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ABSTRACT

Submarine methane emissions in the Tuscan Arclgpdiave been studied since the 1960s, both
for economic and research purposes. Offshore ggsage is mainly concentrated southward and
westward of Elba island, along N-S faults relatedecent extensional activity in the Tuscan shelf
and N-S trending positive magnetic anomalies, whhielve been interpreted as serpentinites
associated with ophiolitic rocks due to their veigh magnetic susceptibility.

This study focuses on the gas chemistry of a nevgstom site corresponding to a shallow water
mud volcano in the Scoglio d’Affrica area. The Saogl’Affrica seep has a gas composition
typical of mud volcanoes, with methane as the pemtacomponent (95 vol%) and minor gases
which include carbon dioxide, nitrogen and traceants of helium. The combined stable C and H
isotope composition of CH$*C and$°H) and the enrichment in heavy carbon isotopes @, C
highlight a prevalent secondary microbial origirr finese fluids §°C~-35.8 %o vs VPDB;
8°H~-166 %o vS VSMOW3™Cco, Up to + 21.7 %o vs VPDB). Thus, in spite of the wrtence of
positive magnetic anomalies, a possible abiotigiorof methane is excluded. Moreover, the gas
from the mud volcano is extremely depleted®ile and presents typicdHe/He ratios of a
geological setting in which radiogenic crustal teliis strongly predominant. A photo-mosaic of
the mud volcano is also reported. A possible cotmeevith other submarine methane emissions in
the Tuscan Archipelago is limited to emissions tedafew kilometers from the Scoglio d’Affrica
area. Recent emissions in the area suggest thed gemsilar in composition from distinct reservoirs,
find their way to the surface from Eocene depdsitdifferent time intervals and through different
faults and fractures, placed along the Elba-Piandge.

1. Introduction

Mud volcanoes are formed in sedimentary basinshasstrface expression of hydrocarbon
migration (Dimitrov, 2002; Etiope, 2015). The comdtion of gas overpressure (high pore fluid
pressure at great depth) and gravitative instgllitshales (Niemann and Boetius, 2010; Mazzini
and Etiope, 2017) may result in the migration, tigto faults or fissures, towards the surface of a
multi-phase material called mud breccia. Mud br@esimade up of sediments, together with rock
clasts coming from the different stratigraphic koris through which the mud passes on its way to
the surface, gas (mainly hydrocarbons), water (frobmackish to brine composition), and
occasionally oil. The mud discharge, fluidified bgs and water, creates cone shaped structures.
Usually, there is not only a single isolated cdmat, the mud volcano consists of a group of cones
and crater systems (Mazzini and Etiope, 2017).
The prevalent compound of the gas released by rolgdwoes is usually methane, often above 80
vol%. Other minor gases are carbon dioxide {C@itrogen (N), alkanes (ethane to butane) and
trace amounts of helium (He) (Milkov et al., 2008azzini and Etiope, 2017). A global data set of
analysed gas from onshore mud volcanoes showlibgitare mostly of thermogenic origin (about
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76%), meaning that they are produced by thermatadiegion of organic matter or oil cracking
(catagenesis) in relatively deep sediments at teshpes typically up to 230-240 °GY{C-
CH4~-46.4%0 VPDB - Vienna Pee Dee Belemnite, as aveod@®1 mud volcanoes; Etiope et al.,
2009a).

Mud volcanism is a common phenomenon both onshadeo&shore. Although the mechanism
of formation, the tectonic setting, the productse &ctivity and the contribution to greenhouse
effects of terrestrial mud volcanism have beenrbfedelineated from the early 1900s on (e.g.
Goubkin and Fedorov, 1938), submerged mud volcamambeen characterized by practical and
visual difficulties around sampling and identificat. Hence, it is probable that a significant
number of submarine mud volcanoes are still to iseodered. The literature regarding offshore
mud volcanoes has expanded in the last decade&sthanthe diffusion of side scan sonar,
Remotely Operated Vehicles and the advances inlgagrgguipment. Several studies confirm their
presence in the eastern and western Mediterranean@ta et al., 1981; Limonov et al., 1994;
lvanov et al., 1996; Akhmanov and Woodside, 1998kd& A. V., 2000; Bellaiche et al., 2001,
Kopf et al., 2001; Zitter et al., 2005; Lykousisatt, 2009; Mascle et al. 2014) as a result of the
convergence of the African and Eurasian plateshigicontext, cold seeps and mud volcanism are
predominant within the Mediterranean Ridge, in espondence with the accretionary prism of the
Hellenic Arc subduction zone, but they are alsatbalong the Cyprus Arc, within the Nile deep-
sea fan, in the lonian sea and further west inGh# of Cadiz (Zitter et al., 2005; Rabaute and
Chamot-Rooke, 2007; Dupré et al., 2008; 2010; Laheaal., 2018). However, in these geological
contexts mud volcanism is found in deep water (ntioa@ 400 m water depth).

We found the shallowest mud volcano in the Meditieean Sea near the Scoglio d'Affrica,
which is located at about 7-12 m depth in the Téwyian sea (figure 1). Methane emissions in the
Tuscan Archipelago had already been reported shec@960s (Del Bono and Giammarino, 1968).
The ltalian oil company AGIP (Azienda Generaleidta& Petroli) carried out exploration projects
of the site through two wells, Martina 1 and Mimdsanear Pianosa island and Scoglio d’Affrica
area, revealing the presence of hydrocarbon gisiily Miocene sand levels and in Eocene flysch
formations. However, neither of the two wells wepmnomically feasible to exploit and they were
abandoned (Camera dei Deputati, 1984). More regcemib other shallow water cold seeps were
discovered and studied for research purposes, firieeowest coast of Elba island, near Pomonte
(Ruff et al., 2016; Wiedling, 2010; Meister et &Q018; Sciarra et al., 2019a) and the other one nea
Pianosa Island (Meister et al., 2018) (figure 1).

In Pianosa, gas emissions occur at 10 to 45 m wlafgh out of carbonate sand and rocky outcrops
and there is no data about their chemical and peotmmposition. On the contrary, Pomonte gas
bubbles are escaping from sediments and sandygsatstween seagrass beds. In this area, the
released gas is methane dominant {€185 vol%) with a very low C@content (< 1.5 vol%) and a
helium isotope signature which indicates a nonigésé mantle derived component (Sciarra et al.,
2019a). The main gas chemistry, the stable C arsbtdpic compositions of CHE*C-cra—18%o;
8°H-cha—141%0) and the reconstruction of the geologicalettiral setting of the Elba ophiolite
sequence, suggest that the Gsllikely to be abiotic in origin and that it dees from a process of
serpentinization in a continental ultramafic rogktem (Sciarra et al., 2019a).

The seepages in Pomonte together with the emissidhs Scoglio d’Affrica are seen to be aligned
as the N-S trending positive magnetic anomaly, foahthe eastern margin of the Elba-Pianosa
ridge, whereas Elba island marks a W-E orientece zinmagnetic lineations site. The positive
anomalies could be linked to the ophiolitic sutaome, as Eriksson and Savelli (1989) suggested
and as the Istituto Nazionale di Geofisica e Vutdagia (INGV) expedition reported (INGV, July
2017).

This paper contains the first combined visual segflobservations, sedimentology and facies
analyses together with the chemical and isotopeactexization on the fluids emitted from a mud
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volcano in the Scoglio d’Affrica area, acquiredidgra research project in the summer of 2018. We
present a photo mosaic of the mud volcano areathegwith visual observations and data of gas,
water, sediment and rock analyses. The synthesiheofgas geochemical data, compared with
previous studies, evidences constraints on spatidltemporal variations of mud volcanism and
sheds light on the gas origin together with posdliibks with other emission sites.

2. Geological setting

The geologic history of the Northern Tyrrhenian eatrictly linked to the Northern Apennine
Orogeny, developed since the late Eocene as aquasee of the collision due to the closure of the
Tethys Ocean (Carminati and Doglioni, 2012). Aftieis collision, an extensive tectonic regime
became predominant over time. This stretched ipagrof the Apenninic orogenic belt allowed the
opening of the Tyrrhenian Basin and the genesistlamdise of anatectic melts, due to the uplift of
the asthenospheric mantle (Pandeli et al., 2013)grivatic bodies developed in several islands in
the Northern Tyrrhenian Sea, such as Capraia (legtwé.2 and~4.8 Ma; Carminati and Doglioni,
2012), western and eastern Elba, Montecristt.1 Ma; Carminati and Doglioni, 2012), and Giglio
(~5 Ma; Carminati and Doglioni, 2012), forming thestan Magmatic Province with the Tuscany
mainland. The overall result of the crustal stretghin the Northern Tyrrhenian Sea produced
uniformly oriented normal fault sets trending nesttuth and northwest-southeast (Keller and
Coward, 1996 and references therein) that creadeeral small Neogene sedimentary basins
surrounded by structural ridges which charactegheeTuscan shelf (Pascucci et al. 1999). The most
active zone tectonically is the Elba-Pianosa Ridgach is a rising antiform, with a N-S axis that
divides the Tuscan shelf from the Corsica basifedfiwith about 8.5 km of Eocene to present
sedimentary deposits (Mauffret et al. 1999).

The sampling area is part of the Elba-Pianosa Ridtes mainly submarine structural high
emerges to the surface at Pianosa Island and Sad@lffrica and consists of a thick (more than
3,000 m) Eocene-Oligocene silicoclastic successibere the presence of gas localized in Eocene,
Oligocene and Miocene turbiditic deposits was founthe 70s and 80s during the AGIP drilling
projects. Pianosa island consists of Lower Mioc@wdigalian) to Pleistocene shallow marine to
continental deposits (Marina del Marchese, Golfilad®otte and Pianosa Formations; Cornamusini
et al., 2002 and references therein), whereas ®cdiAffrica is composed of shallow marine
organogenic limestones with a prevalent algal campb and frequent malacofauna. These
sediments are dated between the Pleistocene aratéta, contemporary to the Tuscan Nappe
(Motteran and Ventura, 2005). Two lithofacies wespeecifically identified, both related to high
hydrodynamic environments: packstones-wackestondschw correspond to a depositional
environment of seashore, and coral lithofaciesiiigtane), situated on top of the former (Motteran
and Ventura, 2005). These sediments are sub-hdaizand lay in a transgressive sequence on the
carbonate rocks of the Tuscan Nappe (Cornamusial.e2002). Cornamusini et al. (2002) also
suggest that the islet is bordered by high anglenab faults, which were active during post-
Burdigalian time. Regarding the seafloor aroundgBoad’Affrica, morphological terraces, faults
and methane activity had already been reporteddsiea et al. (1969).

3. Methods

3.1 Gas sampling and analysis

Gas samples were collected in July 2018 by SCUB#diby placing open bottles at the top of
the mud cones or the fractured rock, in correspooel¢o the bubble emissions. The gas was stored
in 100 mL glass bottles after water displacementiotal of 4 sites, from the same area were
sampled.
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Permanent gases (He,,,HO,, N, CO, CH and CQ) were measured by means of a gas
chromatograph (GC, Agilent 7890 equipped with PRid #MS5A columns) associated with a
MicroGC module (equipped with a PPU column) anaahde detector (TCD and FID) using argon
as carrier gas. Higher hydrocarbons-(&5) were analyzed using a Shimadzu 2010 GC equipped
with FID and a capillary CP Poraplot column (Q 25025 i.d.) using helium as carrier gas. The
column temperature was programmed to start at 28)C 4 min and then increased by
5°C/min up to 180°C, where it remained for 5 nmAmalytical precision for GC analyses is better
than +5% for trace gases and +10% for alkanes.&tavbon and hydrogen isotope compositions
of CH; and CQ were measured using a Delta Plus XP IRMS coupiéd asThermo TRACE GC
and a Thermo GC/C Il interface and equipped witRagaplot column (Q 25 m, 0.32 i.d.). The
column temperature was isothermal at 50°C. An inskoreference gas;=-49.5+0.3%0,6D=-
200£2.5%0; CH grade 6.0 i.e. 99.9999%) calibrated against Hréference (SCOTT 2500 ppm,
8C1=-23.910,3%0,6D=-156+5%0) and BIO (SCOTT 2500 pprdC;=-68.6+0.3%o,6D=-240+5%o)
was used for isotopic standarddC/*“C ratios are reported a8°C values (16=0.1%0) against
VPDB standard anéH/*H ratios are reported @H values (5=1%0) against VSMOW standard.
Helium isotope composition (expressed as R/Ra, lwiiéHe/'He of the sample versus the same
*He/*He ratio in atmosphere, Ra=1.386x3(and*°Ne content were analyzed by a GVI Helix SFT
mass spectrometer.

All the chemical and isotope analyses on gas samplere carried out at INGV-Palermo
laboratories.

3.2 Sediment, rock and water sampling and analysis

Sediment samples were taken using plastic coratgkastic bags. The cores were driven to a
depth of about 30 cm into the mud cones by hane. dgper part was then closed using a rubber
stopper with a hole for pressure balance. Surroyundediment was carefully removed to close the
bottom end with a second rubber stopper. The sainees were then opened and the sediment
split into three sections corresponding to thrdgeint depths and collected into plastic bags and
plastic bottles. Sediment samples were stored°at éntil further analysis. Two different methods
of grain size analysis were used: sieving and Xsegimentation analysis. The first one was used
for coarse-grained sedimemt6@ um), whereas X-ray sedimentation technique vesfopned for
the fine-grained part of the samples (<63 pm) udigyomeritics SediGraph 5100.

Rock samples were taken using hammer and chigal Idocks and clasts at the seabed close to
the emission site. Thin sections were preparedaaiatyzed by a polarization microscope to define
the rock type.

Porewater samples were taken using Rhizon membiattesshed to syringes. The membrane
was inserted into the ground to about 4 cm depdaw@ter samples, instead, were taken using
plastic bottles and syringes. Electrical conduttifEC) values were read using a RS 180-7127
Conductivity Meter after adopting a dilution factoir 100 using Milly-Q water (Millipore USA).
Anions were determined by an ion chromatographeh w&n isocratic dual pump (Dionex ICS-
1000) equipped with an AS9-HC 4x250 mm high-capacblumn and an AERS 500 4-mm
suppressor. An AS-40 Dionex auto-sampler was engpldy run the analysis. Sodium carbonate (9
milliMol) was used as eluent with a flow rate ofnil/min. Standards were prepared from the
stocked solution (Dionex Seven Anion Standard ldlémonized water) adopting a serial dilution of
1, 2, 10 and 100 factors. Blank sample was prepasety Milly-Q water. Main cations and trace
elements were measured using a X-Series ThermoiBicespectrometer (ICP-MS). Specific
amount of Rh and Re were added to the analyzedi@wuas internal standard, in order to correct
the instrumental drift.

Sediment, rock and water samples analysis wereedawut at the University of Ferrara,
Department of Physics and Earth Sciences.
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4. Results

4.1Visual seafloor observations

The area near the two previous expeditions (HYDR®L1; INGV, March 2017) was explored
by research divers from the University of Ferrand éhe HYDRA Institute in collaboration with
the Capitaneria di Porto of Portoferraio in JulyL0During the 2018 exploration, emission activity
was very low in the south shoal (2017 site), whema signs of emissions were found in the north
shoal (2011 site); however, another emission poias discovered between these two sites. It
corresponds to a shoal about 5 km north-east ofjl®cd’Affrica, which is dominated by blocks
and clasts alternated to muddy sediment locatedrirespondence to the emissions. All these three
emission sites correspond to three different mdagaical levels of about 7-10 m depth. Active
mud volcanic areas were identified framsitu observations by geological characteristics of fresh
mud eruption or visible fluid and gas emissionsi¢ast 10 emission points were identified, shown
in figure 2). The gas was emitted in big bubble8-1I5 cm) from conical mud mounds or from
bubbles of mm- to cm-size from sandy-muddy sedineerftssures in the blocks as a peripherical
discharge (figure 3).

4.2 Gas chemistry

The general gas chemistry of these submarine emnsss quite similar to those of the terrestrial
mud volcanoes summarized by Etiope et al. (2009ha¢ results are reported in table 1. The
prevalent gas component is methane ranging frof @696.82 vol%. Other gases include carbon
dioxide (from 0.97 to 1.30 vol%), nitrogen (from4@.to 0.84 vol%), ethane (0.026-0.036 vol%)
and helium (up to 0.0046 vol%). The @H,Hs+CsHg) ratio ranges from ~2670 to ~3700,
highlighting very high values relative to most tmegenic gas. Low {C,. ratios (<16) are a
definite indication of thermogenic hydrocarbon cimittions to the fluids, whereas highe/G;.
ratios (>16) do not rule out the involvement of thermogeniaiogarbons (Bernard et al., 1978;
Kim et al., 2012). The isotopic composition of Clhetween samples varies in a narrow range, from
-163 to —168%0 vs VSMOW fo8°H-cns and from —34.9 to —36.8%o vs VPDB 8t°Ccra. CO, i
strongly-enriched in heavy carbon isotopes WitiCco, ranging from +15.3 to +21.7%o. vs VPDB.
The *HefHe ratios, normalized to the same ratio in the aphere (denoted as Ra=1.39°10
Mamyrin et al., 1970; Clarke et al., 1976; Sanalet2008; Mabry et al., 2013) are identical in all
the collected gas seeps and equal to 0.01 Ra’Hé&@Ne ratios, spanning from 75 f®30, are at
least two orders of magnitude higher than thatiof*ale/°’Ne=0.318, Sano & Wakita, 1985) thus
indicating a negligible contribution from atmosphegas. The Ch°He ratios range from 1.24-%0
to 1.76- 167,

4.3 Petrography

Mudstone samples showed a very fine matrix withgyugnicroporosity, microfossils and veins
of calcite. Crystals were not distinguishable ie tiroundmass. The porosity could be secondary
due to fossil and grain dissolution. Fossils were easy to identify, because of the alteration and
the poor preservation of the sample. Neverthekmsie single valves were recognizable, possibly
bivalves, and also some globular forms. These dass showed trochospiral tests and globular
inflated chambers, typical of th&lobigerinidae, a family of planktonic foraminifera. Their
biostratigraphic distribution ranges from Paleoceneowadays.
Siltite samples showed a very thin (micrometricdugrdmass interrupted by several millimetric
veins of calcite and of quartz in minor quantityal€te and quartz crystals were allotriomorphic
and anhedral. The texture of the rock consistegubtparallel, wavy to crenulated laminations on
micrometric scale. In the matrix it was possiblaligtinguish some quartz and oxide minerals.
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4.4 Grain size analysis of the extruded sediment

The extruded sediment was characterized by a veidger of grain sizes. According to the guide
lines for the granulometric analysis of marine seghts deliberated by Sistema Nazionale per la
Protezione dellAmbiente (SNPA) in 2018 (Romanaakt 2018), Shepard’'s diagram (1954) was
considered for the classification of samples wi#0% of gravel, where gravel is incorporated to
sand percentage (figure 4A). Samples that had niane 20% of gravel, were classified using a
modified Shepard’s diagram, where silt and clay aue together (figure 4B). According to this
classification, it was possible to identify silthag, sand-silt-clay and gravelly mud sedimentsl@&ab
2).

4.5Porewater and seawater chemistry

In the mud volcano area, porewater and seawateplsandid not show significant differences
from the water samples taken outside the area.pFheras around 8.00 and salinity was about 38
PSU. Porewater samples showed an enrichment in3 @d 11.55 mg/l) compared to samples
taken outside the mud volcano area (35 mg/l). B is a typical element that derivesiriuid—
rock interaction (Mazzini et al., 2009; Hensen ét 2015); in the marine environment, its
enrichment can derive from clay dehydration (Paleteal., 1987; Barth, 1997). The results are
shown in table 1S, 2S and 3S in the supplementatgnial.

5. Discussion

5.1 Gas origin

The gas chemistry of the collected samples is &p¢ mud volcanoes (Etiope et al., 2009b),
with methane as the prevalent gas component (>8)vand minor gases which include carbon
dioxide, nitrogen and heavier alkanes and heliuhergas CO is present in trace amounts. In order
to assess the origin of the hydrocarbon gases,sthile isotopes as well as the molecular
composition have been successfully used in sege@bgical contexts>*Ccha values from -30%o
to -50%0 are interpreted as thermogenic gases, dgivanas source rocks become more thermally
mature, they expel Crelatively enriched inC. Thermogenic gases are also characterized by
C1/(C,+Cy) ratios (the so-called Bernard parameter) lowantb0. On the contrary, very early
mature thermogenic gases ha¥&Ccus from -55%. to -73%. (Milkov and Etiope, 2018), thus
significantly overlapping with th&*Ccs values of the primary microbial gas@8°C-cra< -50%o).
Microbially produced hydrocarbons can be distingad from very early mature thermogenic gas
because of their Bernard ratios front 10 10.
The 8"*Cchs values of the analyzed gas have an average28.8%o, which is in the range 61C
values for thermogenic gas, whereas the Berna@hpeter (between 2676 and 3687) is typical for
microbial-produced gas. The Gl$otope data and the Bernard ratio are also patntonsistent
with the oxidation of microbial methane; howevexidation usually implies extreme enrichment of
carbon and hydrogen in heavy isotopes (reachingegabf3*°’C and&°H as high as +45%. and
+301%0; Milkov and Etiope, 2018). Moreover, baaégonsumption of Cldappears to proceed at
a significantly greater rate than for hydrocarbases with higher molecular weight, such as ethane
and propane; the result is a decrease of #€EC+ C;) ratio from values of T0and 16, with the
possibility of reaching values of less than 10 (W¢hr, 1999; Milkov and Etiope, 2018). The
Cy/(C, + G) ratio higher than 2600 could be explained asofedl: i) a molecular fractioning
occurring during migration of a thermogenic gag thay increase the {{C,+Cs) ratio while the
isotopic composition of Cremains unaltered (Etiope et al., 2009b), orsi}lee result of microbial



290 degradation during the biodegradation of liquid rogérbons to methane (James and Burns, 1984,
291 Jay Katz, 2011).

292 In the most common genetic diagrams, such*&8cis vs G/(Co+Cs) (Bernard et al., 1977: figure
293 5A) andd"*Ccpa vs Dcra (Schoell, 1983; Whiticar et al., 1986; figure 5@ldigure 6), which have
294  been recently revised by using a larger globals#t@Milkov and Etiope, 2018), the collected gases
295 fall in the field between late mature thermogenaés gLMT) and secondary microbial gas (SM),
296  suggesting a possible mixture of the two componetitsvever, thed**Cco, values highlight that
297  microbial processes are strongly predominant (8gsB). Thed"*Cco, values span from +15.3 to
298  +21.7%0 vs V-PDB. They fall far from the typical vals found either in mantle-derived fluids
299 (8%Ccozin MORB — Mid Ocean Ridge Basalts — from —8 to —¢%/PDB; Des Marais & Moore,
300 1984; Marty et al.,, 1989; Sano and Williams, 1986) in crustal gas originated from thermo-
301  metamorphic reactions'€Cco, from —2 to +2%o vs VPDB; Sano and Marty, 1995). Moreover,

302 such unusual extremelfC-rich values are heavier than the carbon isotdgeature of CQ

303 associated to late mature thermogenic gas (LMTurédgB; Shuai et al., 2013). G@nriched in
304 heavy carbon isotopes is very often associatecet¢orslary microbial methanogenesis following
305 hydrocarbon biodegradation. The residual,@@riving from the biodegradation of methane has
306  0"Ccozgenerally exceeding +2%Milkov, 2018) which may reach values up to +36%as3i et al.,
307 2012).

308 All the gases collected in the Scoglio d’Affricaearfall into the secondary microbial origin region
309 (figure 5B), far from the nearby Pomonte gases,chvtdlearly show abiotic origins. Secondary
310 microbial gases (mainly Cjiare made by microbes during oil biodegradatibwetrepresent the
311 end result of biodegradation) and are usually miw#ti oil-associated biodegraded thermogenic
312 gas.A huge increase if°C of CQ such as in the Scoglio d'Affrica samples is almuster
313  observed in gases of other origins (Milkov and p#i02018). Therefore, the molecular and isotope
314  composition of hydrocarbons seems to indicate ih#tie secondary processes (biodegradation),
315 which may have altered the pristine molecular gamposition, are the main methanogenic
316 processes in the Scoglio D’Affrica seeps and ig thermal degradation of organic matter is
317 considered as a minor process.

318 The composition of the gas sampled in 2018 is wethparable to the gas sampled by the
319 HYDRA Institute in 2011 (figure 5) and reportedhteister et al. (2018) from a site located about 1
320 km to the north from the Scoglio d’Affrica sampliagea. The gases released from these two areas
321 are likely to be fed by two separate reservoirsingava homogeneous chemical and isotope
322 composition rather than by the same gas reservoir.

323 The helium isotopes are powerful natural tracerglwhllow us to distinguish the origins of the
324 three main reservoirs on Earth (mantle, crust ambsphere; Ozima and Podosek, 206R is

325  mainly primordial in origin, originating from maetidegassing or from Air-Saturated Water (ASW)
326 trapped in the pores and minerals. By contfhi,is essentially produced by the decay of U and Th
327 in the continental crust. This results jife/He ratios close to 8+1 Ra (Kurz et al., 1982) ia th
328 upper mantle (MORB-type) whereas the continentastcis characterized bye/He ratios in the
329 range between 0.01 and 0.05 Ra (Morrison and BB5).

330 The samples collected at Scoglio d’Affrica are emxtely depleted irfHe, with *He/He ratios

331 values of 0.01 Ra. These values are usually fonrghs emitted from a geological setting in which
332 radiogenic crustal helium is strongly predominastseveral studies of noble gases from other mud
333  volcanoes and hydrocarbon-related fluids confirny.@1e/He ratios values ranging from 0.03 to
334 0.05 Ra in Ballentine and O’Nions (1994); from OR4 in Lavrushin et al. (1996); from 0.02 Ra in
335  Kopft et al. (2003); from 0.02 to 0.17 Ra in Battahal. (2010); from 0.03 to 0.05 Ra in Zheng et
336 al. (2017); from 0.01 to 0.1 Ra in Nuzzo et al. (@0 from 0.02 to 0.03 Ra in Sciarra et al.
337  (2019b)). On the contrary, a mantle contributionresponds to higheiHe/He ratios values (e.g.
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values up to 1.4 Ra in Lavrushin et al. (1996) enldopft et al. (2003); from 0.4 to 1.9 Ra in Yang
et al. (2003); up to 1.60 Ra in Lavrushin et aD(Q@)). Therefore, these values suggest that the
tectonic discontinuities which drive mud volcanismthe Scoglio d’Affrica area are not deeply
rooted but rather limited to shallow crustal levigsracausi et al., 2005; Caracausi and Paternoster
2015). Moreover, it seems that a possitle contribution directly released from mantle amir
remnant magmatic sources (e.g. a magmatic intrusian be excluded, whereas it occurs in the
case of the nearby Pomonte seeps. In this latear, &ciarra et al. (2019a) estimated a mantle-
derived helium component from 10 to 30% likely do¢he degassing of the Monte Capanne pluton
on the western sector of Elba Island (figure 7A).

The CH/°He ratio is another effective parameter to disamate the abiotic component of the gas;
values from 1& to 10" are consistent with biogenic and crustal contriingi(Wakita et al., 1990;
Sakata et al., 1997), whereas abiotic methane érotlyermal systems can reach values df 10
(Sano et al., 2017). The average molecular ratiGHf to *He in the Scoglio d’Affrica samples is
~1.55-16% which definitely excludes an abiotic origin oktlgas. On the other hand, the Pomonte
gases show a CHHe ratio of~1.92- 16, confirming the presence of an abiotic componggti(e

7B).

5.2Relations between local geology and gas emissions

Regarding the lithology, the siltites and the marlydstones found in the sampling area are
different from the shallow marine organogenic litoeges of Scoglio d’Affrica islet; therefore, the
possibility that the fragments of rock found in tmeid volcano area could derive from erosional
processes of the islet was discarded. In relatathmé siliciclastic succession of Eocene-Oligocene
strata found in Martina 1 and Mimosa 1 wells by RGfour depositional units are identified in
literature (figure 8), all separated by unconforesit recognized by truncation in seismic
stratigraphic analysi§Cornamusini et al., 2002; Cornamusini and Pasci14). According to
Cornamusini and Pascucci (2014), who reported @lddtdescription of the depositional units, the
more superficial lithology consists of Pleistoca®posits, mainly hybrid siliciclastic sandy-clay of
shallow marine environment, which differs from fr@gments found around the mud volcano. The
other units, instead, contain mudstones and sikstat several depths.

Moreover, the bathyal up to neritic environmentt ttharacterize these units are consistent with
the microfossils found in the mudstones. The remghmicrofossils are in fact attributable to the
Globigerinidae family, which are planktonic foraminifera that cornty proliferate in pelagic
environments. Biostratigraphic distribution of teemicrofossils spans from the Paleocene to
nowadays and they can actually thrive at the kdéitof the sampling area. Nonetheless, these
foraminifera are commonly abundant only in deepsseiments, whereas they are very rare or even
absent in neritic sediments and in water shallavan 10 m such as those of the sampling area.
The possibility that they were transported by strefflows from bathyal environments is not
consistent with the high-energy condition of thegstigated area and with the fine muddy matrix of
the sample. Therefore, it is more likely that thesabigerinids were deposited in more ancient
sediments typical of deeper environments (bathyath as those of the Sub2 Unit of Mimosa 1
well. Unfortunately, the conservation state of fbesils prevents further in-depth classification,
thus it was neither possible to date them nor ctigre@nd consistently correlate them with the Unit
of the mentioned wells. Although magnetic and greetric data of very high magnetic
susceptibility are found in the Scoglio d’Affricaea, as they are found offshore in western Elba,
the interpretation of this data as ophiolitic bad{Eriksson and Savelli, 1989; Cassano et al., 2001
Caratori Tontini et al., 2004) is not supportediy stratigraphic sequences.

The geological setting of the mud volcano area sstgga possible correlation between methane
reservoirs discovered by AGIP and the recent eomssiAccording to the temperatures from the
Martina 1 deep exploration well, located4 km north of Scoglio d'Affrica, the estimated &bc
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geothermal gradient is about 32 °C/km (GeoThopiicarre 1S). Thermal degradation of organic
matter or oil cracking (catagenesis) in relativdgep sediments occurs at temperatures >60 °C,
which in this case, correspond to a depth >1650nntine with the stratigraphical reconstruction
reported by Cornamusini and Pascucci (2014) andnasg a secondary microbial origin of the
gas, it is conceivable to infer that Eocene depa@si responsible of the process of methanogenesis.
Moreover, the presence of hypothetical faults regubrin literature (Pascucci et.,all999;
Cornamusini and Pascucci, 2014) could justify thieg of fluids to the surface.

6. Conclusions

Based on the morphology as well as the sedimentpgtrographic and geochemical
characteristics of the solid materials togethehvwite fluids expelled from the Scoglio d’Affrica
site, these seeps can be classified as a mud wolddre investigated area revealed three main
active mud volcano sites, which showed seepage0irl,22017 and 2018. All these areas are
characterized by the occurrence of conical-roundpnalogies at a shallow water depth (from 7 to
12 m) well distinguished from the seafloor whichtumn is characterized by the presence of blocks
and mud. The gas is emitted as large bubbles (4% twm in diameter) from conical mud mounds
or from centimeter to millimeter size bubbles freandy-muddy sediment or fissures in the blocks
as a peripherical discharge or during a dormansg@h@he extruded sediment is characterized by a
wide range of grain sizes, including mud.

All three sites, together with the gas found in &®IP wells in the 70s, show the same gas
composition, with methane as the prevalent gas ocoemt (>95 vol%) and minor gases which
include carbon dioxide, nitrogen and little amounitéielium. Molecular and isotopic compositions
of samples collected in 2011 and in 2018 point fwealominant secondary microbial origin of the
methane &°C mean around -35.7 %o vs. VPDB, posit?/&Cco; values up to + 21.7 %o vs. VPDB
and Bernard ratios around 3008fe/'He ratios, which were determined for the first tiinethe
samples collected in 2018, show typical valuesafgas crustal emitted from a geological setting in
which the radiogenic helium component is strongbynchant. Moreover, the contribution of deep
magmatic fluids, as well as %le component derived from the degassing of intrusegjmatic
bodies, can be ruled out.

The geological and stratigraphic reconstructiothefmud volcano area revealed the presence of
lithologies that are also found in the clasts diered within the mud breccias, with planktonic
foraminifera that are commonly found in deep sedinsents. Based on the lithostratigraphic
reconstructions and the local geothermal gradibetsource rocks can be identified in the Eocene
deposits at a depth greater than 1700 m. On thigacgnthe reconstruction of the geology does not
identify the ophiolitic bodies that are consideredponsible for the offshore magnetic anomalies in
western Elba.

Finally, considering the depth of the gas soutwe geological setting and the main chemical and
isotope composition of the gas, which is similarthe samples collected in 2011, the Scoglio
d’Affrica emissions are not comparable to thosettlf Pomonte seeps. Methane from Scoglio
d’Affrica has a clear secondary microbial origindamelium is entirely produced within the crust
from a radiogenic decay, whereas the Pomonte gasiscterized by shallow cold seeps of abiotic
methane with a non-negligible mantle-derivet-rich component (Sciarra et al., 2019a).
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Figure captions

Figure 1 — Bathymetric map of the area between the isldriellma and Montecristo showing the location of
Scoglio d’Affrica, Pomonte and Pianosa emissioessitin the inset, locations of the Scoglio d’'A#ric
emission activities detected in 2011, 2017 and 20&&hown. In 2011 the HYDRA Institute investid e
mud volcano near Scoglio d’Affrica at 8-10 metersvater depth. The area was about 15 by 5 metegela
with three gas emissions and some emissions inebatwhe rocks in crevices around the mud volcano
(HYDRA Institute, 2011; Meister et al. 2018). Oa ft6th March 2017, local fishermen reported a coiwh
muddy water of 10 m height gushing out from thessetace in an area located south of the site engoldn
2011. The Iltalian Protezione Civile investigate@ threa and found gas emission spots predominant in
shallow water (8-10 m), sometimes inconstant ankdowut temperature anomalies. Some of these seeps we
N-S aligned with Clkland CQ concentration anomalies (Chiocci et al., 2017).

Figure 2 — Photo mosaic of the emission area in 2018 agl8cd’'Affrica mud volcano. At least 10 sites of
emission are recognizable. The inset shows theogatibn of the photo mosaic. The shoal to the seast
of the photo mosaic is the site related to the simisactivity detected in 2017. For higher resaatimage,
see figure 2S in the Supplementary Material.

Figure 3 — Scoglio d’Affrica mud volcano in 2018. A, B: nmdund corresponding to emission point 7 in
figure 2. C: bubbles emission corresponding to p@8inn figure 2. D: view of the mud volcano areanfr
point 5 of figure 2.

Figure 4 — A: granulometric composition of samples S2, S8 S8 in Shepard’s diagram (1954). B:
granulometric composition of sample S4 in Shepadiigram modified as in Romano et al. (2018).

Figure 5 —A, B, C: Scoglio d'Affrica mud volcano 2018 gasAS3dV 2018) compared with 2011 (Meister at
al., 2018) and Pomonte gases (Sciarra et al., 2Dlidgether with other MVs gases from literaturesarted
into the revised genetic diagrams from Milkov artibfie (2018). A: CHI(C,Hs+C3Hs) ratio versuss*C-
CH, diagram comparing gases from Scoglio d’Affrica ¥2018), Pomonte seeps, Venere MV (Loher et al.
2018; Blumenberg M., 2018), Ginsburg MV and Mercad®V (Nuzzo et al.,, 2019). Venere MV is an
offshore mud volcano, located in the lonian Sedal@&®0 m water depth. The molecular and isotopic
composition of the methane emitted from this michwo reveals a thermogenic origin, as also Lohteale
(2018) and Blumenberg et al. (2018) reported. Macand Ginsburg MVs are at900 m water depth in
the Gulf of Cadiz and fit thermogenic values in geeetic diagrams. Bi**C-CO, versuss**C-CH, diagram
comparing gases from Scoglio d’Affrica MV (2011 @28d.8), Pomonte seeps and Nirano MV (Sciarra et al.
2019b). Nirano MV is located onshore, in the weastctor of the Modena Apennine margin (Italy), upo
an anticline structure associated to the Pede-Apemthrust (Sciarra et al., 2019b). G:*C-CH, versus
9°H-CH, diagram comparing gases from Scoglio d’Affrica §2018), Pomonte seeps, Carmen MV (Lopez
et al., 2019), Venere MV, Mercator MV and Ginsbiig. Carmen MV is located in the westernmost part of
Mediterranean Sea, in the Alboran Basin, that cstssof Miocene to Quaternary sedimentary sequeoices
up to 8 km in thickness. Carmen MV extends for 66 height and 1 km in diameter (Lopez et al., 2019
CR — CO2 reduction, F — methyl-type fermentatioll S secondary microbial, EMT — early mature
thermogenic gas, OA — oil-associated thermogens; &I T — late mature thermogenic gas.

Figure 6 — Stable carbon and hydrogen isotope ratios of amehin Scoglio d'Affrica mud volcano
compared to other gases compositions from convagitipetroleum systems and serpentinized peridotites
The diagram compares methane of biotic and abiotigins: small dots refer to biotic (microbial and
thermogenic) gas in sedimentary basins (from unphed global data-sets; see Etiope and Schoell4201
and references therein), whereas triangles refegde from serpentinization processes (from Eti@®4.7;



Etiope et al., 2017 and references therein, witlitohal data from Vacquand et al., 2018). The gafsem
Scoglio d’Affrica MV fit the range of biotic originvhereas Pomonte-Elba samples fit the range adtibi
origin.

Figure 7 — A: *He/'He versus'HefNe diagram showing crustal-/mantle-derived helivomtdbution; B:
CH,/*He ratio versus"*C-CH, diagram comparing gases from Scoglio d’Affrica ¥A018) and Pomonte
seeps. Four end members are considered: (1) biogeréthane produced by chemical reactions, as
observed on the East Pacific Rise (EPR); (2) biogemethane produced by microbial activity utilizing
inorganic carbon; (3) thermogenic methane from thermal decomposition of organic matter; and (4)
oxidized methane with heavier carbon isotope vafeesied through microbial fractionation in old gas
plumes.

Figure 8 — Synthetic stratigraphy of the two wells Mimosarid Martina 1, showing the unconformity
bounded units. Main seismic unconformities (aftermramusini et al., 2002): X at the base of the hib2;
A at the base of the Unit LitO; D at the base ef thit Lit7 (from Cornamusini and Pascucci, 2014).



Tab. 1 — Gas analysis results.

He CcoO N, CH,4 CO; C.Hg 613Cc02 813CCH4 SZHCH4 3He/4He

4 120y 3]

D opmv)  (ppmv)  (vol%)  (vol%)  (vol%k) (vol%) (VPDB) (VPDB)  (VSMOW)  (RJR) 1/ Ne  G/CAHCs  CoudHe
GG2 42 1.30 0.70 96.05 1.30 0.036 15.5 -35.0 -163 010 317.43 2676 1,76-1‘0
GG3 44 110 084 9550 110 0026 153 36.4 167 010  329.92 3687  1.76.¥0
GG5 44 b.d.l. 0.41 96.82 1.18 0.030 15.6 -36.8 -168 0.01 172.24 3249 1,45-1f0
GG6 46 060 072 9675 097 0036 217 -34.9 165 010 7515 2718 1,24-%0

H, and propane (§) are below detection limits in all samples.

Tab. 2 — Extruded sediment samples.

Sample ID Point of sampling Depth of sampling from the sea She_p_ard_s
bottom classification
S4 Mud volcano point 4 Superficial sediment G:}‘zz"y
S8 Mud volcano point 8 0 - 5 cm depth Silty clay
S2 Mud volcano point 2 20 - 30 cm depth Silty clay
S4-5 No more active mud volcano between point 4 supériicial sediment Sand-silt-
and 5 clay (loam)
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A photo-mosaic of the shallowest mud volcano in the Tyrrheanian Seais reported
Analysis of isotopic and molecular composition of submarine methane emissions
Carbon dioxideis enriched in heavy carbon isotopes

Radiogenic crustal helium reveals discontinuities in shallow crustal levels
Secondary microbial origin is predominant; abiotic origin is discarded
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