.

CMBE is an important forum for sharing progress and knowledge within the community interested in engineering mathematics, computational and experimental methods applied to biomedical problems. This year's conference has received a large number of abstracts, each of which was peerreviewed by members of the programme committee and mini-symposia organisers. We would like to thank all the authors and session organisers, committee members and external reviewers for their efforts.

The CMBE22 proceedings in electronic format is available to download from the conference website. All authors are invited to submit an extended version of their paper to the 'International Journal for Numerical Methods in Biomedical Engineering'.

The conference consist of an opening, 2 plenary and 5 keynote lectures, 17 tracks or minisymposia divided into multiple sessions and 7 standard sessions. CMBE also awards the 'International Journal for Numerical Methods in Biomedical Engineering (IJNMBE) Best PhD Award in Biomedical Engineering', in recognition of important contributions to the advancement of computational and/or mathematical biomedical engineering.

Finally, we would like to thank all delegates who attended CMBE22 and made its success.

Co Chairs

Perumal Nithiarasu Christian Vergara

Honorary Chair

Alfio Quarteroni

International Advisory Committee

Leif R. Hellevik Roger Kamm Umberto Morbiducci Anne M. Robertson Simone Scacchi Wolfgang A. Wall Ge Wang

Programme Committee

Cristóbal Bertoglio Bindi Brook Alfonso Caiazzo Michele Marino Alessandro Mauro Dimitris Parthimos Allesandro Reali Ryo Torii Xianghua Xie Yongjie Zhang

Organising Committee

Adesola Ademiloye Hari Arora Jason Carson Neeraj K. Chakshu Alberto Coccarelli Luca Dede' Marco Fedele Raoul van Loon Francesco Migliavacca Sanjay Pant Luca F. Pavarino Igor Sazonov Emiliano Votta Chengyuan Wang Feihu Zhao Swansea University, United Kingdom Politecnico di Milano, Italy

Politecnico di Milano, Italy

Norwegian University of Science and Technology, Norway Massachusetts Institute of Technology, USA Politecnico di Torino, Italy University of Pittsburgh, USA University of Milano, Italy Technical University of Munich, Germany Rensselaer Polytechnic Institute, USA

University of Groningen, The Netherlands University of Nottingham, United Kingdom WIAS Berlin, Germany Leibniz University Hannover, Germany University of Naples Parthenope, Italy Cardiff University, United Kingdom University of Pavia, Italy University College London, United Kingdom Swansea University, United Kingdom Carnegie Mellon University, USA

Swansea University, United Kingdom Swansea University, United Kingdom Swansea University, United Kingdom Swansea University, United Kingdom Politecnico di Milano, Italy Politecnico di Milano, Italy Swansea University, United Kingdom Politecnico di Milano, Italy Swansea University, United Kingdom University of Pavia, Italy Swansea University, United Kingdom Politecnico di Milano, Italy Swansea University, United Kingdom Politecnico di Milano, Italy Swansea University, United Kingdom Swansea University, United Kingdom Swansea University, United Kingdom

Contents

Invited Lectures

Uncertainty Quantification of Blood Flow in Cerebral Circulation using a Surrogate Model based on Machine Learning M. Oshima	2
Towards the clinical use of endovascolar procedures, from structural finite element analysis to deep neural network F. Auricchio	3
Computational Physics for Cardiovascular Functional Imaging and Hemocytometry F. Nicoud	4
What AI scientists think doctors want and what is expected to be delivered: solving the conundrum at the heart of AI and Medicine P. Lio'	5
Development of PVA-H 3D printer for mimicking an artery M. Ohta	6
Material Transport Simulation in Complex Neurite Networks Using Isogeometric Analysis and Machine Learning Techniques J. Zhang	8
Mesoscale models for microcirculation to study vascular alterations and treatments P. Zunino	9
Mechanics, Mechanobiology, and Mechanical Homeostasis in Arteries J.D. Humphrey	0
A1. Identifying and understanding cerebral aneurysms ris	k

A1: Identifying and understanding cerebral aneurysms risk factors and their interactions I

Organised by P. Bijlenga, J.R. Cebral, S. Hirsch, A.M. Robertson and P. Watton

Blebs in cerebral aneurysms: summary of recent studies J.R. Cebral and A.M. Robertson	11
Exploring intracranial aneurysm instability markers to improve disease modeling N. Dupuy, N. Juchler, S. Morel, B.R. Kwak, S. Hirsh and P. Bijlenga	14
Rupture point hemodynamics: the importance of the oscillatory velocity index and Navier slip boundary condition J. Trdlicová and J. Hron	18
Bayesian networks to disentangle the interplay of intracranial aneurysm rupture risk factors	

M. Delucchi, G.R. Spinner, M. Scutari, P. Bijlenga, S. Morel, C.M. Friedrich and S. Hirsch

A2: Modeling and computational aspects of microcirculation I

Organised by Paolo Zunino and Andreas Linninger	
Multiscale Models of Fluid Transport Through Heterogeneous, Real-V Vascular Networks R.J. Shipey and S. Walker-Samuel	Vorld 27
Multiscale and homogenized modeling of vascular tissues C. Belponer, A. Caiazzo, L. Heltai, L.O. Müller and D. Peterseim	29
Modeling and simulation of vascular tumors embedded in evolving can networks M. Fritz, P.K. Jha, T. Köppl, J.T. Oden, A. Wagner and B. Wohlmuth	pillary 32
Predicting hemodynamics at the microvascular-network level without vivo viscosity law TR. Lee	an in 36

A3: Vertex and particle-based methods for cell and tissue mechanics

Organised by Jose J. Munoz, Shiladitya Banerjee, Yasuhiro Inoue and Sator Okuda	·u
Unraveling the interplay between cell shape organization and rheology in epithelial tissues J. Huang, J. Cochran, S. Fielding, M.C. Marchetti and D. Bi	41
Exploring the jamming phase transition in an epithelial layer using a 3D active foam model J. Vangheel, S. Ongenae and B. Smeets	44
Three-dimensional vertex modelling of cell adhesion J.J. Munoz and A.K. Khan	48
Active polar beads theory and rotating cell doublets Q. Vagne, T. Guyomar, L. Lu, D. Riveline and G. Salbreux	50

A4: Integration of clinical data and numerical methods for cardiovascular problems I

Organised by Marco Fedele, Steven Niederer, Stefano Pagani, Marina Strocchi and Christian Vergara

Assessment of 4D flow MRI'S quality by verifying its Navier-Stokes compatibility J. Garay, H. Mella, J. Sotelo, C. Carcamo, S. Uribe, C. Bertoglio and J. Mura	53
A coupled Luenberger-continuation approach for FSI state estimation fr 4D-flow MRI data M. Agbalessi, M. Nechita, M. Boulakia, D. Lombardi and M.A. Fernández	om 57

Towards a multi scale and multi-fidelity model of human physiology: the challenge of data integration and model calibration in a clinical environment C. Contarino and F. Chifari 60

A fast and robust method for centerline approximation of vessel trees P. Romero, G.S. Romitti, I. García-Fernández and M. Lozano

B1: Identifying and understanding cerebral aneurysms risk factors and their interactions II

Organised by P. Bijlenga, J.R. Cebral, S. Hirsch, A.M. Robertson and P. Watton	
Contrast-labeled immunoliposome-targeted detection for rupture prone intracranial aneurysms R. Tulamo, V. Zamotin, E. Netti, B. Rezai-Jahromi, C. Code, A. Laakso and M. Niemelä	ä 69
Survival analysis of intracranial aneurysm rupture to study the influence of clinical risk factors: towards a dynamic disease model G.R. Spinner, M. Delucchi, S. Morel, P. Bijlenga and S. Hirsch	of 72
The impact of aneurysm neck segmentation on simulated hemodynamic quantities D.E. MacDonald, N.M. Cancelliere, V.M. Pereira and D.A. Steinman	76
Circulating transcriptome profiles reveal expression signatures of intracranial aneurysm rupture risk and potential role of fibronectin K.E. Poppenberg, M. Waqas, A.H. Siddiqui and V.M. Tutino	80
The role of shape for aneurysm risk assessment N. Juchler, P. Bijlenga and S. Hirsch	84

B2: Modeling and computational aspects of microcirculation II

Organised by Paolo Zunino and Andreas Linninger

Mathematical models of the cerebral microcirculation in health and pathophysiology	
S.J. Payne, T.I. Jozsa, Y. Xue, J. Wang, J.C. Howman, M. Newsome, W. Wei, Y. Bing, X Chen, A. Daher, Z. Tong and W.K. El-Bouri	X. 88
A dynamic model of autoregulation in the cerebral microvasculature A. Daher and S. Payne	92
High resolution simulation of cortical oxygen perfusion T. Ventimiglia and A. Linninger	96
Hemodynamics modeling and convection-reaction numerical simulation is microcirculatory networks: focus on the liver as detoxifying organ N. Boissier, D. Drasdo and I.E. Vignon-Clementel	in 100
Modeling oxygen transport in the brain microcirculation: operator splittin approach for the treatment of vessel/parenchyma exchanges	ng
D. Pastor-Alonso, Y. Davit, F. Boyer, M. Quintard and S. Lorthois	104

1D-3D models for interaction of transport in and around microvascualar networks in the brain T. Koch, A. Vallet, V. Vinje and K.-A. Mardal

128

B3: Machine learning, reduced order modeling and uncertainty quantification in biological systems I

Organised by Andrea Manzoni and Paris Perdikaris Gaussian Process Emulators for Cardiac Modelling S.A. Niederer 111 Machine learning models of junction pressure losses for reduced-order cardiovascular modeling N.L. Rubio, L. Pegolotti, M.R. Pfaller, J. Pham, E.F. Darve and A.L. Marsden 112 Efficient reduced order modelling of electrophysiological heart-torso coupled problems E. Zappon, A. Manzoni and A. Quarteroni 116 Deep learning-based reduced order models in cardiac electrophysiology S. Fresca, A. Manzoni, L. Dede', and A. Quarteroni 120 Uncertainty quantification for irreversible electroporation treatment in oncology P.L. Narasimhan, Z. Tokoutsi, N. Cvetkovic, M. Baragona, K. Veroy and R. Maessen 124 Physics-based estimation of conduction velocity and fibers for cardiac models T. Grandits, C.R. Herrera, G. Plank, T. Pock, R. Krause, P. Perdikaris, F.S. Costabal and S.

B4: Integration of clinical data and numerical methods for cardiovascular problems II

Pezzuto

Organised by Marco Fedele, Steven Niederer, Stefano Pagani, Marina Strocchi and Christian Vergara

Automatic localization of the early cardiac activation sites from the ECC geodesic paths	3 via
T. Grandits, A. Effland, T. Pock, R. Krause, G. Plank and S. Pezzuto	133
Generation of cardiac digital twins of whole heart electrophysiology K. Gillette, M.A.F. Gsell, M. Strocchi, A. Neic, C.H. Roney, A.J. Prassl, M. Manninger-Wuenscher, E.J. Vigmond and G. Plank	137
Pde-aware deep learning for inverse problems in cardiac electrophysiolo R. Tenderini, S. Pagani, A. Quarteroni and S. Deparis	9 gy 140
Development of cross-sex translators of drug-induced cardiac electrophysiologic responses	
K.T. Hellgren, H.Ni, A. Fogli Iseppe, X. Zhang, E. Grandi and S. Morotti	144

Atrial digital twins: from imaging & electrical data to patient-specific predictions of atrial fibrillation recurrence

C.H. Roney, I. Sim, J.A. Solis Lemus, I. Kotadia, J. Whitaker, O. Razeghi, M. Strocchi, S. Coveney, R.H. Clayton, E.J. Vigmond, S. Narayan, M. O'Neill, S.E. Williams and S.A. Niederer 148

C1: Computational modeling and simulation of cardiovascular physiology I

Organised by Lucas O. Müller, Pablo J. Blanco and Eleuterio F. Toro

The value of viscoelasticity in computational hemodynamics: uncertainty quantification and comparison with in-vivo data	150
G. Bertaglia, V. Calelli, L. Pareschi and A. Vallani	152
Consistent treatment of boundary conditions for blood flow modeling in networks of viscoelastic vessels	
F. Piccioli, G. Bertaglia, A. Valiani and V. Caleffi	156
Towards a comprehensive modelling of mechanically-induced tone regulation in blood vessels	160
A. Coccareni, I. Polydolos and P. Munarasu	100
Blood flow in the retinal circulation driven by an acute rise in intracranial pressure	1
P.S. Stewart and T.A. Spelman	164
An integrated model of neurovascular coupling and cerebral autoregulation Y. Wang, M.J. Hoddinott and S.J. Payne	on 167
A novel model of cerebral autoregulation including the effect of stenosis Z. Tong and S.J. Payne	171

C2: Modeling and computational aspects of microcirculation III

Organised by Paolo Zunino and Andreas Linninger

Towards efficient and accurate blood flow simulations in complex vascula networks B. Ghitti, P.J. Blanco, E.F. Toro and L.O. Müller	ar 176
Solvers for monolithic multiphysics problems arising in brain mechanics A. Budisa, X. Hu, M. Kuchta, KA. Mardal and L. Zikatanov	180
Quantifying nanoparticle distribution heterogeneity in the cerebral cortex using a Greens function method J.C. Howman and S. Payne	182
Modeling microvascular oxygen delivery to study the effect of radiothera at the microscale L. Possenti, A. Cicchetti, R. Rosati, M.L. Costantino, T. Rancati and P. Zunino	ру 185
A dynamic-immersed boundary approach for blood-borne cells transport A. Coclite	189

Sensitivity analysis of a computational microcirculation model including vascular network topology P. Vitullo, L. Cicci, N.R. Franco, A. Manzoni, L. Possenti, M.L. Costantino and P. Zunino

193

C3: Machine learning, reduced order modeling and uncertainty quantification in biological systems II

Organised by Andrea Manzoni and Paris Perdikaris

ian 198
202
204
208
n 212
ent 216

C4: Integration of clinical data and numerical methods for cardiovascular problems III

Organised by Marco Fedele, Steven Niederer, Stefano Pagani, Marina Strocchi and Christian Vergara

A rapid workflow for automatic FFR calculation based on unsupervised learning and CFD N.K. Chakshu, J.M. Carson, I. Sazonov and P. Nithiarasu 221 Computational analysis of transcatheter aortic valve implantation by fluid-structure interaction I. Fumagalli, F. Renzi, R. Polidori, Laura Fusini, A. Quarteroni, G. Pontone and C. Vergara 225 Generic framework for quantifying the influence of the mitral valve on ventricular blood flow J. N. Thiel, K. Linden, U. Herberg, U. Steinseifer and M. Neidlin 229 Towards predicting post-interventional diastolic hemodynamics after mitral edge-to-edge repair K. Vellguth, F. Barbieri, M. Reinthaler, M. Kasner, L. Walczak and L. Goubergrits 233 Parametric aortic valve geometric modeling for subject-specific blood flow simulations using a resistive approach G. Pase, E. Brinkhuis, T. de Vries, J. Kosinka, T. Willems and C. Bertoglio 236 An image-based computational fluid dynamic study of the mitral

regurgitation in presence of prolapse

L. Bennati, C. Vergara, V. Giambruno, I. Fumagalli, A. Quarteroni, G. Puppini and G.B. Luciani

D1: Computational modeling for multiscale biological heat and mass transfer phenomena

Organised by Ying He, Kai Yue, Lisheng Xu and Irina Mizeva

A combined numerical and experimental methodology to investigate flow direction dependent gas transfer in artificial lungs	V
J.M. Focke, K.P. Barbian, N. Gendron, J. Arens and M. Neidlin	244
Multiscale modelling of haemorrhagic transformation after ischaemic str J. Wang and S.J. Payne	oke 248
A lumped-parameter integrated thermal model for analysis of human fati X. Ding, Y. He, Y. Chen, Y. Wang and L. Long	igue 252
A thermogram based estimation of blood flow in foot arteries using neur- networks YP. Wang, LZ. Mu and Y. He	al 256
Temperature-mediated diffusion of nanoparticles in semidilute polymer solutions H.C. Qu, C.D. Xue, N. Shaheen and K.R. Qin	260
Effects of stiffness of deformable drug nanoparticles on transport in capillaries	
X. Yan, K. Yue, X. Liu, Y. Zhang and X. Zhang	264

D2: Computational approach to design analysis and biofabrication of implants

Organised by Aike Qiao and Lizhen Wang

Mechanical modelling of textile reinforced tissue-engineered biohybrid heart valve implant

M. Sesa, H. Holthusen, L. Lamm, C. Böhm, S. Jockenhövel and S. Reese 269

Numerical investigation of flow and gas transfer properties of variable sized TPMS-membranes for the use in an implantable artificial lung

K.P. Barbian, S.V. Jansen, U. Steinseifer, C. Certa, J. Linkhorst, M.Wessling, B. Wiegmann and M. Neidlin 273

277

Experimental analysis of sliding wear to ankle prostheses by using a specialized machine

I. González-Uribe, G. Urriolagoitia-Sosa, B. Romero-Ángeles, D. Islas-Jiménez, D. Maya-Anaya, A. Sánchez-Cervantes, R.A. Marquet-Rivera and G.M. Urriolagoitia-Calderón

281

Fluid-structu	re interaction a	assessment of	f biomechan	ical performar	ices of
biohybrid gra	aft implanted in	n murine mod	dels	1	
C Normini D	Munofà A Coim	: T Managaini	E Votto N		٨

G. Nannini, R. Munafò, A. Caimi, T. Mencarini, E. Votta, N. Azzollini, S. Fiori, A. Caldiroli, S. Riboldi, A. Remuzzi and A. Redaelli

Web based tool for radial force test of self-expandable transchateter heart valves

A. Baretta, D. Carbonaro, D. Gallo, C. Chiastra, A. Palazzin, M.-A. Bisotti, A. Audenino and R. Bursi 285

D3: Machine learning, reduced order modeling and uncertainty quantification in biological systems III

Organised by Andrea Manzoni and Paris Perdikaris

Deep learning approach for cardiac electrophysiology model correction V. Kashtanova, I. Ayed, P. Gallinari and M. Sermesant	290
Soft tissue parameter identification using machine learning S. Kakaletsis, E. Lejeune and M.K. Rausch	294
Model order reduction of parameterized cardiac mechanics problems L. Cicci, S. Fresca, A. Manzoni and A. Quarteroni	297
Cerebral venous blood flow model enhanced with flow-MRI data assimilation O. Balédent, G. Dollé, P. Mollo and S. Salmon	300
Reduced-order cylindrical model of the left ventricle J. Diaz, M. Genet, D. Chapelle and P. Moireau	304
Reduced order modelling for the simulation of braided stent deployment B. Bisighini, M. Aguirre, B. Pierrat, D. Perrin and S. Avril	308

D4: Lung biomechanics: multiscale and multi-physics modelling

Organised by Hari Arora and Mona Eskandari

Numerical modeling of droplet generation induced by cough-flow in idea airway models	ıl
H. Anzai, Y. Shindo, Y. Kohata, M. Hasegawa and M. Ohta	313
Personalized pulmonary poromechanics in health, idiopathic pulmonary fibrosis and covid-19 C. Laville, C. Patte, C. Fetita, PY. Brillet, T. Gille, H. Nunes, JF. Bernaudin, D. Chap and M. Genet	elle 316
Effect of microscopic properties on the homogenized linear poroelastic behavior of lung parenchyma M. Manoochehrtayebi, A. Bel-Brunon and M. Genet	320
Computational modeling of alveolar recruitment/derecruitment dynamics the diseased human lung C.M. Geitner, L.J. Koeglmeier, T. Becher, I. Frerichs, N. Weiler and W.A. Wall	324 sin

Influence of lung physical properties on its flow-volume curves using a detailed multi-scale mathematical model of the lung R. Di Dio, M. Brunengo and B. Mauroy

327

cardiovascular physiology II	
Organised by Lucas O. Müller, Pablo J. Blanco and Eleuterio F. Toro	
On the assessment of cardiac properties from pulse waves - a computation study	nal
F. Piccioli, A. Valiani, J. Alastruey and V. Caleffi	332
Cardiovascular response to ortho-static stress: multiscale modeling with focus on the coronary circulation	
M. Fois, L. Ridolfi and S. Scarsoglio	336
A multi-scale tissue infarction model for modelling acute ischaemic stroke R.M. Padmos, T.I. Józsa, Y. Xue, S.J. Payne and A.G. Hoekstra	e 340
Multiscale analysis of remodeling in pulmonary hypertension due to left heart failure	
M.A. Bartolo, M.A. Haider, N.A. Hill and M.S. Olufsen	344

E2: Porous media models for biomedical applications

Organised by Marcello Iasiello, Assunta Andreozzi, Alberto Coccarelli, Feihu Zhao, Paolo Antonio Netti and Kambiz Vafai

A multi-physics model for myocardial perfusion in the human heart C. Vergara, S. Di Gregorio, G. Montino Pelagi, P. Zunino, M. Fedele, L. Crugnola, L. Fusini, G. Pontone and A. Quarteroni	349
A thermoporoelastic model for interstitial fluid transport with a constant heat source A. Andreozzi, M. Iasiello and P.A. Netti	352
Modeling a thermal damage-controlled protocol for liver tumor thermal ablation: a comparison between two bioheat models A. Andreozzi, L. Brunese, M. Iasiello, C. Tucci and G.P. Vanoli	356
Obtaining personalized biomodels for structural mechanical analysis of trabecular bone with and without porosity	

A. Sánchez-Cervantes, G. Urriolagoitia-Sosa, B. Romero-Ángeles, D. Islas-Jiménez, D. Maya-Anaya, I. González-Uribe, J. Martínez-Reyes and G.M. Urriolagoitia-Calderón 360

E3: Mathematical and numerical modeling of the cardiac function I

Organised by Luca Dede', David Nordsletten and Luca F. Pavarino

Creating patient specific models of the atria

C. Corrado, C.H. Roney, O. Razeghi, C. Sillett, J. Whitaker, T. Baptiste, A. Lee, J.A. Solis Lemus, I. Sim, I. Kotadia, S. Coveney, R. Wilkinson, R.H. Clayton, M. O'Neill, S.E. Williams and S.A. Niederer 365

Multiphysics and multiscale models for the numerical simulation of the cardiac function	
L. Dede', P. Africa, M. Bucelli, M. Fedele, R. Piersanti, A. Quarteroni, F. Regazzoni, M Salvador and A. Zingaro	366
A homogenized constrained mixture model of cardiac growth and remodeling A.M. Gebauer, M.R. Pfaller, F.A. Braeu, C.J. Cyron and W.A. Wall	368
Growth and remodelling of right ventricle under pulmonary arterial hypertension	
D. Guan, X. Luo and H. Gao	372

E4: Standard Session-Methods in biofluids I

A parallel computation framework for simulation of microspheres in the liver vasculature	
T.G. Vlogman and K. Jain	377
The impact of injection timing, injection velocity and in flow waveform microsphere transport during liver radioembolization T. Bomberna, S. Vermijs, C. Verslype, L. Bonne, G. Maleux and C. Debbaut	on 381
Impact of physiologically inspired boundary conditions on fluid pressure and flow in a computational fluid dynamics model of the cerebrospinal fl S. Vandenbulcke, T. De Pauw, F. Dewaele, J. Degroote and P. Segers	uid 385
Roller pump controlled by neural network: experimental study under physiological conditions J. Jagos, J. Kohut, J. Kohut, M. Formanek and J. Bursa	389
F1: Computational modeling and simulation of cardiovascular physiology III	
Organised by Lucas O. Müller, Pablo J. Blanco and Eleuterio F. Toro	
Adjoint-based estimation of sensitivity of clinical measures to boundary conditions for arteries	
R. Löhner, H. Antil, J.R. Cebral and F. Mut	394
Numerical investigation of hemolysis phenomena in the FDA nozzle benchmark: mind the extensional stresses	207
A. Magnouli, AC. Bayeul-Laine, S. Simonet, M. Haddadi and O. Coutier-Delgosna	397
In-silico analysis of a self-powered injection-jet fontan circulation to red caval pressure in a failing fontan	uce
R. Prather, A. Das, M. Farias, E. Divo, TY. Hsia, A. Kassab and W. DeCampli	401
PIV and CFD comparison of 3D printed blood vessels models A. Antonowicz, K. Jedrzejczak, M. Kozłowski, K.Wojtas, Ł. Makowski, and W. Orciuc	ch 405
An investigational study on computational hemodynamic modelling of sclerotherapy	
A. Meghdadi, X. Yang, L. Suñer, S.A. Jones, V.A. Patel, A.L. Lewis, T.M. Millar and I Carugo). 408

F2: Image-based computational models for predicting disease progression and for risk stratification I

Organised by Emiliano Votta, Alberto Redaelli and Christian Vergara

Local growth prediction in abdominal aortic aneurysms E.S. Di Martino, A. Forneris, P. Faris and R. D. Moore	416
Regional variation in the mechanics of the human aneurysmal ascending thoracic aorta S.A. Tarraf, B. Kramer, E. Durbak, J. Hargrave, E. Roselli and C. Bellini	418
High-fidelity finite element simulations to model the TEVAR procedure A. Ramella, F. Migliavacca, J.F. Rodriguez Matas, F. Dedola, M. Conti, F. Heim, S. Alli D. Bisacco, M. Domanin, S. Trimarchi and G. Luraghi	ievi, 422
Non-intrusive and mesh-free neural network models of parametrized differential equations with variable geometry S. Pagani, F. Regazzoni, L. Dede' and A. Quarteroni	425
Machine learning-based combined topological and radiomics signature applying the body composition model for prediction of hepatic decompensation X Singh LD Sobek LE Eaton and B L Erickson	<i>47</i> 9
Image-based mechanical modelling of an electrospun scaffold M. Pétré, M. Ghasemi, T. Vervenne, G. Pyka, G. Kerckhofs, M. Cox, H. Fehervary and	ν.

F3: Mathematical and numerical modeling of the cardiac function II

Organised by Luca Dede', David Nordsletten and Luca F. Pavarino

Embedded wireless pressure microsensors for non-invasive monitoring o transcatheter aortic valves: in-silico concept evaluation via FSI models S. Bailoor, J.H. Seo, S. Schena, L.P. Dasi and R. Mittal	of 435
Computational biomechanics models of treatments for mitral valve regurgitation A. White Zeira, L. Galili, E. Schwammenthal, E. Ram, E. Raanani and G. Marom	436
Cardiac fluid dynamics based on immersed boundary method for applica in hypertrophic cardiomyopathy J. Brenneisen, D. Müller, A. Stroh, B. Frohnapfel, O. Dössel and A. Loewe	tion 439
Image-based simulation of left ventricular hemodynamics: a numerical framework towards clinical feasibility L. Obermeier, K. Vellguth and L. Goubergrits	443
On monolithic and Chorin-Temam schemes for incompressible flows in moving domains R. Aróstica and C. Bertoglio	447

Famaey

431

F4: Standard Session-Methods in biomechanics

Identification of biphasic hyperelastic model parameters of soft biologica tissues	1
R. Shi, S. Avril, H. Yang, V.A. Acosta Santamaría, Y. Mei and Y. He	450
An in silico study on the strain transfer across the scales in soft tissues A. Stracuzzi, B.R. Britt, E. Mazza and A.E. Ehret	452
Biaxial mechanical characterization and constitutive modeling of human meniscus B. Rasheed, V. Ayyalasomayajula, U.A. Schaarschmidt, T. Vagstad and H.G. Schaathun	455
Diffusion problem in a meniscus with fractional calculus F. Amiri, G. Nuzzo and M. Zingales	459
Real-time soft tissue deformations using a new mass-spring model formulation A. Ballit and TT. Dao	461
Steady-state analysis for magnetic resonance elastography Q. Du, A. Bel-Brunon, N. Hamila and S.A. Lambert	465

G1: Computational modeling and simulation of cardiovascular physiology IV Organised by Lucas O. Müller, Pablo J. Blanco and Eleuterio F. Toro

Parameter space reduction for four-chamber electromechanics simulation using gaussian processes emulators M. Strocchi, S. Longobardi, C.M. Augustin, M.A.F. Gsell, E.J. Vigmond, G. Plank, C.J Oates, R.D. Wilkinson and S.A. Niederer	ns I. 469
A physiologically detailed 3D-0D closed-loop model for the simulation cardiac electromechanics R. Piersanti, F. Regazzoni, M. Salvador, L. Dede', C. Vergara and A. Quarteroni	of 473
An electromechanical model of the entire human heart coupled with a lumped parameters model of the circulatory system M. Fedele, R. Piersanti, F. Regazzoni, M. Salvador, P.C. Africa, M. Bucelli, L. Dede' a A. Quarteroni	nd 477
Microstructural deterioration drives biomechanical remodeling in the dysfunctional Marfan aorta C. Cavinato, D.S. Li, M. Chen, M. Latorre, M.A. Schwartz and J.D. Humphrey	481
A computational model for cardiovascular fluid-solid-growth interaction M.R. Pfaller, M. Latorre, E.L. Schwarz, J. Szafron, J.D. Humphrey and A.L. Marsden	484
Unveiling the role of venous adaptation to essential hypertension as a ma determinant of elevated arterial pressure: a computational study Lucas O. Müller, Morena Celant, Pablo J. Blanco and Eleuterio F. Toro	ajor 488

G2: Image-based computational models for predicting disease progression and for risk stratification II

Organised by Emiliano Votta, Alberto Redaelli and Christian Vergara	
Statistical shape modeling for evaluating the hemodynamic of ascending thoracic aortic aneurysms C. Catalano and S. Pasta	493
On the performance of thrombectomy devices with finite-element model G. Luraghi, S. Bridio, P.R. Konduri, N. Arrarte Terreros, H.A. Marquering, C.B.L.M. Majoie, J.F. Rodriguez Matas and F. Migliavacca	ing 497
A closer look at aortic arch aneurysm repair S. Sengupta, X. Yuan, Y. Zhu, C. Nienaber and X.Y. Xu	501
Characterization of vessel wall vibrations of an arteriovenous fistula over maturation period L. Soliveri, M. Bozzetto, A. Redaelli, A. Remuzzi and K. Valen Sendstad	r the 504
Fast prediction of cardiac function based on pulse wave via machine learning method S. Wang, D. Wu and H. Liu	508
Human bone biomodelling as an alternative for medical assessment D. Islas-Jiménez, G. Urriolagoitia-Sosa, B. Romero-Ángeles, D. Maya-Anaya, I. González-Uribe, A. Sánchez-Cervantes, F.J. Gallegos-Funes and G.M.	
Urriolagoitia-Calderón	512

G3: Mathematical and numerical modeling of the cardiac function III

Organised by Luca Dede', David Nordsletten and Luca F. Pavarino

Patient-specific simulation of left ventricle hemodynamics with stress analysis using the triple decomposition of the velocity gradient tensor J. Hoffman and J. Kronborg 517

On the role of scar and border zonegeometry in the genesis and maintenance of re-entrant ventricular tachycardia in patients with previous myocardial infarction S. Scacchi, V. Gionti, P. Colli Franzone, L. F. Pavarino, R. Dore and C. Storti 520

Modelling the effect of oxygen deprivation on myocardium electrophysiology P.N.A.N.M. Nor, W.N.W.A Naim, G. Qian and M.J.M. Mokhtarudin	524
Adaptive multirate integration of cardiac electrophysiology with spectral deferred correction methods M. Weiser and F. Chegini	528

Scalable parallel solvers for cardiac electromechanicsN.A. Barnafi, N.M.M. Huynh, L.F. Pavarino and S. Scacchi532

Parallel-in-time multirate explicit stabilized method for the monodomain model in cardiac electrophysiology G.R. de Souza, S. Pezzuto and R. Krause 535

G4: Personalized simulation of cardiac function and coronary flow

Organised by Sergey Simakov, Yuri V. Vassilevski, Jordi Alastruey and Fuyd Liang	ж
Impact of the pressure guidewire on fractional flow reserve prediction A. Lucca, L. Fraccarollo, F.E. Fossan, A.T. Braten, C. Vergara, S. Pozzi and L.O. Mülle	er 540
Effects of atrial fibrillation on the left atrium hemodynamics A. Zingaro, M. Corti, L. Dede' and A. Quarteroni	544
Integrated fluid-structure-electrophysiology computational modeling of a healthy human heart M. Bucelli, L. Dede' and A. Quarteroni	ι 548
Multi-physics modeling of in-stent restenosis K. Manjunatha, M. Behr, F. Vogt and S. Reese	552
Artery and patient specific boundary conditions for OCT-based computational FFR F. Fossan, I.A. Tache, C-A. Hatfaludi, L. Calmac, L.R. Hellevik, A. Scafa-Udriste and I Itu	L.M. 556

H1: In-silico trials enrichment and augmentation methods and applications

Organised by Sanjay Pant, Ankush Aggarwal and Claudio Capelli

Generation of virtual patient's aorta anatomy using convolutional neural networks A. Lopez, A. Domínguez, P. Romero, M. Lozano, P. Lamata and I. García-Fernández 561 Identification of virtual patient cohorts for in silico clinical trials of cardiopulmonary devices from a database of 331 ECMO patients with diagnosed ARDS M. Landoll, C. Karagiannidis, S. Strassmann, L. Strudthoff, U. Steinseifer and M. Neidlin 565 Generation of artificial retinal microvascular networks virtual populations for in silico trials R. Hernandez, S. Madhusudhan, Y. Zheng and W.K. El-Bouri 569 Characterization of the drug-induced Ca2+ dynamics response across an endothelial cell population A. Coccarelli and S. Pant 573

H2: Standard Session-Vessel biomechanics

Modelling the viscoelastic behaviour of arteries using constituent-based quasi-linear viscoelasticity A. Giudici, K.W.F. van der Laan, M.M. van der Bruggen, S. Parikh, T. Delhaas, K.D. Reesink and B. Spronck 575

A computational model of inflammation-driven growth and remodeling the pulmonary autograft L. Maes, L. Van Hoof, E.A.V. Jones, F. Rega and N. Famaey	in 579
Constitutive descriptions of active stress in blood vessels leading to contractile instability A. Giudici, J.M. Szafron and B. Spronck	583
In silico modelling of in-stent restenosis subject to spatiotemporal delive of drug A. McQueen, J. Escuer, A. Fensterseifer Schmidt, A. Aggarwal, S. Kennedy, C. McCormick, K. Oldroyd and S. McGinty	ery 587

H3: Standard Session-Modelling processes in blood

Computational modelling and simulation of deep vein thrombosis during pregnancy Q. B. Jimoh Taiwo, M. Ngoepe and R. Haffejee	; 592
On the modelling of blood clot formation in carotid artery bifurcations by means of multiscale blood flow models A. Jonásová, V. Dusková, S. Plánicka and J. Vimmr	y 596
Modeling hemolysis of blood in blood vessels in patients with atherosclerosis K. Jedrzejczak, M. Kozłowski, Ł. Makowski and W. Orciuch	600
Outcome comparison between computational model of thrombosis in cerebral aneurysms and thrombin-fibrinogen in vitro flow model of thrombus growth	
S.R. Hume, W. Hua Ho and M.N. Ngoepe	604

H4: Standard Session-Methods in biofluids II

Towards the automatic tailoring of cardiovascular models for non-invasiv clinical measurements: sensitivity and identifiability	'e
M.J.W. Savage, S. McGaffin, G.D. Maso Talou and F. Argus	609
Identifying the different mechanisms that govern dynamic cerebral autoregulation	612
IN. Van Ziji and S.J. Payne	613
Liquid Injection Simulation with Wettability Representation Method Considering Adhesional and Spreading Works N. Mukai, T. Natsume, M. Oishi and M. Oshima	617
The Riemann problem in a blood vessel with discontinuous material properties	
I.S. Onah, D. MacTaggart and P.S. Stewart	621

I1: Modelling the anatomical variability of vascular systems I

Organised by H. Anzai, M. Ohta, S. Mugikura, N. Mori, N. Juchler, S. Hirsch, C. Frindel and M. Oshima

Analysis of diabetes alteration of the mouse aorta from synchrotron micro-CT imaging X. Liang, A. B. Zemzem, S. Almagro, T. Weitkamp, L. Debelle and N. Passat	626
Virtual treatment planning in patients with complex univentricular physiology J. Brüning, P. Yevtushenko and M. Schafstedde	630
Study on vertebral dominance and basilar artery F. Pan, N. Mori, S. Mugikura, H. Anzai and M. Ohta	634
Proposal of a new relative coordinates method for creating statistical sha model of aorta and carotid arteries K. Shiraishi, M. Decroocq, M. Ohta, G. Li, H. Wang, C. Frindel and H. Anzai	1pe 638

I2: Inverse problems in biofluids and solids I

A	
Organised by Stéphane Avril, J. Lu, Yue Mei and Cristóbal Bertoglio	
Patient-specific pediatric heart growth C. Bilas, A. Maier, S.M. Wildhirt and M.W. Gee	642
Inverse identification of phase field parameters applied to soft tissues uniaxial tension and peeling tests B. Pillet, G. Molnár, A. Bel Brunon, J. Molimard and B. Pierrat	under 645
Assimilation of magnetic resonance elastography displacement data i tissues F. Galarce, K. Tabelow, J. Polzehl, C. Panagiotis, V. Vavourakis, I. Sack and A. Cai	n brain azzo 649
Determining the Navier slip parameter in the descending aorta using A Jarolímová and J. Hron	4D 652
	032

I3: Advanced physics-based tumor modeling and parameter identification of complex models

Organised by Wolfgang A. Wall, Bernhard Schrefler and Jose Manuel Garcia Aznar

The role of stiffness and fluid properties in tumor growth B.A. Schrefler	657
Homogenized, discrete embedded and hybrid embedded/homogenized multiphase models for tumor growth and beyond J. Kremheller, B. Schrefler and W.A. Wall	661
Global sensitivity analysis based on Gaussian-process metamodelling for multiphase porous media model of tumour growth B. Wirth, S. Brandstaeter, J. Kremheller, J. Nitzler, B.A. Schrefler and W.A. Wall	r a 665
Combining experiments and computational simulations to unravel the mechanics of spheroid tumour growth S. Hervas-Raluy, B. Wirthl, P.E. Guerrero, G. Robalo Rei, J. Nitzler, B.A. Schrefler, M. Gomez Benito, J.M. Garcia Aznar and W.A. Wall	.J. 669

I4: Standard Session-Methods in biofluids III

Fluid-structure interaction modeling of deep vein valves B. Thibaud, I. Noguero Soler, S. Mendez and F. Nicoud	672
Computational fluid dynamics simulation of hemodynamics inside mitral paravalvular leaks K. Wojtas, K. Truchel, M. Kozłowski, W. Orciuch and Ł. Makowski	676
Modelling and simulation of veno-venous extra-corporeal membrane oxygenation M. Leoni, J. Szasz, J. Meier and L. Gerardo-Giorda	680
Simulation of flow-osteocyte interaction in a lacuno-canalicular network I. Manring, L. Zhu and J. Barber	683

J1: Modelling the anatomical variability of vascular systems II

Organised by H. Anzai, M. Ohta, S. Mugikura, N. Mori, N. Juchler, S. Hirsch, C. Frindel and M. Oshima

Angiography-based time-analysis-curve analysis to estimate in-stent hemodynamics Y. Kohata, H. Anzai and M. Ohta	688
Multimodal patient-specific modeling of intracranial arteriovenous malformation hemodynamics including feeding artery and draining vein exploration J. Stahl, S. Saalfeld, A. Alaraj, O. Beuing, N. Kaneko, D. Behme and P. Berg	691
Development of a penalized spline fitting method for parameterization of vascular geometry extracted from medical images M. Kobayashi, Y. Chen and M. Oshima	695
Geometric deep learning for aneurysm diagnosis A. Niemann, A. Mandal, L. Kutty, V. Sudhi, B. Preim, P. Berg and S. Saalfeld	699
Modeling the location-dependency of aneurysm shape a morphometric comparative study	702
N. Juchler, P. Bijlenga and S. Hirsch	703

J2: Inverse problems in biofluids and solids II

Organised by Stéphane Avril, J. Lu, Yue Mei and Cristóbal Bertoglio

An inverse problem for permeability parameter applied in valve geometr	у
I Aguayo C Bertoglio A Osses and G Pase	707
	/0/
Tube law parameter estimation using ovine and human in vitro data: a mathematical properties-preserving approach C. Colombo, A.Siviglia, E.F. Toro and L.O. Müller	709
Parameter estimation in FSI models through measurements of the fluid R. Aróstica, D. Nolte and C. Bertoglio	713

4D-VAR Input waves estimation using non-tangent linear models S. Imperiale, J. Manganotti and P. Moireau	716
A comparison of phase unwrapping methods in velocity-encoded MRI faortic flows M. Löcke, J. Garay, P. Franco, S. Uribe and C. Bertoglio	for 719
Parameter estimation in fluid flow models from aliased velocity measurements J. Garay, D. Nolte, M. Löcke and C. Bertoglio	721

J3: Standard Session-Cellular modelling

Toolbox for transcriptome and translatome analysis E. Boileau and C. Dieterich	724
Stochastic modelling of the SARS-COV-2 viral dynamics in a single cell D. Grebennikov, A. Meyerhans, G.Bocharov and I. Sazonov	728
Fractional diffusion of membrane receptors in endocytosis pathway G. Nuzzo, F. Amiri, E. Bologna and M. Zingales	732
Compartmental modelling of cancer treatment with thermodox M.D. Newsome, CC. Coussios and S.J. Payne	734
An active foam model to investigate arrested coalescence in fusing tissue-spheroids S. Ongenae, J. Vangheel and B. Smeets	738
Identification of mechanical regulation of limb bud elongation using individual cell based modelling Y Sermeus I Vangheel L Geris P Tylzanowski and B Smeets	742
Compartmental modelling of cancer treatment with thermodox M.D. Newsome, CC. Coussios and S.J. Payne An active foam model to investigate arrested coalescence in fusing tissue-spheroids S. Ongenae, J. Vangheel and B. Smeets Identification of mechanical regulation of limb bud elongation using individual cell based modelling Y. Sermeus, J. Vangheel, L. Geris, P. Tylzanowski and B. Smeets	734 738 742

CONSISTENT TREATMENT OF BOUNDARY CONDITIONS FOR BLOOD FLOW MODELING IN NETWORKS OF VISCOELASTIC VESSELS

Francesco Piccioli¹, Giulia Bertaglia^{2,3}, Alessandro Valiani¹, and Valerio Caleffi¹

¹Department of Engineering, University of Ferrara, Via G. Saragat 1, 44122, Ferrara, Italy, {francesco.piccioli, alessandro.valiani, valerio.caleffi}@unife.it ²Istituto Nazionale di Alta Matematica "Francesco Severi", P.le Aldo Moro 5, 00185, Roma, Italy ³Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 30, 44121, Ferrara, Italy, giulia.bertaglia@unife.it

SUMMARY

This work regards a numerical model for the simulation of blood flow in networks of viscoelastic vessels. The viscoelasticity of the vessels wall is treated with a Standard Linear Solid Model, from which a tube law in the form of a partial differential equation is derived and added to the system of governing equations. The innovative aspect consists in the congruent numerical treatment of the viscoelastic contribution in all boundary sections of the networks, namely inlet or outlet sections and junctions. For this purpose, a Riemann problem valid for these sections has been defined, which relies on an additional Riemann Invariant relating blood pressure and vessel lumen, besides the typical ones that relate blood velocity and pulse wave celerity.

Key words: arterial networks modeling, viscoelastic vessels, junction modeling, Riemann problem.

1 INTRODUCTION

It is well established that 1-D blood flow models provide satisfactory results for the analysis of pulse waves only if the mechanical behavior of blood vessels is correctly accounted for [1]. In particular, an accurate viscoelastic characterization of the vessel wall is crucial [2, 3]. In this work, the Standard Linear Solid model (SLSM) is adopted to describe the vessel wall rheology as in [2], enabling to simulate the most significant aspects related to the viscoelasticity of the vessel wall: the exponential decay in time of the pressure, creep and hysteresis. The application of these features is utmost meaningful especially when dealing with extended networks. In these contexts, although the viscoelasticity is usually neglected in the implementation of boundary conditions, in favor of a local elastic approach [4], given the considerable number of branches and junctions, the inclusion of the viscoelastic contribution results impactful for a correct hemodynamic analysis [5].

2 METHODOLOGY

2.1 Mathematical model

The hemodynamic model based on the a-FSI system presented in [2], is employed here for the study of flow propagation in blood vessels networks. The governing equations are written in 1-D form and are obtained by integrating the 3-D Navier-Stokes equations for incompressible fluid over the vessel cross-section, under the assumption of axial symmetry of the geometry and of the flow [1] The so-called tube law, defined on the viscoelastic SLSM, is added in the system as closing equation, representing the constitutive relation among the cross-sectional area of the vessel and the pressure.

The discussed a-FSI system reads as follows:

 ∂_t

$$\partial_t A + \partial_x (Au) = 0 \tag{1a}$$

$$(Au) + \partial_x (Au^2) + \frac{A}{\rho} \partial_x p = \frac{f}{\rho}$$
(1b)

$$\partial_t p + d\,\partial_x(Au) = S \tag{1c}$$

where A(x,t) is the vessel cross-sectional area, u(x,t) is the cross-sectional averaged blood velocity, p(x,t) is the internal blood pressure, ρ is the blood density, x and t are space and time, respectively. The term f in Eq. (1b) represents the friction losses term. In Eq. (1c), the parameter d = d(A(x,t)) is related to the elastic contribution, and the *stiff* relaxation term S(x,t) accounts for the viscous contribution of the wall (S = 0 in the elastic case). For a detailed description of the a-FSI model, the reader is referred to [2]. System (1) is natively hyperbolic. Therefore, it is possible to analyze its eigenstructure. In particular, three real eigenvalues and a complete set of corresponding linearly independent eigenvectors can be defined. The only null eigenvalue is associated with a linearly degenerate field and the other two non-null eigenvalues with genuinely nonlinear fields. With respect to the latter, the following RIs apply:

$$\Gamma_1 = u + \int \frac{c(A)}{A} dA, \quad \Gamma_2 = u - \int \frac{c(A)}{A} dA, \quad \Gamma_3 = p - \int d(A) dA.$$
(2)

Where c(A) is the wave celerity. It is worth underlining that the presence of Γ_3 is due to the introduction of the viscoelastic tube law in PDE form into the governing system.

2.2 Numerical method

An Implicit-Explicit (IMEX) Runge-Kutta (RK) Finite Volume (FV) approach is employed to solve the a-FSI system, allowing the resolution of hyperbolic systems with *stiff* relaxation terms [2]. Time discretization relies on the stiffly accurate IMEX-SSP2(3,3,2) scheme, which is asymptotic preserving (AP) and asymptotic accurate in the zero relaxation limit. Spatial discretization is obtained using a second-order FV scheme, employing the Dumbser-Osher-Toro (DOT) Riemann solver [6]. The model is second-order accurate in space and time.

Major interest has been posed on the numerical treatment of junctions. For these internal boundaries, the so-called Junction Riemann Problem (JRP) is here proposed. The JRP is defined as the problem governed by the a-FSI system with piece-wise initial constant states in each branch of the junction. The assumption of a sub-critical blood flux is made *a-priori*. Consequently, the non-linear waves, which constitute part of the solution of the JRP, move from the junction section among the vessels towards the periphery along each branch. The contact discontinuity wave related to the null eigenvalue, that arises due to the addition of the tube law in the a-FSI system, is stationary and remains located at the initial discontinuity of the initial solution. Thus, the JRP partial solution related to each branch consists only of an initial state separated from a single intermediate state by a nonlinear wave, while the intermediate states of the joining branches are separated from each other by the contact discontinuity. For a JRP connecting N vessels, N initial constant states at time t can be identified, provided by the averaged state variables of the junction-adjacent cells of the N afferent vessels, $Q_i^{\overline{1}D} = [A_i, q_i, p_i]^T$, with i = 1, ..., N, along with the new N intermediate constant states at time $t + \Delta t$, $Q_i^* = [A_i^*, q_i^*, p_i^*]^T$, with i = 1, ..., N, unknown variables of the JRP. Solving the JRP in analogy to the Two-Rarefactions Riemann Solver (TRRS) [7], the non-linear system at junction is defined recurring to the RIs related to the genuinely non-linear fields, $\Gamma_{1,2,3}$, which identify the quantities preserved across rarefaction waves, and the RIs related to the linearly degenerate fields, which express the conservation of mass (Au) and total energy $(p + \frac{1}{2}\rho u^2)$, indicating quantities conserved across contact discontinuity waves. Thus, the resulting non-linear system valid for viscoelastic

Figure 1: 2–vessels junction test performed for a generic artery. Comparison between the reference and the numerical solution, considering either an elastic or a viscoelastic wall mechanical behavior in terms of flow-rate (a) and pressure (b).

junctions reads as follows:

$$\sum_{i=1}^{N} \Theta_{n_i} A_i^* u_i^* = 0,$$
(3a)

$$\left(p_1^* + \frac{1}{2}\rho u_1^{*2}\right) - \left(p_i^* + \frac{1}{2}\rho u_i^{*2}\right) = 0, \qquad i = 2, \dots, N,$$
(3b)

$$u_i^* - u_i^{1D} + \Theta_{n_i} \int_{A_i^{1D}}^{A_i^*} \frac{c(A)}{A} \, \mathrm{d}A = 0, \qquad i = 1, \dots, N,$$
(3c)

$$p_i^* - p_i^{1D} - \int_{A_i^{1D}}^{A_i^*} d(A) \, \mathrm{d}A = 0, \qquad i = 1, \dots, N,$$
(3d)

where $\Theta_{n_i} = \pm 1$ for entering (resp. outgoing) vessels. In case of an elastic vessel wall, System (3) can be simplified removing the last equation, namely not using Γ_3 , being $p(A_i^*)$ calculated *a*-posteriori via the elastic tube law. System (3) can be used in both artery and vein cases, simply by appropriately selecting the coefficients that characterize the specific tube law.

3 RESULTS AND CONCLUSIONS

The validation of the junction model is performed employing the purely abstract test named 2-vessels junction, consisting in two contiguous vessels, joined by the here proposed approach, considering both an arterial and a venous case. The reference solution is the corresponding case of single vessel. Excellent agreement between the numerical and reference solution is observed for both the vessel types. Fig. 1 shows the result in the arterial case.

Subsequently, the model is applied to extended benchmark networks, dealing with multiple bifurcations. As an example, few numerical results concerning the simulation of the human arterial network ADAN56 [8] are hereby reported. Computed waveforms of the pressure are compared to the elastic benchmark gathered from [4]. A viscoelastic simulation is carried out to access how the SLSM affects the results and to test the conceived numerical method for extensive networks. Fig. 2 shows results of the the common carotid artery (CCA), thoracic aorta (TA) and internal iliac (IL). Hysteresis loops of these arteries are also reported, demonstrating how in the viscoelastic model the energy cyclically introduced into the system is not totally recovered during diastole, but is partially dissipated.

REFERENCES

 L. Formaggia, D. Lamponi, and A. Quarteroni. One-dimensional models for blood flow in arteries. *Journal of Engineering Mathematics*, 47:251–276, 2003.

Figure 2: ADAN56 network results for the CCA (a, d), TA (b, e) and IL (c, f), obtained with the IMEX RK FV scheme considering both the elastic and the viscoelastic tube law. Comparison with 1-D elastic benchmark solutions in terms of pressure (a, b, c); hysteresis loops (d, e, f). Comparison with *in-vivo* data for CCA (a).

- [2] G. Bertaglia, V. Caleffi, and A. Valiani. Modeling blood flow in viscoelastic vessels: the 1D augmented fluid–structure interaction system. *Computer Methods in Applied Mechanics and Engineering*, 360:112772, 2020.
- [3] G. Bertaglia, A. Navas-Montilla, A. Valiani, M. I. Monge García, J. Murillo, and V. Caleffi. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data. *Journal of Biomechanics*, 100:109595, 2020.
- [4] E. Boileau, P. Nithiarasu, P.J. Blanco, L. O. Müller, F. E. Fossan, L. R. Hellevik, W. P. Donders, W. Huberts, M. Willemet, and J. Alastruey. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. *International Journal for Numerical Methods in Biomedical Engineering*, e02732, 2015.
- [5] L. O. Müller, G. Leugering, and P. J. Blanco. Consistent treatment of viscoelastic effects at junctions in one-dimensional blood flow models. *Journal of Computational Physics*, 314:167– 193, 2016.
- [6] M. Dumbser and E.F. Toro. On universal Osher-type schemes for general nonlinear hyperbolic conservation laws. *Communications in Computational Physics*, 10:635–671, 2011.
- [7] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction.. Springer, 2009.
- [8] P. J. Blanco, S. M. Watanabe, M. A. R. F. Passos, P. A. Lemos, and R.A. Feijóo. An anatomically detailed arterial network model for one-dimensional computational hemodynamics. *Biomechanics and Modeling in Mechanobiology*, 62:736–753, 2015.