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On a Runge Theorem over R3

Cinzia Bisi, Antonino De Martino, Jörg Winkelmann

Abstract

In this paper we investigate a topological characterization of the Runge theorem in the
Clifford algebra R3 via the description of the homology groups of axially symmetric open
subsets of the quadratic cone in R3.

1 Introduction

The theory of holomorphic approximation is an important branch of mathematics. It has appli-
cations in many fields such as holomorphic dynamics, the theory of minimal surfaces in euclidean
spaces, complex analysis and hypercomplex analysis [27, 28]. The classical theory of holomorphic
approximation began in 1885 with the work of Runge and Weierstrass. Later other mathemati-
cians, such as Oka, Weil, Mergelyan, Vituskin, gave important results to this theory [26]. At the
end of the 20th century the Runge theorem was studied in the hypercomplex setting. One of the
first works in this direction was written by Delanghe and Brackx [23]. In this paper the authors
have proved a Runge type theorem for functions which takes values in a Clifford algebra and are
in the kernel of a generalized Cauchy-Riemann operator. Other results in this modern setting
were obtained in the paper [20], in which the authors have proved the Runge approximation
theorem for slice monogenic functions and slice regular functions. Recently in the paper [15] the
authors proved a topological characterization of the Runge theorem in the quaternionic setting.
Inspired by this last work, in this paper we prove a Runge theorem in the Clifford algebra R3.
In order to do this we describe the homology of axially symmetric open subsets of the quadratic
cone of R3. Basically, we prove the following theorem

Theorem 1.1. Let D ⊂ D1 be symmetric open subsets of C (w.r.t the real axis) and let Ω4
D ⊂

Ω4
D1

be the corresponding axially symmetric open subsets of the quadratic cone QR3
. Then the

following conditions are equivalent

1) D ⊂ D1 is a Runge pair. This means that every holomorphic function on D can be
approximated by holomorphic functions on D1 (uniformly on compact sets).

2) Ω4
D is Runge in Ω4

D1
, in the sense that every slice regular function on Ω4

D can be approxi-
mated (uniformly on compact sets) by slice regular functions on Ω4

D1
.

3) i∗ : H1(D) → H1(D1) is injective, where i∗ is the homology group homomorphism induced
by the inclusion map i : D → D1.

4) i∗ : Hk(Ω
4
D) → Hk(Ω

4
D1

) is injective for k ∈ {1, 3, 5}, where i∗ is the homomorphism
induced by the inclusion map i : Ω4

D → Ω4
D1

.

5) Every bounded connected component of C \D intersects C \D1.

6) Every bounded connected component of QR3
\ Ω4

D intersects QR3
\ Ω4

D1
.
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One of the main differences with the quaternionic case is that in the point 4) more homological
groups are affected.

The plan of the paper is the following: in Section 2 we recall some basic notions about
quaternions, the Clifford algebra R3 and its quadratic cone. Moreover, in this section we recall
the following crucial fact

R3 ≃ R2 ⊕ R2,

where R2 is the algebra of quaternions. It is important to remark that this splitting holds both
at the level of real vector space and at the level of algebra.

In Section 3 we state Theorem 1.1. The proof is based on proving the following equivalences

I) 1) ⇐⇒ 3) ⇐⇒ 5),

II) 1) ⇐⇒ 2),

III) 5) ⇐⇒ 6),

IV) 3) ⇐⇒ 4),

and the implication
6) =⇒ 2),

which may be of interest in some other contexts. The first ones are related to the complex case.
For proving the second one we show the following inequalities

1√
2
‖F (α+ iβ)‖ ≤ max{|f(α+ βJ)|, |f(α − βJ)|} ≤

√
2‖F (α+ iβ)‖ ∀α, β ∈ R, J ∈ SR3

,

where f : Ω4
D ⊂ QR3

→ R3 is a left slice function induced by a stem function F .
The proof of the third equivalence is trivial but we show it for the sake of completeness. Due to a
slice representation of the quadratic cone QR3

(see Proposition 2.2), it is possible to endow it with
the topology induced by a product topology. This is helpful to prove the implication 6) =⇒ 2).
In order to show the last equivalence, firstly, we study the homologies H5(Ω

4
D), H4(Ω

4
D), H3(Ω

4
D),

H2(Ω
4
D), H1(Ω

4
D), where Ω

4
D is an axially symmetric open subset of the quadratic cone QR3

, and
after we develop a series of technical results which help us to prove the last equivalence.

2 Preliminaries and notations

In this section we will overview and collect the main notions and results needed for our aims.
First, let us recall that the skew field of quaternions may be identified with the Clifford algebra
R2. An element q ∈ R2 is usually written as q = x0 + ix1 + jx2 + kx3, where i

2 = j2 = k2 = −1
and ijk = −1. Given a quaternion q we introduce a conjugation in R2 (the usual one), as
qc = x0−ix1−jx2−kx3; with this conjugation we define the real part of q as Re(q) := (q+qc)/2
and the imaginary part of q as Im(q) = (q − qc)/2. With the defined conjugation we can write
the euclidian square norm of a quaternion q as |q|2 = qqc. The subalgebra of real numbers will
be identified, of course, with the set R = {q ∈ R2 | Im(q) = 0}.

Now, if q is such that Re(q) = 0, then the imaginary part of q is such that (Im(q)/|Im(q)|)2 =
−1. More precisely, any imaginary quaternion I = ix1+ jx2+kx3, such that x21+x

2
2+x

2
3 = 1 is

an imaginary unit. The set of imaginary units is then a real 2-sphere and it will be conveniently
denoted as follows

SR2
:= {q ∈ R2 | q2 = −1} = {q ∈ R2 | Re(q) = 0, |q| = 1}.
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With the previous notation, any q ∈ R2 can be written as q = α + Iβ, where α, β ∈ R and
I ∈ SR2

. Given any I ∈ SR2
we will denote the real subspace of R2 generated by 1 and I as

CI := {q ∈ R2 | q = α+ Iβ, α, β ∈ R}.

Sets of the previous kind will be called slices and they are also complex planes with respect to
the complex structure defined by the respective parameter I. All these notations reveal now
clearly the slice structure of R2 as a union of complex planes CI for I which varies in SR2

, i.e.

R2 =
⋃

I∈SR2

CI ,
⋂

I∈SR2

CI = R.

The following notion of slice regularity was introduced by Gentili and Struppa [29, 31].

Definition 2.1. Let Ω be an open subset of R2 with Ω ∩ R 6= ∅. A real differentiable function
f : Ω 7→ R2 is slice regular if for every I ∈ SR2

its restriction fI to the complex plane CI passing
through the origin and containing 1 and I is holomorphic on Ω ∩ CI .

For a ball in R2 centered at the origin we have that a slice regular function can be represented
by a convergent power series

f(q) =

+∞∑

k=0

qkak, {ak}k∈N ⊂ R2.

The theory of slice regular functions has given already many fruitful results, both on the
analytic and the geometric side, see for example [3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 16].

Moreover, slice hyperholomorphic functions have several applications in operator theory
and in Mathematical Physics [17, 18, 32]. The spectral theory of the S-spectrum is a natural
tool for the formulation of quaternionic quantum mechanics and for the study of new classes of
fractional diffusion problems, see [17, 18, 21], and the references therein. Slice hyperholomorphic
functions are also important in operator theory and Schur analysis which have also been deeply
investigated in the recent years, see [1, 2] and the references therein.

Now we will see some basic notions about the real Clifford algebra R3 and its quadratic cone
QR3

, introduced in the papers [33, 34].
We define R3 as the real associative non-commutative algebra defined as follows. Let {e1, e2, e3}
be the canonical orthonormal basis for R

3. Then R3 is the real associative algebra with 1
generated by the ei with defining relations eiej + ejei = −2δij . This is the real Clifford algebra
for the vector space R

3 with the standard euclidean quadratic form. In the sequel we will write
e0 := 1, eiej = eij , for i, j = 1, 2, 3, i 6= j, and e1e2e3 = e123. Thus an arbitrary element x ∈ R3

can be written as

x = x0e0 + x1e1 + x2e2 + x3e3 + x12e12 + x13e13 + x23e23 + x123e123 (2.1)

where the coefficients xi, xij, xijk are real numbers. Thus, we see that R3 is an eight dimensional
real space, endowed with a natural multiplicative structure. The conjugate of x will be denoted
by x̄ and can be defined as the unique antivolution1 of R3 with ei 7→ ēi = −ei. Conjugation
may likewise be defined extending by linearity the anti-involution

e0 = e0, ei = −ei, eij = −eij , e123 = e123,

1An is a linear self-map of order 2 such that xy = (ȳ) · (x̄) ∀x, y ∈ A, with A any real quadratic alternative
algebra with a unity
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for i, j ∈ {1, 2, 3}, i 6= j.
Moreover, it is known that in R3 one can consider the two idempotents ω+ = 1

2 (e0 + e123)
and ω− = 1

2(e0 − e123) (i.e. ω
2
+ = ω+ , ω2

− = ω−), that are mutually annihilating each other i.e.
ω+ω− = ω−ω+ = 0 (see [22, Chapter 6], [25]). Let R+

3 denote the even subalgebra of R3 i.e.

R
+
3 = {x0e0 + x23e23 + x12e12 + x13e13 : x0, x23, x12, x12 ∈ R}.

Note that R+
3 ≃ R2 as R-algebras.

Every x ∈ R3 admits a unique representation

x = ω+q + ω−p (2.2)

with q, p ∈ R
+
3 ≃ R2. So we have the isomorphism of R-algebras [24]

R3 = ω+R
+
3 ⊕ ω−R

+
3 ≃ R2 ⊕ R2 (2.3)

where the ring structure is given by (q, p)+ (q′, p′) = (q+ q′, p+ p′) and (q, p)(q′, p′) = (qq′, pp′).
The equality (2.2) is very useful since helps us to work in the Clifford algebra R3 using the
quaternionic results.

Conjugation on R3 is compatible with conjugation on R2 via this splitting:

x̄ = ω+q
c + ω−p

c, ω+ = ω+, ω− = ω−

for x = ω+q + ω−p where qc and pc are conjugate of q and p as elements of R2.
As usual, we have the notions of norm and trace associated to the conjugation, i.e., the norm

n(x) is defined as xx̄ and the trace t(x) is defined as t(x) = x+ x̄.
With respect to the splitting x = ω+q + ω−p we obtain:

t(x) = ω+t(q) + ω−t(p), n(x) = ω+n(q) + ω−n(p) (2.4)

The norm is multiplicative, i.e., n(xy) = n(x)n(y), ∀x, y ∈ R3.
For more details about this splitting the interested reader can see [24, 40, 41, 43].

Remark 2.1. In general, it is known that every Clifford algebra Rn is a either a matrix algebra
of rank r ≥ 1 over R, C or H or a direct sum of two copies of such a matrix algebra [37, 38].

An explicit proof of the splitting

R3 ≃Mat(1× 1,H)⊕Mat(1× 1,H) ≃ R2 ⊕R2

may be found in the papers [40, 41]. However, the reader should be aware these papers also
contain an incorrect claim that Rn is isomorphic to a sum of 2n−1 copies of the algebra R2.

Now, we introduce some basic facts about the quadratic cone [33, 34].

Definition 2.2 ([33]). We call quadratic cone of R3 the set

QR3
:= R ∪ {x ∈ R3 \ R | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x)2}.

Remark 2.2. This definition has been introduced for general finite-dimensional real alternative
algebras. The inequality 4n(x) > t(x)2 is relevant for the general case, but not in our case. In
fact, one can check that in R3 the inequality 4n(x) > t(x)2 is automatically fulfilled as soon as
n(x), t(x) ∈ R. Indeed, due to (2.4), the assumption n(x), t(x) ∈ R implies n(x) = n(p) = n(q),
t(x) = t(p) = t(q) for x = ω+q + ω−p with p ∈ R

+
3 ≃ H Thus it suffices to check the inequality

for quaternions, Every quaternion q may be written as q = s+v where s ∈ R and v is imaginary.
Then n(q) = s2 + ||v||2 and t(q) = 2s, implying 4n(q) > t(q)2 if v 6= 0.

As a consequence,
QR3

:= R ∪ {x ∈ R3 \ R | t(x), n(x) ∈ R}.
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In terms of the splitting of R3 we have:

QR3
= {ω+q + ω−p : p, q ∈ R2, t(p) = t(q), n(p) = n(q)}

We also define SR3
:= {x ∈ QR3

|x2 = −1}. The elements of SR3
will be called square roots

of −1 in the algebra R3.
Next we show SR3

≃ SR2
× SR2

:

Proposition 2.1.
SR3

=
{
ω+q + ω−p : p, q ∈ R2, q

2 = p2 = −1
}

Proof. Let x = ω+q + ω−p (q, p ∈ R2). By elevating to the square and using the facts that
ω2
+ = ω+, ω

2
− = ω− and ω+ω− = ω−ω+ = 0 we get

x2 = ω2
+q

2 + ω+ω−qp+ ω−ω+pq + ω2
−p

2 = ω+q
2 + ω−p

2.

Since ω± = 1
2(e0 ± e123) we get

x2 = −1 ⇐⇒ −(ω+ + ω−) = −1 = x2 = ω+q
2 + ω−p

2 ⇐⇒ p2 = −1 = q2

Thus
{x ∈ R3 : x

2 = −1} = {ω+q + ω−p : q
2 = p2 = −1}

We observe that q2 = p2 = −1 implies n(x) = 1 ∈ R and t(x) = 0 ∈ R. Therefore

{x ∈ R3 : x
2 = −1} = {x ∈ R3 : x

2 = −1, n(x), t(x) ∈ R} = {x ∈ QR3
: x2 = −1} = SR3

This means that SR3
∼= SR2

⊕ SR2
∼= SR2

× SR2
.

The following proposition, proved in [33, Prop. 3], will be important for our results.

Proposition 2.2. The following statements hold

1. QR3
=

⋃
J∈SR3

CJ ,

2. If I, J ∈ SR3
, I 6= ±J , then CI ∩CJ = R.

In [33] the authors studied the quadratic cone for a general finite-dimensional real alternative
algebra with unity. They remark that if the algebra is isomorphic to one of the division algebras
R2, O we have that QR2

= R2 and QO = O. Furthermore, in these cases, SR2
= {q ∈ R2 : q2 =

−1}, i.e. is a 2-sphere, and SO is a 6-sphere.
In the case of the Clifford algebra Rn, for n ≥ 3, the quadratic cone QRn is a real algebraic

subset of Rn. Now, we recall that an element (x0, x1, ..., xn) ∈ R
n+1 can be identified with the

element

x = x0e0 +
n∑

j=1

xjej ,

called, in short paravector. We remark that the subspaces of paravectors R
n+1 is contained in

QRn . Moreover, the (n−1)- dimensional sphere S = {x = x1e1+...+xnen ∈ R
n|x21+...+x2n = 1}

of unit imaginary vectors is properly contained in SRn .
In particular, for the case R3 it is possible to show that the quadratic cone is the 6-dimensional

real algebraic set

QR3
= {x ∈ R3 |x123 = 0, x2x13 − x1x23 − x3x12 = 0}.

Moreover SR3
is the intersection of a 5-sphere with the hypersurface x1x23 − x2x13 + x3x12 = 0.

For our future computations it will be essential the following definition.
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Definition 2.3. Let us consider an open subset D of C, we define Ω4
D as a subset of R3 such

that
Ω4
D := {x = α+ βJ ∈ CJ |α, β ∈ R, α+ iβ ∈ D, J ∈ SR3

}.
This kind of set will be called axially symmetric domain. Furthermore, we set

Ω2
D := {x = α+ βK ∈ CK |α, β ∈ R, α+ iβ ∈ D, K ∈ S

2},

where in this case S
2 is a generic 2-sphere, which is contained in SR3

(see Proposition 2.1).

If S2 = SR2
we obtain the axially symmetric domain of the quaternions, (see [31]). For this

we will use the following notation Ω2
D(R2). From [7] we have a relation between the axyally

symmetric domains previously defined.

Proposition 2.3. Let us consider an open subset D of C, then we have

Ω4
D
∼= Ω2

D(R2)⊕ Ω2
D(R2).

By Proposition 2.2 follows that Ω4
D is a relatively open subset of the quadratic cone QR3

.
We define R3 ⊗ C as the complexification of R3. We will use the representation

R3 ⊗ C = {w = x+ ιy|x, y ∈ R3} (ι2 = −1).

Definition 2.4. A function F : D ⊆ C → R3 ⊗ C defined by F (z) = F1(z) + iF2(z) where
z = α + iβ ∈ D, F1, F2 : D → R3, and where F1(z̄) = F1(z) and F2(z̄) = −F2(z) whenever
z, z̄ ∈ D, is called stem function. Given a stem function F , the function f = I(F ) defined by

f(x) = f(α+ βJ) := F1(z) + JF2(z)

for any x ∈ Ω4
D is called the slice function induced by F .

We will denote the set of (left) slice functions on Ω4
D by

S(Ω4
D) := {f : Ω4

D → R3| f = I(F ), F : D → R3 ⊗ C stem function}.

Proposition 2.4. Let f ∈ S(Ω4
D) and J ∈ SR3

. Then the following equality holds for all
x = α+ βI ∈ Ω4

D ∩ CI

f(x) =
1

2
[f(α+βJ) + f(α− βJ)] +

I

2

[
J [f(α− βJ)− f(α+ βJ)]

]
= F1(α, β) + IF2(α, β). (2.5)

Moreover, F1 and F2 depend only on α, β but they do not depend on J ∈ SR3
.

Proof. In [33, Prop. 6] the authors prove a representation formula for slice functions in a finite-
dimensional real alternative algebra with unity. The second part of the proof follows directly by
(2.5). In fact we have

1

2
[f(α+ βJ) + f(α− βJ)] =

1

2

[
1

2
[f(α+ βI) + f(α− βI)] +

JI

2
[f(α− βI)− f(α+ βI)] +

+
1

2
[f(α+ βI) + f(α− βI)]− JI

2
[f(α− βI)− f(α+ βI)]

]
=

1

2
[f(α+ βI) + f(α− βI)],

and so F1, and similarly F2, depend on α, β only.

6



Definition 2.5. A (left) slice function f ∈ S(Ω4
D) is (left) slice regular if its stem function F is

holomorphic.

We will denote the set of slice regular functions on Ω4
D by

SR(Ω4
D) = {f ∈ S(Ω4

D)| f = I(F ), F : D → R3 ⊗ C holomorphic}.

In [30, Prop.1] the authors showed that SR3
is the intersection of a 5-sphere with the hyper-

surface x1x23 − x2x13 + x3x12 = 0.

Remark 2.3. In the Clifford algebra R3 it is possible to define the sphere S
6 of pure imaginary

units (i.e. the set in which the square of the imaginary units is equal to minus one). Unlike
what happens over the quaternions, the sphere SR3

does not coincide with S
6, but it is properly

contained. For instance, the imaginary unit e123 stays in S
6 but not in SR3

. Moreover, we observe
that we have defined the axially symmetric domain using the smallest sphere (see Definition 2.3).

3 Runge’s Theorem

In this section we study the Clifford analogous of the classical complex Runge theory. In partic-
ular, we focus on the extension in the Clifford algebra R3 of the topological characterization of
this theorem. A quaternionic generalization of this theorem is showed in [15, Thm. 1.3]. From
now on the set D is a symmetric open subset of C with respect to the real line.

Theorem 3.1. Let D ⊂ D1 be symmetric open subsets of C and let Ω4
D ⊂ Ω4

D1
be the corre-

sponding axially symmetric open subsets of QR3
(as defined in Definition 2.3). Then the following

conditions are equivalent

1) D ⊂ D1 is a Runge pair. This means that every holomorphic function on D can be
approximated by holomorphic functions on D1 (uniformly on compact sets).

2) Ω4
D is Runge in Ω4

D1
, in the sense that every slice regular function on Ω4

D can be approxi-
mated (uniformly on compact sets) by slice regular functions on Ω4

D1
.

3) i∗ : H1(D) → H1(D1) is injective, where i∗ is the homology group homomorphism induced
by the inclusion map i : D → D1.

4) i∗ : Hk(Ω
4
D) → Hk(Ω

4
D1

) is injective for k ∈ {1, 3, 5}, where i∗ is the homomorphism
induced by the inclusion map i : Ω4

D → Ω4
D1

.

5) Every bounded connected component of C \D intersects C \D1.

6) Every bounded connected component of QR3
\ Ω4

D intersects QR3
\ Ω4

D1
.

Remark 3.1. The main difference with the quaternionic case is that more homological groups
are affected. Indeed, in [15, Thm. 1.3] the map i∗ is injective only for k ∈ {1, 3}.

We prove Theorem 3.1 by proving the following equivalences:

1) ⇐⇒ 3) ⇐⇒ 5),

1) ⇐⇒ 2),

5) ⇐⇒ 6),

7



3) ⇐⇒ 4),

and the implication
6) =⇒ 2),

which may be of interest in some other contexts. We start by proving the classical ones: 1) ⇐⇒
3) ⇐⇒ 5).
These equivalences are well-known in the complex case (see [5] and [39, Paragraph 13.2.1]).

Proposition 3.1. Let D ⊂ D1 be open subsets of C. Then the following properties are equivalent

1) The inclusion map induces an injective group homomorphism H1(D) → H1(D1).

2) Every bounded connected component of C \D intersects C \D1.

3) For every holomorphic function f on D, every ε > 0 and every compact subset K ⊂ D
there exists a holomorphic function g on D1 with supp∈K |f(p)− g(p)| < ε.

Now, we prove the implication 1) ⇐⇒ 2) of Theorem 3.1.
Before, we show an auxiliary result, which is similar to [15, Lemma 2.3].

Lemma 3.1. Let f : Ω4
D ⊂ QR3

→ R3 be a left slice function induced by a stem function F .
Then

1√
2
‖F (α + iβ)‖ ≤ max{|f(α+ βJ)|, |f(α − βJ)|} ≤

√
2‖F (α+ iβ)‖ (3.1)

for every α, β ∈ R, J ∈ SR3
.

Proposition 3.2. Let D ⊂ D1 be a symmetric open subset of C with corresponding axially
symmetric open subsets Ω4

D ⊂ Ω4
D1

in QR3
. Then every slice regular function on Ω4

D may be
approximated locally uniformly by slice regular functions on Ω4

D1
if and only if D is Runge in

D1.

Proof. Firstly, we notice that for any symmetric subset C ⊂ D the subset

Ω4
C = {α+ βJ : ∃ α+ βi ∈ C, J ∈ SR3

}
of QR3

is compact if and only if C is compact. We measure the size of a function by using the
sup-norm. From the euclidean scalar product on C ≃ R

2 and on R3 ≃ R
8 we deduce a scalar

product on R3 ⊗ C ≃ R
16. We call the norm induced by this scalar product by ‖.‖. From the

inequalities (3.1) we derive that

1√
2
‖F‖C ≤ ‖f‖Ω4

C
≤

√
2‖F‖C ,

for any compact symmetric subset C of D. We denote ‖F‖C = supz∈C ‖F (z)‖. We endow
the space of slice functions on Ω4

D and the space of stem functions on D with the topology of
locally uniform convergence. Thus, by the previous inequalities we get that the two spaces are
isomorphic. This implies the thesis.

Now, we prove 5) ⇐⇒ 6) of Theorem 3.1.
This implication is trivial and it is similar to [15, Thm. 1.3]. For the sake of completeness we
show the proof. Each bounded connected component C of D, respectively D1, corresponds to a
bounded connected component Ω4

C of Ω4
D, respectively Ω4

D1
, through

Ω4
C = {α+ βI; α, β ∈ R, α+ βi ∈ C, I ∈ SR3

}.
In order to show the implication 6) =⇒ 2) of Theorem 3.1 we need a preliminary result. Let us
start with the followings

8



Definition 3.1. Let D ⊂ C. Let Ω4
D ⊂ QR3

be axially symmetric and let f be a slice function.
It is called intrinsic if

f(α− Iβ) = f(α+ Iβ), ∀α+ Iβ ∈ Ω4
D ∩ CI .

Definition 3.2. Given two polynomials a = I(A) and b = I(B) such that AcA is real and not
identically zero, we call (left) rational a function of the form a−1b := I

(
(AcA)−1AcB

)
.

Remark 3.2. The function AcA is said to be real if its components are real-valued.

Rational functions admit the following characterization:

Proposition 3.3. A slice function f : Ω4
D → R3 is rational if and only if for any I ∈ SR3

and any
choice of I2, I3, completion of a basis of R3, satisfying the defining relations, IrIs+IsIr = −2δrs.
Then there exist eight rational intrinsic functions RA such that

fI(u+ Iv) =

3∑

|A|=0

RA(α+ Iβ)IA, IA = Ii1 ...Iis ∀α+ Iβ ∈ Ω4
D ∩ CI , (3.2)

where A = i1...is is a subset of {1, 2, 3}, with i1 < ... < is or, when |A| = 0, I∅ = 1.

Proof. It is based on computations similar to [20, Prop. 3.7] and on the refined splitting lemma,
see [35, Lemma 2.4], [19].

Due to the fact that the function AcA is real and not identically zero we have the following

Corollary 3.1. The singularities of a rational function are all poles.

Now, we are ready to show the implication 6) =⇒ 2) of Theorem 3.1, which is not necessary
but could be of interest in some other contexts. In order to do this we have to endow the
quadratic cone QR3

with a topology induced by a product topology. For this purpose we use the
fact that we can split SR3

as direct sum of 2-spheres (see Proposition 2.1) and by Proposition
2.2 we get

QR3
=

⋃

J∈SR3

CJ =
⋃

J∈SR2×SR2

CJ .

This allows us to endow the quadratic cone QR3
with the topology induced by the product

topology of C×R
6. It is possible to justify this choice since we are working with complex planes

in which the imaginary unit varies in a product of spheres which are subset of R3, respectively.
By the symbol QR3

we will denote QR3
∪ {∞}.

Theorem 3.2. Let D ⊂ C. Let Ω4
D be an axially symmetric open set in QR3

, let A be a set
having a point in each connected component of QR3

\ Ω4
D and let f ∈ SR(Ω4

D). Then f can
be approximated by a sequence of rational functions {rn} having their poles in A uniformly on
every compact set in Ω4

D. If QR3
\ Ω4

D is a connected set, then we can set A = {∞} and f can
be approximated by polynomials uniformly on every compact set in Ω4

D.

Proof. We follow the same ideas of [20, Thm. 3.12]. The following estimates are to be understood
in a compact set of QR3

. It is possible to extend them for an open set through an exhaustion by
compact sets, as made in [20, Thm. 3.14].
Since the quadratic cone is endowed with the topology induced by the product topology of C×R

6

we have to prove that for any ε > 0

‖f(α+ Iβ)− rn(α+ Iβ)‖C < ε, (3.3)
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and
‖f(α+ Iβ)− rn(α+ Iβ)‖R6 < ε ∀α+ Iβ ∈ Ω4

D ∩CI . (3.4)

By the refined splitting lemma [35, Lemma 2.4] we have that there exist eight holomorphic
intrinsic functions FA : Ω4

D ∩ CI → CI such that for every z = α+ Iβ

fI(z) =
3∑

|A|=0

FA(z)IA.

By the Proposition 3.3 and the classical Runge’s theorem [42, Thm. 13.9] we can find eight
rational intrinsic functions RA(α+ Iβ) with poles in A ∩ CI such that

‖FA(α+ Iβ)−RA(α+ Iβ)‖C <
ε

8
∀α+ Iβ ∈ Ω4

D ∩ CI . (3.5)

Then
‖f(α+ Iβ)− rn(α+ Iβ)‖C < ε.

In order to prove (3.4) we use the Representation Formula (Proposition 2.4)

f(α+ Iβ)− rn(α+ Iβ) =
1

2

[(
f(α+ Jβ) + f(α− Jβ)

)
+IJ

(
f(α− Jβ)− f(α+ Jβ)

)
+

−
(
rn(α+ Jβ) + rn(α− Jβ)

)
+IJ

(
rn(α− Jβ)− rn(α+ Jβ)

)]
.

Using the previous splittings we get

f(α+ Iβ)− rn(α+ Iβ) =
1

2

[( 3∑

|A|=0

FA(α+ Jβ)IA + FA(α− Jβ)IA +

+IJ

3∑

|A|=0

FA(α− Jβ)IA − FA(α+ Jβ)IA

)
+

−
( 3∑

|A|=0

RA(α+ Jβ)IA +RA(α− Jβ)IA +

+IJ

3∑

|A|=0

RA(α− Jβ)IA −RA(α+ Jβ)IA

)]
.

Finally by (3.5) we get

‖f(α+ Iβ)− rn(α+ Iβ)‖R6 ≤ 1

2

( 3∑

|A|=0

‖FA(α+ Jβ)−RA(α+ Jβ)‖C +

+
3∑

|A|=0

‖FA(α− Jβ)−RA(α− Jβ)‖C +

+

3∑

|A|=0

‖FA(α+ Jβ)−RA(α+ Jβ)‖C +

+
3∑

|A|=0

‖FA(α− Jβ)−RA(α− Jβ)‖C
)

< ε.

10



Therefore we get (3.4).

Remark 3.3. In this setting in the numerator of a rational function it is possible to find the
zero divisors. However, this is not possible at the denominator because it is real by definition
of rational function. Nevertheless, this is not a problem because the poles in A of Theorem 3.2
remain spheres or real points. The only thing that can change is the multiplicity of at most two
points on the sphere ([36]).

From the previous theorem follows the implication 6) =⇒ 2) of Theorem 3.1.
In the rest of the paper we will show many auxiliary results, which will help us to prove the last
implication 3) ⇐⇒ 4) of Theorem 3.1 (see Proposition 3.10).
We introduce some notations which will be used for the next results. Thus, we define

D+ = {z ∈ D : Im(z) ≥ 0},

D− = {z ∈ D : Im(z) ≤ 0},
DR = D ∩ R,

D∗ = D+ \ R.
Let ∂D be the boundary of D. We define the real positive continuous function h on DR in the
following way

h(x) = dist(x, ∂D) = inf
z∈∂D

|z − x|.

Moreover, we can set
W = {x+ yi ∈ C : x ∈ DR : 0 ≤ y < h(x)},

W ∗ =W \DR.

We observe that
W = {x+ rh(x)i : x ∈ DR, r ∈ [0, 1)},
W ∗ = {x+ rh(x)i : x ∈ DR, r ∈ (0, 1)},
DR = {x+ rh(x)i : x ∈ DR, r = 0}.

In order to obtain a precise description of the homology of Ω4
D in terms of the topology of D

(see Proposition 3.5) it is crucial the following result.

Proposition 3.4.

Hk(SR3
) =





Z k = 0, 4

Z⊕ Z k = 2

0 k = 1, 3, k ≥ 5

Proof. By Proposition 2.1 we know that SR3
= SR2

× SR2
, so the formula follows by using the

well known homology of a 2-sphere and the Künneth formula, which is without the torsion part
since Z is a flat module.

Proposition 3.5. Let D be a symmetric open subset of C. We assume that the axially symmetric
set Ω4

D is connected. Recalling the reduced homology H̃0 we have

0 → H1(D
+) → H5(Ω

4
D) → H̃0(DR) → 0, (3.6)
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H4(Ω
4
D) =

{
0 DR 6= ∅
Z DR = ∅,

(3.7)

0 → H1(D
+)⊕H1(D

+) → H3(Ω
4
D) → H̃0(DR)⊕ H̃0(DR) → 0, (3.8)

H2(Ω
4
D) =

{
0 DR 6= ∅
Z⊕ Z DR = ∅,

(3.9)

0 → H1(D
+) → H1(Ω

4
D) → 0. (3.10)

Proof. By the following equalities Ω4
D = Ω4

D∗ ∪ Ω4
W and Ω4

W ∗ = Ω4
D∗ ∩ Ω4

W we can build a
Mayer-Vietoris sequence for homology

...→ Hk+1(Ω
4
D) → Hk(Ω

4
W ∗) → Hk(Ω

4
D∗)⊕Hk(Ω

4
W ) → Hk(Ω

4
D) → ...

Similar to the paper [15, Prop. 2.5] we have

Ω4
W ∗ ∼ SR3

×DR,

Ω4
W ∼ DR,

Ω4
D∗ ∼ SR3

×D∗ ∼ SR3
×D+.

Thus, we can write the Mayer-Vietoris sequence in the following way

...→ Hk+1(Ω
4
D) → Hk(SR3

×DR) → Hk(SR3
×D+)⊕Hk(DR) → Hk(Ω

4
D) → ... (3.11)

We known that the homology groups of the sphere SR3
are torsion-free, so by the Künneth

formula we have

Hℓ(SR3
×X) ≃

(
H0(SR3

)⊗Hℓ(X)
)
⊕
(
H2(SR3

)⊗Hℓ−2(X)
)
⊕
(
H4(SR3

)⊗Hℓ−4(X)
)
, ℓ ≥ 4,

H3(SR3
×X) ≃

(
H0(SR3

)⊗H3(X)
)
⊕
(
H2(SR3

)⊗H1(X)
)
,

H2(SR3
×X) ≃

(
H0(SR3

)⊗H2(X)
)
⊕
(
H2(SR3

)⊗H0(X)
)
,

H1(SR3
×X) ≃ H0(SR3

)⊗H1(X),

H0(SR3
×X) ≃ H0(SR3

)⊗H0(X).

Hence

... → Hk+1(Ω
4
D) →

(
H0(SR3

)⊗Hk(DR)
)
⊕
(
H2(SR3

)⊗Hk−2(DR)
)
⊕
(
H4(SR3

)⊗Hk−4(DR)
)
→

→
(
H0(SR3

)⊗Hk(D
+)

)
⊕
(
H2(SR3

)⊗Hk−2(D
+)

)
⊕
(
H4(SR3

)⊗Hk−4(D
+)

)
⊕Hk(DR) →

→ Hk(Ω
4
D) → ... (3.12)
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Now we observe that Hk(DR) = {0} for k > 0 and Hk(D
+) = {0} for k > 1. Putting these in

the long exact sequence (3.12) we get

0 →H4(SR3
)⊗H1(D

+) → H5(Ω
4
D) → H4(SR3

)⊗H0(DR) → H4(SR3
)⊗H0(D

+) → H4(Ω
4
D) →

→ 0 → H2(SR3
)⊗H1(D

+) → H3(Ω
4
D) → H2(SR3

)⊗H0(DR) → H2(SR3
)⊗H0(D

+) → H2(Ω
4
D) →

→ 0 → H0(SR3
)⊗H1(D

+) → H1(Ω
4
D) → H0(SR3

)⊗H0(DR) →
(
H0(SR3

)⊗H0(D
+)

)
⊕H0(DR) →

→H0(Ω
4
D) → 0.

This allows us to split the sequence in the following way

0 →H4(SR3
)⊗H1(D

+) → H5(Ω
4
D) → H4(SR3

)⊗H0(DR) →
→H4(SR3

)⊗H0(D
+) → H4(Ω

4
D) → 0 (3.13)

0 →H2(SR3
)⊗H1(D

+) → H3(Ω
4
D) → H2(SR3

)⊗H0(DR) →
→H2(SR3

)⊗H0(D
+) → H2(Ω

4
D) → 0 (3.14)

0 →H0(SR3
)⊗H1(D

+) → H1(Ω
4
D) → H0(SR3

)⊗H0(DR) →
→

(
H0(SR3

)⊗H0(D
+)

)
⊕H0(DR) → H0(Ω

4
D) → 0. (3.15)

First case: DR 6= ∅

Since DR →֒ D+, we have a surjective group homomorphism H0(DR) → H0(D
+) and by

definition of reduced homology this has kernel H̃0(DR). Let us define in (3.13) the follow-
ing homomorphism α : H4(SR3

) ⊗ H0(DR) → H4(SR3
) ⊗ H0(D

+). Therefore, we can split the
sequence (3.13) in the following way

0 → H4(SR3
)⊗H1(D

+) → H5(Ω
4
D) → ker(α) → 0, (3.16)

and
0 → (H4(SR3

)⊗H0(DR))/ker(α)
α→ H4(SR3

)⊗H0(D
+) → H4(Ω

4
D) → 0. (3.17)

Since H4(SR3
)⊗H1(D

+) ≃ H1(D
+) and ker(α) ≃ H̃0(DR), by (3.16) we have (3.6). Moreover,

the exact sequence (3.17) implies H4(Ω
4
D) ≃ {0}, since α is surjective.

Now, we observe that by Proposition 3.4 and by the distributive property of the tensor product
we can write

H2(SR3
)⊗H0(DR) ≃ (Z⊕Z)⊗H0(DR) ≃ (Z⊗H0(DR))⊕ (Z⊗H0(DR)) ≃ H0(DR)⊕H0(DR).

Then, we can write the exact sequence (3.14) as

0 →H1(D
+)⊗H1(D

+) → H3(Ω
4
D) → H0(DR)⊕H0(DR) → (3.18)

→H0(D
+)⊕H0(D

+) → H2(Ω
4
D) → 0.

In this case the inclusion map DR →֒ D+ yields a surjective group morphism β : H0(DR) ⊕
H0(DR) → H0(D

+)⊕H0(D
+) with ker(β) ≃ H̃0(DR)⊕H̃0(DR). Thus we can split the sequence

as
0 → H1(D

+)⊕H1(D
+) → H3(Ω

4
D) → ker(β) → 0, (3.19)
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and
0 → (H0(DR)⊕H0(DR))/ker(β)

β→ H0(D
+)⊕H0(D

+) → H2(Ω
4
D) → 0. (3.20)

Hence, from (3.19) we have (3.8). Furthermore since β is surjective we obtain that H2(Ω
4
D) ≃

{0}.

Second case DR = ∅

It is obvious that H0(DR) ≃ {0}. From (3.13) we obtain

0 → H4(SR3
)⊗H1(D

+) → H5(Ω
4
D) → 0 (3.21)

and
0 → H4(SR3

)⊗H0(D
+) → H4(Ω

4
D) → 0. (3.22)

Since H4(SR3
)⊗H1(D

+) ≃ H1(D
+) by the sequence (3.21) we get (3.6). Moreover, by the fact

that H4(SR3
)⊗H0(D

+) ≃ Z (since D+ is connected) we have H4(Ω
4
D) ≃ Z.

On the other hand from (3.14) we have

0 → H2(S3)⊗H1(D
+) → H3(Ω

4
D) → 0, (3.23)

and
0 → H2(SR3

)⊗H0(D
+) → H2(Ω

4
D) → 0. (3.24)

By H2(S3) ⊗ H1(D
+) ≃ H1(D

+) ⊕ H1(D
+) we get (3.8). By (3.24) and the fact that D+ is

connected we have

H2(Ω
4
D) ≃ H2(SR3

)⊗H0(D
+) ≃ (Z⊗H0(D

+))⊕ (Z⊗H0(D
+)) ≃ (Z⊗ Z)⊕ (Z⊗ Z) ≃ Z⊕ Z.

Finally, we have to prove (3.10). By Proposition 3.4 we can write the sequence (3.15) in the
following way

0 → H1(D
+) → H1(Ω

4
D) → H0(DR) → H0(D

+)⊕H0(DR) → H0(Ω
4
D) → 0. (3.25)

Since the map H0(DR) → H0(D
+)⊕H0(DR) is injective by the properties of exact sequence we

obtain
0 → H1(D

+) → H1(Ω
4
D) → 0,

which is exactly (3.10).

Corollary 3.2. Let D be a symmetric open subset of C. We assume that the corresponding
axially symmetric domain Ω4

D is connected. Moreover, let us assume that D is a bounded domain
with smooth boundary. Then all the homology groups are finitely generated and Proposition 3.5
implies the following description of the Betti numbers bk = dimHk( ,Z)⊗Z R. Let

r :=

{
b0(DR)− 1 DR 6= ∅
0 DR = ∅.

Then

b1(Ω
4
D) =

1

2
(b1(D)− r), (3.26)
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b2(Ω
4
D) =

{
2 DR = ∅
0 DR 6= ∅,

(3.27)

b3(Ω
4
D) = b1(D) + r, (3.28)

b4(Ω
4
D) =

{
1 DR = ∅
0 DR 6= ∅,

(3.29)

b5(Ω
4
D) =

1

2
(b1(D) + r). (3.30)

Proof. The formulas (3.26), (3.27), (3.28), (3.29), (3.30) follow respectively by (3.10), (3.9),
(3.8), (3.7), (3.6).

Remark 3.4. By Proposition 2.3 we have

b1(Ω
4
D) = b1(Ω

2
D(R2)),

b2(Ω
4
D) = b2(Ω

2
D(R2)) + b2(Ω

2
D(R2)),

b3(Ω
4
D) = b3(Ω

2
D(R2)) + b3(Ω

2
D(R2)),

b4(Ω
4
D) = b2(Ω

2
D(R2)),

b5(Ω
4
D) = b3(Ω

2
D(R2)).

Corollary 3.3. Let D be a symmetric open subset of C. Let us assume that Ω4
D is not necessarily

connected. Then

H4(Ω
4
D) =

{
0 DR 6= ∅
Z
k DR = ∅,

(3.31)

H2(Ω
4
D) =

{
0 DR 6= ∅
Z
k ⊕ Z

k DR = ∅,
(3.32)

where k denotes the number of connected components of D+ which do not intersect R.
Let Ĥ0(DR) be the kernel of the homomorphism i∗ : H0(DR) → H0(D

+). Then we have the
following exact sequences

0 → H1(D
+) → H5(Ω

4
D) → Ĥ0(DR) → 0, (3.33)

0 → H1(D
+)⊕H1(D

+) → H3(Ω
4
D) → Ĥ0(DR)⊕ Ĥ0(DR) → 0, (3.34)

0 → H1(D
+) → H1(Ω

4
D) → 0. (3.35)

Proof. This is a consequence of Proposition 3.5 and the fact that the homology of a disconnected
space is isomorphic to the direct sum of the homology of its connected components.

Now we explain the geometric meaning of the short exact sequence (3.6). If we consider an
element α ∈ H1(D

+) we can represent it as a finite formal Z-linear combination of closed curves
γj : S

1 → D+. Each of them defines a map η : S1 × SR3
→ Ω4

D through

η(t, I) = Re(γj(t)) + I · Im(γj(t)).
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The fundamental class of the real five-dimensional manifold η(S1 × SR3
) defines an element in

H5(Ω
4
D).

It is also possible to prove that the sequence (3.6) has not a natural splitting. Given an
element β ∈ H0(DR) we can represent it as a formal Z-linear combinations of points

∑
ni{pi}.

Let us assume that β is in the kernel of the natural map to Z which is given by
∑
ni{pi} 7→ ∑

ni.
This implies that β is the sum of elements of the form 1{pi}−1{qi}. Now, we can choose a curve
γ : [0, 1] → D+ such that γ(0) = pi, γ(1) = qi and γ(t) ∈ D+ \R for 0 < t < 1. Then Ω4

γ([0,1]) is

a 5-sphere defining an element in H5(Ω
4
D). However, we observe that the construction depends

on the choice of the curve γ. This means that the sequence (3.6) has not a natural splitting.

It is possible to have a geometric meaning also for the exact sequence (3.8). If we consider
a couple of element (α,α) ∈ H1(D

+) ⊕ H1(D
+) we can represent it as a couple of finite

Z-linear combination of closed curves γj : S1 → D+. This couple of curves defines a map
η′ : S1 × S

2 → Ω4
D through

η′(t,K) = Re(γj(t)) +K · Im(γj(t)),

where K ∈ S
2 ⊂ SR3

The fundamental class of η′
(
S1 × S

2
)
defines an element in H3(Ω

4
D).

As before it is possible to prove that the sequence (3.8) has not a natural splitting. Given a
couple (β, β) ∈ H0(DR)⊕H0(DR) we can represent each β as a formal Z-linear combination of
points

∑
ni{pi}. Let us assume that each β is in the kernel of the natural map to Z which is

given by
∑
ni{pi} 7→ ∑

ni. This implies that β is the sum of elements of the form 1{pi}−1{qi}.
Now, we can choose a curve γ : [0, 1] → D+ such that γ(0) = pi, γ(1) = qi and γ(t) ∈ D+ \ R
for 0 < t < 1. Then Ω2

γ([0,1]) (see Definition (2.3)) is a 3-sphere defining an element in H3(Ω
4
D).

However, we observe that the construction depends on the choice of the curve γ. This means
that also the sequence (3.8) has not a natural splitting.

We recall from [15, Lemma 2.9] and [15, Cor. 2.10] the following results.

Lemma 3.2. Let D ⊂ C be a symmetric open subset. Then, there is a natural exact sequence

0 → H1(D
+)⊕H1(D

−) → H1(D) → Ĥ0(DR) → 0 (3.36)

Corollary 3.4. Let D ⊂ D1 be symmetric open subsets in C. Assume that H1(D) → H1(D1)
is injective. Then H1(D

+) → H1(D
+
1 ) is injective.

Proposition 3.6. Let D be a symmetric open subset of C. Then we have the following exact
sequence

0 → H1(D
+)

a→ H1(D)
b→ H5(Ω

4
D) → 0, (3.37)

where a, b are defined as follows. Let τ : C → C be the complex conjugate and let ξ : D× SR3
→

Ω4
D be the map given by

ξ(x+ yi, J) = x+ yJ.

Thus, we define a(γ) = γ − τ∗γ and b(γ) = ξ∗(γ × [SR3
]), where [SR3

] ∈ H4(SR3
) denotes the

fundamental class of SR3
.

Proof. We can assume that D+ is connected, and hence Ω4
D is connected too. We cover D+ by

the two open subsets D∗ and W , as in the proof of Proposition 3.5. Now we consider

V = {z ∈ C : z ∈W or z̄ ∈W}.
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As in [15, Prop. 2.11] we have the following coverings of D, D × SR3
and Ω4

D:

D = (D \DR) ∪ V,

D × SR3
=

(
(D \DR)× SR3

)
∪ (V × SR3

),

Ω4
D = Ω4

D∗ ∪ Ω4
W .

Moreover,
Ω4
W ∗ = Ω4

D∗ ∩ Ω4
W .

Via the map ξ defined in the hypothesis we get a morphism between the Mayer-Vietoris sequences
obtained from the previous coverings:

... Hk

(
(V \DR)× SR3

)
Hk((D \DR)× SR3

)⊕Hk(V × SR3
) Hk(D × SR3

) ...

... Hk(Ω
4

W∗) Hk(Ω
4

D∗)⊕Hk(Ω
4

W
) Hk(Ω

4

D
) ...

In particular, we get

H5

(
(V \DR)× SR3

)
H5((D \DR)× SR3

)⊕H5(V × SR3
) H5(D × SR3

) C 0

H5(Ω
4

W∗) H5(Ω
4

D∗)⊕H5(Ω
4

W
) H5(Ω

4

D
) C′ 0

where

C = ker
[
H4

(
(V \DR)× SR3

)
→ H4((D \DR)× SR3

)⊕H4(V × SR3
)
]

and
C ′ = ker

[
H4(Ω

4
W ∗) → H4(Ω

4
D∗)⊕H4(Ω

4
W )

]
.

Now, let us consider a domain M ⊂ C. We recall that Hℓ(M) = 0 for ℓ ≥ 2. Therefore, by the
Künneth formula we obtain

H4(M × SR3
) ≃ H0(M), (3.38)

H5(M × SR3
) ≃ H1(M). (3.39)

Now, we remark that V \DR is the disjoint union of two open subsets, i.e.

V \DR =
(
D+ ∩ (V \DR)

) ⊔ (
D− ∩ (V \DR)

)
, (3.40)

where the two open sets are homotopic to DR and V is homotopic to DR. By (3.38) we have

C ≃ ker[H0(V \DR) → H0(D \DR)⊕H0(V )].

As proved in [15, Prop. 2.11] we have

H0(DR) ≃ ker[H0(V \DR) → H0(V )].

Therefore, by definition of reduced homology we have

C ≃ H̃0(DR).

17



Due to the following homotopy equivalences (see [15, Prop. 2.5]):

Ω4
W ∗ ≃ DR × SR3

, Ω4
D∗ ≃ D+ × SR3

, Ω4
W ≃ DR, (3.41)

the formula (3.38) and the fact that Hk(DR) = 0 for k > 0 we have:

C ′ = ker[H4(Ω
4
W ∗) → H4(Ω

4
D∗)⊕H4(Ω

4
W )]

≃ ker[H0(DR) → H0(D
+)⊕H4(DR)]

≃ ker[H0(DR) → H0(D
+)]

≃ H̃0(DR).

Therefore
C ′ ≃ H̃0(DR).

Hence by (3.39) and the previous homotopy equivalences we have H5(Ω
4
D∗) ≃ H1(D

+) and
H5(Ω

4
W ) = 0. Moreover by (3.40) and we get

H5((V \DR)× SR3
) ≃ H1(V \DR) ≃ H1

(
D+ ∩ (V \DR)

)
⊕H1

(
D− ∩ (V \DR)

)

≃ H1(DR)⊕H1(DR) ≃ 0.

Combining these facts we obtain the following commutative diagram

0 H1(D
+)⊕H1(D

−) H1(D) H̃0(DR) 0

0 H1(D
+) H5(Ω

4
D) H̃0(DR) 0

By similar computations of [15, Prop.2.11] we have the thesis.

Proposition 3.7. Let D be a symmetric open subset of C. Then there is a natural exact sequence

0 → H1(D
+)⊕H1(D

+)
α′

→ H1(D)⊕H1(D)
β′

→ H3(Ω
4
D) → 0. (3.42)

Let τ be the complex conjugation on C and let ζ : D × S
2 → Ω4

D defined by

ζ(x+ yi, I) = x+ yI.

We observe that I ∈ S
2 ⊂ SR3

. Thus, we can define α′ and β′ as

α′(γ, γ1) = γ − τ∗(γ) + γ1 − τ∗(γ1) = α(γ) + α(γ1)

and
β′(γ, γ1) = (ζ∗(γ), ζ∗(γ1))× [S2] =

(
ζ∗(γ)× [S2], ζ∗(γ1)× [S2]

)
.

where the map α is defined in [15, Prop. 2.11] and [S2] ∈ H2(S
2) is the fundamental class of S2.

Proof. As in the previous proposition we assume that D+ is connected, hence also Ω4
D is con-

nected. As in [15, Prop. 2.11] we can cover D × S
2 in the following way

D × S
2 =

(
(D \DR)× S

2
)
∪ (V × S

2),

where V = {z ∈ C : z ∈W or z̄ ∈W}. Moreover we recall that

D = (D \DR) ∪ V,
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and
Ω4
D = Ω4

D∗ ∪ Ω4
W .

Furthermore,
Ω4
W ∗ = Ω4

D∗ ∩ Ω4
W .

By the map ζ : D × S
2 → Ω4

D given by

ζ(x+ yi, I) = x+ yI

we get the following morphism between the respective Mayer-Vietoris sequences

... A⊕A B ⊕ C ⊕B ⊕ C E ⊕ E ...

... Hk(Ω
4
W ∗) Hk(Ω

4
D∗)⊕Hk(Ω

4
W ) Hk(Ω

4
D) ...

where
A := Hk

(
(V \DR)× S

2
)
,

B := Hk((D \DR)× S
2),

C := Hk(V × S
2),

E := Hk

(
D × S

2
)
.

In particular we obtain

A′ ⊕A′ B′ ⊕ C ′ ⊕B′ ⊕ C ′ E′ ⊕E′ F 0

H3(Ω
4
W ∗) H3(Ω

4
D∗)⊕H3(Ω

4
W ) H3(Ω

4
D) F ′ 0

where
A′ := H3

(
(V \DR)× S

2
)
,

B′ := H3((D \DR)× S
2),

C ′ := H3(V × S
2),

E′ := H3

(
D × S

2
)
,

and

F = ker
[
H2

(
(V \DR)× S

2
)
⊕H2

(
(V \DR)× S

2
)
→ H2((D \DR)× S

2)⊕H2(V × S
2)⊕

⊕H2((D \DR)× S
2)⊕H2(V × S

2)
]
,

F ′ = ker
[
H2(Ω

4
W ∗) → H2(Ω

4
D∗)⊕H2(Ω

4
W )

]
.

Now, for any domain M ⊂ C, by the Künneth formula and dimensional reasons we have

H2(M × S
2) = H0(M). (3.43)

We recall that
V \DR =

(
D+ ∩ (V \DR)

) ⊔
(D− ∩ (V \DR)

)
, (3.44)
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where the two open sets are homotopic to DR and V is homotopic to DR. Hence by (3.43)

F ≃ ker[H0(V \DR)⊕H0(V \DR) → H0(D \DR)⊕H0(D \DR)⊕H0(V )⊕H0(V )].

Now, we want to prove that

H0(DR)⊕H0(DR) ≃ ker[H0(V \DR)⊕H0(V \DR) → H0(V )⊕H0(V )]. (3.45)

Let
H0(DR)⊕H0(DR) ∋ θ + λ =

∑

j

ηj{pj}+
∑

ℓ

µℓ{ψℓ},

where pj, ψℓ ∈ DR. For a sufficiently small ε we have

H0(DR)⊕H0(DR) ∋ θ + λ 7→
(∑

j

ηj({pj − ε} − {pj + ε}) +
∑

ℓ

µℓ({ψℓ − ε} − {ψℓ + ε})
)

∈ ker[H0(V \DR)⊕H0(V \DR) → H0(V )⊕H0(V )].

Thus, we prove (3.45).
Let η+µ =

∑
j ηj({pj−ε}−{pj+ε})+

∑
ℓ µℓ({ψℓ−ε}−{ψℓ+ε}) ∈ ker[H0(V \DR)⊕H0(V \DR) →

H0(V )⊕H0(V )]. We can describe the homomorphism to H0(D \DR)⊕H0(D \DR) as

η + µ 7→
(∑

j

ηj +
∑

ℓ

µℓ,−
∑

j

ηj −
∑

ℓ

µℓ

)
∈ Z

2 ⊕ Z
2 ≃ H0(D \DR)⊕H0(D \DR).

Therefore
F ≃ H̃0(DR)⊕ H̃0(DR).

For any domain M ⊂ C, by the Künneth formula and Proposition 3.4 we have

H2(M × SR3
) = H0(M)⊕H0(M). (3.46)

By the same homotopy equivalences used in Proposition 3.6 (see (3.41)), formula (3.46) and the
fact Hk(DR) = 0 for k > 0 we have

F ′ ≃ ker[H2(Ω
4
W ∗) → H2(Ω

4
D∗)⊕H2(Ω

4
W )]

≃ ker[H0(DR)⊕H0(DR) → H0(D
+)⊕H0(D

+)]

≃ H̃0(DR)⊕ H̃0(DR).

Therefore
F ′ ≃ H̃0(DR)⊕ H̃0(DR).

Moreover by (3.44) we get

H3((V \DR)× SR3
) ≃ H1(V \DR)⊕H1(V \DR) ≃ H1

(
D+ ∩ (V \DR)

)
⊕H1

(
D− ∩ (V \DR)

)
⊕

⊕H1

(
D+ ∩ (V \DR)

)
⊕H1

(
D− ∩ (V \DR)

)
≃ H1(DR)⊕H1(DR)⊕

⊕H1(DR)⊕H1(DR) ≃ 0.

Putting together all these facts we obtain

0 H1(D
+)⊕H1(D

−)⊕H1(D
+)⊕H1(D

−) H1(D) ⊕H1(D) H̃0(DR)⊕ H̃0(DR) 0

0 H1(D
+)⊕H1(D

+) H3(Ω
4
D) H̃0(DR)⊕ H̃0(DR) 0

η1

ρ1

η2

ρ2 ρ3=Id

µ1 µ2
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The homomorphism ρ1 is induced by the embedding

(D \DR)⊕ (D \DR) = (D+ ∪D−)⊕ (D+ ∪D−) → Ω4
D∗,

and
H3(Ω

4
D∗) ≃ H3(D

+ × SR3
) ≃ H1(D

+)⊕H1(D
+).

Thus we can define
ρ1(c1, c2, c3, c4) = (c1 + τ∗c2, c3 + τ∗c4)

where c1 and c3 are 1-cycles in D+ and c2, c4 are 1-cycles in D−. In particular ρ1 is surjective
and ker(ρ1) = {(c,−τ∗c, c′,−τ∗c′) : c, c′ ∈ H1(D

+)}. Moreover, for any domain M ⊂ C we have

H3(M × S
2) ≃ H1(M). (3.47)

This implies that ρ2 is defined by

ρ2 : H1(D)⊕H1(D) ≃ H3(D × S
2)⊕H3(D × S

2)
ζ∗→ H3(Ω

4
D).

We set β′ = ρ2 and define α′(c, c′) = η1(c,−τ∗c, c′,−τ∗c′). Due to the exactness of the sequence,
η1 is injective, so α′ is injective too.
Now, we prove that β′ is surjective.
Let s ∈ H3(Ω

4
D), since ρ3 is an isomorphism we can find a couple (b, b1) ∈ H1(D)⊕H1(D) with

η2(b, b1) = µ2(s). Then, by the commutative diagram

µ2
(
s− ρ2(b, b1)

)
= µ2(s)− µ2(ρ2(b, b1)) = µ2(s)− η2(b, b1) = 0,

then by the exactness of the sequence we get s − ρ2(b, b1) ∈ ker(µ2) = Im(µ1). Since ρ1 is
surjective there exists (a, a1) ∈ H1(D

+)⊕H1(D
−)⊕H1(D

+)⊕H1(D
−) such that

s− ρ2(b, b1) = µ1
(
ρ1(a, a1)

)
= ρ2

(
η1(a, a1)

)
.

Thus, s = ρ2[(b, b1) + η1(a, a1)]. This means that β′ is surjective.
In order to prove the exactness of the sequence (3.42) we have to prove that Im(α′) = ker(β′).
We show the equality by double inclusion. Firstly we demonstrate Im(α′) ⊆ ker(β′). By the
commutative diagram, the previous definitions of α′ and ρ1 and the fact that τ∗τ∗ = Id we
obtain

β′(α′(b, b1)) = ρ2(α
′(b, b1)) = ρ2(η1(b,−τ∗b, b1,−τ∗b1))

= µ1(ρ1(b,−τ∗b, b1,−τ∗b1))
= µ1(b− τ∗τ∗b, b1 − τ∗τ∗b1)

= µ1(0, 0) = 0.

Now, let us prove that ker(β′) ⊆ Im(α′). Let us assume that the couple (b, b1) ∈ ker(β′), so
β′(b, b1) = ρ2(b, b1) = 0. By the commutative diagram and the fact that ρ3 = Id we have

µ2(ρ2(b, b1)) = ρ3(η2(b, b1)) = η2(b, b1).

On the other side µ2(ρ2(b, b1)) = µ2(0) = 0. Thus η2(b, b1) = 0. This means by the exactness
of the sequence that (b, b1) ∈ ker(η2) = Im(η1). Then there exists (c′, c′′, c′′′, civ) ∈ H1(D

+) ⊕
H1(D

−)⊕H1(D
+)⊕H1(D

−) such that

η1(c
′, c′′, c′′′, civ) = (b, b1). (3.48)
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Due to the exactness of the sequence, µ1 is injective; this implies that ρ1(c
′, c′′, c′′′, civ) = 0

because
µ1(ρ1(c

′, c′′, c′′′, civ)) = ρ2(η1(c
′, c′′, c′′′, civ)) = ρ2(b, b1) = 0.

Hence
0 = ρ1(c

′, c′′, c′′′, civ) = (c′ + τ∗(c
′′), c′′′ + τ∗(c

iv)),

so we have c′ = −τ∗c′′ and c′′′ = −τ∗civ . Therefore by (3.48) we have

(b, b1) = η1(c
′,−τ∗c′, c′′′,−τ∗c′′′) = α′(c′, c′′′).

This implies (b, b1) ∈ Im(α′).

Corollary 3.5. Let D ⊂ D1 be symmetric open subsets in C such that H1(Ω
4
D) → H1(Ω

4
D1

) and
H5(Ω

4
D) → H5(Ω

4
D1

) are injective simultaneously. Then H1(D) → H1(D1) is injective.

Proof. From Proposition 3.5 we know that

H1(Ω
4
D) ≃ H1(D

+),

H1(Ω
4
D1

) ≃ H1(D
+
1 ).

By the inclusion D →֒ D1 and Proposition 3.6 we get the following commutative diagram

0 H1(Ω
4
D) H1(D) H5(Ω

4
D) 0

0 H1(Ω
4
D1

) H1(D1) H5(Ω
4
D1

) 0

f1 f2

Since f1 and f2 are injective by hypothesis, the snake lemma yields the thesis.

Corollary 3.6. Let D ⊂ D1 be symmetric open subsets in C such that H1(Ω
4
D) → H1(Ω

4
D1

) and
H3(Ω

4
D) → H3(Ω

4
D1

) are injective simultaneously. Then H1(D) → H1(D1) is injective.

Proof. By the inclusionD →֒ D1 and Proposition 3.7 we have the following commutative diagram

0 H1(D
+)⊕H1(D

+) H1(D)⊕H1(D) H3(Ω
4
D) 0

0 H1(D
+
1 )⊕H1(D

+
1 ) H1(D1)⊕H1(D1) H3(Ω

4
D1

) 0

g1 g2

By Propositon 3.5 we have that H1(D
+) ≃ H1(Ω

4
D), H1(D

+
1 ) ≃ H1(Ω

4
D1

). Hence H1(D
+) ⊕

H1(D
+) → H1(D

+
1 )⊕H1(D

+
1 ) is injective beacuse by hypothesisH1(Ω

4
D) → H1(Ω

4
D1

) is injective.
Finally, we get the thesis by the snake lemma, since g1 and g2 are injective.

Lemma 3.3. Let K be a symmetric compact connected subset of C such that K ∩ R 6= ∅ and
connected. Let K ′ be a non-empty symmetric closed subset of K and define

D := C \K,

D1 := C \K ′.

Then H5(Ω
4
D) → H5(Ω

4
D1

) is injective.
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Proof. By construction H1(D) ≃ Z and H̃0(DR) ≃ Z. By Lemma 3.2 we obtain H1(D
+) ≃ {0},

so by the exact sequence (3.6) we get H5(Ω
4
D) ≃ Z. Let us consider R1 > max{|x| : x ∈ K}.

We consider a 5-cycle S with center 0 and radius R1 in QR3
. By this construction the set K is in

the interior of the 5-cycle S, this means that the 5-cycle defines a non-trivial homology class in
H5(Ω

4
D). It happens the same for K ′. Therefore, we have that the map i∗ : H5(Ω

4
D) → H5(Ω

4
D1

)
maps a non- trivial element of H5(Ω

4
D) to a non trivial element of H5(Ω

4
D1

). This implies the
thesis because H5(Ω

4
D) ≃ Z.

Lemma 3.4. Let P and Q be symmetric compact subset of C such that P ∩ R 6= ∅, Q ∩ R 6= ∅
and connected. Moreover Q∩P = ∅. Let P ′ and Q′ be two non-empty symmetric closed subsets
of P and Q, respectively. Let us define

D := (C \ P ) \Q,

D1 := (C \ P ′) \Q′.

Then H3(Ω
4
D) → H3(Ω

4
D1

) is injective.

Proof. From the definition of the set D we have

H1(D) ≃ Z⊕ Z,

H0(DR) ≃ Z⊕ Z⊕ Z.

From the last one we derive that
H̃0(DR) ≃ Z⊕ Z.

By Lemma 3.2 we obtain H1(D
+) ≃ {0}. Thus by the exact sequence (3.8) we get H3(Ω

4
D) ≃

Z⊕ Z⊕ Z⊕ Z.
Now we define two different closed curves γ1 and γ2 such that they do not intersect themselves
and surround P and Q, respectively. We remark that since P ′ and Q′ are in the interior of
P and Q, respectively, they are also surrounded by γ1 and γ2. This gives us the possibility to
define the following inclusion map

i∗ :
(
Ω2
γ1
,Ω2

γ2
,Ω2

γ1
,Ω2

γ2

)
D

→֒
(
Ω2
γ1
,Ω2

γ2
,Ω2

γ1
,Ω2

γ2

)
D1
,

where Ω2
γ1

and Ω2
γ2

are γ1×[S2] and γ2×[S2], respectively, and the subscripts outside the brackets
recall the fact that we consider the closed curves γ1 and γ2 in D and D1, respectively. This
means that

i∗ : H3(Ω
4
D) → H3(Ω

4
D1

),

maps four non-trivial independent elements of H3(Ω
4
D) to four non-trivial independent elements

of H3(Ω
4
D1

). Finally, since H3(Ω
4
D) ≃ Z ⊕ Z ⊕ Z ⊕ Z we get that H3(Ω

4
D) → H3(Ω

4
D1

) is
injective.

Remark 3.5. In the previous lemma the hypothesis P ∩Q = ∅ is essential to have two different
holes in the complex plane.

Remark 3.6. It is possible to write the sets D and D1 of the previous lemma in other ways,
such as D := (C \ P ) ∩ (C \Q) and D1 := (C \ P ′) ∩ (C \Q′).

Proposition 3.8. Let D ⊂ D1 be symmetric open subset of C such that H1(D) → H1(D1) is
injective. Then H5(Ω

4
D) → H5(Ω

4
D1

) is injective.
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Proof. We show this result by absurd. Let

δ ∈ ker(H5(Ω
4
D) → H5(Ω

4
D1

)), δ 6= 0.

The injectivity of H1(D) → H1(D1) implies by Corollary 3.4 that H1(D
+) → H1(D

+
1 ) is injec-

tive, too. From the inclusion map D →֒ D1 applied to the sequence (3.33) we get the following
commutative diagram

0 H1(D
+) H5(Ω

4
D) Ĥ0(DR) 0

0 H1(D
+
1 ) H5(Ω

4
D1

) Ĥ0(D1,R) 0

Following similar computations of [15, Prop. 2.14] we reach the absurd.

Proposition 3.9. Let D ⊂ D1 be symmetric open subsets of C such that H1(D) ⊕ H1(D) →
H1(D1)⊕H1(D1) is injective. Then H3(Ω

4
D) → H3(Ω

4
D1

) is injective.

Proof. By absurd let us assume

α ∈ ker(H3(Ω
4
D) → H3(Ω

4
D1

)), α 6= 0.

By the hypothesis we derive that H1(D) → H1(D1) is injective, thus by Corollary 3.4 we have
that H1(D

+) → H1(D
+
1 ) is injective, it follows that H1(D

+) ⊕H1(D
+) → H1(D

+
1 ) ⊕H1(D

+
1 )

is injective, too.
The inclusion map D →֒ D1 applied to the sequence (3.34) yields the following commutative
diagram

0 H1(D
+)⊕H1(D

+) H3(Ω
4
D) Ĥ0(DR)⊕ Ĥ0(DR) 0

0 H1(D
+
1 )⊕H1(D

+
1 ) H3(Ω

4
D1

) Ĥ0(D1,R)⊕ Ĥ0(D1,R) 0

Let the couple (α0, α0) be the image of α in Ĥ0(DR)⊕ Ĥ0(DR). Now, we want to prove that
(α0, α0) 6= (0, 0). In order to reach an absurd we suppose that (α0, α0) = (0, 0). This means that
α is induced by a couple (β, β) ∈ H1(D

+)⊕H1(D
+). Thus, if α 6= 0 then (β, β) 6= 0. However, we

have an absurd sinceH1(D
+)⊕H1(D

+) → H1(D
+
1 )⊕H1(D

+
1 ) andH1(D

+
1 )⊕H1(D

+
1 ) → H3(Ω

4
D)

are injective and α is mapped to zero in H3(Ω
4
D1

). Hence (α0, α0) 6= (0, 0).

Now, since the image of α in H3(Ω
4
D1

) is zero we have that the image in Ĥ0(D1,R)⊕ Ĥ0(D1,R)

is zero, too. Thus implies that α0 vanishes in Ĥ0(D1,R). In particular we obtain that

α0 ∈ ker(Ĥ0(DR) → Ĥ0(D1,R)).

We can represent α0 as a formal Z-linear combination
∑

x∈I nx{x}, where I is a finite subset of

DR. Moreover, by the definition of Ĥ0(DR) (see Corollary 3.3) we have that

α0 ∈ ker(H0(DR) → H0(D
+)).

This implies that
∑

k nk = 0. Since (α0, α0) 6= (0, 0) and the previous facts we can find two
points q ∈ R \D and q′ ∈ R \D (q 6= q′) such that

∑

p∈I, p>q

np 6= 0,
∑

p′∈I, p′>q′

np′ 6= 0.
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In order to fix the ideas, let q < q′.

R

D1

D

B

γ

R1
R2

ξ

q
R′

1
R′

2q’

B’ ξ′

γ′

Figure 1

Fix such points q and q′. Let us consider B as the connected component of C \D containing
q and B′ the connected component of C \D containing q′. Fix R1, R2 ∈ I and R′

1, R
′
2 ∈ I such

that {
R1 < q < R2

R′
1 < q′ < R′

2

and I∩]R1, R2[= ∅, I∩]R′
1, R

′
2[= ∅. We know that α0 is mapped to zero in Ĥ0(D1,R), this means

that [R1, R2] ⊂ D1,R and [R′
1, R

′
2] ⊂ D1,R. Moreover α0 is mapped to zero in H0(D

+), this
implies that both R1, R2 and R′

1, R
′
2 are in the same connected component of D+. Therefore

R1 and R2 can be connected by a path γ in D+. This path, combined with its image under
conjugation yields, a closed curve inside D which surrounds q. It is possible to repeat the same
reasoning for R′

1 and R′
2. In this case we obtain a closed curve γ′ inside D which surrounds q′.

Therefore B and B′ must be bounded and B∩R ⊆]R1, R2[, B
′∩R ⊆]R′

1, R
′
2[. Furthermore, since

[R1, R2] ⊂ D1,R and [R′
1, R

′
2] ⊂ D1,R by the previous facts R∩(B\D1) = ∅ and R∩(B′\D1) = ∅.

By hypothesis H1(D) ⊕ H1(D) → H1(D1) ⊕ H1(D1) is injective. Thus, it maps two non-
trivial independent 1-cycles of H1(D) to two non trivial 1-cycles of H1(D1). This implies the
boundedness of B and B′ in D1. Therefore, B ∩Dc

1 6= ∅ and B′ ∩Dc
1 6= ∅.

Now we choose two paths
ξ : [0, 1] → B

such that ξ(0) = q, ξ(1) /∈ D1, ξ(t) /∈ R and

ξ′ : [0, 1] → B′
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such that ξ′(0) = q′, ξ′(1) /∈ D1, ξ
′(t) /∈ R. Let us define

P = {z ∈ C : ∃ t ∈ [0, 1], z = ξ(t) or ξ(t)},

Q = {z ∈ C : ∃ t ∈ [0, 1], z = ξ′(t) or ξ′(t)}.
We observe that P ∩ R = {q}, Q ∩ R = {q′} and P ∩ Q = ∅. Now, we consider the following
diagram of inclusion maps

D D1

(C \ P ) \Q
(
C \ (P ∩Dc

1)
)
\(Q ∩Dc

1)

By Lemma 3.4 we get the injectivity of the following map

H3(Ω
4
[(C\P )\Q]) → H3(Ω

4
{[C\(P∩Dc

1
)]\(Q∩Dc

1
)}). (3.49)

In this case
DR := [(C \ P ) \Q] ∩R = (R \ P ) \Q.

By construction the couple (α0, α0) is mapped to a non-zero element of Ĥ0((R\P )\Q)⊕Ĥ0((R\
P )\Q). By the sequence (3.34) follows that α is mapped to a non-zero element of H3(Ω

4
[(C\P )\Q]).

By assumption the image of α is zero in H3(Ω
4
D1

). Since D1 ⊂
(
C \ (P ∩ Dc

1)
)
\(Q ∩ Dc

1), we
have that its image in Ω4

{[C\(P∩Dc
1
)]\(Q∩Dc

1
)} is zero, too. Finally, due to the injectivity of the

map (3.49) we have an absurd.

Remark 3.7. In the picture Figure 1 it is not possible to build a 1-cycle, instead of two 1-cycles.
The unique chance could be R2 = R′

1, but in general we are not sure if between R2 and R′
1 there

are any holes which intersect the real line.

Finally, we can prove the implication 3) ⇐⇒ 4) of Theorem 3.1.

Proposition 3.10. Let D ⊂ D1 be a symmetric open subset of C with the corresponding ax-
ially symmetric subsets Ω4

D ⊂ Ω4
D1

in QR3
. Then H1(D) → H1(D1) is injective if and only if

H1(Ω
4
D) → H1(Ω

4
D1

), H3(Ω
4
D) → H3(Ω

4
D1

) and H5(Ω
4
D) → H5(Ω

4
D1

) are injective simultane-
ously.

Proof. We can assume, without loss of generality, that ΩD is connected.
If H1(Ω

4
D) → H1(Ω

4
D1

), H3(Ω
4
D) → H3(Ω

4
D1

) and H5(Ω
4
D) → H5(Ω

4
D1

) are injective, by Corollary
3.5 and Corollary 3.6 we have that H1(D) → H1(D1) is injective.
We assume that H1(D) → H1(D1) is injective, in particular we have that H1(D) ⊕H1(D) →
H1(D1) ⊕ H1(D1) is injective. By Proposition 3.8 and Proposition 3.9 we have that both
H3(Ω

4
D) → H3(Ω

4
D1

) and H5(Ω
4
D) → H5(Ω

4
D1

) are injective. Due to Proposition 3.5 we have that

H1(Ω
4
D) ≃ H1(D

+) and H1(Ω
4
D1

) ≃ H1(D
+
1 ), thus by Corollary 3.4 we have that H1(Ω

4
D) →

H1(Ω
4
D1

) is injective.
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Math. Ann. (120) (1949), 430-461.

[6] C. Bisi, A. De Martino, On Brolin’s theorem over the quaternions, to appear in Indiana
Univ. Math. J. (https://www.iumj.indiana.edu/IUMJ/forthcoming.php).

[7] C. Bisi, A. De Martino, On the quadratic cone of R3 (forthcoming).
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