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Abstract— We present a multi-agent algorithm for multi-
objective optimization problems, which extends the class of
consensus-based optimization methods and relies on a scalar-
ization strategy. The optimization is achieved by a set of
interacting agents exploring the search space and attempting
to solve all scalar sub-problems simultaneously. We show that
those dynamics are described by a mean-field model, which is
suitable for a theoretical analysis of the algorithm convergence.
Numerical results show the validity of the proposed method.

I. INTRODUCTION

In applications, decision makers often aim to optimize
several objectives which may be in conflict with each others
in the sense that improving a solution with respect to an
objective may deteriorate another objective. This leads to a
so-called multi-objective optimization problem.

Such problems are often solved by heuristic strategies
belonging to the class of evolutionary algorithms [1], where
a population of approximations iteratively evolve follow-
ing mechanisms inspired by natural phenomena. Those
are global gradient-free optimization methods which have
gained popularity among practitioners, also thanks to their
intuitive interpretation as biological systems. Nevertheless,
such algorithms typically lack mathematical analysis and
understanding [2]. For this reason, alternatives are usually
developed by theoretically substantiated methods [3], leading
to a gap between the applications and mathematical research.
We refer to [4] for a discussion on the topic.

In the single-objective optimization context, a possible
bridge between the communities was proposed in [5] by de-
veloping a Consensus-Based Optimization algorithm (CBO).
In [5], the authors place evolutionary algorithms under the
more general framework of multi-agent systems, which have
received huge attention both in applications [6] and in the
modeling of biological systems and social interactions [7].
In CBO methods, several agents interact with each other
following a consensus mechanism, collaboratively solving
the optimization task. Although the interaction rule is simpler
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with respect to the most common heuristic strategies, CBO
methods are amenable to theoretically analysis as they can be
studied by statistical mechanics. First developed to study the
dynamics of physical particles in classical mechanics, this
mathematical framework allows to give a statistical descrip-
tion of complex systems of agents. Such an approach has
been shown to be fruitful to obtain convergence guarantees
for single-objective CBO methods [8] (also for constrained
optimization problems [9], [10], [11], [12]) and for a regu-
larized version of the popular Particle-Swarm Optimization
algorithm [13], [14].

In this work, we extend the class of CBO methods to
multi-objective optimization problems. The proposed algo-
rithm makes use of a well-known scalarization strategy, the
weighted norms approach [15], which allows to decompose
the multi-objective problem in a set of parametrized single-
objective optimization sub-problems. We further couple each
agent with a sub-problem and adapt CBO mechanism to
solve all sub-problems at the same time. The scalarization
strategy and the algorithm are presented in Sections II and
III. In Section IV we the give a statistical description by
presenting the mean-field, approximation of the algorithm
dynamics, which is studied analytically. We then test the
algorithm on benchmark problems and show the validity of
the proposed strategy in Section V.

We will use the following notations. With | · | we indicate
the `2-norm in Rn, and the absolute value on R. Given
a Banach space X , P(X) denotes the set of probability
measures on X , and Pq(X) the probability measures with
bounded q-moments.

II. SCALARIZATION STRATEGY

We are interested in solving a multi-objective optimization
problem of the form

min
x∈Rd

g(x) = (g1(x), · · · , gm(x))
> (1)

where g : Rd → Rm is a given vector function. We assume
m ≥ 2, as for m = 1 the problem reduces to a single-
objective optimization problem. To define a solution to (1),
we rely on the notion of Pareto optimality [16].

Definition 1: A point x̄ ∈ Rd is called a Pareto optimal
point if g(x̄) is a minimal element of the image set g(Rd)
with respect to the natural partial ordering, that is if there is
no x ∈ Rd with

gi(x) ≤ gi(x̄) for all i = 1, . . . ,m , g(x) 6= g(x̄) .
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Similarly, x̄ is called a weakly Pareto optimal point, if there
is no x ∈ Rd such that

gi(x) < gi(x̄) for all i = 1, . . . ,m .
In the following, Fx denotes the set of all weakly Pareto

points, while Fg := g(Fx) the so-called weak Pareto front
[15].

The aim is to find a sufficient number of optimal points
to approximate the Pareto front. The proposed method uses
a scalarization strategy, which is a common and straightfor-
ward way to approach the problem [16], [15]. It allows to
solve (1) by solving a set of single-objective sub-problems.

In particular, we consider the approximation sub-problems
[16] with the weighted `p-norms. Let Ω be the set of weights
vectors

Ω :=

{
w ∈ Rm+ |

m∑
i=1

wi = 1

}
.

The set Ω is also known as m-dimensional unit, or proba-
bility simplex. Given a p ∈ [1,∞), we define the functions
Gp : Rd × Ω→ R as

Gp(x,w) :=

(
m∑
k=1

wk|gk(x)|p
) 1

p

(2)

and extend the definition to the case p =∞

G∞(x,w) := max
k∈{1,...,m}

wk |gk(x)| . (3)

While being closely related to the `p-norms in Rm, we note
that Gp(·, w) is not a norm since, for instance, some weights
may be zero.

Let p ∈ [1,∞] be fixed, we then scalarize (1), by
considering the sub-problem

min
x∈Rd

Gp(x,w) (4)

which is parameterized by a weights vector w ∈ Ω. The
following results hold true.

Theorem 1 ([16], Theorem 5.25): Assume g(x) > 0 and
p ∈ [1,∞]. For all w ∈ Ω, any solution to (4) is a weakly
optimal Pareto point.
The inverse implication is not true in general, unless p =∞:

Theorem 2 ([16], Corollary 11.21): Assume g(x) > 0
and p = ∞. Any weakly optimal Pareto point is a solution
(4) for a certain w ∈ Ω .

The choice p =∞ is known as the weighted Chebyschev
norm approach. By Theorem 2, the Pareto front Fg is
approximated by varying the weights vectors in Ω and
solving the correspondent sub-problems (4). As we will see,
the proposed method is derivative-free, so the fact that for
p =∞ (4) is non-differentiable does not pose an issue.

III. M-CBO ALGORITHM

In the following, we propose a CBO algorithm to solve
N ∈ N sub-problems in the form (4), for an arbitrary (but
fixed) choice p ∈ [1,∞]. Let {wi}Ni=1 be the corresponding
weights vectors. To obtain a good approximation of the
Pareto front Fg , a common choice is to take {wi}Ni=1

uniformly distributed on Ω. We refer to [17] for methods
to generate uniform points on the unitary simplex given an
arbitrary N .

Let us start by presenting the classical CBO mechanism
and then illustrate how to adapt it to solve all the given
sub-problems. For this purpose, let w ∈ Ω be fixed for the
moment and G(·, w) be the correspondent scalar function to
minimize.

As many evolutionary and particle-based methods, CBO
algorithms employ a set of Np ∈ N possible solutions
and then update their locations repeatedly, according to a
specific rule. While we refer to these solutions as agents,
sometimes they are also called particles see [5], [18], in
view of the parallelism between CBO algorithms and Monte
Carlo simulation methods for kinetic equations [7].

Let {Xi
k}
Np

i=1 be the agents locations at the k-th algorithm
iteration. In the single-objective CBO method, every agent
propagates towards the same point xαk (w), that can be seen
as the algorithm approximation to the global minimizer. This
value is defined as a convex combination of the agents
locations

xαk (w) :=
1

Zα

Np∑
j=1

Xj
k exp

(
−αGp(Xj

k, w)
)
, (5)

where α � 1 is a fixed parameter and Zα is the suitable
normalization constant such that the combination is convex.
Taking the limit α→∞, it holds

xαk (w) −→ argmin
i∈{1,...,N}

Gp(X
i
k, w) ,

provided that a unique minimum exists. This heuristic strat-
egy promotes the exploration of domain areas where the
objective function is lower. The choice of the exponential
coefficients in (5) are further justified by the Laplace prin-
ciple [19], which states that for any absolutely continuous
distribution f ∈ P(Rd)

lim
α→∞

− 1

α
log

∫
exp (−αGp(x,w)) f(x)dx = inf

x∈supp(f)
G(x,w).

After several iterations, the agents concentrate, or create
consensus, around a point [20], which is the computed
solution to (4).

Instead of iteratively solving N sub-problems, we propose
an algorithm which attempts to solve them all simultane-
ously. This can be done assigning a specific sub-problem
to every agent, using a specific weights vector wi ∈ Ω. To
save computation cost, we propose to employ the smallest
number of agents to sample all sub-problems, i.e., Np = N .
This creates a one-to-one correspondence between the agents
and the sub-problems. The method can be easily generalized
assigning n ≥ 1 agents to one sub-problem.

As for the single-objective CBO, a stochastic component
is added to the update rule [5]. Two parameters, λ, σ >
0 control the strength of the deterministic and stochastic
components, respectively, while ∆t > 0 is the step-size.



Let the initial configuration of the agents be independently
sampled from a distribution ρ0 ∈ P(Rd),

Xi
0 ∼ ρ0 for all i = 1, . . . , N . (6)

The resulting update rule is

Xi
k+1 = Xi

k + λ∆t
(
xαk (wi)−Xi

k

)
+ σ
√

∆t

d∑
l=1

(xαk (wi)−Xi
k)lB

i,l
k ~el , (7)

where (·)l denotes the vector l-th component and ~el is the
unit vector along the dimension l. The point xαk (wi) is
computed by (5) and Bi,lk ∈ R are randomly sampled values
Bi,lk ∼ N (0, 1). Since the update rule is overparametrized,
λ is usually set to 1 in CBO algorithms [5], [18]. The
Multi-objective CBO method (M-CBO) is summarized in
Algorithm 1.

In (7), the random component along the l-th direction de-
pends on the difference between (Xi

k)l and (xαk )l, such that
the exploration behavior is stronger if i-the agent is far from
the approximation xαk (wi). This type of exploration, hence,
is anisotropic [18]. Other exploration behaviors proposed for
the single-objective CBO algorithm, such as the isotropic
exploration [5], can also be considered.

While every point aims to optimize a different sub-
problem, all of them are used to compute xαk ’s, leading to
an interaction between them. Here, the computational cost
is saved with the respect to a naive strategy of solving the
sub-problems separately. Also, heuristically, it exploits the
similar structure of the approximation sub-problems.

As a consequence of Theorem 1, we expect the algorithm
output {Xi

end}Ni=1 to approximate N weakly optimal Pareto
points corresponding to the weights vectors:

|Xi
k − x̄(wi)| k→∞−−−−→ 0, with g

(
x̄(wi)

)
∈ Fg .

We verify the convergence in Section V for two test prob-
lems, by measuring the evolution of the average `2-error

Err2(k) :=
1

N

N∑
i=1

|Xi
k − x̄(wi)|2 . (8)

Even though g is evaluated only N times per iteration,
the overall complexity is O(N2) per step. Nevertheless,
several random batch techniques developed in the context
of particle simulation [21], [22] can be used to speed-up
the algorithm. The computational complexity is typically
reduced to O(MN) or O(M2) for some fixed M � N .

IV. MEAN-FIELD DESCRIPTION

Mathematically, Algorithm 1 describes the evolution of
N random interacting agents. In this section, we present a
mean-field model which approximates such evolution and is
amenable to mathematical analysis, following the strategy
introduced in [5]. The approximation process is twofold.
Firstly, the step-size is assumed to be infinitesimal, ∆t →
0, leading to a continuous-in-time evolution. Secondly, we

Algorithm 1: M-CBO

Set parameters: α, λ, σ,∆t
Initialize the set: Xi

0 ∼ ρ0 , i = 1, . . . , N
Select the sub-problems {wi}Ni=1 uniformly in Ω
k ← 0
while stopping criterion is NOT satisfied do

Compute g(Xi
k) , i = 1, . . . , N

for i = 1, . . . , N do
compute xα(wi) according to (5)
sample Bi,lk from N (0, 1), l = 1, . . . , d
compute Xi

k+1 acording to (7)
end for
k ← k + 1

end while
end← k
return {Xi

end}Ni=1

assume to have infinity agents, N → ∞, leading to a
statistical description of the dynamics.

In the context of interacting multi-agent systems, the
update rule of Algorithm 1 typically originates as a sim-
ulation of the a continuous-in-time dynamics of N agents
[7]. Indeed, (7) together with the initial conditions (6) corre-
sponds to the Euler-Maruyama discretization of the system
of stochastic differential equations

dXi
t = λ

(
xαt (wi)−Xi

t

)
dt

+ σ

d∑
l=1

(xαt (wi)−Xi
t)l dW

i,l
t ~el

Xi
0 ∼ ρ0 ,

(9)

where {(W i,l
t )t≥0}Ni=1 are independent Brownian processes.

We consider the microscopic model (9) to be an approxima-
tion of the dynamics (7).

If f0 ∈ P4(Rd) and g is locally Lipschitz continuous, there
exists a unique strong solution {(Xi

t)
N
i=1 |t > 0} to (9) with

continuous almost everywhere paths.
Since every agent is coupled with a weights vector,

(Xi
t , w

i) ∈ Rd × Ω for all i = 1, . . . , N , (10)

the dynamics (9) can also be considered to take place in the
augmented space Rd×Ω. Instead of studying the trajectories
of all N different couples (Xi

t , w
i), it is convenient to give

a statistical description of the ensemble evolution through
a probability density f where – informally – f(t, x, w)
quantifies the probability of finding at the time t an agent
with weights w ∈ Ω at the location x ∈ Rd.

The empirical distribution fN associated to the couples
(10) is

fN (t, x, w) =
1

N

N∑
i=1

δ(Xi
t − x) δ(wi − w) , (11)

where δ is the Dirac distribution. For all t ≥ 0, fN (t, ·, ·) is
a random variable in P(Rd × Ω).



For large values of N , a standard strategy is to approxi-
mate fN by its limit as N →∞, the mean-field limit [23].

Since the agents are initially sampled from ρ0 ∈ P(Rd)
and the weights vectors are uniformly distributed on Ω, it
holds

fN0 ⇀ ρ0 ⊗ µ in law as N →∞ , (12)

where fN0 = fN (t, ·, ·) and µ denotes the uniform distribu-
tion over Ω.

The mean-field limit f of the empirical distribution solves
the non-linear Fokker-Planck equation

∂tf(t, x, w) = ∇x · ((xαt (w)− x)f(t, x, w))

+
σ2

2

d∑
l=1

∂2

∂x2
l

(
(xαt (w)− x)2

l f(t, x, w)
)

lim
t→0

f(t, x, w) = ρ0(x)µ(w) .

(13)

The system (13) describes the mean-field model, which
approximates the algorithm computation for a large number
N of agents. The points xαt (w) are now defined as the mean-
field equivalent of (5):

xαt (w) =
1

Z α

∫
Rd

x exp(−αGp(x,w)) ρ(t, x) dx , (14)

where ρ(t, x) =
∫

Ω
f(t, x, w) dw is the first marginal of f .

We note that, even if we initialize the algorithm assigning
more then one agent per sub-problem, the correspondent
mean-field model is still given by (13).

As for Algorithm 1, we expect the couple (x,w) to con-
verge towards (x̄(w), w), with x̄(w) ∈ Fx or, equivalently,
that

f(T, x, w) ≈ f̄(x,w), f̄(x,w) := δ(x̄(w)− x)µ(w)

at some time T > 0. By definition, the first marginal ρ̄ of
f̄ is then concentrated on weakly optimal Pareto points. By
Theorem 2 and p =∞, the weakly optimal points fulfill

supp (ρ̄) = Fx .

Whether f actually converges numerically towards f̄ can
be analytically studied by the time evolution of

ErrMF2 (t) =

∫
Rd

∫
Ω

|x− x̄(w)|2 f(t, x, w) dw dx . (15)

Indeed, the above error is an upper bound for the 2-
Wasserstein distance between f and f̄ , which metrizes the
weak convergence on P2(Rd×Ω) [24]. Such an approach has
been shown successful to prove the convergence of single-
objective CBO methods [8]. We leave this type of analysis of
the proposed multi-objective optimization method for future
work.

V. NUMERICAL RESULTS

In this section, we validate the suggested heuristic strategy
on four bi-objective optimization test problems, that is with
m = 2. The first problem [3] is given by

g(x1, x2) =

(
5(x1 − 0.1)2 + (x2 − 0.1)2

(x1 − 0.9)2 + 5(x2 − 0.9)2

)
(16)

with x ∈ [0, 1]2, while the second one is the DEB2DK
problem [25], with one knee (K = 1) and d = 2. Problems
3 and 4 are taken form the test suit [26, problems UF4,
UF7] and can be scaled to different dimensions d. Given
that Problems 2 and 3 are non-convex, we employ the
Chebyschev norm approach by setting p =∞ which, thanks
to Theorem 2, is suitable for such problems.

As in many multi-objective problems [3], the search space
of each test consists of a different hypercube D ⊂ Rd.
Therefore, after every iteration we clip the vectors Xi

k to
ensure the agents will remain in the search space. Alter-
natively, a penalization term can be added to the objective
function. The initial agents positions are uniformly sampled
from D, ρ0 = U(D), while the weights are deterministically
chosen as wi = ((i− 1)∆w, 1− (i− 1)∆w) with ∆w =
1/(N − 1).

In similar multi-agent algorithms, the step size ∆t is
typically of order between 0.1 and 0.01 [5], [18], [27]. In
our experiments, we were able to reach higher accuracy
with step size ∆t = 0.01. Even though using adapting
parameters is a common strategy to promote exploration
at the beginning of the computation [18], [28], we test the
algorithm mechanism by keeping λ = 1,∆t = 0.01, α = 105

fixed. The exploration parameter is fixed to σ = 4 for
Problems 1 and 2, and σ = 10 for higher dimensional
problems. The agents evolve until a maximum number of
iterations kmax is reached.

We first consider Problem 1 and 2, for which is possible
to compute the solution of each sub-problem (4) with high
accuracy. Figs. 1 show the average error Err2 for different
population sizes N . We note that the agents converge quickly
to the solution of the correspondent sub-problems, up to a
certain accuracy.

For the remaining part of the computation, the agent
system is almost stationary. Indeed, once the i-th agent
approximates the solution of the i-th problem better than

0 200 400
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100
Problem 1

0 200 400
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10-2

100
Problem 2

Fig. 1: Average `2-error, as defined in (8), as function of the
iterative step k for Problem 1 and 2. Different population
sizes N are considered. Update rule given by (7). Results
averaged over 1000 runs.
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Fig. 2: Agents position at the end of a single run, kmax = 500 . In red the Pareto front Fg and, when d = 2, the optimal
points Fx. In Problems 3 and 4 the greedy strategy (17) is used.

the other agents, the convex combination xαk (wi) is typically
close to Xi

k itself due to the Laplace principle. Note that,
even though using small values of α would still evolve
the dynamics, this would lead to a movement of positions
towards the same point and an increase of the average error.
This due the definition of xαk (w) as convex combination of
the agents position.

As expected, employing larger number of agents allows
to a better exploration of the search space and higher
accuracy of the solution. Nevertheless, this improvement
may be little, as shown in Fig. 1 (left), where the accuracy
reached with N = 100 agents is almost as good as the one
reached with N = 500. This can be explained by a known
shortcoming of the scalarization strategy. Typically, taking
uniformly distributed weights vectors does not guarantee
equally distributed Pareto points, both in the search-space
and in image-space [3].

This is particularly evident for the Problem 1, see Fig.
2a, where the solutions are concentrated at the center (with
respect to the symmetry axis). Indeed, the agents concentrate
towards the center due to the combinatorial nature of xα(w).
This leads to a low accuracy solutions at the extrema of the
Pareto front, even for large population sizes. In Problem 2,
this effect is less evident as the agents are better distributed
over the front, see Fig. 2b.

We test the proposed method with higher dimensional
problems, where d = 5, 7, 10. To improve the algorithm
performance, we employ a greedy strategy which updates the
location of the i-th agent only if the new location improves
the objective function value of the i-th sub-problem. This
can be done by substituting the update rule (7) with

Y ik+1 = Xi
k + λ∆t

(
xαk (wi)−Xi

k

)
+ σ
√

∆t

d∑
l=1

(xαk (wi)−Xi
k)lB

i,l
k ~el (17)

Xi
k+1 = H

(
Gp(X

i
k, w

i)−Gp(Y ik+1, w
i)
)

(Y ik+1 −Xi
k)

+Xi
k

where H is the Heaviside function (H(x) = 0 if x ≤ 0
and 1 otherwise). We note that the above dynamics can

also be described by a correspondent mean-field model,
after an appropriate regularization of H . For simplicity, we
omit it and refer to [5], [8] for more details. We remark
the method might benefit from a mixed strategy where the
greedy mechanism is gradually turned on, as in the Simulated
Annealing algorithm [29]. We leave this investigation for
future work.

Fig. 3 shows the evolution of the Inverted Generational
Distance (IGD) which is a common metric for multi-
objective optimization tasks, as it measures both the conver-
gence and the well-distribution of the points over the Pareto
front [30]. Even though the IGD metric is increasing together
with the dimension, the method is able to converge towards
the Pareto front with only N = 300 agents in dimension
d = 10.

0 100 200

10-1

Problem 3

0 100 200

10-1

Problem 4

Fig. 3: IGD metric as function of the iterative step k for
Problem 3 and 4. Different dimensions d = 5, 7, 10 of the
search space are considered, while N = 300 is fixed. Update
rule given by (17) (greedy strategy). Results averaged over
50 runs.



VI. CONCLUSIONS

We proposed a multi-agent multi-objective algorithm
which solves, at the same time, N sub-problems generated
by a scalarization strategy. We give a statistical description
of the agents dynamics through the mean-field limit, which is
given by the limit of the step-size ∆t→ 0 and N →∞. Such
approximation is an essential step to analytically study the
algorithm’s behavior. Computational tests show the agents
distribution over the Pareto front and the validity of the
proposed approach.

The initial choice of uniform weights vectors is known
to be non-optimal for a general multi-objective problem.
We observe that this may have a strong impact on the
convergence. In future work, we plan of adding an interaction
in the weights to mitigate this issue and obtain a better ap-
proximation of the Pareto front and, also, an higher accuracy
in solution of the sub-problems.
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