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COMPACTNESS OF LOCALIZATION OPERATORS ON
MODULATION SPACES OF w-TEMPERED DISTRIBUTIONS

CHIARA BOITI AND ANTONINO DE MARTINO

ABSTRACT. We give sufficient conditions for compactness of localization operators
on modulation spaces M%? (RY) of w-tempered distributions whose short-time
Fourier transform is in the weighted mixed space L5 for my(x) = (@),

1. INTRODUCTION AND MAIN RESULTS

In this paper we study some properties of localization operators, which are pseudo-
differential operators of time-frequency analysis suitable for applications to the re-
construction of signals, because they allow to recover a filtered version of the original
signal. To introduce the problem, let us recall the translation and modulation oper-
ators

T.fy)=fly—x), Mcf(y)=e" f(y), x,y€eR,

and, for a window function ¢ € L*(R?), the short-time Fourier transform (briefly
STFT) of a function f € L*(RY)

V¢f(2) = <f> MEwa> = R f(y)@/)(y - x)e—iyf dya Z = (55, 5) € RQd'

With respect to the inversion formula for the STFT (see [13] Cor. 3.2.3])

1
F= iy L Vel @ OMeTy o,
which gives a reconstruction of the signal f, the localization operator, as defined in
@), modifies V,, f(z, &) by multiplying it by a suitable a(z, {) before reconstructing
the signal, so that a filtered version of the original signal f is recovered.
Another important operator in time-frequency analysis that we shall need in the
following is the cross- Wigner transform defined, for f, g € L*(R?), by

Wig(f, g)(z,&) = /]Rd fz+ %)g(x — %)e_i“ dt  z,& eR%

The Wigner transform of f is then defined by Wig f := Wig(f, f).
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2 Compactness of localization operators on modulation spaces...

The above Fourier integral operators, with standard generalizations to more gen-
eral spaces of functions or distributions, have been largely investigated in time-
frequency analysis. In particular, results about boundedness or compactness related
to the subject of this paper can be found, for instance, in [I], [7, 10, 1T}, (12} [16, [17].

Inspired by [7, [10], our aim in this paper is to study boundedness of localization
operators on modulation spaces in the setting of w-tempered distributions, for a
weight functions w defined as below:

Definition 1.1. A non-quasianalytic subadditive weight function is a continous
increasing function w : [0, 4+00) — [0, +00) satisfying the following properties:

(Oé) w(tl + t2) S w(tl) + w(t2), th,tg Z 0;
(B8) [l dt < 4o0;
(v) JA€eR, B>0stw(t)>A+ Blog(l+1), Vt > 0;
(0)  @u(t) := w(e') is convex.
We then consider w(§) := w(|€]) for £ € C%

Definition 1.2. The space S,,(R?) is defined as the set of all u € L*(RY) such that
u, it € C°(R?) and

(i) VA >0,a € N&: sup,cga @ |D(z)| < +o00,
(i) VYA >0, € N§: supgcpa M| D0 (€)] < 400,
where Ny := NU {0}.

Note that for w(t) = log(1 + t) we obtain the classical Schwartz class S(R?),
while in general S,,(R?) C S(R?). For more details about the spaces S, (R?) we
refer to [3]-[6]. In particular, we can define on S,(R?) different equivalent systems
of seminorms that make S, (R?) a Fréchet nuclear space. It is also an algebra under
multiplication and convolution.

The corresponding strong dual space is denoted by S (R?) and its elements are
called w-tempered distributions. Moreover, §'(R?) C &' (RY) and the Fourier Trans-
form, the short-time Fourier transform and the Wigner transform are continous from
S.(R%) to S, (RY) and from & (RY) to S (R?).

The "right” function spaces in time-frequency analysis to work with the STFT are
the so-called modulation spaces, introduced by H. Feichtinger in [9]. In this context,
we consider the weight my(z) := e*() for X € R, and define LP (R*?) as the space
of measurable functions f on R?? such that

iz = [ ([ 1w pmato g an)? de) < +oc

for 1 < p,q < 400, with standard changes if p (or ¢) is +00. We define then, for
1 < p, q < 400, the modulation space

M2 (RY) = {f € S,(RY) : V,.f € L (R*)},
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which is independent of the window function ¢ € S,(RY)\ {0} and is a Banach
space with norm || fllmze = [[Vyfllzzs (see []). Moreover, for 1 < p,q < +oo0,
the space S, (R?) is a dense subspace of M2 by [4, Prop. 3.9]. We shall denote
M?, (R?) = MEP (R?) and MP9(R?) = ME?(RY).

As in [13) Thm. 12.2.2] if py < ps, 1 < g2, and A < p then ML C MP29 with
continous inclusion (see [8, Lemma 2.3.16]). Set

my1(z) = ma(z,0), mya(x) :=my(0,E),

oa(2) = M@y (@) == ox(2,0),  vaa(z) = 0x(0,6),

and prove the following generalization of [7, Prop. 2.4]:

Proposition 1.3. Let 1 < p,q,r, t,t' < 400 such that % + % —1= % and % +tl, =1.
Then, for all A\, € R and 1 < s < 400,

,st d ,st’ d 7,8 d
M? (RY) + M J(RY) < M (RY)

mx1Q0my,2 mx1QuUx 2M—_

(1) and ||f*9||MI,;§ < ||f||Mf,’l’;f1®mMy2HgHMq’Stl

mx1®V\ 2M—p 2

Proof. For the Gaussian function go(z) = e ™*° e S,(R%) consider on M, the

modulation norm with respect to the window function g(z) := goxgo(z) = 2~ %2~ 312" ¢
SL(RY). Since my(z,€) < my(z,0)vr(0,€) and go(—z) = go(x), by [13, Lemma
3.1.1], Young and Hélder inequalities:

L, = (/ (/ [Va(f * h)["mi(x, €) dw)rdﬁy
Rd \JRA
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4 Compactness of localization operators on modulation spaces...

Given two window functions ¢, € S,,(R%) \ {0} and a symbol a € S’ (R?*?), the
corresponding localization operator Ly  is defined, for f € S, (RY), by

(2) Ly f=Vi(a - Vyuf) = /RM a(x, &)V f(z, &) M T,y dxdE,

where V is the adjoint of V.. As in [2, Lemma 2.4] we have that Lj _ is a Weyl
operator L*" with symbol a® = a * Wig(y, ¢):

w 1 AW —i&u
(3) L f = G /dea (&, u)e” ST M f dudé.

Moreover, if f, g € S, (R%) then by definition of adjoint operator we can write
(Linfo9) = {a - Vif, Vag) = (a, Vi fVag),

and, similarly as in [I3, Thm. 14.5.2] (see also [8, Teo. 2.3.21]), we have, for
a® € Mgt (R*) with > 0,

(4) 12 Fliaag = 1282 F I, < 0 g | Flazs.
for all f € M) and A € R.

Theorem 1.4. Let ¢,y € S,(R?) \ {0} and a € M;; (R*) for some X > 0. Then
L, is bounded from Mi! (RY) to M (RY), for 1 < p,q < 400, and

157 llop < llall sz

m_x 2

191 a NYIlaz

ny

Proof. By definition Vy, : ML — L2 (R*?) and, by [4, Prop. 3.7], V¥ : L2 (R*!) —
MPI(RY). Let f € MP2(R?). To prove that LY _f = Vi(a-V,f) € ME?, it is

then enough to show that a - Vyf € L2 (R*@). By the inversion formula [4, Prop.

3.7], given two window functions ®, ¥ € S, (R??) with (®, ¥) # 0, we have, for
zZ = (Zl, 22) € R2d X R2d,

</Rd </Rd (e, €)[P [V f (0, €) [P (@) dx) . dg) '
(271r)d |<<I>,1\1/>| </Rd ( /Rd < /R Vaa(P ML T B €)|de)

1

|Vip(z, €) |Pep)\w(m7§)dx) ng) 1
er)d |<q>,1\1,>| UR(/R (/R (IVaa(2)|*) M., T, (e, 5)\pdz)

1

V(. €) |Pew<wdx) ”d&) q
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< ClVwalleg, - IVefllepg = Cllallmsg, - [1fInzg
for some C' > 0. Therefore a - Vi f € L2 (R*) and L f € ML (RY).
To prove that L  is bounded, consider g € S,(R?) and set ¥ = Wig(g,g) €
Sw(de)' For é- = (517 52) S dev we set é: (527 _51) By [77 Lemma 22]

|| Wig(’%w)HMl’p = ||V\I/ ng(’ya,@D)HL}nZ)’\’z

77LA’2
(L.(L

Vo (e ) (s = ) e 'm0 )

By the change of variables z + % = Z and [4, formula (3.12)] we obtain (cf. also
[7, Prop. 2.5]):
. P »
IWigtohag, = ([ ([ W@t -laz) ng0d)
’ R2d R2d

= ([ v« W27 @ (6 €
() < [IVellzs, Verlles,, = l10llme 17l -
Therefore Wig(y,¢) € M, _(R*®) and hence, from Proposition (with p =t =

,2
r=+o00,q=s=1t =1 A=0and g =—\), we have that My «M, ~CM>"
so that a® = a * Wig(y, ) € M*! and by @) with x =0
123 lop < fla®[lngee.r-

From ([Il) and (&) we finally have

15 Ml < lla* Wig(y, ¥)lneen < llallazs_, , I Wig(r, 9)llnz,
< llallge 10l (7l -

0

A boundedness result analogous to that of Theorem [[.4] is proved, with different
techniques, in [16] under further restrictions on the symbol a(x,&) and without
estimates on the norm of Lj, .

Set now

Aw(z) 0}

L’}?LA e

ML (R = {f € MR : Jm [V, (. )
T|—00
and prove the following compactness result (cf. also [I, Prop. 2.3] and [12, Thm.
3.22)):

Theorem 1.5. Ifa™ € M?nlA (R%) for some A\ >0, then L is a compact mapping
of MBI (RY) into itself, for 1 < p,q < +00.
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Proof. The operator L*" maps M (R?) into itself by ). To prove that L*" is

compact we first assume a¥ € S, (R??). From (3)
1 N
a® _ AW —i&u i&- u
) = g [ 6w SOy ) dude

- (271T)d /R?d A" (& x —y)eV f(x) dr dE

) = [ kafads,

with kernel k(z,y) = ﬁfRd av(&,x — y)evd¢. Note that k(x,y) € S,(R?*?)
because it is the inverse Fourier transform (with respect to the first variable) of the
traslation (with respect to the second variable) of a¥ € S,,(R??).

Now, let ¢ € S,(R?) and ag, 8y > 0 such that {¢i};ieze = {MpyiTuo;®}jicza 18
a tight Gabor frame for L?(R%) (see [I3, Def. 5.1.1] for the definition). Then
{Pjtmn}jsmmezt = {01(2)Gmn(Y) }j1mmeza is a tight Gabor frame for L*(R??). Since
k € S,(R*) we have that (k, @) = Vik(aoj, aom, Bol, Bon) € ¢* and (see [4
Lemma 3.15])

k= Z <k7 (I)jlmn>q)jlmn-

4,l,m,n€Zd

Therefore from ([])
Lawf = Z <k, (I)jlmn> <¢jl7 f>¢mn7

7,l,m,n€Zd
with (k, @jimn) € €', (j1)j1ez¢ equicontinous in Mﬁ;’f; = (Mp1)* and (dmn)m,neze
bounded in (J,yn{f € M) : [ llazz < 1}, so that L is a nuclear operator from

ME? to MP (see [15, §17.3]). From [I5], §17.3, Cor. 4] we thus have that L*" is
compact.

Let us finally consider the general case a € MS,}A (R?4). By [, Prop. 3.9] there exist
an € S, (R??) converging to a in anof and hence, by ({))

1L — La%HM%_)Mp,q < |la— an||M;.§; — 0.

m by

Since the set of compact operators is closed we have that L is compact on MP?(R?).

We have the following generalization of [10, Lemma 3.4] and [11], Prop. 5.2]:
Lemma 1.6. Let gy € S,(R?) and a € My (R?), with A > 0, such that

(7) lim  sup |Vy,a(z, &)™) =0, VR > 0.

|| —+o0 I€|<R
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Then ax H € M) (RY) for any H € S,,(R?).

Proof. The case A = 0 has been proved in [10, Lemma 3.4]. Let A > 0. Since
9o € Su(RY) and H € S,(R?), by [14, Thm. 2.7] we have that V,,H € S, (R??) and
hence, for a fixed £ > 0 (to be chosen later depending on \), there exists ¢y > 0 such
that

|V;]OH(ZE, §)| < C)\e—?%)\w(x)e—%)\w(f)’ \V/l’,g c Rd.

Now, as in the proof of Proposition[[3] for g = go*go, we have that |V (axH)(-,§)| =
[Vgoa(+, &) * Vg H(-, §)|. Since w is increasing and subadditive we have

Vilax B )1 < [ Viala = 9.€)|VarH 0. )ld
< C/\e—sz,\w(ﬁ)/ |Vgoa( — v, 5)‘ —30w(y) dy
Rd
_ C)\e—?)f)\w(f)/d“/;ma(l. —, §)|e—3@\w(y) 6)\w(x—y,£)6—)\w(:c—y,§)dy
R
< CAe—smw(&)e—,\w(m)/ |Vgoa(x —, 5)‘e,\w(m—y,g)e—(3e—1),\w(y)dy_
]Rd

Since a € My (R%) we have that
MDY, (a x H) ()|

(8) < cAe‘”w(f)/ Via(a — y, €)X @18 BDw) gy
d
9) < e HaHM%} /de BN gy < 400,
R

if £ > 1+ 24 where B is the constant of condition () in Definition [Tl Since
hm|§|_,+oow(§) +00, from (@) we have that for all € > 0 there exists R; > 0 such
that

(10) MR (qx H)(1,6)] <&, Va,& €RL €] > Ry.

We now choose ¢ > 0 small enough so that

(11) 5(1—1—0,\/ —@-1Aw(y )dy<6
R4

From the hypothesis (@) we can choose Ry > 0 sufficiently large so that

(12) sup [Vgya(z, €)™ <6, |z| > Ry,
[€I<Ry

10)
13 / e~ BN gy < , ¢l < Ry
1) . exe 2@ laflnz, <A
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Therefore for |x| > 2Ry, |y| < Ry (so that |z —y| > Rs) and |£] < Ry, by (&), (@),
(@3), () and (II):
MDY, (a x H)(x, )|

CAe_D\w(&)HaHM%’A /l i e—(3£—1)>\w(y)dy
y|>Ra

IN

_I_C)\e—ﬁ)\w(g) / |V;]OCL(I’ —, 5)|e)xw(:c—yf)e—(?»é—l))\w(y)dy
ly|<R2

< 0+ C)\(S/ e_(?’é_l)’\“(y)dy <e.
R4
The above estimate, together with (I0), gives
S / Vy(a s H)(x,8)]eOdg < e / e ge | > 2R,
R4 Rd

Choosing now £ > 1+ -4 > 14 450 that e~V ¢ L1(R?), we finally obtain

lim M@V, (ax H)(z, .)||L}nA = 0.

|z| =00

U

Theorem 1.7. Let ¢,y € S,(R?), go € Su(R*) and a € M;; (R*) satisfying (),
for some X > 0. Then LY, - M (RT) — M (R?) is compact, for 1 < p,q < +o0.

Proof. Set H := W(v,v) € S,(R*). Since a € M;? (R*"), by Lemma [[.6 we have
that @ = ax H € M);! (R?*) and hence Ly = L* is compact by Theorem [L5 [
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