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Abstract. We study a parabolic equation for the fractional p-Laplacian of order s, for p ≥ 2 and 0 < s < 1.
We provide space-time Hölder estimates for weak solutions, with explicit exponents. The proofs are based
on iterated discrete differentiation of the equation in the spirit of Moser’s technique.
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1. Introduction

1.1. The problem

In this paper, we study the regularity ofweak solutions to the nonlinear and nonlocal
parabolic equation

∂t u + (−�p)
su = 0, (1.1)

where 2 ≤ p < ∞, 0 < s < 1 and (−�p)
s is the fractional p-Laplacian of order s,

i.e. the operator formally defined by

(−�p)
su (x) := 2 P.V.

ˆ
RN

|u(x) − u(x + h)|p−2(u(x) − u(x + h))

|h|N+s p
dh. (1.2)

Here P.V. denotes the principal value in Cauchy sense. The operator (−�p)
s arises

as the first variation of the Sobolev-Slobodeckiı̆ seminorm (see Sect. 2.1)

u �→
¨

RN×RN

|u(x) − u(x)|p
|x − y|N+s p

dx dy.

This operator can be seen as a nonlocal (or fractional) version of the p−Laplace
operator,

−�pu = −div (|∇u|p−2∇u),

since, as s goes to 1, solutions of (−�p)
su = 0 converge to solutions of −�pu = 0,

once suitably rescaled. See for instance [3, Section 1.4] and [20].

Remark 1.1. (Homogeneity and scalings) It is important to notice that Eq. (1.1) is not
homogeneous, i.e. if u is a solution, then λ u does not solve the same equation. Rather,
it solves

∂t u + λ2−p (−�p)
su = 0.

On the other hand, solutions are invariant with respect to the natural scaling (x, t) �→
(λ x, λs p t), for any λ > 0. In other words, if u is a solution of (1.1), then the rescaled
function

uλ(x, t) = u
(
λ x, λs p t

)
,

is still a solution. By combining the last two facts, we also get that

uλ,μ = μ u
(
λ x, μp−2 λs p t

)
, for λ,μ > 0,

still solves (1.1). We will make a repeated use of this simple fact.
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In this paper, we are concerned with the Hölder regularity for weak solutions of
(1.1).More precisely, we prove that local weak solutions (see Definition 3.1 below) are
locally δ−Hölder continuous in space and γ−Hölder continuous in time, whenever

0 < δ < �(s, p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s p

p − 1
, if s <

p − 1

p
,

1, if s ≥ p − 1

p
,

and

0 < γ < �(s, p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if s <
p − 1

p
,

1

s p − (p − 2)
, if s ≥ p − 1

p
.

To the best of our knowledge, our result is the first pointwise continuity estimate for
solutions of this equation.

1.2. Background and recent developments

In recent years there has been a surge of interest around the operator (1.2), after
its introduction in [20]. In particular, equation (1.1) has been studied in [1,25,26,31,
33,34] and [35]. References [25,26,33] and [34] dealt with existence and uniqueness
of solutions, together with their long time asymptotic behaviour. Similar properties
for (1.1) with a general right-hand side in place of 0 are studied in [1]. In [35], some
regularity of the semigroup operator generated by (−�p)

s was studied. In [31], the
local boundedness of weak solutions of (1.1) is proved.

Recently, in [17], a weaker pointwise regularity result was obtained for viscosity
solutions of the doubly nonlinear equation

|∂t u|p−2 ∂t u + (−�p)
su = 0, (1.3)

by using completely different methods. This equation and its large time behavior is
related to the eigenvalue problem for the fractional p-Laplacian. A crucial difference
between this equation and (1.1), is that the former is homogeneous, a feature which
is not shared by our equation, as already observed in Remark 1.1. Moreover, the
nonlinearity in the time derivative in (1.3) makes the notion of weak solutions less
useful. It is not clearwhether themethods in [17] can be adapted to the present situation
or not.
In the linear or non-degenerate case, corresponding to p = 2, the literature on

regularity is vast. We mention only a fraction of it, namely [7–9,29,30] and [32].
However, we point out that none of these results apply to our setting.
The stationary version of (1.1), i.e.,

(−�p)
su = 0,
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has attracted a lot of attention, as well. The regularity of solutions has been studied for
instance in [3,4,6,14,15,18,19,21–24,27] and [35]. In particular, the regularity result
proved in the present paper can be seen as the parabolic version of that obtained by
the first two authors and Schikorra in [4] for the stationary equation.

The local counterpart of (1.1) is the parabolic equation for the p-Laplacian

∂t u − �pu = 0.

This has been intensively studied and only in the last decades has its theory reached
a rather complete state. We refer to [12] and [13] for a complete account on the
regularity results for this equation and some of its generalizations. At present, the best
local regularity known is spatial C1,α−regularity for some α > 0 (see [12, Chapter
IX]) and C0,1/2−regularity in time (see [2, Theorem 2.3]). None of these exponents
is known to be sharp. However, due to the explicit solution

u(x, t) = N t − p − 1

p
|x | p

p−1 ,

it is clear that solutions cannot be better than C1,1/(p−1) in space.

1.3. Main result

The main result of our paper is the following Hölder regularity for local weak
solutions of (1.1). Here, we use the following notation for parabolic cylinders

QR,r (x0, t0) = BR(x0) × (t0 − r, t0],
with Br (x0) denoting the N−dimensional ball of radius r centered at the point x0. For
the precise definition of local weak solution, as well as of the spaces Cδ

x,loc(
 × I )

and Cγ
t,loc(
 × I ), we refer the reader to Sects. 3.1 and 2.3, respectively.

Theorem 1.2. Let 
 ⊂ R
N be a bounded and open set, I = (t0, t1], p ≥ 2 and

0 < s < 1. Suppose u is a local weak solution of

ut + (−�p)
su = 0, in 
 × I,

such that

u ∈ L∞
loc(I ; L∞(RN )). (1.4)

Define the exponents

�(s, p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s p

p − 1
, if s <

p − 1

p
,

1, if s ≥ p − 1

p
,
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and

�(s, p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if s <
p − 1

p
,

1

s p − (p − 2)
, if s ≥ p − 1

p
.

(1.5)

Then

u ∈ Cδ
x,loc(
 × I ) ∩ Cγ

t,loc(
 × I ), for every 0 < δ < �(s, p) and 0 < γ < �(s, p).

More precisely, for every 0 < δ < �(s, p), 0 < γ < �(s, p), R > 0, x0 ∈ 
 and T0
such that

Q2R,2Rs p (x0, T0) � 
 × I,

there exists a constant C = C(N , s, p, δ, γ ) > 0 such that

|u(x1, τ1) − u(x2, τ2)| ≤ C (‖u‖L∞(Q∞,Rs p (x0,T0)) + 1)

( |x1 − x2|
R

)δ

+C (‖u‖L∞(Q∞,Rs p (x0,T0)) + 1)γ (p−2)+1
( |τ1 − τ2|

Rs p

)γ

, (1.6)

for any (x1, τ1), (x2, τ2) ∈ QR/4,Rs p/4(x0, T0).

Remark 1.3. (Comment on the time regularity) The regularity in time is almost sharp
for s p ≤ (p − 1). Indeed, our result in this case gives Hölder continuity for any
exponent less than 1. The following example from [9] shows that solutions are not C1

in time in general. Let

v(x, t) =
{

0, if t < −1/2,
C (1/2 + t) + 1B3\B2(x), if t ≥ −1/2,

where C �= 0 is chosen so that v is a local weak subsolution (see Definition 3.1) in
B1 × (−1, 0]. Then, if u is the unique solution (given by Theorem A.3) of

⎧
⎨

⎩

∂t u + (−�p)
su = 0, in B1 × (−1, 0],
u = v, on (RN\B1) × (−1, 0],

u(·, 0) = 0, on 
,

by Proposition A.6 we get u ≥ v in B1 × (−1, 0]. Moreover, by Proposition A.4,
u = 0 in B1 × (−1,−1/2). Therefore,

u(x,−1/2 + h) − u(x,−1/2 − h) ≥ C h,

for h > 0 and x ∈ B1. Hence, u cannot have a continuous time derivative.
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Remark 1.4. (Comments on the assumption) We have chosen to assume the global
boundedness (1.4) of our weak solutions, in order to simplify the presentation. Actu-
ally, the estimate (1.6) could be proved under the weaker assumption

u ∈ L∞
loc(I ; L∞

loc(
)), (1.7)

and

u ∈ L∞
loc(I ; L p−1

s p (RN )), (1.8)

where the tail space L p−1
s p (RN ) is defined by

L p−1
s p (RN ) =

{
u ∈ L p−1

loc (RN ) :
ˆ
RN

|u|p−1

1 + |x |N+s p
dx < +∞

}
.

We point out that by [31, Lemma 2.6], condition (1.8) is a natural one in order to
guarantee the local boundedness (1.7). However, it is not known apriori if the quantity
(1.8) is finitewheneveru is aweak solution. Indeed, even ifu solves the initial boundary
value problem

⎧
⎨

⎩

∂t u + (−�p)
su = 0, in 
 × I,
u = g, on (RN\
) × I,
u = u0, on 
 × {t = t0},

with the boundary data g satisfying

g ∈ L∞
loc(I ; L p−1

s p (RN )),

it is not evident that this is sufficient to entail (1.8). For this reason, and to not over-
burden an already technical proof, we have chosen to assume the simpler condition
(1.4). For completeness, in Appendix A we give some sufficient conditions assuring
that our weak solutions verify (1.4), see Corollary A.5 below.

1.4. Main ideas of the paper

The idea we use to prove Theorem 1.2 is very similar to the method employed in
[4] for the elliptic case: we differentiate equation (1.1) in a discrete sense and then test
the differentiated equation against functions of the form

∣∣∣∣
δhu

|h|ϑ
∣∣∣∣

β−1
δhu

|h|ϑ , where δhu(x, t) := u(x + h, t) − u(x, t).

For suitable choices of ϑ > 0 and β ≥ 1, this gives an integrability gain (see Propo-
sition 4.1) of the form

ˆ T

−1+μ

∥∥∥∥
∥
δ2hu(x, t)

|h|s
∥∥∥∥
∥

q+1

Lq+1(B1/2)

dt +
∥∥∥∥
∥

δhu(·, T )

|h| (q+2−p) s
q+3−p

∥∥∥∥
∥

q+3−p

Lq+3−p(B1/2)
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�
ˆ T

−1

∥∥∥
∥∥
δ2hu(x, t)

|h|s
∥∥∥
∥∥

q

Lq (B1)

dt, (1.9)

for −1/2 ≤ T ≤ 0 and an arbitrary μ > 0. By first fixing T = 0 and ignoring the
second term in the left-hand side of (1.9), this can be iterated finitely many times in
order to obtain

δhu

|h|s ∈ Lq([−1/2, 0]; Lq
loc), for every q < ∞, uniformly in |h|  1.

We can then use the second term in the left-hand side of (1.9), so to get

δhu(·, T )

|h|s ∈ Lq
loc, for every q < ∞, uniformly in |h|  1 and − 1

2
≤ T ≤ 0.

Thus, by using a Morrey-type embedding result, we can conclude that u ∈ Cδ
loc

spatially for any 0 < δ < s.
After this, we prove Proposition 5.1, which comprises a refined version of the

scheme (1.9). Namely, an estimate of the form

ˆ T

−1+μ

∥
∥∥∥∥

δ2hu(x, t)

|h| 1+s p+ϑ β
β−1+p

∥
∥∥∥∥

β−1+p

Lβ−1+p(B1/2)

dt +
∥
∥∥∥∥
δhu(·, T )

|h| 1+ϑβ
β+1

∥
∥∥∥∥

β+1

Lβ+1(B1/2)

�
ˆ T

−1

∥∥
∥∥∥
δ2hu(x, t)

|h| 1+ϑ β
β

∥∥
∥∥∥

β

Lβ(B1)

dt. (1.10)

Also (1.10) can be iterated, where now both the differentiability ϑ and the integrability
β change. The result is that

u ∈ Cδ
loc spatially, for every 0 < δ < �(s, p),

again uniformly in time. The last part of the paper, where we obtain the regularity in
time, is quite standard for this kind of diffusion equations (see for example [10, page
118]). It amounts to using the already established spatial regularity and the information
given by the equation. However, due to the fractional character of the spatial part of
our equation, some care is needed in order to properly handle the time regularity. In
particular, we have to treat the cases

s <
p − 1

p
and s ≥ p − 1

p
,

separately. This is done in Proposition 6.2 and it yields the γ−Hölder continuity in
time for any

γ = 1
s p

δ
− (p − 2)

,

given that the solution is δ−Hölder continuous in the x variable. In particular, by the
possible choice of δ, this yields that we may choose any γ < �(s, p), where the latter
exponent is the one defined in (1.5).
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1.5. Plan of the paper

The plan of the paper is as follows. In Sect. 2, we introduce the expedient spaces
and notation used in this paper. In Sect. 3, we define local weak solutions and justify
that we can insert certain test functions in the differentiated equation (see Lemma 3.3
below). This is followed by Sect. 4, where we prove that weak solutions are almost
s−Hölder continuous in the spatial variable. In Sect. 5, we improve this result up to
the exponent �(s, p) defined in (1.5). This result is then used in Sect. 6, where we
prove the corresponding Hölder regularity in time. Finally, in Sect. 7 we prove our
main theorem.
The paper is complemented by an appendix, where for completeness we prove

existence and uniqueness of weak solutions for the initial boundary value problem
related to our equation. A comparison principle is also presented.

2. Preliminaries

2.1. Notation

We denote by Br (x0) the N−dimensional open ball of radius r centered at the point
x0. The ball of radius r centered at the origin is denoted by Br . Its Lebesgue measure
is given by

|Br (x0)| = ωN r N .

We use the following notation for the parabolic cylinder

QR,r (x0, t0) = BR(x0) × (t0 − r, r ].
Again, when x0 = 0 and t0 = 0, we simply write QR,r .

Let 1 < p < ∞, we denote by p′ = p/(p − 1) the conjugate exponent of p. For
every β > 1, we define the monotone function Jβ : R → R by

Jβ(t) = |t |β−2 t, for every t ∈ R.

For a function ψ : RN × R → R and a vector h ∈ R
N , we define

ψh(x, t) = ψ(x + h, t), δhψ(x, t) = ψh(x, t) − ψ(x, t),

and

δ2hψ(x, t) = δh(δhψ(x, t)) = ψ2 h(x, t) + ψ(x, t) − 2ψh(x, t).

It is not difficult to see that the following discrete Leibniz rule holds

δh(ϕ ψ) = ψh δhϕ + ϕ δhψ.
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2.2. Sobolev spaces

We now recall themain notations and definitions for the relevant fractional Sobolev–
type spaces throughout the paper.
Let 1 ≤ q < ∞ and let ψ ∈ Lq(RN ), for 0 < β ≤ 1 we set

[ψ]N β,q∞ (RN )
:= sup

|h|>0

∥
∥∥∥
δhψ

|h|β
∥
∥∥∥
Lq (RN )

,

and for 0 < β < 2

[ψ]Bβ,q∞ (RN )
:= sup

|h|>0

∥∥∥∥
∥
δ2hψ

|h|β
∥∥∥∥
∥
Lq (RN )

.

We then introduce the two Besov-type spaces

N β,q∞ (RN ) =
{
ψ ∈ Lq(RN ) : [ψ]N β,q∞ (RN )

< +∞
}

, 0 < β ≤ 1,

and

Bβ,q∞ (RN ) =
{
ψ ∈ Lq(RN ) : [ψ]Bβ,q∞ (RN )

< +∞
}

, 0 < β < 2.

We also need the Sobolev-Slobodeckiı̆ space

Wβ,q(RN ) =
{
ψ ∈ Lq(RN ) : [ψ]Wβ,q (RN ) < +∞

}
, 0 < β < 1,

where the seminorm [ · ]Wβ,q (RN ) is defined by

[ψ]Wβ,q (RN ) =
(¨

RN×RN

|ψ(x) − ψ(y)|q
|x − y|N+β q

dx dy

) 1
q

.

We endow these spaces with the norms

‖ψ‖N β,q∞ (RN )
= ‖ψ‖Lq (RN ) + [ψ]N β,q∞ (RN )

,

‖ψ‖Bβ,q∞ (RN )
= ‖ψ‖Lq (RN ) + [ψ]Bβ,q∞ (RN )

,

and

‖ψ‖Wβ,q (RN ) = ‖ψ‖Lq (RN ) + [ψ]Wβ,q (RN ).

A few times we will also work with the space Wβ,q(
) for a subset 
 ⊂ R
N ,

Wβ,q(
) = {
ψ ∈ Lq(
) : [ψ]Wβ,q (
) < +∞}

, 0 < β < 1,

where we define

[ψ]Wβ,q (
) =
(¨


×


|ψ(x) − ψ(y)|q
|x − y|N+β q

dx dy

) 1
q

.

The space Wβ,q
0 (
) is the subspace of Wβ,q(RN ) consisting of functions that are

identically zero in the complement of 
.
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2.3. Parabolic Banach spaces

Let I ⊂ R be an interval and let V be a separable, reflexive Banach space, endowed
with a norm ‖ · ‖V . We denote by V ∗ its topological dual space. Let us suppose that
v is a mapping such that for almost every t ∈ I , v(t) belongs to V . If the function
t �→ ‖v(t)‖V is measurable on I and 1 ≤ p ≤ ∞, then v is an element of the Banach
space L p(I ; V ) if and only if

ˆ
I
‖v(t)‖p

V dt < +∞.

By [28, Theorem 1.5], the dual space of L p(I ; V ) can be characterized according to

(L p(I ; V ))∗ = L p′
(I ; V ∗).

Wewrite v ∈ C(I ; V ) if the mapping t �→ v(t) is continuous with respect to the norm
on V . We say that u is locally α−Hölder continuous in space (respectively, locally
β−Hölder continuous in time) on 
 × I and write

u ∈ Cα
x,loc(
 × I ),

(
respectively, u ∈ Cβ

t,loc(
 × I )
)

,

if for any compact set K × J ⊂ 
 × I ,

sup
t∈J

[u(·, t)]Cα(K ) < +∞,

(
respectively, sup

x∈K
[u(x, ·)]Cβ (J ) < +∞

)
.

That is, if u ∈ Cα
x (K × J ) (respectively, u ∈ Cβ

t (K × J )).

2.4. Tail spaces

We recall the definition of tail space

Lq
α(RN ) =

{
u ∈ Lq

loc(R
N ) :

ˆ
RN

|u|q
1 + |x |N+α

dx < +∞
}

, q ≥ 1 and α > 0,

which is endowed with the norm

‖u‖Lq
α(RN ) =

(ˆ
RN

|u|q
1 + |x |N+α

dx

) 1
q

.

For every x0 ∈ R
N , R > 0 and u ∈ Lq

α(RN ), the following quantity

Tailq,α(u; x0, R) =
[
Rα

ˆ
RN \BR(x0)

|u|q
|x − x0|N+α

dx

] 1
q

,

plays an important role in regularity estimates for solutions of fractional problems.
We recall the following result, see for example [4, Lemmas 2.1 & 2.2] for the proof.
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Lemma 2.1. Let α > 0 and 1 ≤ q < m < ∞. Then:

• we have the continuous inclusion

Lm
α (RN ) ⊂ Lq

α(RN );
• for every 0 < r < R and x0 ∈ R

N we have

Rα sup
x∈Br (x0)

ˆ
RN \BR(x0)

|u(y)|q
|x − y|N+α

dy ≤
(

R

R − r

)N+α

Tailq,α(u; x0, R)q .

3. Weak formulation

3.1. Local weak solutions

In the following, we assume that 
 ⊂ R
N is a bounded open set in RN .

Definition 3.1. For any t0, t1 ∈ R with t0 < t1, we define I = (t0, t1]. Let
f ∈ L p′

(I ; (Ws,p(
))∗).

We say that u is a local weak solution to the equation

∂t u + (−�p)
su = f, in 
 × I, (3.1)

if for any closed interval J = [T0, T1] ⊂ I , the function u is such that

u ∈ L p(J ;Ws,p
loc (
)) ∩ L p−1(J ; L p−1

s p (RN )) ∩ C(J ; L2
loc(
)),

and it satisfies

−
ˆ
J

ˆ



u(x, t) ∂tφ(x, t) dx dt

+
ˆ
J

¨
RN×RN

Jp(u(x, t) − u(y, t)) (φ(x, t) − φ(y, t))

|x − y|N+s p
dx dy dt

=
ˆ




u(x, T0) φ(x, T0) dx −
ˆ




u(x, T1) φ(x, T1) dx

+
ˆ
J
〈 f (·, t), φ(·, t)〉 dt,

(3.2)

for any φ ∈ L p(J ;Ws,p(
)) ∩ C1(J ; L2(
)) which has spatial support compactly
contained in 
. In Eq. (3.2), the symbol 〈·, ·〉 stands for the duality pairing between
Ws,p(
) and its dual space (Ws,p(
))∗.
We also say that u is a local weak subsolution if instead of the equality above,

we have the ≤ sign, for any non-negative φ as above. A local weak supersolution is
defined similarly.

Remark 3.2. We observe that L∞(RN ) ⊂ L p−1
s p (RN ). This in turn implies that

L∞(J ; L∞(RN )) ⊂ L p−1(J ; L p−1
s p (RN )).

We will use this fact repeatedly.
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3.2. Regularization of test functions

Let ζ : R �→ R be a nonnegative, even smooth function with compact support in
(−1/2, 1/2), satisfying

´
R

ζ(τ ) dτ = 1. If g ∈ L1((a, b)), we define the convolution

gε(t) = 1

ε

ˆ t+ ε
2

t− ε
2

ζ

(
t − �

ε

)
g(�) d� = 1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

)
g(t − σ) dσ,

for t ∈ (a, b), (3.3)

where 0 < ε < min{b − t, t − a}. The following result justifies that we may take
powers of differential quotients of a solution, as test functions. This is needed in the
sequel. Here and in the rest of the paper, we will use the abbreviated notation

dμ(x, y) = dx dy

|x − y|N+s p
.

Lemma 3.3. (Discrete differentiation of the equation) Assume that u is a local weak
solution of (3.1) with f = 0 in B2 × (−2, 0], such that

u ∈ L∞([−1, 0] × E), for every E � B2.

Let η be a non-negative Lipschitz function, with compact support in B2. Let τ be a
smooth non-negative function such that 0 ≤ τ ≤ 1 and

τ(t) = 0 for t ≤ T0, τ (t) = 1 for t ≥ T1

for some −1 < T0 < T1 < 0.
Then, for any locally Lipschitz function F : R → R and any h ∈ R

N such that
0 < |h| < dist (supp η, ∂B2)/4, we have

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
(
F(uh(x, t) − u(x, t)) η(x)p − F(uh(y, t) − u(y, t)) η(y)p

)
τ(t) dμ dt

+
ˆ
B2

F(δhu(x, T1)) η(x)p dx =
ˆ T1

T0

ˆ
B2

F(δhu) ηp τ ′ dx dt, (3.4)

where F(t) = ´ t
0 F(ρ) dρ.

Proof. Letφ ∈ L p((−1, 0);Ws,p(B2))∩C1((−1, 0); L2(B2)), whose spatial support
is compactly contained in B2, uniformly in time. This means that

h0 := inf
t∈(−1,0)

dist(suppφ(·, t), ∂B2) > 0. (3.5)
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We then fix J = [T0, T1] ⊂ (−1, 0). We want to use the time-regularization φε as test
function in (3.1). For this, we take

0 < ε < ε0 := 1

2
min{−T1, T0 + 1, T1 − T0}.

Then, we preliminary observe that from elementary properties of convolutions, Fubi-
ni’s Theorem and integration by parts, we have

−
ˆ T1

T0

ˆ
B2

u(x, t) ∂tφ
ε(x, t) dx dt

= −
ˆ
B2

ˆ T1

T0
u(x, t) (∂tφ)ε dt dx

= −
ˆ
B2

ˆ T1

T0

1

ε

ˆ t+ ε
2

t− ε
2

u(x, t) ∂�φ(x, �) ζ

(
t − �

ε

)
d� dt dx

= −
ˆ
B2

ˆ T1− ε
2

T0+ ε
2

uε(x, �) ∂�φ(x, �) d� dx

−
ˆ
B2

ˆ T0+ ε
2

T0− ε
2

(
1

ε

ˆ �+ ε
2

T0
u(x, t) ζ

(
� − t

ε

)
dt

)

∂�φ(x, �) d� dx

−
ˆ
B2

ˆ T1+ ε
2

T1− ε
2

(
1

ε

ˆ T1

�− ε
2

u(x, t) ζ

(
� − t

ε

)
dt

)

∂�φ(x, �) d� dx

=
ˆ
B2

ˆ T1− ε
2

T0+ ε
2

∂�u
ε(x, �) φ(x, �) d� dx + �(ε)

−
ˆ
B2

[
uε
(
x, T1 − ε

2

)
φ
(
x, T1 − ε

2

)
− uε

(
x, T0 + ε

2

)
φ
(
x, T0 + ε

2

)]
dx .

For simplicity, we have set

�(ε) = −
ˆ
B2

ˆ T0+ ε
2

T0− ε
2

(
1

ε

ˆ �+ ε
2

T0
u(x, t) ζ

(
� − t

ε

)
dt

)

∂�φ(x, �) d� dx

−
ˆ
B2

ˆ T1+ ε
2

T1− ε
2

(
1

ε

ˆ T1

�− ε
2

u(x, t) ζ

(
� − t

ε

)
dt

)

∂�φ(x, �) d� dx .

Thus from (3.2) it follows that for 0 < ε < ε0

ˆ T1

T0

¨
RN×RN

(
Jp(u(x, t) − u(y, t))

) (
φε(x, t) − φε(y, t)

)
dμ(x, y) dt

+
ˆ
B2

ˆ T1− ε
2

T0+ ε
2

∂t u
ε(x, t) φ(x, t) dt dx + �(ε)

=
ˆ
B2

[
u(x, T0) φ(x, T0) − uε

(
x, T0 + ε

2

)
φ
(
x, T0 + ε

2

)]
dx
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+
ˆ
B2

[
uε
(
x, T1 − ε

2

)
φ
(
x, T1 − ε

2

)
− u(x, T1) φ(x, T1)

]
dx, (3.6)

Before proceeding further, we observe that by using an integration by parts, the term
�(ε) can be rewritten as

�(ε) = −
ˆ
B2

(
1

ε

ˆ T0+ε

T0
u(x, t) ζ

(
T0 − t

ε
+ 1

2

)
dt

)
φ
(
x, T0 + ε

2

)
dx

+
ˆ
B2

ˆ T0+ ε
2

T0− ε
2

(
1

ε2

ˆ �+ ε
2

T0
u(x, t) ζ ′

(
� − t

ε

)
dt

)

φ(x, �) d� dx

+
ˆ
B2

(
1

ε

ˆ T1

T1−ε

u(x, t) ζ

(
T1 − t

ε
− 1

2

)
dt

)
φ
(
x, T1 − ε

2

)
dx

−
ˆ
B2

ˆ T1+ ε
2

T1− ε
2

(
1

ε2

ˆ T1

�− ε
2

u(x, t) ζ ′
(

� − t

ε

)
dt

)

φ(x, �) d� dx,

where we also used that ζ has compact support in (−1/2, 1/2). By further using a
suitable change of variables, we can also write

�(ε) = −
ˆ
B2

(ˆ 1
2

− 1
2

u
(
x, T0 − ε ρ + ε

2

)
ζ(ρ) dρ

)

φ
(
x, T0 + ε

2

)
dx

+
ˆ
B2

ˆ 1
2

− 1
2

(ˆ ρ

− 1
2

u(x, ε ρ + T0 − ε σ ) ζ ′ (σ ) dσ

)

φ(x, ε ρ + T0) dρ dx

+
ˆ
B2

(ˆ 1
2

− 1
2

u
(
x, T1 − ε ρ − ε

2

)
ζ(ρ) dρ

)

φ
(
x, T1 − ε

2

)
dx

−
ˆ
B2

ˆ 1
2

− 1
2

(ˆ 1
2

ρ

u(x, ε ρ + T1 − ε σ ) ζ ′ (σ ) dσ

)

φ(x, ε ρ + T1) dρ dx

(3.7)

By testing (3.6) with φ−h(x, t) = φ(x−h, t) for 0 < |h| < h0/4 (recall the definition
(3.5) of h0), and then changing variables, we get

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t))

) (
φε(x, t) − φε(y, t)

)
dμ(x, y) dt

+
ˆ
B2

ˆ T1− ε
2

T0+ ε
2

∂t u
ε
h φ dt dx + �h(ε)

=
ˆ
B2

[
uh(x, T0) φ(x, T0) − uε

h

(
x, T0 + ε

2

)
φ
(
x, T0 + ε

2

)]
dx

+
ˆ
B2

[
uε
h

(
x, T1 − ε

2

)
φ
(
x, T1 − ε

2

)
− uh(x, T1) φ(x, T1)

]
dx . (3.8)
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The quantity�h(ε) is defined as in (3.7), with uh in place of u. We subtract (3.6) from
(3.8), so to get

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
(
φε(x, t) − φε(y, t)

)
dμ dt

+
ˆ T1− ε

2

T0+ ε
2

ˆ
B2

∂t (u
ε
h − uε) φ dx dt + (�h(ε) − �(ε))

=
ˆ
B2

[
δhu(x, T0) φ(x, T0) − δhu

ε
(
x, T0 + ε

2

)
φ
(
x, T0 + ε

2

)]
dx

+
ˆ
B2

[
δhu

ε
(
x, T1 − ε

2

)
φ
(
x, T1 − ε

2

)
− δhu(x, T1) φ(x, T1)

]
dx,(3.9)

for every φ ∈ L p((−1, 0);Ws,p(B2)) ∩ C1((−1, 0); L2(B2)), whose spatial support
satisfies (3.5). We take F as in the statement and use (3.9) with the test function

φ = F(uε
h − uε) ηp τε = F(δhu

ε) ηp τε,

where

τε(t) = τ

(
T1 − T0

T1 − T0 − ε

(
t − T1 + ε

2

)
+ T1

)
,

and η and τ are as in the statement. By observing that

τε(t) = 0, for t ≤ T0 + ε

2
, τε(t) = 1, for t ≥ T1 − ε

2
,

we get

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
((

F(δhu
ε(x, t)) τε(t)

)ε

η(x)p −
(
F(δhu

ε(y, t)) τε(t)
)ε

η(y)p
)
dμ dt

+
ˆ T1− ε

2

T0+ ε
2

ˆ
B2

∂t (δhu
ε) F(δhu

ε) ηp(x) τε(t) dx dt + (�h(ε) − �(ε))

=
ˆ
B2

[
δhu

ε
(
x, T1 − ε

2

)
F
(
δhu

ε
(
x, T1 − ε

2

))

− δhu (x, T1) F
(
δhu

ε (x, T1)
) ]

ηp dx . (3.10)

Observe that we used the properties of τε. In order to deal with the integral containing
the time derivative of δhuε, we first observe that

∂t (δhu
ε) F(δhu

ε) = ∂tF(δhu
ε),
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since F(t) = ´ t
0 F(ρ) dρ. Thus we can use an integration by parts, which yields

ˆ T1− ε
2

T0+ ε
2

ˆ
B2

∂t (δhu
ε(x, t)) F(δhu

ε) ηp(x) τε(t) dx dt

=
ˆ
B2

F
(
δhu

ε
(
x, T1 − ε

2

))
η(x)p dx −

ˆ T1

T0

ˆ
B2

F(δhu
ε) ηp τ ′

ε dx dt.

By inserting this into (3.10), we get

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
((

F(δhu
ε(x, t)) τε(t)

)ε

η(x)p −
(
F(δhu

ε(y, t)) τε(t)
)ε

η(y)p
)
dμ dt

+
ˆ
B2

F
(
δhu

ε
(
x, T1 − ε

2

))
η(x)p dx

−
ˆ T1

T0

ˆ
B2

F(δhu
ε) ηp τ ′

ε dx dt + (�h(ε) − �(ε))

=
ˆ
B2

[
δhu

ε
(
x, T1 − ε

2

)
F
(
δhu

ε
(
x, T1 − ε

2

))

− δhu (x, T1) F
(
δhu

ε (x, T1)
) ]

ηp dx . (3.11)

We recall that this is valid for

0 < |h| <
h0
4

and 0 < ε < ε0.

Before taking the limit as ε goes to 0, we first observe that for t ∈ [T0−ε/2, T1+ε/2]
and x ∈ B2−2 h we have

|δhuε(x, t)| ≤ 1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

)
|δhu(x, t − σ)| dσ

=
ˆ 1

2

− 1
2

ζ(σ ) |δhu(x, t − ε σ )| dσ ≤ ‖δhu‖L∞([T0−ε0,T1+ε0]×B2−2 h).

This shows that we have the uniform L∞ estimate

‖δhuε‖L∞(
[
T0− ε

2 ,T1+ ε
2

]×B2−2 h) ≤ 2 ‖u‖L∞([T0−ε0,T1+ε0]×B2−h),

for 0 < ε < ε0, 0 < |h| <
h0
4

. (3.12)

Finally, we pass to the limit in (3.11) as ε goes to 0. We start from the right-hand side:
by using the local Lipschitz regularity of F and (3.12), we have
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∣
∣
∣δhu

ε
(
x, T1 − ε

2

)
F
(
δhu

ε
(
x, T1 − ε

2

))
− δhu (x, T1) F

(
δhu

ε (x, T1)
) ∣∣
∣ η(x)p

≤ C
(∣∣∣δhu

ε
(
x, T1 − ε

2

)
− δhu (x, T1)

∣
∣∣+

∣
∣∣δhu

ε (x, T1) − δhu (x, T1)
∣
∣∣
)

η(x)p

≤ C
(∣∣∣uε

(
x + h, T1 − ε

2

)
− u(x + h, T1)

∣
∣∣+

∣
∣∣uε (x + h, T1) − u(x + h, T1)

∣
∣∣
)

η(x)p

+ C
(∣∣
∣uε

(
x, T1 − ε

2

)
− u(x, T1)

∣∣
∣+

∣∣
∣uε (x, T1) − u(x, T1)

∣∣
∣
)

η(x)p,

where C > 0 does not depend on ε. Thus, by using that h0 = dist(supp η, ∂B2) and
that 0 < |h| < h0/4, we get from the last estimate (after a change of variable)

∣∣∣
ˆ
B2

∣∣∣δhu
ε
(
x, T1 − ε

2

)
F
(
δhu

ε
(
x, T1 − ε

2

))
− δhu (x, T1) F

(
δhu

ε (x, T1)
) ∣∣∣ η(x)p dx

∣∣∣

≤ C
ˆ
B2−2 h

(∣∣∣uε
(
x, T1 − ε

2

)
− u(x, T1)

∣∣∣+
∣∣∣uε (x, T1) − u(x, T1)

∣∣∣
)
dx

≤ C
ˆ
B2−2 h

∣
∣∣∣
∣
1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

) [
u
(
x, T1 − ε

2
− σ

)
− u(x, T1)

]
dσ

∣
∣∣∣
∣
dx

+ C
ˆ
B2−2 h

∣∣∣
∣∣
1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

)
[u (x, T1 − σ) − u(x, T1)] dσ

∣∣∣
∣∣
dx

≤ C
ˆ 1

2

− 1
2

ζ (ρ)

(ˆ
B2−2 h

∣
∣∣u
(
x, T1 − ε

2
− ε ρ

)
− u(x, T1)

∣
∣∣ dx

)

dρ

+ C
ˆ 1

2

− 1
2

ζ (ρ)

(ˆ
B2−2 h

|u (x, T1 − ε ρ) − u(x, T1)| dx
)

dρ

≤ C sup
−ε≤t≤0

ˆ
B2−2 h

|u (x, T1 − t) − u(x, T1)| dx .

The constant C is still independent of 0 < ε < ε0. If we now use that u ∈ C((−2, 0];
L2
loc(B2)), we get that the last quantity converges to 0, as ε goes to 0.
For the term ˆ

B2
F
(
δhu

ε
(
x, T1 − ε

2

))
η(x)p dx,

we proceed similarly as above. We observe that for 0 < |h| < h0/4, by using the local
Lipschitz regularity of F and (3.12), we get

∣∣∣∣

ˆ
B2

F
(
δhu

ε
(
x, T1 − ε

2

))
η(x)p dx −

ˆ
B2

F(δhu(x, T1)) η(x)p dx

∣∣∣∣

≤ C
ˆ
B2

∣∣∣δhuε
(
x, T1 − ε

2

)
− δhu(x, T1)

∣∣∣ η(x)p dx

≤
ˆ
B2−2 h

(
1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

) ∣∣∣δhu
(
x, T1 − σ − ε

2

)
− δhu(x, T1)

∣∣∣ dσ

)

dx

≤ C sup
−ε≤t≤ε

ˆ
B2−2 h

∣∣
∣δhu(x, T1 − t) − δhu(x, T1)

∣∣
∣ dx .
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We can now use again that u ∈ C((−2, 0]; L2
loc(B2)) and obtain that the last quantity

converges to 0, as ε goes to 0.
As for the term

−
ˆ T1

T0

ˆ
B2

F(δhu
ε) ηp τ ′

ε dx dt,

we can proceed exactly as before, we omit the details. In a similar fashion, we can
also show that

lim
ε→0

�h(ε) = lim
ε→0

�(ε) = 0.

This is still similar to the previous limits. It is sufficient to use the expression (3.7),
the uniform L∞ estimate (3.12) and the fact u ∈ C((−2, 0]; L2

loc(B2))], in order to
apply the Lebesgue Dominated Convergence Theorem.
Finally, the convergence of the double integral requires quite lengthy computations

and thus we prefer to postpone them to Appendix B below. �
Remark 3.4. We observe that the global L∞ bound on the weak solution is not needed
in the previous result. It is sufficient to know that the weak solution is locally bounded.
We refer to [32, Theorem 1.1] for local boundedness of weak solutions.

4. Spatial almost Cs-regularity

The following result is an integrability gain for the discrete derivative of order s
of a local weak solution. This is the parabolic counterpart of [4, Proposition 4.1], to
which we refer for all the missing details.

Proposition 4.1. Assume p ≥ 2 and 0 < s < 1. Let u be a local weak solution of
ut + (−�p)

su = 0 in B2 × (−2, 0]. We assume that
‖u‖L∞(RN×[−1,0]) ≤ 1,

and that, for some q ≥ p and 0 < h0 < 1/10, we have

ˆ T1

T0
sup

0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥

q

Lq (BR+4 h0 )

dt < +∞,

for a radius 4 h0 < R ≤ 1− 5 h0 and two time instants −1 < T0 < T1 ≤ 0. Then we
have

ˆ T1

T0+μ

sup
0<|h|<h0

∥∥
∥∥
∥

δ2hu

|h|s
∥∥
∥∥
∥

q+1

Lq+1(BR−4 h0 )

dt + 1

q + 3 − p
sup

0<|h|<h0

∥∥
∥∥
∥

δhu(·, T1)
|h| (q+2−p) s

q+3−p

∥∥
∥∥
∥

q+3−p

Lq+3−p(BR−4 h0 )

≤ C
ˆ T1

T0

⎛

⎝ sup
0<|h|<h0

∥
∥∥
∥
∥

δ2hu

|h|s
∥
∥∥
∥
∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ dt, (4.1)

for every 0 < μ < T1 − T0. Here C = C(N , s, p, q, h0, μ) > 0 and C ↗ +∞ as
h0 ↘ 0 or μ ↘ 0.
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Proof. We divide the proof into seven steps.
Step 1: Discrete differentiation of the equation. We take for the moment T1 < 0,
then we will show at the end of the proof how to include the case T1 = 0. We already
introduced the notation

dμ(x, y) = dx dy

|x − y|N+s p
.

For notational simplicity, we also set

r = R − 4 h0.

Let β ≥ 2 and ϑ ∈ R be such that 0 < 1 + ϑ β < β, and use (3.4) for 0 < |h| < h0,
where:

• F(t) = Jβ+1(t) = |t |β−1 t , which is locally Lipschitz for β ≥ 1;
• η is a non-negative standard Lipschitz cut-off function supported in B(R+r)/2,

such that

η ≡ 1 on Br and |∇η| ≤ C

R − r
= C

4 h0
;

• τ is a smooth function such that 0 ≤ τ ≤ 1 and

τ ≡ 1 on [T0 + μ,+∞), τ ≡ 0 on (−∞, T0], |τ ′| ≤ C

μ
.

Here μ is as in the statement, i.e. any positive number such that μ < T1 − T0.

Note that the assumptions on η imply

∣∣∣∣
δhη

|h|
∣∣∣∣ ≤ C

h0
.

After dividing by |h|1+ϑ β , we obtain from Lemma 3.3,

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

|h|1+ϑ β

×
(
Jβ+1(uh(x, t) − u(x, t)) η(x)p − Jβ+1(uh(y, t) − u(y, t)) η(y)p

)
τ(t) dμ dt

+ 1

β + 1

ˆ
B2

|δhu(x, T1)|β+1

|h|1+ϑβ
ηpdx = 1

β + 1

ˆ T1

T0

ˆ
B2

|δhu|β+1

|h|1+ϑβ
ηp τ ′ dx dt.

The triple integral is now divided into three pieces:

Ĩi :=
ˆ T1

T0
Ii (t) τ (t) dt, i = 1, 2, 3,
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where

I1(t) :=
¨

BR×BR

(
Jp(uh(x) − uh(y)) − Jp(u(x) − u(y))

)

|h|1+ϑ β

×
(
Jβ+1(uh(x) − u(x)) η(x)p − Jβ+1(uh(y) − u(y)) η(y)p

)
dμ,

I2(t) :=
¨

B R+r
2

×(RN \BR)

(
Jp(uh(x) − uh(y)) − Jp(u(x) − u(y))

)

|h|1+ϑ β

× Jβ+1(uh(x) − u(x)) η(x)p dμ,

and

I3(t) := −
¨

(RN \BR)×B R+r
2

(
Jp(uh(x) − uh(y)) − Jp(u(x) − u(y))

)

|h|1+ϑ β

× Jβ+1(uh(y) − u(y)) η(y)p dμ,

where we used that η vanishes identically outside B(R+r)/2. We also suppressed the
t−dependence inside the integrals, for notational simplicity. We also have the term in
the right-hand side

I4 := 1

β + 1

ˆ T1

T0

ˆ
B2

|δhu|β+1

|h|1+ϑβ
ηp τ ′ dx dt.

By proceeding exactly as in Step 1 of the proof of [4, Proposition 4.1], we get the
following lower bound for I1(t)

I1(t) ≥c

⎡

⎣ |δhu| β−1
p δhu

|h| 1+ϑ β
p

η

⎤

⎦

p

Ws,p(BR)

− C
¨

BR×BR

(
|uh(x) − uh(y)| p−2

2 +|u(x) − u(y)| p−2
2

)2 ∣∣∣η(x)
p
2 − η(y)

p
2

∣∣∣
2

× |uh(x) − u(x)|β+1 + |uh(y) − u(y)|β+1

|h|1+ϑ β
dμ

− C
¨

BR×BR

( |δhu(x)|β−1+p

|h|1+ϑ β
+ |δhu(y)|β−1+p

|h|1+ϑ β

)
|η(x) − η(y)|p dμ,

where c = c(p, β) > 0 and C = C(p, β) > 0. We use that

Ĩ1 + Ĩ2 + Ĩ3 + 1

β + 1

ˆ
B2

|δhu(x, T1)|β+1

|h|1+ϑβ
ηp dx = I4,
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and the estimate for I1(t). This entails that
ˆ T1

T0

⎡

⎣ |δhu| β−1
p δhu

|h| 1+ϑ β
p

η

⎤

⎦

p

Ws,p(BR)

τ dt + 1

β + 1

ˆ
B2

|δhu(x, T1)|β+1

|h|1+ϑβ
ηp dx

≤ C
(
Ĩ11 + Ĩ12 + |Ĩ2| + |Ĩ3|

)
+ I4, for C = C(p, β) > 0,

(4.2)

where we set Ĩ11 = ´ T1
T0

I11 τ dt , Ĩ12 = ´ T1
T0

I12 τ dt and

I11(t) :=
¨

BR×BR

(
|uh(x) − uh(y)| p−2

2 + |u(x) − u(y)| p−2
2

)2 |

× η(x)
p
2 −η(y)

p
2

∣∣∣
2 |δhu(x)|β+1 + |δhu(y)|β+1

|h|1+ϑ β
dμ,

(4.3)

and

I12(t) :=
¨

BR×BR

( |δhu(x)|β−1+p

|h|1+ϑ β
+ |δhu(y)|β−1+p

|h|1+ϑ β

)
|η(x) − η(y)|p dμ. (4.4)

Step 2: Estimates of the local terms Ĩ11 and Ĩ12. Here we can follow the same
computations as in Step 2 of the proof of [4, Proposition 4.1], so to get

|I11| ≤ C

⎛

⎝
ˆ
BR

∣∣∣∣∣
δhu

|h| 1+ϑβ
β

∣∣∣∣∣

β q
q−p+2

dx + sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ ,

and

|I12| ≤ C

⎛

⎝
ˆ
BR

∣∣
∣∣∣

δhu

|h| 1+ϑβ
β

∣∣
∣∣∣

β q
q−p+2

dx + 1

⎞

⎠ ,

for some C = C(N , h0, p, s, q) > 0. If we now use these estimates in (4.2), we get

ˆ T1

T0

⎡

⎣ |δhu| β−1
p δhu

|h| 1+ϑ β
p

η

⎤

⎦

p

Ws,p(BR)

τ dt + 1

β + 1

ˆ
B1

|δhu(x, T1)|β+1

|h|1+ϑβ
ηp dx

≤ C
ˆ T1

T0

⎛

⎝
ˆ
BR

∣∣∣∣∣
δhu

|h| 1+ϑ β
β

∣∣∣∣∣

β q
q−p+2

dx + sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ τ dt

+C
(
|Ĩ2| + |Ĩ3| + I4

)
, (4.5)

with C = C(h0, N , p, s, q, β) > 0.
Step 3: Estimates of the nonlocal terms Ĩ2 and Ĩ3. These two terms can be both
treated in the same way. We only estimate Ĩ2 for simplicity. We can use that |u| ≤ 1
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on R
N × [−1, 0] to infer that

∣∣∣(Jp(uh(x) − uh(y)) − Jp(u(x) − u(y)) Jβ+1(δhu(x))
∣∣∣

≤ C
(
1 + |uh(y)|p−1 + |u(y)|p−1

)
|δhu(x)|β

≤ 3C |δhu(x)|β,

where C = C(p) > 0. We observe that for x ∈ B(R+r)/2 we have B(R−r)/2(x) ⊂ BR .
This entails

ˆ
RN \BR

1

|x − y|N+s p
dy ≤

ˆ
RN \B R−r

2
(x)

1

|x − y|N+s p
dy ≤ C(N , h0, p, s).

Hence, we obtain

|Ĩ2| + |Ĩ3| ≤ C
ˆ T1

T0

ˆ
B R+r

2

|δhu|β
|h|1+ϑβ

τ dx dt ≤ C
ˆ T1

T0

⎛

⎝1 +
ˆ
BR

∣∣
∣
∣∣

δhu

|h| 1+ϑβ
β

∣∣
∣
∣∣

β q
q−p+2

dx

⎞

⎠ τ dt,

(4.6)

by Young’s inequality. Here C = C(h0, N , s, p, q, β) > 0 as before.
Step 4: Estimates of I4. By using that |u| ≤ 1 in RN × [−1, 0] and the properties of
τ , we get

|I4| = 1

β + 1

∣∣∣∣

ˆ T1

T0

ˆ
B1

|δhu|β+1

|h|1+ϑβ
ηp τ ′ dx dt

∣∣∣∣

≤ C

μ

ˆ T1

T0

ˆ
B R+r

2

|δhu|β
|h|1+ϑβ

dxdt ≤ C

μ

ˆ T1

T0

⎛

⎝1 +
ˆ
BR

∣∣∣
∣∣

δhu

|h| 1+ϑβ
β

∣∣∣
∣∣

β q
q−p+2

dx

⎞

⎠ dt.

(4.7)

In the last inequality we further used Young’s inequality. By inserting the estimates
(4.6) and (4.7) in (4.5), using that τ is non-negative and such that τ = 1 on [T0+μ, T1],
we obtain

ˆ T1

T0+μ

⎡

⎣ |δhu| β−1
p δhu

|h| 1+ϑ β
p

η

⎤

⎦

p

Ws,p(BR)

dt + 1

β + 1

ˆ
BR

|δhu(x, T1)|β+1

|h|1+ϑβ
ηp dx

≤ C
ˆ T1

T0

⎛

⎝
ˆ
BR

∣∣∣∣∣
δhu

|h| 1+ϑβ
β

∣∣∣∣∣

β q
q−p+2

dx + sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ dt.

(4.8)

This is the parabolic counterpart of [4, equation (4.10)]. Observe that the constant C
now depends on μ, as well, and it blows-up as μ ↘ 0.
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Step 5: Going back to the equation. In this step, we can simply reproduce Step 4 of
the proof of [4, Proposition 4.1], so to obtain for any 0 < |ξ |, |h| < h0

∥∥∥∥∥
δξ δhu

|ξ | s p
β−1+p |h| 1+ϑ β

β−1+p

∥∥∥∥∥

β−1+p

Lβ−1+p(Br )

≤ C

⎡

⎣ |δhu| β−1
p (δhu)

|h| 1+ϑ β
p

η

⎤

⎦

p

Ws,p(B(R))

+C

⎛

⎝
ˆ
BR

∣∣∣
∣∣

δhu

|h| 1+ϑβ
β

∣∣∣
∣∣

q β
q−p+2

dx + 1

⎞

⎠ , (4.9)

with C = C(N , h0, s, β) > 0. This is the analogous of [4, equation (4.15)]. We then
choose ξ = h, take the supremum over h for 0 < |h| < h0 and integrate in time. Then
(4.9) together with (4.8) imply

ˆ T1

T0+μ

sup
0<|h|<h0

ˆ
Br

∣∣∣∣
∣

δ2hu

|h| 1+s p+ϑ β
β−1+p

∣∣∣∣
∣

β−1+p

dx dt

+ 1

β + 1
sup

0<|h|<h0

ˆ
BR

|δhu(x, T1)|β+1

|h|1+ϑβ
ηpdx

≤ C
ˆ T1

T0

⎛

⎝ sup
0<|h|<h0

ˆ
BR

∣∣∣
∣∣

δhu

|h| 1+ϑ β
β

∣∣∣
∣∣

q β
q−p+2

dx + sup
0<|h|<h0

∥∥∥
∥∥

δ2hu

|h|s
∥∥∥
∥∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ dt,

(4.10)

where C = C(N , h0, p, q, s, β, μ) > 0. Since (1 + ϑ β)/β < 1, we can replace the
first-order difference quotients in the right-hand side of (4.10) with second order ones,
just by using [4, Lemma 2.6]. This gives

ˆ T1

T0+μ
sup

0<|h|<h0

ˆ
Br

∣∣
∣
∣
∣
∣

δ2hu

|h|
1+s p+ϑ β

β−1+p

∣∣
∣
∣
∣
∣

β−1+p

dx dt + 1

β + 1
sup

0<|h|<h0

ˆ
BR

|δhu(x, T1)|β+1

|h|1+ϑβ
ηpdx

≤ C
ˆ T1

T0

⎛

⎜
⎝ sup
0<|h|<h0

ˆ
BR

∣
∣
∣∣
∣
∣

δ2hu

|h|
1+ϑ β

β

∣
∣
∣∣
∣
∣

q β
q−p+2

dx + sup
0<|h|<h0

∥
∥
∥∥
∥

δ2hu

|h|s
∥
∥
∥∥
∥

q

Lq (BR+4h0 )

+ 1

⎞

⎟
⎠ dt,

(4.11)

for some constant C = C(N , h0, p, q, s, β, μ) > 0.
Step 6: Conclusion for T1 < 0. As in the final step of the step of [4, Proposition 4.1],
we now fix

β = q − p + 2 and ϑ = (q − p + 2) s − 1

q − p + 2
,

where q ≥ p is as in the statement. These choices assure that

1 + s p + ϑ β

β − 1 + p
= s

q + 1
+ s,
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β − 1 + p = q + 1,
q β

q − p + 2
= q,

and

1 + ϑ β = (q − p + 2) s,
1 + ϑ β

β
= s.

Then (4.11) becomes

ˆ T1

T0+μ

sup
0<|h|<h0

∥∥∥
∥∥

δ2hu

|h| s
q+1+s

∥∥∥
∥∥

q+1

Lq+1(Br )

dt + 1

q + 3 − p
sup

0<|h|<h0

∥∥∥
∥∥
δhu(x, T1)

|h| (q+2−p)s
q+3−p

∥∥∥
∥∥

q+3−p

Lq+3−p(Br )

≤ C
ˆ T1

T0

⎛

⎝ sup
0<|h|<h0

∥
∥∥∥∥

δ2hu

|h|s
∥
∥∥∥∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ dt,

where C = C(N , h0, p, q, s) > 0. Up to a suitable modification of the constant C ,
we obtain in particular

ˆ T1

T0+μ
sup

0<|h|<h0

∥
∥
∥∥
∥

δ2hu

|h|s
∥
∥
∥∥
∥

q+1

Lq+1(BR−4 h0 )

dt + 1

q + 3 − p
sup

0<|h|<h0

∥
∥
∥
∥∥
∥

δhu(·, T1)
|h|

(q+2−p) s
q+3−p

∥
∥
∥
∥∥
∥

q+3−p

Lq+3−p(BR−4 h0 )

≤ C
ˆ T1

T0

⎛

⎝ sup
0<|h|<h0

∥
∥
∥∥
∥

δ2hu

|h|s
∥
∥
∥∥
∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ dt,

as desired. Observe that we also used that r = R − 4 h0.
Step 7: Conclusion for T1 = 0. In this case, the previous proof does not directly work
because it relies on Lemma 3.3, which needed T1 < 0. However, the constant C in
(4.1) does not depend on T1, we can thus use a limit argument. By assumption, we
have that for some q ≥ p and 0 < h0 < 1/10, it holds

ˆ 0

T0
sup

0<|h|<h0

∥
∥∥∥∥

δ2hu

|h|s
∥
∥∥∥∥

q

Lq (BR+4 h0 )

dt < +∞,

for a radius 4 h0 < R ≤ 1−5 h0 and a time instant−1 < T0 < 0.Wefix0 < μ < −T0,
then for every T < 0 such that μ + T0 < T we have from Step 6

ˆ T

T0+μ
sup

0<|h|<h0

∥
∥∥
∥
∥

δ2hu

|h|s
∥
∥∥
∥
∥

q+1

Lq+1(BR−4 h0 )

dt + 1

q + 3 − p
sup

0<|h|<h0

∥
∥∥
∥
∥
∥

δhu(·, T )

|h|
(q+2−p)s
q+3−p

∥
∥∥
∥
∥
∥

q+3−p

Lq+3−p(BR−4 h0 )

≤ C
ˆ 0

T0

⎛

⎝ sup
0<|h|<h0

∥
∥∥
∥
∥

δ2hu

|h|s
∥
∥∥
∥
∥

q

Lq (BR+4h0 )

+ 1

⎞

⎠ dt. (4.12)

We then observe that
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lim
T→0−

ˆ T

T0+μ
sup

0<|h|<h0

∥
∥
∥∥
∥

δ2hu

|h|s
∥
∥
∥∥
∥

q+1

Lq+1(BR−4 h0 )

dt =
ˆ 0

T0+μ
sup

0<|h|<h0

∥
∥
∥∥
∥

δ2hu

|h|s
∥
∥
∥∥
∥

q+1

Lq+1(BR−4 h0 )

dt,

(4.13)

by the monotone convergence theorem. As for the second term on the left-hand side,
we know by definition of local weak solution that

t �→ δhu(·, t)
|h| (q+2−p) s

q+3−p

,

is a continuous function on (−2, 0], with values in L2(BR−4 h0), for every fixed 0 <

|h| < h0. Thus

lim
T→0−

∥∥∥∥
∥

δhu(·, T )

|h| (q+2−p)s
q+3−p

− δhu(·, 0)
|h| (q+2−p)s

q+3−p

∥∥∥∥
∥
L2(BR−4 h0 )

= 0.

This in turn implies that1

lim inf
T→0−

∥
∥∥∥∥

δhu(·, T )

|h| (q+2−p)s
q+3−p

∥
∥∥∥∥

q+3−p

Lq+3−p(BR−4 h0 )

≥
∥
∥∥∥∥

δhu(·, 0)
|h| (q+2−p)s

q+3−p

∥
∥∥∥∥

q+3−p

Lq+3−p(BR−4 h0 )

, (4.14)

for every 0 < |h| < h0. By using (4.13) and (4.14) in (4.12), we get the desired
conclusion for T1 = 0, as well. �

As in [4, Theorem 4.2], by iterating the previous result, we can obtain the following
regularity estimate.

Theorem 4.2. (Spatial almost Cs regularity) Let 
 ⊂ R
N be a bounded and open

set, I = (t0, t1], p ≥ 2 and 0 < s < 1. Suppose u is a local weak solution of

ut + (−�p)
su = 0 in 
 × I,

such that u ∈ L∞
loc(I ; L∞(RN )). Then u ∈ Cδ

x,loc(
 × I ) for every 0 < δ < s.
More precisely, for every 0 < δ < s, R > 0 and every (x0, T0) such that

Q2R,2Rs p (x0, T0) � 
 × I,

there exists a constant C = C(N , s, p, δ) > 0 such that

sup
t∈
[
T0− Rs p

2 ,T0
][u(·, t)]Cδ(BR/2(x0)) ≤ C

Rδ

(‖u‖L∞(RN×[T0−Rs p,T0]) + 1
)

1We use the following standard fact: if { fn}n∈N converges to f in Lα(E), then

lim inf
n→∞ ‖ fn‖Lβ (E) ≥ ‖ f ‖Lβ (E),

for any β �= α.
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+ C

Rδ

(

R−N
ˆ T0

T0− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

. (4.15)

Proof. We assume for simplicity that x0 = 0 and T0 = 0, then we set

MR = ‖u‖L∞(RN×[−Rs p,0]) +
(

R−N
ˆ 0

− 7
8 Rs p

[u]pWs,p(BR) dt

) 1
p

+ 1.

Let α ∈ [−Rs p(1 − M2−p
R ), 0] and set

uR,α(x, t) := 1

MR
u

(

R x,
1

Mp−2
R

Rs p t + α

)

, for x ∈ B2, t ∈ (−2, 0].

By taking into account the scaling properties of our equation (see Remark 1.1), the
function uR,α is a local weak solution of

ut + (−�p)
su = 0, in B2 × (−2, 0],

and satisfies

‖uR,α‖L∞(RN×[−1,0]) ≤ 1,
ˆ 0

− 7
8

[uR,α]pWs,p(B1)
dt ≤ 1. (4.16)

We will prove that uR,α satisfies the estimate

sup
t∈[−1/2,0]

[uR,α(·, t)]Cδ(B1/2) ≤ C,

for C = C(N , s, p, δ) > 0 independent of α. By scaling back, this would give

sup
α− 1

2M
2−p
R Rs p≤t≤α

[u(·, t)]Cδ(BR/2)
≤ C

Rδ
MR .

Since α ∈ [−Rs p(1 − M2−p
R ), 0] and M2−p

R ≤ 1, this in turn would imply

sup
t∈
[
− Rs p

2 ,0
][u(·, t)]Cδ(BR/2(x0))

≤ C

Rδ

⎛

⎝‖u‖L∞(RN×[−Rs p,0]) +
(

R−N
ˆ 0

− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

+ 1

⎞

⎠ ,

which is the desired result. In what follows, we suppress the subscript R, α and simply
write u in place of uR,α , in order not to overburden the presentation.
We fix 0 < δ < s and choose i∞ ∈ N\{0} such that

δ < s
2 + i∞
3 + i∞

− N

3 + i∞
.



Vol. 21 (2021) Nonlinear fractional diffusion 4345

Then we define the sequence of exponents

qi = p + i, i = 0, . . . , i∞.

We define also

h0 = 1

64 i∞
, Ri = 7

8
− 4 (2i + 1) h0 = 7

8
− 2i + 1

16 i∞
, for i = 0, . . . , i∞.

We note that

R0 + 4 h0 = 7

8
and Ri∞−1 − 4 h0 = Ri∞ + 4 h0 = 3

4
.

By applying Proposition 4.1 (ignoring the second term in the left-hand side of (4.1))
with2

T1 = 0, T0 = −Ri − 4 h0, μ = 8 h0,

and

R = Ri and q = qi = p + i, for i = 0, . . . , i∞ − 1,

and observing that Ri − 4 h0 = Ri+1 + 4 h0, we obtain the iterative scheme of
inequalities:

• for i = 0

ˆ 0

−(R1+4h0)
sup

0<|h|<h0

∥∥∥
∥∥

δ2hu

|h|s
∥∥∥
∥∥

q1

Lq1 (BR1+4h0 )

dt ≤ C
ˆ 0

− 7
8

sup
0<|h|<h0

⎛

⎝

∥∥∥
∥∥

δ2hu

|h|s
∥∥∥
∥∥

p

L p(B7/8)

+ 1

⎞

⎠ dt

• for i = 1, . . . , i∞ − 2

ˆ 0

−(Ri+1+4h0)
sup

0<|h|<h0

∥∥∥
∥∥

δ2hu

|h|s
∥∥∥
∥∥

qi+1

Lqi+1(BRi+1+4h0 )

dt

≤ C
ˆ 0

−(Ri+4h0)
sup

0<|h|<h0

⎛

⎝

∥∥∥
∥∥

δ2hu

|h|s
∥∥∥
∥∥

qi

Lqi (BRi+4h0 )

+ 1

⎞

⎠ dt,

2We observe that by construction we have

4 h0 < Ri ≤ 1 − 5 h0, for i = 0, . . . , i∞ − 1.

Thus these choices are admissible in Proposition 4.1.
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• finally, for i = i∞ − 1

ˆ 0

− 3
4

sup
0<|h|<h0

∥∥∥∥
∥

δ2hu

|h|s
∥∥∥∥
∥

qi∞

Lqi∞ (B3/4)

dt

=
ˆ 0

−(Ri∞+4h0)
sup

0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥

p+i∞

L p+i∞ (BRi∞+4h0 )

dt

≤ C
ˆ 0

−(Ri∞−1+4h0)
sup

0<|h|<h0

⎛

⎝

∥∥
∥∥∥

δ2hu

|h|s
∥∥
∥∥∥

p+i∞−1

L p+i∞−1(BRi∞−1+4h0 )

+ 1

⎞

⎠ dt.

Here C = C(N , δ, p, s) > 0 as always. We note that by using the relation

δ2hu = δ2hu − 2 δhu,

and then appealing to [3, Proposition 2.6], we have

ˆ 0

− 7
8

sup
0<|h|<h0

∥∥∥∥
∥

δ2hu

|h|s
∥∥∥∥
∥

p

L p(B7/8)

dt

≤ C
ˆ 0

− 7
8

sup
0<|h|<2 h0

∥∥∥∥
δhu

|h|s
∥∥∥∥

p

L p(B7/8)
dt

≤ C

(ˆ 0

− 7
8

[u]pWs,p(B7/8+2 h0 ) dt +
ˆ 0

− 7
8

‖u‖L∞(B7/8+2 h0 ) dt

)

≤ C

(ˆ 0

− 7
8

[u]Ws,p(B1) dt +
ˆ 0

− 7
8

‖u‖p
L∞(B1)

dt

)

≤ C(N , δ, s, p), (4.17)

where we also have used the assumptions (4.16) on u. Hence, the iterative scheme of
inequalities leads us to

ˆ 0

− 3
4

sup
0<|h|<h0

∥
∥∥∥∥

δ2hu

|h|s
∥
∥∥∥∥

qi∞

Lqi∞ (B3/4)

dt ≤ C(N , δ, p, s).

It is now time to exploit the full power of Proposition 4.1: we apply it once more, with

T0 = −3

4
, −1

2
≤ T1 ≤ 0, μ = 8 h0,

q = qi∞ , R + 4 h0 = 3/4 and R − 4 h0 = 3/4 − 8 h0 > 5/8.

We obtain (ignoring the first term in the left-hand side of (4.1), this time)

sup
0<|h|<h0

∥∥∥∥∥
∥

δhu(·, T1)
|h|

(qi∞+2−p) s
qi∞ +3−p

∥∥∥∥∥
∥

qi∞+3−p

Lqi∞ +3−p
(B5/8)
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≤ C
ˆ 0

− 3
4

⎛

⎝ sup
0<|h|<h0

∥∥∥
∥∥

δ2hu

|h|s
∥∥∥
∥∥

qi∞

Lqi∞ (B3/4)

+ 1

⎞

⎠ dt ≤ C(N , δ, p, s).

Since this is valid for every −1/2 ≤ T1 ≤ 0, this in turn implies that

sup
t∈[−1/2,0]

sup
0<|h|<h0

∥∥∥∥∥
∥

δhu

|h|
(qi∞+2−p) s
qi∞+3−p

∥∥∥∥∥
∥

qi∞+3−p

Lqi∞ +3−p
(B5/8)

≤ C(N , δ, p, s). (4.18)

Take now χ ∈ C∞
0 (B9/16) such that

0 ≤ χ ≤ 1, χ = 1 in B1/2, |∇χ | ≤ C, |D2χ | ≤ C.

In particular, we have for all 0 < |h| < h0

|δhχ |
|h|

(qi∞+2−p) s
qi∞+3−p

≤ C.

We also recall that

δh(u χ) = χh δhu + u δhχ.

Hence, for 0 < |h| < h0 and any t ∈ [−5/8, 0]
∥∥∥∥∥
∥

δh(u χ)

|h|
(qi∞+2−p) s
qi∞ +3−p

∥∥∥∥∥
∥
Lqi∞+3−p (RN )

≤ C

⎛

⎜
⎝

∥∥∥
∥∥∥

χh δhu

|h|
(qi∞+2−p)s
qi∞+3−p

∥∥∥
∥∥∥
Lqi∞+3−p (RN )

+
∥∥∥
∥∥∥

u δhχ

|h|
(qi∞+2−p)s
qi∞+3−p

∥∥∥
∥∥∥
Lqi∞+3−p (RN )

⎞

⎟
⎠

≤ C

⎛

⎜
⎝

∥∥∥∥∥∥

δhu

|h|
(qi∞+2−p)s
qi∞+3−p

∥∥∥∥∥∥
Lqi∞+3−p (B9/16+ h0 )

+ ‖u‖Lqi∞+3−p (B9/16+h0 )

⎞

⎟
⎠

≤ C

⎛

⎜
⎝

∥∥
∥∥∥∥

δhu

|h|
(qi∞+2−p)s
qi∞+3−p

∥∥
∥∥∥∥
Lqi∞+3−p (B5/8)

+ ‖u‖Lqi∞+3−p (B5/8)

⎞

⎟
⎠ ≤ C(N , δ, p, s),

(4.19)

by (4.18). Finally, by noting that thanks to the choice of i∞ we have

s (qi∞ + 2 − p) > N and δ <
(qi∞ + 2 − p) s

qi∞ + 3 − p
− N

qi∞ + 3 − p
,

we may invoke the Morrey-type embedding of [4, Theorem 2.8] with

β = (qi∞ + 2 − p) s

qi∞ + 3 − p
, α = δ and q = qi∞ + 3 − p.
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Thus we obtain

[u(·, t)]Cδ(B1/2) = [u χ ]Cδ(B1/2)

≤ C
(
[u χ(·, t)]N β,q∞ (RN )

) α q+N
βq (‖u(·, t) χ‖Lq (RN )

) (β−α) q−N
βq ≤ C(N , δ, p, s),

for any t ∈ [−1/2, 0], where we used (4.19). This concludes the proof. �
Remark 4.3. Under the assumptions of the previous theorem, a covering argument
combined with (4.15) implies the following more flexible estimate: for every 0 <

σ < 7/8

sup
t∈[T0−σ Rs p,T0]

[u(·, t)]Cδ(Bσ R(x0)) ≤ C

Rδ

(‖u‖L∞(RN×[T0−Rs p,T0]) + 1
)

+ C

Rδ

(

R−N
ˆ T0

T0− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

,

withC now depending on σ as well (and blowing-up as σ ↗ 7/8). Indeed, if σ ≤ 1/2
then this is immediate. If 1/2 < σ < 7/8, then we can cover Qσ R,σ Rs p (x0, T0) with
a finite number of cylinders

Qr/2,rs p/2(xi , t j ) = Br/2(xi ) ×
(
t j − rs p

2
, t j

]
, for 1 ≤ i ≤ k, 1 ≤ j ≤ m,

where

xi ∈ Bσ R(x0), T0 − σ Rs p ≤ t j ≤ T0,

and r = R/Cσ,s,p > 0 is a suitable radius, such that

Br (xi ) ⊂ BR(x0), B2 r (xi ) � 
,

and
[
t j − 7

8
rs p, t j

]
⊂
[
T0 − 7

8
Rs p, T0

]
, [t j − 2 rs p, t j ] � I.

By using (4.15) on each of these cylinders and the fact that r = R/Cσ,s,p, we get

sup
t∈
[
t j− rs p

2 ,t j
][u(·, t)]Cδ(Br/2(xi ))

≤ C

r δ

⎛

⎝‖u‖L∞(RN×[t j−rs p,t j ]) + 1 +
(

r−N
ˆ t j

t j− 7
8 r

s p
[u]pWs,p(Br (xi ))

dt

) 1
p
⎞

⎠

≤ C

Rδ

⎛

⎝‖u‖L∞(RN×[T0−Rs p,T0]) + 1 +
(

R−N
ˆ T0

T0− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p
⎞

⎠

By taking the supremum over 1 ≤ i ≤ k and 1 ≤ j ≤ m, we get the desired
conclusion.
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5. Improved spatial Hölder regularity

Once we know that solutions are locally spatially δ−Hölder continuous for any
0 < δ < s, we can obtain the following improvement of Proposition 4.1. The latter
provided a recursive gain of integrability. In contrast, the next result provides a gain
which is interlinked between differentiability and integrability.

Proposition 5.1. Assume p ≥ 2 and 0 < s < 1. Let u be a local weak solution of
ut + (−�p)

su = 0 in B2 × (−2, 0], such that

‖u‖L∞(RN×[−1,0]) ≤ 1 and
ˆ 0

− 7
8

[u]pWs,p(B1)
dt ≤ 1.

Assume further that for some 0 < h0 < 1/10 and ϑ < 1, β ≥ 2 such that (1 +
ϑ β)/β < 1, we have

ˆ T1

T0
sup

0<|h|≤h0

∥∥∥∥∥
δ2hu

|h| 1+ϑ β
β

∥∥∥∥∥

β

Lβ(BR+4 h0 )

dt < +∞,

for a radius 4 h0 < R ≤ 1 − 5 h0 and two time instants −3/4 ≤ T0 < T1 ≤ 0. Then
it holds

ˆ T1

T0+μ
sup

0<|h|<h0

∥
∥∥
∥
∥
∥

δ2hu

|h|
1+s p+ϑ β

β−1+p

∥
∥∥
∥
∥
∥

β−1+p

Lβ−1+p(BR−4 h0 )

dt + 1

β + 1
sup

0<|h|<h0

∥
∥∥
∥
∥
∥

δhu(·, T1)
|h|

1+ϑ β
β+1

∥
∥∥
∥
∥
∥

β+1

Lβ+1(BR−4 h0 )

≤ C
ˆ T1

T0
sup

0<|h|<h0

⎛

⎜
⎝

∥∥
∥
∥
∥∥

δ2hu

|h|
1+ϑ β

β

∥∥
∥
∥
∥∥

β

Lβ(BR+4 h0 )

+ 1

⎞

⎟
⎠ dt. (5.1)

for every 0 < μ < T1 − T0. Here C depends on N, h0, s, p, μ and β.

Proof. This is analogous to the proof of [4, Proposition 5.1]. As above, we will refer
to [4] for the main computations and only list the major changes.

We first notice that it is sufficient to prove (5.1) for T1 < 0, with a constant inde-
pendent of T1. Then the same argument of Step 7 in Proposition 4.1 will be enough
to handle the case T1 = 0, as well.
We go back to the estimates in the proof of Proposition 4.1. The acquired knowledge

on the spatial regularity of u permits to improve the estimate on the term I11(t) defined
in (4.3). From Theorem 4.2 and Remark 4.3, we can choose

0 < ε < min

{
2
1 − s

p − 2
, s

}
,

such that

sup
t∈[T0,T1]

[u(·, t)]Cs−ε(BR+h0 ) ≤ C(N , h0, p, s).
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Using this together with the assumed regularity of η, we have for x, y ∈ BR and
t ∈ [T0, T1]

|u(x, t) − u(y, t)|p−2
∣∣∣η(x)

p
2 − η(y)

p
2

∣∣∣
2

|x − y|N+s p
≤ C |x − y|−N+2 (1−s)−ε (p−2).

Thanks to the choice of ε, the last exponent is strictly larger than −N and we may
conclude

ˆ
BR

|u(x, t) − u(y, t)|p−2
∣∣
∣η(x)

p
2 − η(y)

p
2

∣∣
∣
2

|x − y|N+s p
dy ≤ C(N , h0, p, s),

for any x ∈ BR . A similar estimate holds for the other term of I11(t) containing
|uh(x, t) − uh(y, t)|. Therefore, by suppressing as before the t−dependence for sim-
plicity, we have the estimate

|I11(t)| ≤ C
ˆ
BR

|δhu(x)|β+1

|h|1+ϑ β
dx

≤ C ‖u‖L∞(BR)

ˆ
BR

|δhu(x)|β
|h|1+ϑ β

dx ≤ C
ˆ
BR

|δhu(x)|β
|h|1+ϑ β

dx,

for some C = C(N , h0, p, s) > 0.

As for I12, by going back to its definition (4.4) and using the properties of the cut-off
function η, we get

|I12(t)| ≤ C
ˆ
BR

|δhu(x)|β−1+p

|h|1+ϑ β
dx ≤ C

ˆ
BR

|δhu(x)|β
|h|1+ϑ β

dx,

for some C = C(N , h0, p, s) > 0,

where we used the local L∞ bound on u, as above. In addition, from the first inequality
in (4.6) together with the properties of the cut-off function τ , we have

|Ĩ2| + |Ĩ3| ≤ C
ˆ T1

T0

ˆ
BR

|δhu(x)|β
|h|1+ϑ β

dx dt, for some C = C(h0, p, s) > 0.

By combining these new estimates with (4.7) and (4.2), we can reproduce the last part
of [4, Proposition 5.1] and arrive at

ˆ T1

T0+μ

⎛

⎝ sup
0<|h|<h0

ˆ
Br

∣∣
∣∣∣

δ2hu

|h| 1+s p+ϑ β
β−1+p

∣∣
∣∣∣

β−1+p

dx

⎞

⎠ dt

+ 1

β + 1
sup

0<|h|<h0

∥∥
∥∥∥
δhu(·, T1)
|h| 1+ϑβ

β+1

∥∥
∥∥∥

β+1

Lβ+1(BR−4 h0 )

≤ C
ˆ T1

T0

⎛

⎝ sup
0<|h|<h0

ˆ
BR

∣∣∣
∣∣

δhu

|h| 1+ϑ β
β

∣∣∣
∣∣

β

dx

⎞

⎠ dt,
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for someC = C(N , h0, p, s, β) > 0. By appealing again to [4, Lemma 2.6] and using
that

1 + ϑ β

β
< 1,

we may replace the first-order differential quotients in the right-hand side by second
order ones. This leads to

ˆ T1

T0+μ

⎛

⎝ sup
0<|h|<h0

ˆ
Br

∣∣∣∣
∣

δ2hu

|h| 1+s p+ϑ β
β−1+p

∣∣∣∣
∣

β−1+p

dx

⎞

⎠ dt

+ 1

β + 1
sup

0<|h|<h0

∥∥∥∥∥
δhu(·, T1)
|h| 1+ϑβ

β+1

∥∥∥∥∥

β+1

Lβ+1(BR−4 h0 )

≤ C
ˆ T1

T0

⎛

⎝ sup
0<|h|<h0

ˆ
BR+4 h0

∣∣∣∣∣
δ2hu

|h| 1+ϑ β
β

∣∣∣∣∣

β

dx + 1

⎞

⎠ dt,

for some C = C(N , h0, p, s, β) > 0. By recalling again that r = R − 4 h0, we
eventually conclude the proof. �

We are now ready to prove the claimed Hölder regularity in space.

Theorem 5.2. Let
 be a bounded and open set, let I = (t0, t1], p ≥ 2 and 0 < s < 1.
Suppose u is a local weak solution of

ut + (−�p)
su = 0 in 
 × I,

such that u ∈ L∞
loc(I ; L∞(RN )). Then u ∈ Cδ

x,loc(
 × I ) for every 0 < δ < �(s, p),
where �(s, p) is defined in (1.5).
More precisely, for every 0 < δ < �(s, p), R > 0, x0 ∈ 
 and T0 such that

Q2 R,2 Rs p (x0, T0) � 
 × I,

there exists a constant C = C(N , s, p, δ) > 0 such that

sup
t∈
[
T0− Rs p

2 ,T0
][u(·, t)]Cδ(BR/2(x0)) ≤ C

Rδ

(‖u‖L∞(RN×[T0−Rs p,T0]) + 1
)

+ C

Rδ

(

R−N
ˆ T0

T0− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

. (5.2)

Proof. By the same scaling argument as in the proof of Theorem 4.2, it is enough to
prove that

sup
t∈[−1/2,0]

[u(·, t)]Cδ(B1/2) ≤ C(N , p, s, δ),
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under the assumption that u is a local weak solution of

ut + (−�p)
su = 0, in B2 × (−2, 0],

which satisfies (4.16). Define for i ∈ N, the sequences of exponents

βi = p + i (p − 1),

and

ϑ0 = s − 1

p
, ϑi+1 = ϑi βi + s p

βi+1
= ϑi

p + i (p − 1)

p + (i + 1)(p − 1)
+ s p

p + (i + 1)(p − 1)
.

By induction, we see that {ϑi }i∈N is explicitely given by the increasing sequence

ϑi =
(
s − 1

p

)
p

p + i (p − 1)
+ s p i

p + i (p − 1)
, i ∈ N,

and thus

lim
i→∞ ϑi = s p

p − 1
.

The proof is now split into two different cases.
Case 1: s p ≤ (p − 1). Fix 0 < δ < s p/(p − 1) and choose i∞ ∈ N\{0} such that

δ <
1 + ϑi∞ βi∞

βi∞ + 1
− N

βi∞ + 1
.

This is feasible, since

lim
i→∞ βi = +∞, lim

i→∞ ϑi = s p

p − 1
and δ <

s p

p − 1
.

Define also

h0 = 1

64 i∞
, Ri = 7

8
− 4 (2 i + 1) h0 = 7

8
− 2 i + 1

16 i∞
, for i = 0, . . . , i∞.

We note that

R0 + 4 h0 = 7

8
and Ri∞−1 − 4 h0 = 3

4
.

By applying3 Proposition 5.1 (ignoring the second term of the left-hand side of (5.1))
with

T1 = 0, μ = 8 h0, T i
0 = −3

4
+ i μ,

and

R = Ri , ϑ = ϑi and β = βi , for i = 0, . . . , i∞ − 1,

3Note that in this case we will always have 1 + ϑiβi < βi , so that the proposition applies.
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and observing that Ri −4 h0 = Ri+1 +4 h0, that T
i+1
0 = T i

0 +μ and by construction

1 + s p + ϑi βi

βi + (p − 1)
= 1 + ϑi+1 βi+1

βi+1
,

we obtain the iterative scheme of inequalities:

• for i = 0

ˆ 0

T 1
0

sup
0<|h|<h0

∥∥∥∥∥
∥

δ2hu

|h|
1+ϑ1β1

β1

∥∥∥∥∥
∥

β1

Lβ1 (BR1+4h0 )

dt ≤ C
ˆ 0

− 3
4

sup
0<|h|<h0

⎛

⎝

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥

p

L p(B7/8)

+ 1

⎞

⎠ dt;

• for i = 1, . . . , i∞ − 2

ˆ 0

T i+1
0

sup
0<|h|<h0

∥∥∥∥∥∥

δ2hu

|h|
1+ϑi+1βi+1

βi+1

∥∥∥∥∥∥

βi+1

Lβi+1 (BRi+1+4h0 )

dt

≤ C
ˆ 0

T i
0

sup
0<|h|<h0

⎛

⎜
⎝

∥∥∥
∥∥∥

δ2hu

|h|
1+ϑi βi

βi

∥∥∥
∥∥∥

βi

Lβi (BRi+4 h0 )

+ 1

⎞

⎟
⎠ dt;

• finally, for i = i∞ − 1

ˆ 0

− 5
8

sup
0<|h|<h0

∥∥∥∥∥∥

δ2hu

|h|
1

βi∞ +ϑi∞

∥∥∥∥∥∥

βi∞

Lβi∞ (B3/4)

dt

≤ C
ˆ 0

T i∞−1
0

sup
0<|h|<h0

⎛

⎜⎜
⎝

∥∥∥∥
∥∥

δ2hu

|h|
1+ϑi∞−1βi∞−1

βi∞−1

∥∥∥∥
∥∥

βi∞−1

Lβi∞−1 (BRi∞−1+4 h0 )

+ 1

⎞

⎟⎟
⎠ dt.

Here C = C(N , p, s, δ) > 0 as always. As in (4.17) we have

ˆ 0

− 3
4

sup
0<|h|<h0

∥∥∥∥
∥

δ2hu

|h|s
∥∥∥∥
∥

p

L p(B7/8)

dt ≤ C(N , δ, s, p).

Hence, the previous iterative scheme of inequalities implies

ˆ 0

− 5
8

sup
0<|h|<h0

∥
∥∥∥∥∥

δ2hu

|h|
1

βi∞ +ϑi∞

∥
∥∥∥∥∥

βi∞

Lβi∞ (B3/4)

dt ≤ C(N , δ, p, s).

Now we apply Proposition 5.1 once more, this time with

T0 = −5

8
, −1

2
≤ T1 ≤ 0, μ = 4 h0,
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β = βi∞ , ϑ = ϑi∞ , R + 4 h0 = 3

4
and R − 4 h0 = 3/4 − 8 h0 > 5/8.

We obtain (now ignoring the first term in the left-hand side of (5.1))

sup
0<|h|<h0

∥∥
∥∥∥∥

δhu(·, T1)
|h|

1+ϑi∞βi∞
βi∞+1

∥∥
∥∥∥∥

βi∞+1

Lβi∞+1
(B5/8)

≤ C
ˆ 0

− 5
8

⎛

⎜
⎝ sup

0<|h|<h0

∥∥∥∥
∥∥

δ2hu

|h|
1

βi∞ +ϑi∞

∥∥∥∥
∥∥

βi∞

Lβi∞ (B3/4)

+ 1

⎞

⎟
⎠ dt ≤ C(N , δ, p, s).

Since this is valid for every −1/2 ≤ T1 ≤ 0, we obtain

sup
t∈[−1/2,0]

sup
0<|h|<h0

∥∥∥
∥∥∥

δhu

|h|
1+ϑi∞βi∞

βi∞+1

∥∥∥
∥∥∥

βi∞+1

Lβi∞+1
(B5/8)

≤ C(N , δ, p, s).

From here, we may repeat the arguments at the end of the proof of Theorem 4.2 (see
(4.19)) and use the Morrey–type embedding of [4, Theorem 2.8], with

β = 1 + ϑi∞ βi∞
βi∞ + 1

, q = βi∞ + 1 and α = δ,

to obtain

sup
t∈[−1/2,0]

[u(·, t)]Cδ(B1/2) ≤ C(N , δ, p, s),

which concludes the proof in this case.
Case 2: s p > (p − 1). Fix 0 < δ < 1. Let i∞ ∈ N\{0} be such that

1 + ϑi∞−1 βi∞−1

βi∞−1
< 1 and

1 + ϑi∞ βi∞
βi∞

≥ 1.

Observe that such a choice is feasible, since

lim
i→∞

1 + ϑi βi

βi
= s p

p − 1
> 1.

Now choose j∞ so that

δ <
βi∞+ j∞

βi∞+ j∞ + 1
− N

βi∞+ j∞ + 1
,

and let

γ = 1 − ε, for some 0 < ε < 1 such that δ < (1 − ε)
βi∞+ j∞

βi∞+ j∞ + 1
− N

βi∞+ j∞ + 1
.
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Define also

h0 = 1

64 (i∞ + j∞)
, Ri = 7

8
− 4 (2 i + 1) h0 = 7

8
− 2 i + 1

16 (i∞ + j∞)
,

for i = 0, . . . , i∞ + j∞.

We note that

R0 + 4 h0 = 7

8
and R(i∞+ j∞)−1 − 4 h0 = 3

4
.

By applying4 Proposition 5.1 with

T1 = 0, μ = 8 h0, T i
0 = −3

4
+ i ,

and

R = Ri , ϑ = ϑi and β = βi , for i = 0, . . . , i∞ − 1,

and observing that Ri − 4 h0 = Ri+1 + 4 h0, that T
i+1
0 = T i

0 + μ and that

1 + s p + ϑi βi

βi + (p − 1)
= 1 + ϑi+1 βi+1

βi+1
,

we arrive as in Case 1 at

ˆ 0

−T i∞
0

sup
0<|h|<h0

∥
∥∥∥∥

δ2hu

|h|γ
∥
∥∥∥∥

βi∞

Lβi∞ (BRi∞+4h0 )

dt

≤
ˆ 0

T i∞−1
0

sup
0<|h|<h0

∥∥
∥∥∥∥

δ2hu

|h|
1

βi∞ +ϑi∞

∥∥
∥∥∥∥

βi∞

Lβi∞ (BRi∞+4h0 )

dt ≤ C(N , δ, p, s),

since γ < 1 ≤ 1/βi∞ + ϑi∞ . We now apply Proposition 5.1 with

R = Ri , β = βi and ϑ = ϑ̃i = γ − 1

βi
for i = i∞, . . . , i∞ + j∞ − 1.

Observe that by construction we have

1 + ϑ̃i βi

βi
= γ, for i = i∞, . . . , i∞ + j∞ − 1,

and using that s p > (p − 1)

1 + s p + ϑ̃i βi

βi + p − 1
>

p + ϑ̃i βi

βi + p − 1
= 1 + βi (γ − 1)

βi + p − 1
>γ, for i = i∞, . . . , i∞ + j∞ − 1.

This gives the following inequalities:

4Note that for i ≤ i∞ − 1 we have 1 + ϑi βi < βi , so that the proposition applies.
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• for i = i∞, . . . , i∞ + j∞ − 2

ˆ 0

T i+1
0

sup
|h|≤h0

∥∥
∥∥∥

δ2hu

|h|γ
∥∥
∥∥∥

βi+1

Lβi+1 (BRi+1+4h0 )

dt ≤ C
ˆ 0

T i
0

sup
0<|h|<h0

⎛

⎝

∥∥
∥∥∥

δ2hu

|h|γ
∥∥
∥∥∥

βi

Lβi (BRi+4h0 )

+ 1

⎞

⎠ dt,

• for i = i∞ + j∞ − 1

ˆ 0

− 5
8

sup
0<|h|<h0

∥∥
∥∥∥

δ2hu

|h|γ
∥∥
∥∥∥

βi∞+ j∞

Lβi∞+ j∞ (B3/4)

dt

≤ C
ˆ 0

T i∞+ j∞−1
0

sup
0<|h|<h0

⎛

⎝

∥∥
∥∥∥

δ2hu

|h|γ
∥∥
∥∥∥

βi∞+ j∞−1

Lβi∞+ j∞−1 (BRi∞+ j∞−1+4h0 )

+ 1

⎞

⎠ dt.

Hence, recalling that γ = 1 − ε, we conclude

ˆ 0

− 5
8

sup
0<|h|<h0

∥∥∥
∥∥

δ2hu

|h|1−ε

∥∥∥
∥∥

βi∞+ j∞

Lβi∞+ j∞ (B3/4)

dt ≤ C(N , δ, p, s).

Now we apply Proposition 5.1 again, with

T0 = −5

8
, −1

2
≤ T1 ≤ 0, μ = 4 h0,

β = βi∞+ j∞ , ϑ = γ − 1

βi∞+ j∞
, R + 4h0 = 3

4
and R − 4h0 = 3

4
− 8 h0 >

5

8
.

We obtain (ignoring again the first term in the left-hand side)

sup
t∈[−1/2,0]

sup
0<|h|<h0

∥∥∥∥∥
∥

δhu

|h|(1−ε)
βi∞+ j∞

βi∞+ j∞+1

∥∥∥∥∥
∥

βi∞+ j∞+1

Lβi∞+ j∞+1
(B5/8)

≤ C(N , δ, p, s).

Once we land here, as before we can repeat the arguments at the end of the proof of
Theorem 4.2 and use the Morrey-type embedding, this time with

β = (1 − ε)
βi∞+ j∞

βi∞+ j∞ + 1
, q = βi∞+ j∞ + 1 and α = δ.

This gives

sup
t∈[−1/2,0]

[u(·, t)]Cδ(B1/2) ≤ C(N , δ, p, s),

and the proof is concluded. �
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6. Regularity in time

In this section, we prove Hölder regularity in time using the previously obtained
regularity in space. This approach uses energy estimates to control the growth of local
integrals which yields a Campanato–type estimate. For u ∈ L1(BR(x0)), we will use
the notation

ux0,R =
 
BR(x0)

u dx .

When the center x0 is clear from the context, we often simply write uR . For u ∈
L1(QR,r (x0, t0)), we set

u(x0,t0),R,r =
 
QR,r (x0,t0)

u dx dt.

Again, when the center (x0, t0) is clear from the context, we simply write uR,r .
The following simple Poincaré–type inequality will be useful.

Lemma 6.1. Let 1 ≤ p < ∞ and let Br = Br (x0). Suppose that u ∈ Ws,p(Br ), then
for any nonnegative η ∈ C∞

0 (Br ) such that ηr = 1, there holds

ˆ
Br

|u − (u η)r |p dx ≤
(
2N+s p

ωN
‖η‖p

L∞(Br )

)
rs p

¨
Br×Br

|u(x) − u(y)|p
|x − y|N+s p

dx dy.

(6.1)

Proof. By using the fact that
´
Br

η dx = |Br | and Jensen’s inequality, we obtain

ˆ
Br

|u − (u η)r |p dx =
ˆ
Br

∣∣∣
∣

1

|Br |
ˆ
Br

(u(x) − u(y)) η(y) dy

∣∣∣
∣

p

dx

≤ ‖η‖p
L∞(Br )

|Br |
¨

Br×Br
|u(x) − u(y)|p dx dy

≤ ‖η‖p
L∞(Br )

|Br | (2 r)N+s p
¨

Br×Br

|u(x) − u(y)|p
|x − y|N+s p

dx dy.

This concludes the proof. �

Proposition 6.2. Let p ≥ 2 and suppose that u is a local weak solution of

∂t u + (−�p)
su = 0, in B2 × (−2, 0],

such that

‖u‖L∞(RN×[−1,0]) ≤ 1,

and

sup
t∈[−1/2,0]

[u(·, t)]Cδ(B1/2) ≤ Kδ, for any s < δ < �(s, p), (6.2)
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where�(s, p) is the exponent defined in (1.5). Then there is a constantC = C(N , s, p,
Kδ, δ) > 0 such that

|u(x, t) − u(x, τ )| ≤ C |t − τ |γ , for every (x, t), (x, τ ) ∈ Q 1
4 , 14

,

where

γ = 1
s p

δ
− (p − 2)

.

In particular, u ∈ Cγ
t (Q 1

4 , 14
) for any γ < �(s, p), where �(s, p) is the exponent

defined in (1.5).

Proof. We take (x0, t0) ∈ Q1/4,1/4 and choose

0 < r <
1

8
, 0 < θ <

1

8
.

Consider the parabolic cylinder

Qr,θ (x0, t0) = Br (x0) × (t0 − θ, t0].

Observe that by construction we have

Qr,θ (x0, t0) ⊂ B 3
8

×
(

−1

2
, 0

]
.

Let η ∈ C∞
0 (Br/2(x0)) be a non-negative cut-off function, such that

η ≡ ‖η‖L∞(Br/2(x0)) on Br/4(x0), ηr = 1 and ‖∇η‖L∞(Br/2(x0)) ≤ C

r
,

for some constant C = C(‖η‖L∞(Br/2(x0)), N ) > 0. Observe that, thanks to the con-
dition on its average, we have

‖η‖L∞(Br/2(x0)) = 1

|Br/4(x0)|
ˆ
Br/4(x0)

η dx ≤ |Br (x0)|
|Br/4(x0)| ηr = 4N .

Thus the constant appearing in (6.1) will only depend on N , s and p.
We now write

u(x, t) − ur,θ =
(
u(x, t) − (u η)r (t)

)
+
(
(u η)r,θ − ur,θ

)
+
(
(u η)r (t) − (u η)r,θ

)
,

where we have set

(u η)r (t) =
 
Br (x0)

u(y, t) η(y) dy.
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Then

 
Qr,θ (x0,t0)

|u(x, t) − ur,θ | dx dt ≤
 
Qr,θ (x0,t0)

∣∣∣u(x, t) − (u η)r (t)
∣∣∣ dx dt

+
 
Qr,θ (x0,t0)

∣∣∣ur,θ − (u η)r,θ

∣∣∣ dx dt

+
 
Qr,θ (x0,t0)

∣∣∣(u η)r,θ − (u η)r (t)
∣∣∣ dx dt

=: A1 + A2 + A3.

We first note that

A2 =
∣∣∣ur,θ − (u η)r,θ

∣∣∣ =
∣
∣∣∣∣

 
Qr,θ (x0,t0)

(
u(x, t) − (u η)r,θ

)
dx dt

∣
∣∣∣∣

≤
 
Qr,θ (x0,t0)

∣∣∣u(x, t) − (u η)r (t)
∣∣∣ dx dt

+
 
Qr,θ (x0,t0)

∣∣∣(u η)r,θ − (u η)r (t)
∣∣∣ dx dt

= A1 + A3.

(6.3)

Thus it suffices to estimate A1 and A3. In view of Lemma 6.1, we have

A1 ≤
( 

Qr,θ (x0,t0)

∣∣
∣u(x, t) − (u η)r (t)

∣∣
∣
p
dx dt

) 1
p

≤ C

(
rs p

|Qr,θ (x0, t0)|
ˆ t0

t0−θ

¨
Br (x0)×Br (x0)

|u(x, t) − u(y, t)|p
|x − y|N+s p

dx dy dt

) 1
p

,

for some C = C(N , s, p) > 0. Recalling that δ > s and using the spatial Hölder
continuity of u, we find that

A1 ≤ C Kδ r
δ, for some C = C(N , s, p) > 0. (6.4)

Indeed, by observing that for every x ∈ Br (x0) we have Br (x0) ⊂ B2 r (x) ⊂ B1/2,
we get

¨
Br (x0)×Br (x0)

|u(x, t) − u(y, t)|p
|x − y|N+s p

dx dy ≤ K p
δ

ˆ
Br (x0)

(ˆ
B2 r (x)

|x − y|(δ−s) p−N dy

)
dx

= K p
δ |Br (x0)|
(δ − s) p

N ωN (2 r)(δ−s) p,

where we used spherical coordinates to compute the last integral. Observe that the
width θ of the time interval does not come into play here.
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We now turn to A3 and first note that

 
Qr,θ (x0,t0)

∣∣∣(u η)r,θ − (u η)r (t)
∣∣∣ dx dt =

 t0

t0−θ

∣∣∣(u η)r,θ − (u η)r (t)
∣∣∣ dt

=
 t0

t0−θ

∣∣∣∣

 t0

t0−θ

[
(u η)r (τ ) − (u η)r (t)

]
dτ

∣∣∣∣ dt

≤
 t0

t0−θ

 t0

t0−θ

∣∣∣(u η)r (τ ) − (u η)r (t)
∣∣∣ dτ dt,

thus

A3 ≤ sup
T0,T1∈(t0−θ,t0]

∣∣∣(u η)r (T0) − (u η)r (T1)
∣∣∣ . (6.5)

If T0, T1 ∈ (t0−θ, t0]with T0 < T1, we use the weak formulation (3.2) with φ(x, t) =
η(x) and f = 0, to obtain

|Br (x0)|
∣
∣∣(u η)r (T0) − (u η)r (T1)

∣
∣∣

=
∣∣∣∣

ˆ
Br (x0)

u(x, T0) η(x) dx −
ˆ
Br (x0)

u(x, T1) η(x) dx

∣∣∣∣

=
∣∣∣∣

ˆ T1

T0

¨
RN×RN

Jp(u(x, τ ) − u(y, τ )) (η(x) − η(y)) dμ(x, y) dτ

∣∣∣∣

≤
∣∣∣∣

ˆ T1

T0

¨
Br (x0)×Br (x0)

Jp(u(x, τ ) − u(y, τ )) (η(x) − η(y)) dμ(x, y) dτ

∣∣∣∣

+2

∣∣
∣∣∣

ˆ T1

T0

¨
(RN \Br (x0))×Br/2(x0)

Jp(u(x, τ ) − u(y, τ )) η(x) dμ(x, y) dτ

∣∣
∣∣∣

= J1 + J2. (6.6)

In order to control J2, we claim that for t ∈ [−1/2, 0], x ∈ Br (x0) and y ∈ R
N ,

|u(x, t) − u(y, t)| ≤ C |x − y|δ, for some C = C(Kδ, δ) > 0. (6.7)

Indeed, if y ∈ B1/2 this follows directly from the assumption. On the other hand, if
y ∈ R

N\B1/2, then by construction

|x − y|δ ≥ 8−δ ≥ 8−δ ‖u‖L∞(RN×[−1,0]) ≥ 8−δ

2
|u(x, t) − u(y, t)|.

Additionally, if y ∈ R
N\Br (x0) and x ∈ Br/2(x0), we have

|x − y| ≥ |y − x0| − |x − x0| ≥ |y − x0| − r

2
≥ 1

2
|y − x0|.
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Thus, by using this and (6.7), we get

J2 ≤ 2 (T1 − T0) ‖η‖L∞(Br/2(x0)) sup
t∈[−1/2,0]

¨
(RN \Br (x0))×Br/2(x0)

|u(x, t) − u(y, t)|p−1

|x − y|N+s p
dy dx

≤ C θ

¨
(RN \Br (x0))×Br/2(x0)

|x − y|(p−1) δ−N−s p dy dx

≤ C θ r N
ˆ
RN \Br (x0)

|x0 − y|(p−1) δ−N−s p dy

≤ C θ r N+δ (p−1)−s p,

for some C = C(δ, N , s, p, Kδ) > 0. Observe that we used that δ (p − 1) − s p < 0,
in order to assure that the integral on R

N\Br (x0) converges.
As for J1, we have for δ > s

J1 ≤ [η]Ws,p(Br (x0))

ˆ t0

t0−θ

(¨
Br (x0)×Br (x0)

|u(x, t) − u(y, t)|p dμ(x, y)

) p−1
p

dt

≤ C K p−1
δ r

N
p −s

ˆ t0

t0−θ

(¨
Br (x0)×Br (x0)

|x − y|δ p dμ(x, y)

) p−1
p

dt

≤ C K p−1
δ θ

(
r N+(δ−s) p

) p−1
p

r
N
p −s

= CK p−1
δ θ r N−s p+δ (p−1),

for some C = C(N , s, p, δ) > 0. By recalling (6.5) and using the estimates on J1 and
J2 in (6.6), we have thus shown that

A3 ≤ C (1 + K p−1
δ ) θ r δ (p−1)−s p, for some C = C(δ, N , s, p) > 0.

Hence, by also using (6.4) and (6.3), we get

A1 + A2 + A3 ≤ C Kδ r
δ + C K p−1

δ θ r δ (p−1)−s p. (6.8)

We now have to distinguish two cases:
• Case s p ≥ (p − 1). We choose θ as follows

θ = 1

8
rs p−δ (p−2).

Observe that since s p ≥ (p − 1), then �(s, p) = 1 and we always have5

s p − δ (p − 2) > 1. (6.9)

5Indeed, observe that

s p ≥ (p − 1) = (p − 2) + 1 > δ (p − 2) + 1,

thanks to the fact that 0 < δ < 1. This in turn implies (6.9).
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We thus obtain from (6.8)
 
Qr,θ (x0,t0)

|u − ur,θ | dx dt ≤ C r δ, for some C = C(δ, Kδ, N , s, p) > 0.

By the characterization of Campanato spaces onRN+1 with respect to a general metric
(see [11, Teorema 3.I] and also [16, Theorem 3.2]), this implies that u is δ−Hölder
continuous in Q1/4,1/4 with respect to the metric

d̃((x, τ1), (y, τ2)) = |x − y| + |τ1 − τ2|
1

s p−δ (p−2) .

By keeping (6.9) into account, we can infer that d̃ is a true metric. Thus, in particular,
we have the estimate

sup
x∈B1/4

|u(x, τ1) − u(x, τ2)| ≤ C |τ1 − τ2|γ , for γ = 1
s p

δ
− (p − 2)

,

where C = C(δ, Kδ, N , s, p) > 0. Observe that the continuous function

δ �→ 1
s p

δ
− (p − 2)

, for 0 < δ < 1,

is increasing and that

lim
δ↗1

1
s p

δ
− (p − 2)

= 1

s p − (p − 2)
.

Thus for every 0 < γ < 1/(s p − (p − 2)), there exists s < δ < 1 such that

γ = 1
s p

δ
− (p − 2)

.

The proof is over in this case.
• Case s p < (p − 1). In this case, we revert the hierarchy between time and space
and choose r as follows

(8 r)s p−(p−2) δ = θ, i.e. r = 1

8
θ

1
s p−(p−2) δ .

Observe that the exponent on θ is positive: indeed, for p = 2 this is straightforward,
while for p > 2 we use that

δ (p − 2) <
s p

p − 1
(p − 2) < s p.

We further notice that now

s p − (p − 2) δ ≤ 1, (6.10)



Vol. 21 (2021) Nonlinear fractional diffusion 4363

up to choose δ sufficiently close6 to s p/(p − 1). This time, we obtain from (6.8)
 
Qr,θ (x0,t0)

|u − ur,θ | dx dt ≤ C θ
δ

s p−(p−2) δ , for some C = C(δ, Kδ, N , s, p) > 0.

Again by the Campanato–type theorem of [11, Teorema 3.I], this shows that u is
(δ/(s p − (p − 2) δ))−Hölder continuous in Q1/4,1/4 with respect to the metric

d̃((x, τ1), (y, τ2)) = |x − y|s p−(p−2) δ + |τ1 − τ2|.
Observe that this is indeed ametric, thanks to (6.10). In particular, we have the estimate

sup
x∈B1/4

|u(x, τ1) − u(x, τ2)| ≤ C |τ1 − τ2|γ , for γ = 1
s p

δ
− (p − 2)

,

where C = C(δ, Kδ, N , s, p) > 0. We now use that the continuous function

δ �→ 1
s p

δ
− (p − 2)

, 0 < δ <
s p

p − 1
,

is increasing and that

lim
δ↗ s p

p−1

1
s p

δ
− (p − 2)

= 1.

Thus, for every γ < 1, there exists s < δ < s p/(p − 1) such that

γ = 1
s p

δ
− (p − 2)

.

This concludes the proof in this case, as well. �

7. Proof of the main theorem

Before proving our main result, we will need the following lemma, which allows
us to control the parabolic Sobolev-Slobodeckiı̆ seminorm of a local weak solution u
in terms of its L∞ norm.

6More precisely, it is sufficient to take

δ = s p

p − 1
− ε,

with 0 < ε < s/(p − 1) such that

ε (p − 2) ≤ 1 − s p

p − 1
.

Such a choice is feasible, since now s p < (p − 1).
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Lemma 7.1. Let 
 ⊂ R
N be a bounded and open set, I = (t0, t1], p ≥ 2 and

0 < s < 1. Let u be a local weak solution of

∂t u + (−�p)
su = 0, in 
 × I,

such that

u ∈ L∞
loc(I ; L∞(RN )).

Then for every x0 ∈ 
 and T0 ∈ I such that Q2 R,2 Rs p (x0, T0) � 
 × I , we have

(

R−N
ˆ T0

T0− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

≤ C
(
‖u‖L∞(RN×[T0−Rs p,T0]) + 1

)
,

for some C = C(N , s, p) > 0.

Proof. Without loss of generality, we may suppose that x0 = 0 and T0 = 0. Let us
set

k = ‖u‖L∞(RN×[−Rs p,0]) + 1 and ũ = u + k.

Then ũ is still a local weak solution in 
 × I and ũ ≥ 1 in R
N × [−Rs p, 0]. For all

φ(x, t) = η(x) ψ(t) with

ψ ∈ C∞ such that ψ(t) = 0 for t ≤ −Rs p and ψ(0) = 1,

and η ∈ C∞
0 (B2 R), we get from a slight modification of [31, Lemma 2.2]

ˆ 0

−Rs p

[
ũ(·, t) φ(·, t)

]p

Ws,p(BR)
dt

≤ C
ˆ 0

−Rs p

¨
B2 R×B2 R

max
{
ũ(x, t), ũ(y, t)

}p |φ(x, t) − φ(y, t)|p dμ dt

+ C

(

sup
x∈supp η

ˆ
RN \B2 R

dy

|x − y|N+s p

)(ˆ 0

−Rs p

ˆ
B2 R

ũ(x, t)p φ(x, t)p dxdt

)

+ C
ˆ 0

−Rs p

(

sup
x∈supp η

ˆ
RN \B2 R

(u(y, t)+)p−1

|x − y|N+s p
dy

ˆ
B2 R

ũ(x, t) φ(x, t)p dx

)

dt

+ 1

2

ˆ 0

−Rs p

ˆ
B2 R

ũ(x, t)2
(

∂φ p

∂t

)

+
dx dt +

ˆ
B2 R

ũ(x, 0) dx .

We choose η such that

η ≡ 1 in BR, |∇η| ≤ C

R
and η ≡ 0 in RN\B 3

2 R,

and ψ such that

ψ ≡ 1 in

[
−7

8
Rs p, 0

]
and |ψ ′| ≤ C

Rs p
.
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It is then a routine matter to show that
ˆ 0

− 7
8 Rs p

[
u
]p
Ws,p(BR)

dt =
ˆ 0

− 7
8 Rs p

[
ũ
]p
Ws,p(BR)

dt ≤ C RN (k p + k2 + k) ≤ C RN k p,

where C = C(N , s, p) > 0 and we used that p ≥ 2 and k ≥ 1. This proves the
claimed estimate. �

We are now in the position to prove Theorem 1.2.

Proof of Theorem 1.2. The continuity in space is contained in Theorem 5.2, thus we
only need to prove the continuity in time. We take for simplicity T0 = 0. If u is a local
weak solution as in the statement, we obtain from (5.2)

sup
t∈
[
− Rs p

2 ,0
][u(·, t)]Cδ(BR/2(x0)) ≤ C

Rδ

(
‖u‖L∞(RN×[−Rs p,0]) + 1

)

+ C

Rδ

(

R−N
ˆ 0

− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

.

An application of Lemma 7.1 gives

sup
t∈
[
− Rs p

2 ,0
][u(·, t)]Cδ(BR/2(x0)) ≤ C

Rδ

(‖u‖L∞(RN×[−Rs p,0]) + 1
)
. (7.1)

We set

NR = ‖u‖L∞(RN×[−Rs p,0]) + 1,

then for α ∈ [−Rs p(1 − N 2−p
R ), 0], we define the rescaled function

uR,α(x, t) = 1

NR
u

(

R x,
1

N p−2
R

Rs p t + α

)

.

This is a local weak solution in B2(x0) × (−2, 0] satisfying the hypothesis of Propo-
sition 6.2. Indeed, by construction

‖uR,α‖L∞(RN×[−1,0]) ≤ 1,

and the estimate on the spatial Hölder seminorm (6.2) of uR,α follows from (7.1).
From Proposition 6.2 we obtain

sup
x∈B1/4

[uR,α(x, ·)]Cγ ([−1/4,0]) ≤ C,

for every 0 < γ < �(s, p). The claimed result follows by scaling back and varying α

as in the proof of Theorem 4.2. �
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Appendix A. Existence for an initial boundary value problem

In order to give the definition ofweak solution for an initial boundary value problem,
we need to define a suitable functional space. We assume that 
 � 
′ ⊂ R

N , where

′ is a bounded open set in RN . Given a function

ψ ∈ Ws,p(
′) ∩ L p−1
s p (RN ),

we define as in [21] (see also [4, Proposition 2.12]) the space

Xs,p
ψ (
,
′) =

{
v ∈ Ws,p(
′) ∩ L p−1

s p (RN ) : v = ψ on RN\

}

.

When ψ ≡ 0, the boundedness of 
′ entails that

Xs,p
0 (
,
′) = {v ∈ Ws,p(
′) ∩ L p−1

s p (RN ) : v = 0 on R
N\
} ⊂ Ws,p(
′).

We endow the space Xs,p
0 (
,
′) with the norm Ws,p(
′), then this is a reflexive

Banach space. Thanks to the previous inclusion, we also have that

(Ws,p(
′))∗ ⊂ (Xs,p
0 (
,
′))∗.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Definition A.1. Let I = [t0, t1] and p ≥ 2. With the notation above, assume that the
functions u0, f and g satisfy

u0 ∈ L2(
),

f ∈ L p′
(I ; (Xs,p

0 (
,
′))∗),
g ∈ L p(I ;Ws,p(
′)) ∩ L p−1(I ; L p−1

s p (RN )) and ∂t g ∈ L p′
(I ; (Ws,p(
′))∗).

We say that u is a weak solution of the initial boundary value problem
⎧
⎨

⎩

∂t u + (−�p)
su = f, in 
 × I,
u = g, on (RN\
) × I,

u(·, t0) = u0, on 
,

(A.1)

if the following properties are verified:

• u ∈ L p(I ;Ws,p(
′)) ∩ L p−1(I ; L p−1
s p (RN )) ∩ C(I ; L2(
));

• u ∈ Xs,p
g(t)(
,
′) for almost every t ∈ I , where (g(t))(x) = g(x, t);

• limt→t0 ‖u(·, t) − u0‖L2(
) = 0;
• for every J = [T0, T1] ⊂ I and everyφ ∈ L p−1(J ; Xs,p

0 (
,
′))∩C1(J ; L2(
))

−
ˆ
J

ˆ



u(x, t) ∂tφ(x, t) dx dt

+
ˆ
J

¨
RN×RN

Jp(u(x, t) − u(y, t)) (φ(x, t) − φ(y, t))

|x − y|N+s p
dx dy dt

=
ˆ




u(x, T0) φ(x, T0) dx −
ˆ




u(x, T1) φ(x, T1) dx

+
ˆ
J
〈 f (·, t), φ(·, t)〉 dt.

The starting point for proving the existence of weak solutions is an abstract theorem
for parabolic equations in Banach spaces. Before stating the theorem, we will briefly
explain its framework. Let V be a separable reflexive Banach space and let H be a
Hilbert space that we identify with its dual, i.e. H∗ = H . Suppose that V is dense and
continuously embedded in H . If v ∈ V and h ∈ H , we identify h as an element of V ∗
through the relation7

〈h, v〉 = (h, v)H . (A.2)

Here 〈·, ·〉 denotes the duality pairing between V and V ∗ and (·, ·)H denotes the scalar
product in H . Let I be an interval and 1 < p < ∞. By [28, Proposition 1.2, Chapter
III], we have

Wp(I ) := {v ∈ L p(I ; V ) : v′ ∈ L p′
(I ; V ∗)} ⊂ C(I ; H), (A.3)

7With these identifications, we have V ⊂ H ⊂ V ∗. This is sometimes called in the literature Gelfand
triple.
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and

for v ∈ Wp(I ), t �→ ‖v(t)‖2H is absolutely continuous
d

dt
‖v(t)‖2H = 2 〈v′(t), v(t)〉.

More generally, by [28, Corollary 1.1, Chapter III], for every u, v ∈ Wp(I ) the scalar
product t �→ (u(t), v(t))H is an absolutely continuous function and there holds

d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉 + 〈v′(t), u(t)〉, for a. e. t ∈ I. (A.4)

We recall that an operator A : V → V ∗ is said to be

• monotone if for every u, v ∈ V ,

〈A(u) − A(v), u − v〉 ≥ 0;
• hemicontinuous if the real function λ �→ 〈A(u+λ v), v〉 is continuous, for every
u, v ∈ V .

Theorem A.2. Let V be a separable, reflexive Banach space and let V = L p(I ; V ),
for 1 < p < ∞, where I = [t0, t1]. Suppose that H is a Hilbert space such that V is
dense and continuously embedded in H and that H is embedded into V ∗ according
to the relation (A.2). Assume that the family of operators A(t, ·) : V → V ∗, t ∈ I
satisfies:

(i) for every v ∈ V , the function A(·, v) : I → V ∗ is measurable;
(ii) for almost every t ∈ I , the operator A(t, ·) : V → V ∗ is monotone, hemicon-

tinuous and bounded by

‖A(t, v)‖V ∗ ≤ C
(
‖v‖p−1

V + k(t)
)
, for v ∈ V and k ∈ L p′

(I ),

(iii) there exist a real number β > 0 and a function � ∈ L1(I ) such that

〈A(t, v), v〉 + �(t) ≥ β ‖v‖p
V , for a. e. t ∈ I and v ∈ V .

Then for each f ∈ V∗ = L p′
(I ; V ∗) and u0 ∈ H, there exists a unique u ∈ Wp(I )

satisfying

u′(t) + A(t, u(t)) = f (t), in V∗, u(t0) = u0 in H.

This means that u ∈ V , u′ ∈ V∗ andˆ
I
〈u′(t), φ(t)〉 dt +

ˆ
I
〈A(t, u(t)), φ(t)〉 dt =

ˆ
I
〈 f (t), φ(t)〉 dt, for all φ ∈ V.

Proof. The existence of a unique solution u ∈ V is contained in [28, Proposition 4.1,
Chapter III]. The condition (i i i) is slightly different here, due to the presence of the
function �(t), but the proof of [28, Proposition 4.1, Chapter III] goes through with
minor changes. �
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In order to prove existence for our problem (A.1), we will use Theorem A.2 with
the choice V = Xs,p

0 (
,
′). This is the content of the next result, which generalizes
[25, Theorem 2.5]. The latter only deals with the case f ≡ g ≡ 0.

Theorem A.3. Let p ≥ 2, let I = [t0, t1] and suppose that g satisfies

g ∈ L p(I ;Ws,p(
′)) ∩ L p(I ; L p−1
s p (RN )), ∂t g ∈ L p′

(I ; (Ws,p(
′))∗),
lim
t→t0

‖g(·, t) − g0‖L2(
) = 0, for some g0 ∈ L2(
).

Suppose also that

f ∈ L p′
(I ; (Xs,p

0 (
,
′))∗).

Then for any initial datum u0 ∈ L2(
), there exists a unique weak solution u to
problem (A.1).

Proof. We denote by g the mapping g : I → Ws,p(
′), given by (g(t))(x) = g(x, t).
For almost every t ∈ I , we define the operator

At : Xs,p
g(t)(
,
′) → (Ws,p(
′))∗,

by

〈At (v), φ〉 =
¨


′×
′

Jp(v(x) − v(y)) (φ(x) − φ(y))

|x − y|N+s p
dx dy

+ 2
¨


×(RN \
′)

Jp(v(x) − g(y, t)) φ(x)

|x − y|N+s p
dx dy.

It is easy to check thatAt (v) ∈ (Ws,p(
′))∗ whenever v ∈ Xs,p
g(t)(
,
′). Additionally,

At is a monotone operator, see [21, Lemma 3].We now defineA : Xs,p
0 (
,
′)× I →

(Ws,p(
′))∗ to be the operator defined by

A(v, t) = At (v + g(t)).

Observe that this is well-defined, since

v + g(t) ∈ Xs,p
g(t)(
,
′), for every v ∈ Xs,p

0 (
,
′).

We next show that the operator A, together with the spaces

V = Xs,p
0 (
,
′), V = L p(I ; Xs,p

0 (
,
′)) and H = L2(
),

fits into the framework of Theorem A.2. Since p ≥ 2 and 
′ is bounded, Xs,p
0 (
,
′)

is dense and continuously embedded in L2(
). This follows from Hölder’s inequality
and the fact that smooth compactly supported functions are dense in both spaces. Note
that A inherits the property of monotonicity from At since

〈A(u, t) − A(v, t), u − v〉 = 〈A(u, t) − A(v, t), u + g(t) − (v + g(t))〉
= 〈At (u + g(t)) − At (v + g(t)), u + g(t)

− (v + g(t))〉 ≥ 0.
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We next claim that

|〈A(v, t), φ〉| ≤ C‖v‖p−1
Ws,p(
′) ‖φ‖Ws,p(
′)

+C
(
‖g(t)‖p−1

Ws,p(
′) + ‖g(t)‖p−1

L p−1
sp (RN )

)
‖φ‖Ws,p(
′). (A.5)

We have

〈A(v, t), φ〉 =
¨


′×
′

Jp(v(x) − v(y) + (g(x, t) − g(y, t))) (φ(x) − φ(y))

|x − y|N+s p
dx dy

+ 2
¨


×(RN \
′)

Jp(v(x) + g(x, t) − g(y, t)) φ(x)

|x − y|N+s p
dx dy,

(A.6)

The first term on the right-hand side of (A.6) can be bounded by

C
(
‖v‖p−1

Ws,p(
′) + ‖g(t)‖p−1
Ws,p(
′)

)
‖φ‖Ws,p(
′),

using Hölder’s inequality. For the second term we observe that, when x ∈ 
 and
y ∈ R

N\
′,
1

C

1

1 + |y|N+s p
≤ 1

|x − y|N+s p
≤ C

1 + |y|N+s p
,

whereC > 1 depends only on the distance between
 and
′. Since 1/(1+|y|N+s p) ∈
L1(RN ), the second term in the right-hand side of (A.6) can be estimated by

C
ˆ




(
|v(x)|p−1 + |g(x, t)|p−1

)
|φ(x)| dx

+ C

(ˆ
RN \
′

|g(y, t)|p−1

1 + |y|N+s p
dy

) ˆ



|φ(x)|dx

≤ C
(
‖v‖p−1

L p(
) + ‖g(t)‖p−1
L p(
)

)
‖φ‖L p(
) + ‖g(t)‖p−1

L p−1
s p (RN )

‖φ‖L1(
)

≤ C
(
‖v‖p−1

Ws,p(
′) + ‖g(t)‖p−1
Ws,p(
′) + ‖g(t)‖p−1

L p−1
s p (RN )

)
‖φ‖Ws,p(
′),

wherewe used the continuous inclusionWs,p(
′) ⊂ L p(
). This finally shows (A.5).
Observe that

t �→ ‖g(t)‖p−1
Ws,p(
′) + ‖g(t)‖p−1

L p−1
s p (RN )

belongs to L p′
(I ),

thanks to the assumptions on g. Thus in order to verify (i i) of Theorem A.2, we are
left with proving hemicontinuity. For this, fixed t ∈ I and λ, λ0 ∈ R, we consider

〈A(u + λ v, t), v〉 − 〈A(u + λ0 v, t), v〉, for u, v ∈ Xs,p
0 (
,
′).

In order to show that this differences goes to 0 as λ goes to λ0, it is sufficient to write

〈A(u + λ v, t), v〉 − 〈A(u + λ0 v, t), v〉 = 〈A(u + λ v, t) − A(u + λ0 v, t), v〉
= 〈At (u + g(t) + λ v)

− A(u + g(t) + λ0 v), v〉
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and then use [21, Lemma 3]. This proves that A is hemicontinuous for almost every
t ∈ I .

Finally, as for hypothesis (i i i) of TheoremA.2, we observe that if v ∈ Xs,p
0 (
,
′),

then by using Poincaré inequality we have

‖v‖Ws,p(
′) = ‖v‖L p(
′) + [v]Ws,p(
′) ≤ C [v]Ws,p(
′),

for a constant C = C(N , p, s,
,
′) > 0. Additionally, using Hölder’s inequality
and Young’s inequality, we obtain

〈A(v, t), v〉 ≥ c [v]pWs,p(
′) − C1 ‖g(t)‖p
Ws,p(
′) − C2 ‖g(t)‖p

L p−1
s p (RN )

.

By combining this with the previous estimate, hypothesis (i i i) of Theorem A.2 is
checked. According to (A.3), g ∈ C(I ; L2(
)) and we may define g0 = g(t0) in
L2(
). From Theorem A.2, for every u0 ∈ L2(
) we obtain a unique solution

v ∈ Wp(I ) =
{
ϕ ∈ L p(I ; Xs,p

0 (
,
′)) : ϕ′ ∈ L p′
(I ; (Xs,p

0 (
,
′))∗)
}
,

to the problem

v′(t) + A(v(t), t) = −g′(t) + f (t) in L p′
(I ; (Xs,p

0 (
,
′))∗), with v(t0) = u0 − g0.

Observe that again by (A.3), we also have v ∈ C(I ; L2(
)). Since v is a solution, we
have

ˆ t1

t0
〈v′(t) + g′(t), φ(t)〉 dt +

ˆ t1

t0
〈At (v(t) + g(t)), φ(t)〉 dt =

ˆ t1

t0
〈 f (t), φ(t)〉 dt,

for every φ ∈ L p(I ; Xs,p
0 (
,
′)). Upon setting u = v + g, we find that

u ∈ C(I ; L2(
)) ∩ L p(I ; Xs,p
g(·)(
,
′)) ∩ L p(I ; L p−1

s p (RN )),

with ∂t u ∈ L p′
(I ; (Xs,p

0 (
,
′))∗),

and it verifies

ˆ t1

t0
〈u′(t), φ(t)〉 dt +

ˆ t1

t0
〈At (u(t)), φ(t)〉 dt =

ˆ t1

t0
〈 f (t), φ(t)〉 dt,

for every φ ∈ L p(I ; Xs,p
0 (
,
′)). In particular, if we take J = [T0, T1] ⊂ I and

φ ∈ L p(J ; Xs,p
0 (
,
′)), by extending φ to be 0 outside J we get

ˆ T1

T0
〈u′(t), φ(t)〉 dt +

ˆ T1

T0
〈At (u(t)), φ(t)〉 dt =

ˆ T1

T0
〈 f (t), φ(t)〉 dt
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If now the test function φ is further supposed to belong to L p(J ; Xs,p
0 (
,
′)) ∩

C1(J ; L2(
)), by using (A.4) we can integrate by parts

ˆ T1

T0
〈u′(t), φ(t)〉 dt =

ˆ T1

T0

d

dt
(u, φ(t))L2(
) dt −

ˆ T1

T0
〈u(t), φ′(t)〉 dt

= (u(T1), φ(T1))L2(
) − (u(T0), φ(T0))L2(
) −
ˆ T1

T0
〈u(t), φ′(t)〉 dt

=
ˆ




u(x, T1) φ(x, T1) dx −
ˆ




u(x, T0) φ(x, T0) dx

−
ˆ T1

T0
〈u(t), φ′(t)〉 dt.

Thus we obtained
ˆ




u(x, T1) φ(x, T1) dx −
ˆ




u(x, T0) φ(x, T0) dx −
ˆ
J
〈u(t), φ′(t)〉 dt

+
ˆ
J
〈At (u(t)), φ〉 dt =

ˆ
J
〈 f (t), φ(t)〉 dt,

for every J = [T0, T1] ⊂ I and every φ ∈ L p(J ; Xs,p
0 (
,
′)) ∩ C1(J ; L2(
)). By

recalling the definition of At , this shows u is a weak solution of (A.1). �

Proposition A.4. (Comparison principle) Let p ≥ 2, let I = [t0, t1] and suppose that
g satisfies

g ∈ L p(I ;Ws,p(
′)) ∩ L p(I ; L p−1
s p (RN )), ∂t g ∈ L p′

(I ; (Ws,p(
′))∗),
lim
t→t0

‖g(·, t) − g0‖L2(
)=0, for some g0 ∈ L2(
).

Given an initial datum u0 ∈ L2(
), we consider the unique weak solution u to the
initial boundary value problem

⎧
⎨

⎩

∂t u + (−�p)
su = 0, in 
 × I,
u = g, on (RN\
) × I,

u(·, t0) = u0, on 
.

If there exists M ∈ R such that

u0 ≤ M in 
 and g ≤ M in RN × I,

then we also have

u(x, t) ≤ M, in RN × I.
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Proof. We take J = [T0, T1] � (t0, t1), by proceeding as in the first part of Lemma3.3,
we obtainˆ T1

T0

¨
RN×RN

(
Jp(u(x, t) − u(y, t))

) (
φε(x, t) − φε(y, t)

)
dμ(x, y) dt

+
ˆ




ˆ T1− ε
2

T0+ ε
2

∂t u
ε(x, t) φ(x, t) dt dx + �(ε)

=
ˆ




[
u(x, T0) φ(x, T0) − uε

(
x, T0 + ε

2

)
φ
(
x, T0 + ε

2

)]
dx

+
ˆ




[
uε
(
x, T1 − ε

2

)
φ
(
x, T1 − ε

2

)
− u(x, T1) φ(x, T1)

]
dx,

for every φ ∈ L p((−1, 0); Xs,p
0 (
,
′))∩C1((−1, 0); L2(
)). We still use the nota-

tion φε and uε for the convolution in the time variable, as defined in (3.3). Moreover,
we still indicate by �(ε) the error term (3.7). We now take the test function8

φ(x, t) = (uε(x, t) − M)+.

Observe that this function is only Lipschitz in time, but it is not difficult to see that
Lipschitz functions are still feasible test functions (by a simple density argument).
This gives
ˆ




ˆ T1− ε
2

T0+ ε
2

∂t u
ε(x, t) φ(x, t) dt dx =

ˆ



ˆ T1− ε
2

T0+ ε
2

∂t u
ε(x, t) (uε(x, t) − M)+ dt dx

=
ˆ




ˆ T1− ε
2

T0+ ε
2

∂t
(uε(x, t) − M)2+

2
dt dx

= 1

2

ˆ



(
uε
(
x, T1 − ε

2

)
− M

)2

+
dx

− 1

2

ˆ
B2

(
uε
(
x, T0 + ε

2

)
− M

)2

+
dx .

On the other handˆ



[
u(x, T0) φ(x, T0) − uε

(
x, T0 + ε

2

)
φ
(
x, T0 + ε

2

)]
dx

+
ˆ




[
uε
(
x, T1 − ε

2

)
φ
(
x, T1 − ε

2

)
− u(x, T1) φ(x, T1)

]
dx

=
ˆ




[
u(x, T0) (uε(x, T0) − M)+ − uε

(
x, T0 + ε

2

) (
uε
(
x, T0 + ε

2

)
− M

)

+

]
dx

+
ˆ




[
uε
(
x, T1 − ε

2

) (
uε
(
x, T1 − ε

2

)
− M

)

+
− u(x, T1) (uε(x, T1) − M)+

]
dx .

8By construction, for x ∈ R
N \
 and t ∈ J we have

uε(x, t) = 1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

)
u(x, t − σ) dσ = 1

ε

ˆ ε
2

− ε
2

ζ
(σ

ε

)
g(x, t − σ) dσ ≤ M,

for ε  1. Thus (uε(·, t) − M)+ ∈ Xs,p
0 (
,
′).
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By taking the limit as ε goes to 0, we thus get
ˆ T1

T0

¨
RN×RN

(
Jp(u(x, t) − u(y, t))

)

×
(
(u(x, t) − M)+ − (u(y, t) − M)+

)

dμ(x, y) dt + 1

2

ˆ



(u (x, T1) − M)2+ dx − 1

2

ˆ



(u (x, T0) − M)2+ dx = 0.

By using that (see [5, Lemma A.2])

Jp(a − b) ((a − M)+ − (b − M)+) ≥ |(a − M)+ − (b − M)+|p,
we thus get

ˆ T1

T0

[
(u − M)+

]p
Ws,p(RN )

dt ≤ 1

2

ˆ



(u (x, T0) − M)2+ dx

−1

2

ˆ



(u (x, T1) − M)2+ dx .

This is valid for every t0 < T0 < T1 < t1. By using the Monotone Convergence
Theorem on the left-hand side and the fact that u ∈ C(I ; L2(
)) on the right-hand
side, we can pass to the limit as T0 goes to t0 and obtain

0 ≤
ˆ T1

t0

[
(u − M)+

]p
Ws,p(RN )

dt ≤ 1

2

ˆ



(u0(x) − M)2+ dx

− 1

2

ˆ



(u (x, T1) − M)2+ dx

= −1

2

ˆ



(u (x, T1) − M)2+ dx .

We used that u0 ≤ M on 
, by assumption. This implies that

u(x, T1) ≤ M, for a. e. x ∈ 
.

Since T1 is arbitrary, we finally get that

u(x, t) ≤ M, for a. e. x ∈ 
, for t ∈ I.

This concludes the proof. �
As a straightforward consequence of the previous result, we get the following

Corollary A.5. (Global L∞ estimate) Under the assumptions of Proposition A.4,
assume further that

g ∈ L∞(I ; L∞(RN )) and u0 ∈ L∞(
).

Then

‖u‖L∞(RN×I ) ≤ ‖u0‖L∞(
) + ‖g‖L∞(RN×I ).
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Proof. By using Proposition A.4 with

M = ‖u0‖L∞(
) + ‖g‖L∞(RN×I ),

we get u ≤ M . To get the lower bound, it is sufficient to observe that −u solves
the initial boundary value problem for the same equation, with data −g ≤ M and
−u0 ≤ M . By Proposition A.4 again, we get −u ≤ M , as well. �

We also include the following comparison principle with bounded subsolutions.

Proposition A.6. (Comparison with subsolutions) Let p ≥ 2, I = [t0, t1] and sup-
pose that v ∈ L∞(I ; L∞(RN )) is a local weak subsolution in 
 × I satisfying

v ∈ L p(I ;Ws,p(
′)) ∩ C(I ; L2(
)), ∂tv ∈ L p′
(I ; (Ws,p(
′))∗),

lim
t→t0

‖v(·, t) − v0‖L2(
) = 0, for some v0 ∈ L2(
).

Consider the unique weak solution u to the initial boundary value problem

⎧
⎨

⎩

∂t u + (−�p)
su = 0, in 
 × I,
u = v, on R

N\
 × I,
u(·, t0) = v0, on 
.

Then

u(x, t) ≥ v(x, t), in RN × I.

Proof. The proof is almost identical with the proof of Proposition A.4. We give some
details below. Take J = [T0, T1] � (t0, t1). Again, as in the first part of Lemma 3.3,
we obtain

ˆ T1

T0

¨
RN×RN

(
(Jp(v(x, t) − v(y, t)) − Jp(u(x, t) − u(y, t))

)

(
φε(x, t) − φε(y, t)

)
dμ(x, y) dt

+
ˆ




ˆ T1− ε
2

T0+ ε
2

∂t (v
ε(x, t) − uε(x, τ )) φ(x, t) dt dx + �(ε)

≤
ˆ




[
(v(x, T0) − u(x, T0)) φ(x, T0)

−
(
vε
(
x, T0 + ε

2

)
− uε

(
x, T0 + ε

2

))

φ
(
x, T0 + ε

2

) ]
dx

+
ˆ




[ (
vε
(
x, T1 − ε

2

)
− uε

(
x, T1 − ε

2

))
φ
(
x, T1 − ε

2

)

− (v(x, T1) − u(x, T1)) φ(x, T1)

]
dx,
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for every non-negative φ ∈ L p((−1, 0); Xs,p
0 (
,
′)) ∩ C1((−1, 0); L2(
)). The

quantity �(ε) is still defined in (3.7), with v − u in place of u. Observe that now we
have an inequality, since v is merely a subsolution. Take the test function

φ(x, t) = (vε(x, t) − uε(x, t))+.

This gives

ˆ



ˆ T1− ε
2

T0+ ε
2

∂t (v
ε(x, t) − uε(x, τ )) φ(x, t) dt dx

=
ˆ




ˆ T1− ε
2

T0+ ε
2

∂t (v
ε(x, t) − uε(x, t)) (vε(x, t) − uε(x, t))+ dt dx

=
ˆ




ˆ T1− ε
2

T0+ ε
2

∂t
(vε(x, t) − uε(x, t))2+

2
dt dx

= 1

2

ˆ



(
vε
(
x, T1 − ε

2

)
− uε

(
x, T1 − ε

2

))2

+
dx

− 1

2

ˆ
B2

(
vε
(
x, T0 + ε

2

)
− uε

(
x, T0 + ε

2

))2

+
dx .

As before, the termsˆ



[(v(x, T0) − u(x, T0)) φ(x, T0)

−
(
vε
(
x, T0 + ε

2

)

−uε
(
x, T0 + ε

2

))
φ
(
x, T0 + ε

2

)]
dx

+
ˆ




[(
vε
(
x, T1 − ε

2

)
− uε

(
x, T1 − ε

2

))
φ
(
x, T1 − ε

2

)

−(v(x, T1) − u(x, T1)) φ(x, T1) ] dx,

go to zero, as ε goes to 0. Therefore, by taking the limit as ε goes to 0, we arrive at

ˆ T1

T0

¨
RN×RN

(
Jp(v(x, t) − v(y, t)) − Jp(u(x, t) − u(y, t))

)

×
(
(v(x, t) − u(x, t))+ − (v(y, t) − u(y, t))+

)
dμ(x, y) dt

+ 1

2

ˆ



(v (x, T1) − u (x, T1))
2+ dx − 1

2

ˆ
B2

(v (x, T0) − u (x, T0))
2+ dx ≤ 0.

By [4, Lemma A.3], we have
(
Jp(a − b) − Jp(c − d)

) (
(a − c)+ − (b − d)+

)

≥ C |a − b − (c − d)|p−1 |(a − c)+ − (b − d)+|
≥ C |(a − c)+ − (b − d)+|p,
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for some C = C(p) > 0. Then

C
ˆ T1

T0

[
(v − u)+

]p
Ws,p(RN )

dt

≤ 1

2

ˆ



(v (x, T0) − u (x, T0))
2+ dx − 1

2

ˆ



(u (x, T1) − u (x, T1))
2+ dx,

for every t0 < T0 < T1 < t1. We can now let T0 converge to t0 and obtain

0 ≤ C
ˆ T1

t0

[
(v − u)+

]p
Ws,p(RN )

dt ≤ −1

2

ˆ



(v (x, T1) − u (x, T1))
2+ dx .

This implies

u(x, T1) ≥ v(x, T1), for a. e. x ∈ 
.

Since T1 is arbitrary, this entails the desired result. �

Appendix B. Some complements to the proof of Lemma 3.3

We keep on using the same notation of Lemma 3.3. For every 0 < |h| < h0/4 and
0 < ε < ε0, we set

Aε :=
ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
((

F(δhu
ε(x, t)) τε(t)

)ε

η(x)p −
(
F(δhu

ε(y, t)) τε(t)
)ε

η(y)p
)
dμ dt,

and

A :=
ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
((

F(δhu(x, t)) τ (t)
)

η(x)p −
(
F(δhu(y, t)) τ (t)

)
η(y)p

)
dμ dt.

Then

|Aε − A| =
∣
∣∣
∣
∣

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
(((

F(δhu
ε(x, t)) τε(t)

)ε − F(δhu(x, t)) τ (t)
)

η(x)p

−
((

F(δhu
ε(y, t)) τε(t)

)ε − F(δhu(y, t)) τ (t)
)

η(y)p
)
dμ dt

∣
∣∣
∣
∣
.

We need to show that

lim
ε→0

|Aε − A| = 0.
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We start by splitting the integral as follows

ˆ T1

T0

¨
RN×RN

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
(((

F(δhu
ε(x, t)) τε(t)

)ε − F(δhu(x, t)) τ (t)
)

η(x)p

−
((

F(δhu
ε(y, t)) τε(t)

)ε − F(δhu(y, t)) τ (t)
)

η(y)p
)
dμ dt

=
ˆ T1

T0

¨
B2−h×B2−h

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
(((

F(δhu
ε(x, t)) τε(t)

)ε − F(δhu(x, t)) τ (t)
)

η(x)p

−
((

F(δhu
ε(y, t)) τε(t)

)ε − F(δhu(y, t)) τ (t)
)

η(y)p
)
dμ dt

+ 2
ˆ T1

T0

¨
B2−2 h×(RN \B2−h)

(
Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

)

×
((

F(δhu
ε(x, t)) τε(t)

)ε − F(δhu(x, t)) τ (t)
)

η(x)p dμ dt =: �1(ε) + �2(ε).

We used that η vanishes on R
N \B2−2 h . We now observe that

ˆ T1

T0

[(
F(δhu

ε(·, t)) τε(t)
)ε

ηp
]p

Ws,p(B2−2 h)
dt

≤ C ‖η‖p2L∞
ˆ T1

T0

[(
F(δhu

ε(·, t)) τε(t)
)ε ]p

Ws,p(B2−2 h)
dt

+ C ‖∇η‖pL∞ ‖η‖p (p−1)
L∞

ˆ T1

T0

∥
∥∥
(
F(δhu

ε(·, t)) τε(t)
)ε ∥∥∥

p

L p(B2−2 h)
dt ≤ C,

where we used the properties of convolutions, the fact that F is locally Lipschitz and the uniform
L∞ bound (3.12). Thus, up to extracting a subsequence, we can infer weak convergence in

L p([T0, T1];Ws,p(B2−2 h)),

of
(
F(δhu

ε(x, t)) τε(t)
)ε

ηp,

to the function

F(δhu(x, t)) τ (t) ηp.

By definition, this is the same as saying that the function

(
F(δhu

ε(x, t)) τε(t)
)ε

η(x)p −
(
F(δhu

ε(y, t)) τε(t)
)ε

η(y)p

|x − y| Np +s
,

weakly converges in L p([T0, T1]; L p(B2−2 h × B2−2 h)). This permits to conclude that

lim
ε→0

�1(ε) = 0,
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thanks to the fact that

Jp(uh(x, t) − uh(y, t)) − Jp(u(x, t) − u(y, t))

|x − y|
N
p′ +s (p−1)

,

belongs to L p′
([T0, T1]; L p′

(B2−2 h × B2−2 h)).
For �2(ε) we use a similar argument. More precisely, we observe that if we set

F(x, t) =
ˆ
RN \B2−h

Jp(uh(x, t) − uh(y, t))

|x − y|N+s p
dy, for a. e. x ∈ B2−2 h , t ∈ [T0, T1],

we have

|F(x, t)| ≤ Ch

ˆ
RN \B2−h

|uh(x, t)|p−1 + |uh(y, t)|p−1

1 + |y|N+s p
dy

≤ Ch

(
|uh(x, t)|p−1 + ‖δhu(·, t)‖p−1

L p−1
s p (RN )

)
.

By using the definition of local weak solution, this implies thatF ∈ L1([T0, T1]× B2−2 h). On
the other hand, for t ∈ [T0, T1] and x ∈ B2−2 h we have

∣
∣
∣
(
F(δhu

ε(x, t)) τε(t)
)ε

η(x)p
∣
∣
∣ ≤ ‖η‖pL∞

ˆ 1
2

− 1
2

ζ(σ ) |F(δhu
ε(x, t − ε σ ))| dσ

≤ C ‖η‖pL∞
ˆ 1

2

− 1
2

ζ(σ ) |δhuε(x, t − ε σ )| dσ

≤ C ‖η‖pL∞‖δhuε‖L∞([T0− ε
2 ,T1+ ε

2

]×B2−2 h
).

By recalling (3.12), this implies that

(
F(δhu

ε(x, t)) τε(t)
)ε

,

is uniformly bounded in L∞([T0, T1] × B2−2 h). The last two facts implies that

lim
ε→0

ˆ T1

T0

¨
B2−2 h×(RN \B2−h )

(
Jp(uh(x, t) − uh(y, t))

) (
F(δhu

ε(x, t)) τε(t)
)ε

η(x)p dμ dt

=
ˆ T1

T0

¨
B2−2 h×(RN \B2−h )

(
Jp(uh(x, t) − uh(y, t))

)
F(δhu(x, t)) η(x)p dμ dt,

up to extracting a subsequence. In the exact same way, we can show that

lim
ε→0

ˆ T1

T0

¨
B2−2 h×(RN \B2−h )

(
Jp(u(x, t) − u(y, t))

) (
F(δhu

ε(x, t)) τε(t)
)ε

η(x)p dμ dt

=
ˆ T1

T0

¨
B2−2 h×(RN \B2−h )

(
Jp(u(x, t) − u(y, t))

)
F(δhu(x, t)) η(x)p dμ dt.

This in turn permits to infer that�2(ε) goes to 0, aswell. This concludes the proof of Lemma3.3.
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