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Abstract: Human skin has long been known as a protective organ, acting as a mechanical barrier
towards the external environment. More recent is the acquisition that in addition to this fundamental
role, the complex architecture of the skin hosts a variety of immune and non-immune cells playing
preeminent roles in immunological processes aimed at blocking infections, tumor progression and
migration, and elimination of xenobiotics. On the other hand, dysregulated or excessive immunologi-
cal response into the skin leads to autoimmune reactions culminating in a variety of skin pathological
manifestations. Among them is psoriasis, a multifactorial, immune-mediated disease with a strong
genetic basis. Psoriasis affects 2–3% of the population; it is associated with cardiovascular comorbidi-
ties, and in up to 30% of the cases, with psoriatic arthritis. The pathogenesis of psoriasis is due to
the complex interplay between the genetic background of the patient, environmental factors, and
both innate and adaptive responses. Moreover, an autoimmune component and the comprehension
of the mechanisms linking chronic skin inflammation with systemic and joint manifestations in
psoriatic patients is still a major challenge. The understanding of these mechanisms may offer a
valuable chance to find targetable molecules to treat the disease and prevent its progression to severe
systemic conditions.
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1. Introduction

Psoriasis is a chronic–relapsing inflammatory skin disease with a multifactorial etiol-
ogy, with a strong genetic basis and an autoimmune component. It affects on average 3%
of the population and it can appear at any age but is more frequent between the ages of 15
and 30. Although the exact etiology of psoriasis is unknown, according to a widely shared
view it can be caused by non-specific triggering factors such as mild trauma, drugs, stress,
and bacterial infections which can initiate the inflammatory processes that lead to the de-
velopment of the disease [1]. Recent studies suggest that a damaging insult to keratinocytes
in genetically predisposed individuals can trigger inflammatory pathways that activate
the inflammasome NLRP3, resulting in the production of pro-inflammatory cytokines such
as IL-1β and CXCL8/IL-8 that mediate the subsequent inflammatory cascade of events
leading to the development of clinical manifestations of the pathology [2,3]. The immuno-
logical mechanism that drives the amplification of inflammation in the skin is centered on
the interaction between dendritic cells (DCs) and T cells that generates a self-sustaining
inflammatory cycle around the TNF-α/IL-23/IL-17 axis, underlying the development of
psoriatic plaques [4]. Psoriasis is associated with systemic and joint manifestations; in fact,
30% of patients develop psoriatic arthritis (PsA) and comorbidities such as increased risk
of cardiovascular diseases and metabolic syndrome [5–9]. For these reasons, it is defined as
a systemic disease.

According to the current view, the encounter of one of many potential environmental
factors may induce keratinocyte stress leading to the release of self-DNA, self-RNA, and
antimicrobial peptide complexes into the extracellular compartment [10]. These complexes
activate, via TLR9, TLR7 and TLR8 myeloids (mDCs) that produce TNF-α, IL-23, IL-12, and
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the plasmacytoid (pDCs) that produce IFN-α. DCs migrate into regional lymph nodes and,
by presenting antigens, can activate T cells. T cells play a major role in the pathogenesis of
cutaneous psoriasis. Cells with the Th17 phenotype are markedly amplified in psoriatic
skin lesions, and IL-17 was also shown as an excellent target for the most cytokine blocking
therapies [11,12]. CD8+ T cells mainly residing in the epidermis also play a role in the
pathogenesis of the disease.

It is, however, unknown the link between T cell responses arising and amplifying
in the skin and the development of extra cutaneous manifestations and comorbidities.
Of particular interest is the link with psoriatic arthritis, which usually starts from the
entheses and in most cases develops 8–10 years after the appearance of the cutaneous
symptoms [13,14]. The development of psoriatic arthritis has been shown to be preceded by
a long asymptomatic phase in which signs of synovio–entheseal inflammation are evident
only by diagnostic imaging techniques [15].

The link between T cells and the asymptomatic phase may provide a new reading key
to understanding psoriasis and associated comorbidities, opening new perspectives for
therapeutic interventions. Here, we took advantage of the increasing knowledge accumu-
lating in the field of cutaneous immunology to envisage possible physiological mechanisms
of skin immunology for the establishment of psoriasis and its systemic manifestations.

We reviewed the most updated literature on T cell mechanisms linking cutaneous and
systemic immunity and integrate them with literature data on the role of T cells in psoriatic
disease. The scenario that emerges could substantially contribute to the understanding of
this complex disease and its manifestations at distant sites.

2. T Cells and Immunology of the Skin

The skin is the largest organ of the body and a central barrier to maintain tissue
homeostasis and prevent damage upon environmental triggers, as well as microbial assaults.
It also represents an exclusive environment in which skin cells interact with immune
cells to induce suitable immune responses. Also, the idea that skin cells interact with
external microorganisms (bacteria, viruses, fungi, archea) in a delicate equilibrium that
needs to be maintained to ensure skin health is gaining momentum. Alteration of entities
in skin microbiota–host interactions would thus favor the establishment of potentially
pathogenetic conditions [16].

Although skin immune responses are mediated by different immune cell types, in-
cluding Langerhans cells, mast cells, macrophages, neutrophils, and B and T lymphocytes,
the initial trigger is often given by stimulation and activation of skin cells, including ker-
atinocytes, fibroblasts, endothelial cells, and adipocytes. These cellular elements work as
sensors by interacting with microorganisms as well as poisonous and irritating molecules,
thus alerting the immune effector cells [17,18]. Degenerated and degraded structural cells
or matrixes forming molecules can also act as stimuli to initiate a pathological response,
ultimately leading to impairment of skin integrity and function.

The type, intensity, and duration of the immune responses largely depend on the
nature of the stimuli and type of recruited immune cells. To this aim, the transition of
resident structural cells to chemokine-secreting and inflammation receptor-expressing
elements is fundamental. Hence, keratinocytes, in addition to synthesizing the major
structural and isolating proteins of the skin, i.e., keratin, are endowed with the ability to
act as sensor cells, alerting immune cells by releasing alarm signals such as intracellular
adenosine triphosphate (ATP). Inflammasome-mediated responses through activation of
the ATP receptor P2X7 induces IL-23 secretion [3,19,20]. IL-23, together with IL-12 and IL-17,
are among the central cytokines involved in the pathogenesis of psoriasis [21,22]. Aberrant
polarization of CD4+ T helper lymphocytes induce secretion of TNF-α, IFN-γ, IL-17, and
IL-22, activating keratinocytes, thus amplifying inflammation in psoriatic plaques [23].

Cutaneous DCs and keratinocytes are able to perceive tissue damage derived from dif-
ferent sources, through receptors recognizing molecular patterns deriving from pathogens
or host-derived molecules exposed following tissue damage [24–27]. Skin DCs consist of
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various populations located in the epidermis or dermis and respond to antigens and aller-
gens with the production of chemokines, inflammatory cytokines, and biocidal molecules
such as nitric oxide (NO). Langerhans cells, dermal DCs (dDCs), pDCs, macrophages, and
the recently identified CD103+ DCs represent a fundamental part of the complex puzzle
of skin defense, strategically positioned for antigen presentation to circulating but also
resident lymphocytes [18,23,28].

CD103+ DCs of the type 1-conventional dendritic cell (cDC1) subtype are specialized
in cross-presentation of cell-associated foreign antigens and upon activation will migrate to
the skin-draining lymph nodes to activate naïve T cells, preparing them to differentiate into
effectors [29]. The activated T cells can then migrate to the epidermis to control infection
by producing signals that recruit additional immune effector cells. In addition, DCs of the
type 2-conventional dendritic cell (cDC2) subgroups play a central role in the induction
and maintenance of T cell tolerance of the skin towards both self-antigens and antigens
derived from commensal bacteria [30,31].

Healthy skin contains a number of T cells that are more than double than the ones
found in peripheral blood [32,33]. Most of them are memory T cells that have previously
encountered antigens and can rapidly reactivate. CD8+ T cells are mainly found in the
epidermis, whereas CD4+ T lymphocytes are found mainly in the dermis, where they have
the role of amplifying the immune response. Among T cells, γδT cells are known to enhance
wound healing by secretion of the insulin-like growth factor 1 (IGF-1) [34,35]. Depending
on the Vδ and Vγ gene expressed, these cells contain different subpopulations, showing
heterogeneous tissue colonization [36]. Vδ1 γδ T cells are mainly located in the dermis,
while Vδ2 T cells are more abundant in peripheral blood and dermis [37]. Inappropriate
activation of dermal γδT cells plays a role in psoriasis pathogenesis, since they are endowed
with the ability to produce IL-17 [38].

Memory T cells in the blood have been initially classified into central memory that
express CCR7 and CD62L high endothelial venule (HEV) homing molecules and consti-
tutively recirculate between the blood and secondary lymphoid organs as well as effector
memory T cells found only in the blood and lacking HEV homing molecules [39].

New light has been recently shed on the role of tissue-resident memory T lymphocytes
(TRM) residing in the skin to grant a prompt response in case of re-infection of the tissue
by microorganisms. Both helper CD4+ and cytotoxic CD8+ TRM have been found in the
skin [40–45] and also act as responders in autoimmunity as well as in psoriasis and other
skin diseases [46]. Resident memory T lymphocytes of the skin may allocate to this organ
for years as they stably express CD69 and the integrin alpha E (CD103), which in turn binds
E-cadherin expressed by keratinocytes. Moreover, they express skin homing molecules
such as cutaneous leukocyte antigen (CLA) and the chemokine receptors CCR4 and CCR10.
This is paralleled by down-regulation of membrane molecules involved in cell recirculation
between tissues [47]. In the human epidermis there are indeed many CD4+ and CD8+

TRM [48]. Skin TRM are found at increased level in the upper hair follicles and require IL-7
and IL-15 signaling for their survival [49,50]. In the generation and persistence of TRM,
a central role is played by transforming growth factor-β (TGF-β) which is required for
the CD8+ TRM to be retained in the epidermis and mediates its effects through the CD103
induction on T cells [51].

In the epidermis, TGF-β produced by keratinocytes favors the differentiation of skin-
recruited CD8+ T cells into TRM cells after antigen-specific activation and expansion in
the lymph node and it also induces their persistence in the epidermis. Intriguingly, TRM
activated by both antigen-specific and bystander activation can persist as TRM, however,
under limiting conditions, antigen-specific TRM cells were more efficiently retained than
bystander TRM cells. This mechanism may represent a selective pressure that favors the
persistence and accumulation of antigen-specific TRM cells at the skin barrier and may, on
the other hand, set the basis for postulating that a fraction of cells with effectors/terminally
differentiated phenotype derived from non-antigen-specific cells may be found in the
circulation under chronic inflammatory conditions (Figure 1).
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and be found in the circulation with CXCR3+, CCR5+ effector/EMRA phenotype.

In addition to the prominent role of TRM, an indication of a skin-to-blood recirculating
subset with TCM phenotype and expressing CCR4 was provided by Luster and co-workers
showing, in a Kaede transgenic mouse model, that CD4 memory T cells can egress from the
skin in a CCR7-dependent manner. Specifically, the authors characterized a recirculating
memory CD4 T cell subset with phenotype CCR7+CD69-CD103-/CCR4+ that can enter the
circulation and maintain the capability to migrate into normal skin [52]. Circulating CD8 T
cells also have the ability to enter the skin in the absence of infection and were identified
for their lack of CD69 expression. In support of the physiological role of this mechanism,
it has been shown that loss of recirculating memory T cells impairs host defense to skin
infection [53]. As an additional characterization, Clark and coworkers in 2015 have defined
two distinct populations of CCR7+ recirculating T cells: the central memory T cells (TCM)
expressing L-selectin and CCR7+ T cells negative for L-selectin, which were classified as
migratory memory T cells (TMM) [48]. This circulating skin-tropic TMM subset produced
cytokines at an intermediate level between TCM and effector memory T cells.

TMM cells were present in the dermis and absent from the epidermis. A significant
fraction of these cells also expressed CD69, suggesting that they may be in a transitional
state towards a more differentiated phenotype. About two thirds of TMM in both healthy
skin and inflamed tissues, however, lack CD69. These cells, unlike TCM and naïve T cells,
lack L-selectin and probably cannot migrate through high endothelial venues to enter the
lymph nodes from the blood, but rather migrate directly back to the skin where they could
either give rise to TRM or recirculate back to the blood. Possibly, both TRM and recirculating
T cells could contribute to the pathogenesis of inflammatory and autoimmune diseases, and
understanding all the steps of this process can be critical for the identification of therapies
targeting pathogenic T cells involved in specific phases of disease manifestations.

A T cell-intrinsic skin-homing program is established during priming in the context
of skin infection and maintained even without antigen re-exposure. According to a recent
definition, CCR4 is a skin-homing receptor expressed by memory T cells which have been
primed in lymph nodes draining the skin compartment [54–56]. Cells expressing CCR4
can enter the skin under normal non-inflammatory conditions, by interacting with low
levels of the homing molecules E-selectin and CCL17, constitutively expressed in resting
endothelium, that bind CLA and CCR4 on T cells [57,58].

Actually, an earlier study by Campbell and colleagues had already suggested the role
of the chemokine receptor CCR4 as a skin-homing molecule mediating the migration of T
cells from the blood to the dermis. The study shows that in peripheral blood a considerable
number of memory T cells express the chemokine receptor CCR4 and respond to the CCL17
chemokine [59]. The CCL17 chemokine is constitutively expressed by skin epidermal cells
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and released under inflammatory conditions. In addition, CCR4 also binds to CCL22,
which also plays a role in other tissues [60].

Binding of CCR4 to CCL17 causes the arrest of memory T cells under physiological
flow integrin-dependent adhesion of skin memory T cells to the cell-adhesion molecule
ICAM-1. CCR4/CCL17 axis therefore emerges as a central element for the interaction
between circulating memory T cells and the skin vasculature, thus directing memory T
cells to their original target tissues [59,61]. The chemokine receptor CCR4 would favor the
trafficking of cutaneous memory type 2 Th cells as well as of other T cell phenotypes to
the skin [62].

In the CD8 compartment, CCR4+ T cells were predominantly found in the CD27+CD28+

CD45RA− memory subset and expressed the CCR7+CCR5− phenotype. CCR4+CD8+ T cells
did not express perforin and granzymes A and B that are a feature of differentiated effectors.
This evidence has suggested that they were more immature than CCR6+CD8 early effector mem-
ory T cells that express GraA and perforin and accordingly with more recent study contribute
to place these cells in an early stage of the memory T cell differentiation pathway [63].

According to this view, analysis of CCR4 and skin-tropic molecules in the differ-
ent stages of memory T cell differentiation in CD8+, CD4+CD45RA−CCR7+ (TCM), and
CD45RA−CCR7− (TEM) cells indicate that the skin-homing CCR4 marker is expressed
mainly in cells with a CCR7+ phenotype, both L-selectin+ and L-selectin−, thus including
TCM and TMM subsets described by Clark and colleagues [48] CCR4+TCM/MM cells also
express high level of CLA, whereas TEM expresses CXCR3 and CCR5 and lower levels of
CCR4 and CLA [64]. This indeed supports the concept that progressive stages of memory
T cell differentiation have different chemokine receptor profiles, and that skin-tropic fea-
tures are progressively lost as the differentiation pathway progresses towards the effector
memory/effector phenotype.

In another study, the question of whether CCR4+ TCM cells could represent a subset
with high plasticity that, upon antigen encounter, can progressively shift their phenotype to-
ward CXCR3+ TEM was addressed. Sorted CCR7+CD45RA−CXCR3− cells from peripheral
blood mononuclear cells (PBMCs) stimulated with αCD3/αCD28 beads were analyzed at
different time points. On day 3, after T cell receptor (TCR) stimulation, all CCR4−-enriched
TCM cells shifted their phenotype to double positive CCR4+CXCR3+ TCM, and at later time
points a small fraction of cells that were single positive for CXCR3 and a fraction of cells
with the TEM phenotype were detected [65].

Under physiological conditions and in early inflammation, CCR4 could therefore
be required for lymphocyte trafficking to the skin, whereas under severe inflammatory
conditions other chemokines could play a major role in the recruitment of effector mem-
ory/effector T cells. Consistent with this view, different groups evidenced that T cell-
mediated skin inflammation is largely independent of CCR4 and rather requires CXCR3 [61].

CCR4 central/migratory memory T cells could be crucial in skin patrolling rather
than in mediating the recruitment of differentiated effectors cells to the inflamed skin. To
explain this phenomenon, a T cell phenotype hierarchy in skin inflammation that places
early memory and antigen-specific T cells upstream of the inflammatory cascade and a
massive recruitment of CXCR3 effector from the blood as a downstream event of advanced
inflammation were postulated [66].

The skin compartment had previously been proposed as a “peripheral lymphoid
organ”, important for antigen encounters and lymphocyte differentiation [67]. The evidence
accumulated in this field strengthens at least the role of the skin as a preferential trafficking
site for TCM/MM in an early stage of differentiation, where it is possible that antigen
encounter occurs. These cells after an antigen encounter and exposure to inflammatory
stimuli could progress to a non-circulating TRM phenotype [40,68] (model depicted in
Figure 1). In immunopathological skin conditions such as psoriasis, the expanded subset
of TCM cells expressing CCR4 and CXCR3 could play a role in disease recurrence or
redistribution to distant sites such as joint synovial tissues and enthesis.
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3. T Cells in Psoriasis Pathogenesis

Critical components of the T cell response involved in the initiation and amplification
phases of cutaneous psoriasis have been described in the last two decades. It should be
mentioned that in the psoriatic skin, CD103+ tissue resident memory T cells of CD8 lineage
were found by Eidsmo and coworkers, describing the role of CD8 TRM cells with a Tc17
phenotype in specific disease memory in sites of recurrent psoriasis [46,69,70].

As regards to the role of T cells in the early formation of the psoriatic plaque, Bowcock
and Krueger proposed a role for the perivascular aggregation of T cells and mature DCs in
the dermis which, in this case, could work as an ectopic lymphoid aggregate or, according
to a more recent definition, as a tertiary lymphoid structure [71].

Subsequent studies indicated the interaction between the chemokine, CCL19, and its
ligand CCR7, which is typical of T cell activation in lymphoid structures as a key event
for the recruitment of these cells also in psoriatic skin [72]. In the dermis of psoriatic
plaques, the presence of a lymphoid aggregates has been reported by Mitsui and colleagues,
evidencing also the expression of CCL19 and CCR7 [73]. This first suggested a role for
the CCR7/CCL19 axis in disease pathogenesis. At the same time, a study by Bosè and
colleagues showed that anti-TNF-α therapy in psoriasis patients led to the inhibition of the
CCL19/CCR7 axis in psoriatic skin lesions and that this phenomenon was correlated with
disease regression [74]. This importantly enlightened CCR7/CCL19 axis in skin lymphoid
aggregates and showed that one of the mechanisms at the basis of the long-term effect of
TNF-α-blocking treatment is actually the destruction of these structures. To this end, it is
important to mention that among the multiple functions of TNF-α/β they also contribute to
the maintenance of the secondary lymphoid organ architecture and promote angiogenesis
through the induction of VEGF [75–77].

Along this line, data obtained by Canete and colleagues highlighted the presence of
lymphoid aggregates in the synovial tissues of patients with psoriatic arthritis and showed
that these structures were significantly reduced by anti-TNF-α therapy [78].

Deep phenotyping of the circulating T cell compartment performed in our laboratory
showed enhancement in the percentage of memory T cell subsets expressing putative
pathogenic double-positive IL-17 and IFN-γ non-classic Th1, described by Annunziato and
colleagues [79], and CD8 cells, as compared to healthy subjects. Therefore, it was envisaged
that in the dermal lymphoid structures of psoriatic plaques something essential for the
pathogenesis of the systemic disease manifestations could happen [80–83]. In particular in
these structure, TCM cells attracted from the blood through the CCR7/CCL19 chemokine
axis could be activated either by an antigen encounter or by bystander activation and give
rise to both TRM or TCM/TMM that egress the skin with an inflammatory phenotype, but at
different stages of memory differentiation.

Then, a series of studies were developed to investigate the hypothesis that skin-to-
blood recirculation of T cells could take part in the development of psoriatic arthritis
and comorbidities [84].

4. T Cells in the Pathogenesis of Psoriatic Arthritis

Psoriatic arthritis develops in up to 30% of patients with cutaneous psoriasis and in
the majority of cases it follows the development of the cutaneous manifestations for 8 to
10 years [85].

Enthesitis is indeed a feature of psoriatic arthritis and it is increasingly evident that,
in the joints of patients with psoriatic arthritis, inflammation can start from the entheses,
the attachment sites of ligament to bone, during a subclinical phase of the disease [86,87].
In the subclinical phase of entheseal, inflammation psoriatic arthritis (PsA) is silent and
is only evidenced by diagnostic imaging techniques such as ultrasonography, magnetic
resonance imaging (MRI), and computed tomography that have empowered the concept
of an evolution from cutaneous to synovio-entheseal inflammation [13–15]. This evidence
also opened the possibility to investigate the events linked to the development of psoriatic
arthritis in patients with psoriasis.
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For a better understanding of the link between cutaneous psoriasis and psoriatic
arthritis, it is important to underline that psoriasis has an autoimmune component and T
cells reactive to autoantigens cathelicidin LL-37, melanocytic ADAMTSL5, lipid antigen
PLA2G4D, and keratin 17 have been identified in patients’ peripheral blood [88–90]. The
possibility that activated T cells reacting or cross-reacting with a self-component may enter
the bloodstream and reach distant organs should therefore be considered as a causal link
with joint manifestations and systemic inflammation.

In patients with psoriatic arthritis, Curran and colleagues analyzed the clonotype of
T cells in the inflamed joint, peripheral blood, and skin samples by sequencing theTCRβ
chain genes [91]. This pivotal work identified three populations of T cells in joint tissues:
one highly represented population of polyclonal CD4 T cells that did not persist in the
tissue after treatment with methotrexate, a second population of moderately expanded
inflammation-related clones either of CD4 or CD8 lineage, and finally, a small population of
highly expanded clones which were only of the CD8 lineage. These CD8 T clones showed
a marked expansion in both peripheral blood and synovial fluid and persisted during
methotrexate treatment.

These expanded CD8 T cell clones were proposed as potential drivers and could link
psoriasis and PsA [92–94].

As regards the major polyclonal CD4 T cell population that has been described both
in blood and in inflamed tissue, it could potentially represent a recirculating population
of the Th17/Th1 subset originating in psoriatic plaques that traffic to the joints [91]. On
this basis, the previously mentioned hierarchy in the T cell-mediated cascade of events
characterizing psoriatic disease, comprising an autoimmune clonally expanded CD8+ T
cell subset followed by Th17 and Th1 CD4+ T cells expanded either by cross-stimulation
or by bystander activation and a major downstream recruitment of CXCR3+ T cells with
different specificities induced by the increased expression of the chemokine CXCL10 has
been hypothesized [95]. Accordingly, our group and a parallel study of scRNAseq showed
accumulation of T cells with CXCR3 and an effector phenotype in the synovial fluid, paired
by a massive increase in the CXCL10 chemokine which binds CXCR3 [81,96].

Given the amount of evidence collected in the field of cutaneous immunity in physio-
logical conditions, the concept could be extended to skin immunopathology, by hypoth-
esizing that in human diseases of barrier tissues, such as in psoriasis, a similar dynamic
balance between tissue resident memory T cells and the pool of recirculating T cells could
be involved in the pathogenesis of the disease [75].

Consistent with the role enlightened for CCR4 in skin-homing T cells and in the cells
egressing the skin with a TCM phenotype, CCR4+ CD4 T cells in the circulation correlated
positively with the severity of the cutaneous disease [82,97]. CCR4+ memory T cells could
therefore represent a recirculating population responsible for systemic manifestations
associated with severe psoriasis.

By contrast, analysis of the possible link between skin psoriasis and systemic inflam-
mation indicates mainly a correlation with the percentage of CD8 T cells in a terminally
differentiated phenotype (TEM and TEFF). This has been observed in different studies,
evidencing a correlation between CCR4+ CCR5+ CD8 TEFF with serum level of C-reactive
protein (CRP) and with (psoriasis area and severity index) PASI score in patients with
psoriatic disease. Accordingly, in patients with psoriasis and PsA, a correlation between
CD8 TEMRA-expressing CD69 early activation markers and the level of serum CRP was
observed. Regarding CD4 T cells, a positive correlation with serum CRP was observed only
with the percentage of CCR6+ terminally differentiated effector memory cells re-expressing
CD45RA (EMRA) in patients with psoriasis. This suggests an involvement of terminally
differentiated CD8 T cells, and to a minor extent of Th17 TEMRA, in the systemic inflam-
matory state [82,97]. In patients with PsA, analysis of blood and synovial fluid memory
CD4+ and CD8+ T cells indicates a shift from the CCR4+ phenotype to CCR4+CXCR3+ and
CXCR3+CCR4-, respectively [81].

Particularly intriguing is the link between psoriasis and PsA.
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In light of the role that emerged for CCR4 in the recirculation of memory T cells
forming the skin to the peripheral blood, we addressed the possibility that CCR4 cells are
clonally linked to the self-reactive clones found in the blood and joint tissues of PsA patients.

To understand the mechanistic and clonal link between skin-primed T cells and clone
expansion in the peripheral blood of psoriatic disease patients or in the synovial fluid of
PsA individuals, an imiquimod-induced psoriasis-like inflammation model in K5-mOVA.tg
mice expressing ovalbumin on the membrane of keratinocytes adoptively transferred with
ovalbumin-specific OT-I.tg naïve CD8+ T cells was used to add the antigen-specific T cell
component to the model of psoriasis-like inflammation [98].

In this mouse model, it was shown that prolonged skin inflammation induced by im-
iquimod favors the activation of OT-I CD8+ T cells specific to the cutaneous self-antigen [65].
These cells had a CCR4+ phenotype and were found in peripheral blood and in an ex-
panded pool of memory T cells in the spleen. Therefore, the mechanistic evidence is
that psoriasis-like skin inflammation induced by imiquimod-activated T cells specific to
cutaneous self-antigens recirculate from skin to blood to spleen.

To understand if an analogous mechanism could play a role in spreading tissue
damage and inflammation to the joints in human PsA, we analyzed scRNA-seq data paired
with TCR αβ chain sequencing in paired samples of PsA patients’ peripheral blood and
synovial fluid CD8 T cells [96]. Clonotype analysis showed a clonal expansions in the
CCR4+ TCM subset in the peripheral blood of PsA patients as compared to their CCR4
negative counterpart; moreover, there was a clonal link between these expanded CCR4+

clones in the blood and clones found in the expanded CXCR3+ effectors in the synovial fluid
of PsA patients [65]. This finding reinforces the importance of antigen-specific cells (likely
self-antigen-specific T cells) entering the systemic circulation in generating inflammation
and damage to the joints of PsA patients, with a possible shift in their phenotype towards
more differentiated and cytotoxic effectors (Figure 2).
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Together, this evidence sheds light on the possibility to design alternative therapeutic
strategies, aimed at both preventing the exit of activate/antigen-specific T cells from
the skin and/or their re-localization to a distant site. This could be achieved either by
intervening in the early phase of T cell activation, thus preventing amplification or by
inhibiting re-localization. This latter approach may represent a challenge, as one should be
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able to specifically inhibit specific recirculating/potentially autoreactive subsets without
altering the physiological immune responses.

5. Conclusions

In this review, we collected results from studies providing evidence that T cells primed
in the skin-draining lymph nodes and expanded during the formation of psoriatic plaques
may form a tissue resident memory T cell population specific to cutaneous self-antigens or
cross-reactive microbial antigens or may enter the circulation with a CCR7+ TCM phenotype
and spread cross-reactive and activated T cells through peripheral blood to a distant site.
The clonotypic link between T cells in peripheral blood expressing skin-homing chemokine
receptor CCR4 and the effector cells expanded in PsA synovial fluid supports the concept
that T cell egressing from the skin and trafficking to the joints can play a role in the evolution
from cutaneous to synovio-entheseal inflammation.
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