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COMPACTNESS OF LOCALIZATION OPERATORS ON

MODULATION SPACES OF ω-TEMPERED DISTRIBUTIONS

CHIARA BOITI AND ANTONINO DE MARTINO

Abstract. We give sufficient conditions for compactness of localization operators
on modulation spaces M

p,q
mλ

(Rd) of ω-tempered distributions whose short-time

Fourier transform is in the weighted mixed space L
p,q
mλ

for mλ(x) = e
λω(x).

1. Introduction and main results

In this paper we study some properties of localization operators, which are pseudo-
differential operators of time-frequency analysis suitable for applications to the re-
construction of signals, because they allow to recover a filtered version of the original
signal. To introduce the problem, let us recall the translation and modulation oper-
ators

Txf(y) = f(y − x), Mξf(y) = eiy·ξf(y), x, y ∈ R
d,

and, for a window function ψ ∈ L2(Rd), the short-time Fourier transform (briefly
STFT) of a function f ∈ L2(Rd)

Vψf(z) = 〈f,MξTxψ〉 =

∫

Rd

f(y)ψ(y − x)e−iy·ξ dy, z = (x, ξ) ∈ R
2d.

With respect to the inversion formula for the STFT (see [13, Cor. 3.2.3])

f =
1

(2π)d〈γ, ψ〉

∫

R2d

Vψf(x, ξ)MξTxγ dxdξ,

which gives a reconstruction of the signal f , the localization operator, as defined in
(2), modifies Vψf(x, ξ) by multiplying it by a suitable a(x, ξ) before reconstructing
the signal, so that a filtered version of the original signal f is recovered.
Another important operator in time-frequency analysis that we shall need in the

following is the cross-Wigner transform defined, for f, g ∈ L2(Rd), by

Wig(f, g)(x, ξ) =

∫

Rd

f
(

x+
t

2

)

g
(

x−
t

2

)

e−iξ·t dt x, ξ ∈ R
d.

The Wigner transform of f is then defined by Wig f := Wig(f, f).
1
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2 Compactness of localization operators on modulation spaces...

The above Fourier integral operators, with standard generalizations to more gen-
eral spaces of functions or distributions, have been largely investigated in time-
frequency analysis. In particular, results about boundedness or compactness related
to the subject of this paper can be found, for instance, in [1, 7, 10, 11, 12, 16, 17].
Inspired by [7, 10], our aim in this paper is to study boundedness of localization

operators on modulation spaces in the setting of ω-tempered distributions, for a
weight functions ω defined as below:

Definition 1.1. A non-quasianalytic subadditive weight function is a continous

increasing function ω : [0,+∞) → [0,+∞) satisfying the following properties:

(α) ω(t1 + t2) ≤ ω(t1) + ω(t2), ∀t1, t2 ≥ 0;

(β)
∫ +∞

1
ω(t)
t2
dt < +∞;

(γ) ∃A ∈ R, B > 0 s.t ω(t) ≥ A+B log(1 + t), ∀t ≥ 0;
(δ) ϕω(t) := ω(et) is convex.

We then consider ω(ξ) := ω(|ξ|) for ξ ∈ Cd.

Definition 1.2. The space Sω(R
d) is defined as the set of all u ∈ L1(Rd) such that

u, û ∈ C∞(Rd) and

(i) ∀λ > 0, α ∈ Nd
0: supx∈Rd eλω(x)|Dαu(x)| < +∞,

(ii) ∀λ > 0, α ∈ Nd
0: supξ∈Rd eλω(ξ)|Dαû(ξ)| < +∞,

where N0 := N ∪ {0}.

Note that for ω(t) = log(1 + t) we obtain the classical Schwartz class S(Rd),
while in general Sω(R

d) ⊆ S(Rd). For more details about the spaces Sω(R
d) we

refer to [3]-[6]. In particular, we can define on Sω(R
d) different equivalent systems

of seminorms that make Sω(R
d) a Fréchet nuclear space. It is also an algebra under

multiplication and convolution.
The corresponding strong dual space is denoted by S ′

ω(R
d) and its elements are

called ω-tempered distributions. Moreover, S ′(Rd) ⊆ S ′
ω(R

d) and the Fourier Trans-
form, the short-time Fourier transform and the Wigner transform are continous from
Sω(R

d) to Sω(R
d) and from S ′

ω(R
d) to S ′

ω(R
d).

The ”right” function spaces in time-frequency analysis to work with the STFT are
the so-called modulation spaces, introduced by H. Feichtinger in [9]. In this context,
we consider the weight mλ(z) := eλω(z), for λ ∈ R, and define Lp,qmλ

(R2d) as the space

of measurable functions f on R2d such that

‖f‖Lp,q
mλ

:=

∫

Rd

(
∫

Rd

|f(x, ξ)|pmλ(x, ξ)
p dx

)
q
p dξ

)
1

q

< +∞,

for 1 ≤ p, q < +∞, with standard changes if p (or q) is +∞. We define then, for
1 ≤ p, q ≤ +∞, the modulation space

Mp,q
mλ

(Rd) := {f ∈ S ′
ω(R

d) : Vϕf ∈ Lp,qmλ
(R2d)},
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which is independent of the window function ϕ ∈ Sω(R
d) \ {0} and is a Banach

space with norm ‖f‖M p,q
mλ

:= ‖Vϕf‖Lp,q
mλ

(see [4]). Moreover, for 1 ≤ p, q < +∞,

the space Sω(R
d) is a dense subspace of Mp,q

mλ
by [4, Prop. 3.9]. We shall denote

Mp
mλ

(Rd) = Mp,p
mλ

(Rd) and Mp,q(Rd) = Mp,q
m0

(Rd).
As in [13, Thm. 12.2.2] if p1 ≤ p2, q1 ≤ q2, and λ ≤ µ then M p1,q1

mµ
⊆ M p2,q2

mλ
with

continous inclusion (see [8, Lemma 2.3.16]). Set

mλ,1(x) := mλ(x, 0), mλ,2(x) := mλ(0, ξ),

vλ(z) = e|λ|ω(z), vλ,1(x) := vλ(x, 0), vλ,2(x) := vλ(0, ξ),

and prove the following generalization of [7, Prop. 2.4]:

Proposition 1.3. Let 1 ≤ p, q, r, t, t′ ≤ +∞ such that 1
p
+ 1

q
− 1 = 1

r
and 1

t
+ 1

t′
= 1.

Then, for all λ, µ ∈ R and 1 ≤ s ≤ +∞,

M
p,st
mλ,1⊗mµ,2

(Rd) ∗M q,st′

mλ,1⊗vλ,2m−µ,2
(Rd) →֒ M

r,s
mλ

(Rd)

and ‖f ∗ g‖Mr,s
mλ

≤ ‖f‖
M

p,st
mλ,1⊗mµ,2

‖g‖
M

q,st′

mλ,1⊗vλ,2m−µ,2

.(1)

Proof. For the Gaussian function g0(x) = e−π|x|
2

∈ Sω(R
d) consider on Mr,s

mλ
the

modulation norm with respect to the window function g(x) := g0∗g0(x) = 2−d/2e−
π
2
|x|2 ∈

Sω(R
d). Since mλ(x, ξ) ≤ mλ(x, 0)vλ(0, ξ) and g0(−x) = g0(x), by [13, Lemma

3.1.1], Young and Hölder inequalities:

‖f ∗ h‖Mr,s
mλ

= ‖Vg(f ∗ h)‖Lr,s
mλ

=

(
∫

Rd

(
∫

Rd

|Vg(f ∗ h)|rmr
λ(x, ξ) dx

)
s
r

dξ

)
1

s

≤

(
∫

Rd

(
∫

Rd

|(f ∗Mξg0) ∗ (h ∗Mξg0)(x)|
rmλ(x, 0)

r dx

)
s
r

vsλ(0, ξ) dξ

)
1

s

=

(
∫

Rd

‖(f ∗Mξg0) ∗ (h ∗Mξg0)‖
s
Lr
mλ,1

vsλ(0, ξ) dξ

)
1

s

≤

(
∫

Rd

‖f ∗Mξg0‖
s
Lp
mλ,1

‖h ∗Mξg0‖
s
Lq
mλ,1

vsλ(0, ξ) dξ

)
1

s

=

(
∫

Rd

‖Vg0f‖
s
Lp
mλ,1

ms
µ(0, ξ)‖Vg0h‖

s
Lq
mλ,1

ms
−µ(0, ξ)v

s
λ(0, ξ) dξ

)
1

s

≤ ‖f‖
M

p,st
mλ,1⊗mµ,2

‖h‖
M

q,st′

mλ,1⊗vλ,2m−µ,2

.

�
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Given two window functions ψ, γ ∈ Sω(R
d) \ {0} and a symbol a ∈ S ′

ω(R
2d), the

corresponding localization operator Laψ,γ is defined, for f ∈ Sω(R
d), by

(2) Laψ,γf = V ∗
γ (a · Vψf) =

∫

R2d

a(x, ξ)Vψf(x, ξ)MξTxγ dxdξ,

where V ∗
γ is the adjoint of Vγ. As in [2, Lemma 2.4] we have that Laψ,γ is a Weyl

operator La
w

with symbol aw = a ∗Wig(γ, ψ):

(3) La
w

f :=
1

(2π)d

∫

R2d

âw(ξ, u)e−iξ·uT−uMξf dudξ.

Moreover, if f, g ∈ Sω(R
d) then by definition of adjoint operator we can write

〈Laψ,γf, g〉 = 〈a · Vψf, Vγg〉 = 〈a, VψfVγg〉,

and, similarly as in [13, Thm. 14.5.2] (see also [8, Teo. 2.3.21]), we have, for
aw ∈ M∞,1

mµ
(R2d) with µ ≥ 0,

(4) ‖La
w

f‖Mp,q
mλ

= ‖Laψ,γf‖Mp,q
mλ

≤ ‖aw‖
M

∞,1
mµ

‖f‖Mp,q
mλ
,

for all f ∈ Mp,q
mλ

and λ ∈ R.

Theorem 1.4. Let ψ, γ ∈ Sω(R
d) \ {0} and a ∈ M

∞
mλ

(R2d) for some λ ≥ 0. Then

Laψ,γ is bounded from M
p,q
mλ

(Rd) to M
p,q
mλ

(Rd), for 1 ≤ p, q < +∞, and

‖Laψ,γ‖op ≤ ‖a‖M∞
m−λ,2

‖ψ‖
M

1
vλ

‖γ‖Mp
mλ
.

Proof. By definition Vψ : Mp,q
mλ

→ Lp,qmλ
(R2d) and, by [4, Prop. 3.7], V ∗

γ : Lp,qmλ
(R2d) →

Mp,q
mλ

(Rd). Let f ∈ Mp,q
mλ

(Rd). To prove that Laψ,γf = V ∗
γ (a · Vψf) ∈ Mp,q

mλ
, it is

then enough to show that a · Vψf ∈ Lp,qmλ
(R2d). By the inversion formula [4, Prop.

3.7], given two window functions Φ,Ψ ∈ Sω(R
2d) with 〈Φ,Ψ〉 6= 0, we have, for

z = (z1, z2) ∈ R2d × R2d,
(
∫

Rd

(
∫

Rd

|a(x, ξ)|p|Vψf(x, ξ)|
pepλω(x,ξ) dx

)
q

p

dξ

)
1

q

≤
1

(2π)d
1

|〈Φ,Ψ〉|

(
∫

Rd

(
∫

Rd

(
∫

R4d

|VΨa(z)|
p|Mz2Tz1Φ(x, ξ)|

pdz

)

·|Vψ(x, ξ)|
pepλω(x,ξ)dx

)
q

p

dξ

)
1

q

≤
1

(2π)d
1

|〈Φ,Ψ〉|

(
∫

Rd

(
∫

Rd

(
∫

R4d

(

|VΨa(z)|e
λω(z)

)p
|Mz2Tz1Φ(x, ξ)|

pdz

)

·|Vψ(x, ξ)|
pepλω(x,ξ)dx

)
q

p

dξ

)
1

q
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≤ C‖VΨa‖L∞
mλ

· ‖Vψf‖Lp,q
mλ

= C‖a‖M∞
mλ

· ‖f‖Mp,q
mλ
,

for some C > 0. Therefore a · Vψf ∈ Lp,qmλ
(R2d) and Laψ,γf ∈ Mp,q

mλ
(Rd).

To prove that Laψ.γ is bounded, consider g ∈ Sω(R
d) and set Ψ = Wig(g, g) ∈

Sω(R
2d). For ξ = (ξ1, ξ2) ∈ R

2d, we set ξ̃ = (ξ2,−ξ1). By [7, Lemma 2.2]

‖Wig(γ, ψ)‖
M

1,p
mλ,2

= ‖VΨWig(γ, ψ)‖L1,p
mλ,2

=
(

∫

R2d

(

∫

R2d

∣

∣

∣
Vgψ

(

z +
ξ̃

2

)

Vgγ
(

z −
ξ̃

2

)
∣

∣

∣
dz

)p

m
p
λ,2(ξ) dξ

)
1

p

.

By the change of variables z + ξ̃
2
= z̃ and [4, formula (3.12)] we obtain (cf. also

[7, Prop. 2.5]):

‖Wig(γ, ψ)‖
M

1,p
mλ,2

=

(
∫

R2d

(
∫

R2d

|Vgψ(z̃)||Vgγ(z̃ − ξ̃)| dz̃

)p

m
p
λ,2(ξ) dξ

)
1

p

.

=

(
∫

R2d

(|Vgψ(z̃)| ∗ |Vgγ(−z̃)|)
p(ξ̃)mp

λ,2(ξ̃) dξ̃

)
1

p

≤ ‖Vgψ‖L1
vλ
‖Vgγ‖Lp

mλ
= ‖ψ‖

M
1
vλ

‖γ‖Mp
mλ
.(5)

Therefore Wig(γ, ψ) ∈ M1
mλ,2

(R2d) and hence, from Proposition 1.3 (with p = t =

r = +∞, q = s = t′ = 1, λ = 0 and µ = −λ), we have that M∞
m−λ,2

∗M1
mλ,2

⊆ M∞,1,

so that aw = a ∗Wig(γ, ψ) ∈ M∞,1 and by (4) with µ = 0

‖Laψ,γ‖op ≤ ‖aw‖
M

∞,1 .

From (1) and (5) we finally have

‖Laψ,γ‖op ≤ ‖a ∗Wig(γ, ψ)‖
M

∞,1 ≤ ‖a‖M∞
m−λ,2

‖Wig(γ, ψ)‖
M

1
mλ,2

≤ ‖a‖M∞
m−λ,2

‖ψ‖M1
vλ
‖γ‖Mp

mλ
.

�

A boundedness result analogous to that of Theorem 1.4 is proved, with different
techniques, in [16] under further restrictions on the symbol a(x, ξ) and without
estimates on the norm of Laψ,γ .
Set now

M0,1
mλ

(Rd) = {f ∈ M∞,1
mλ

(Rd) : lim
|x|→∞

‖Vgf(x, .)‖L1
mλ
eλω(x) = 0}

and prove the following compactness result (cf. also [1, Prop. 2.3] and [12, Thm.
3.22]):

Theorem 1.5. If aw ∈ M
0,1
mλ

(R2d) for some λ ≥ 0, then La
w

is a compact mapping

of Mp,q
mλ

(Rd) into itself, for 1 ≤ p, q < +∞.
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Proof. The operator La
w

maps Mp,q
mλ

(Rd) into itself by (4). To prove that La
w

is

compact we first assume aw ∈ Sω(R
2d). From (3)

La
w

f(y) =
1

(2π)d

∫

R2d

âw(ξ, u)e−iξ·ueiξ·(y+u)f(y + u) du dξ

=
1

(2π)d

∫

R2d

âw(ξ, x− y)eiξ·yf(x) dx dξ

=

∫

Rd

k(x, y)f(x) dx,(6)

with kernel k(x, y) = 1
(2π)d

∫

Rd â
w(ξ, x − y)eiξ·ydξ. Note that k(x, y) ∈ Sω(R

2d)

because it is the inverse Fourier transform (with respect to the first variable) of the
traslation (with respect to the second variable) of âw ∈ Sω(R

2d).
Now, let φ ∈ Sω(R

d) and α0, β0 > 0 such that {φjl}j,l∈Zd = {Mβ0lTα0jφ}j,l∈Zd is
a tight Gabor frame for L2(Rd) (see [13, Def. 5.1.1] for the definition). Then
{Φjlmn}j,l,m,n∈Zd = {φjl(x)φmn(y)}j,l,m,n∈Zd is a tight Gabor frame for L2(R2d). Since
k ∈ Sω(R

2d) we have that 〈k,Φjlmn〉 = Vφk(α0j, α0m, β0l, β0n) ∈ ℓ1 and (see [4,
Lemma 3.15])

k =
∑

j,l,m,n∈Zd

〈k,Φjlmn〉Φjlmn.

Therefore from (6)

La
w

f =
∑

j,l,m,n∈Zd

〈k,Φjlmn〉〈φjl, f〉φmn,

with 〈k,Φjlmn〉 ∈ ℓ1, (φjl)j,l∈Zd equicontinous in Mp′,q′

m−λ
= (Mp,q

mλ
)∗ and (φmn)m,n∈Zd

bounded in
⋃

n∈N n{f ∈ M p,q
mλ

: ‖f‖Mp,q
mλ

< 1}, so that La
w

is a nuclear operator from

Mp,q
mλ

to Mp,q
mλ

(see [15, §17.3]). From [15, §17.3, Cor. 4] we thus have that La
w

is
compact.
Let us finally consider the general case a ∈ M0,1

mλ
(R2d). By [4, Prop. 3.9] there exist

an ∈ Sω(R
2d) converging to a in M∞,1

mλ
and hence, by (4)

‖La
w

− La
w
n ‖M p,q

mλ
→M

p,q
mλ

≤ ‖a− an‖M∞,1
mλ

→ 0.

Since the set of compact operators is closed we have that La
w

is compact onM p,q
mλ

(Rd).
�

We have the following generalization of [10, Lemma 3.4] and [11, Prop. 5.2]:

Lemma 1.6. Let g0 ∈ Sω(R
d) and a ∈ M

∞
mλ

(Rd), with λ ≥ 0, such that

(7) lim
|x|→+∞

sup
|ξ|≤R

|Vg0a(x, ξ)|e
λω(x,ξ) = 0, ∀R > 0.
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Then a ∗H ∈ M
0,1
mλ

(Rd) for any H ∈ Sω(R
d).

Proof. The case λ = 0 has been proved in [10, Lemma 3.4]. Let λ > 0. Since
g0 ∈ Sω(R

d) and H ∈ Sω(R
d), by [14, Thm. 2.7] we have that Vg0H ∈ Sω(R

2d) and
hence, for a fixed ℓ > 0 (to be chosen later depending on λ), there exists cλ > 0 such
that

|Vg0H(x, ξ)| ≤ cλe
−3ℓλω(x)e−3ℓλω(ξ), ∀x, ξ ∈ R

d.

Now, as in the proof of Proposition 1.3, for g = g0∗g0, we have that |Vg(a∗H)(·, ξ)| =
|Vg0a(·, ξ) ∗ Vg0H(·, ξ)|. Since ω is increasing and subadditive we have

|Vg(a ∗H)(x, ξ)| ≤

∫

Rd

|Vg0a(x− y, ξ)||Vg0H(y, ξ)|dy

≤ cλe
−3ℓλω(ξ)

∫

Rd

|Vg0a(x− y, ξ)|e−3ℓλω(y)dy

= cλe
−3ℓλω(ξ)

∫

Rd

|Vg0a(x− y, ξ)|e−3ℓλω(y) eλω(x−y,ξ)e−λω(x−y,ξ)dy

≤ cλe
−3ℓλω(ξ)e−λω(x)

∫

Rd

|Vg0a(x− y, ξ)|eλω(x−y,ξ)e−(3ℓ−1)λω(y)dy.

Since a ∈ M∞
mλ

(Rd) we have that

eλω(x)+2ℓλω(ξ)|Vg(a ∗H)(x, ξ)|

≤ cλe
−ℓλω(ξ)

∫

Rd

|Vga(x− y, ξ)|eλω(x−y,ξ)e−(3ℓ−1)λω(y)dy(8)

≤ cλe
−ℓλω(ξ)‖a‖M∞

mλ

∫

Rd

e−(3ℓ−1)λω(y)dy < +∞,(9)

if ℓ > 1
3
+ d

3Bλ
, where B is the constant of condition (γ) in Definition 1.1. Since

lim|ξ|→+∞ ω(ξ) = +∞, from (9) we have that for all ε > 0 there exists R1 > 0 such
that

(10) eλω(x)+2ℓλω(ξ)|Vg(a ∗H)(x, ξ)| < ε, ∀x, ξ ∈ R
d, |ξ| ≥ R1.

We now choose δ > 0 small enough so that

(11) δ

(

1 + cλ

∫

Rd

e−(3ℓ−1)λω(y)

)

dy ≤ ε.

From the hypothesis (7) we can choose R2 > 0 sufficiently large so that

(12) sup
|ξ|≤R1

|Vg0a(x, ξ)|e
λω(x,ξ) < δ, |x| ≥ R2,

(13)

∫

|y|>R2

e−(3ℓ−1)λω(y) dy <
δ

cλe−ℓλω(ξ)‖a‖M∞
mλ

, |ξ| ≤ R1.
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Therefore for |x| ≥ 2R2, |y| ≤ R2 (so that |x − y| ≥ R2) and |ξ| ≤ R1, by (8), (9),
(13), (12) and (11):

eλω(x)+2ℓλω(ξ)|Vg(a ∗H)(x, ξ)|

≤ cλe
−ℓλω(ξ)‖a‖M∞

mλ

∫

|y|>R2

e−(3ℓ−1)λω(y)dy

+cλe
−ℓλω(ξ)

∫

|y|≤R2

|Vg0a(x− y, ξ)|eλω(x−y,ξ)e−(3ℓ−1)λω(y)dy

< δ + cλδ

∫

Rd

e−(3ℓ−1)λω(y)dy ≤ ε.

The above estimate, together with (10), gives

eλω(x)
∫

Rd

|Vg(a ∗H)(x, ξ)|eλω(ξ)dξ ≤ ε

∫

Rd

e−(2ℓ−1)λω(ξ)dξ, |x| ≥ 2R2.

Choosing now ℓ > 1
2
+ d

2Bλ
> 1

3
+ d

3Bλ
so that e−(2ℓ−1)λω(ξ) ∈ L1(Rd), we finally obtain

lim
|x|→∞

eλω(x)‖Vg(a ∗H)(x, .)‖L1
mλ

= 0.

�

Theorem 1.7. Let ψ, γ ∈ Sω(R
d), g0 ∈ Sω(R

2d) and a ∈ M
∞
mλ

(R2d) satisfying (7),

for some λ ≥ 0. Then Laψ,γ : M
p,q
mλ

(Rd) → M
p,q
mλ

(Rd) is compact, for 1 ≤ p, q < +∞.

Proof. Set H := W (γ, ψ) ∈ Sω(R
2d). Since a ∈ M∞

mλ
(R2d), by Lemma 1.6 we have

that aw = a∗H ∈ M0,1
mλ

(R2d) and hence Laψ,γ = La
w

is compact by Theorem 1.5. �
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