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Abstract: The present paper explores the application of bootstrap methods in testing for serial depen-
dence in observed driven Integer-AutoRegressive (models) considering Poisson arrivals (P-INAR).
To this end, a new semiparametric and restricted bootstrap algorithm is developed to ameliorate
the performance of the score-based test statistic, especially when the time series present small or
moderately small lengths. The performance of the proposed bootstrap test, in terms of empirical size
and power, is investigated through a simulation study even considering deviation from Poisson as-
sumptions for innovations, i.e., overdispersion and underdispersion. Under non-Poisson innovations,
the semiparametric bootstrap seems to “restore” inference, while the asymptotic test usually fails.
Finally, the usefulness of this approach is shown via three empirical applications.
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1. Introduction

INteger AutoRegressive models (INAR) are widely used in the case of non-negative
integer-valued time series. One of the well-known specifications of INAR models involves
the employment of equidispersed Poisson (hereafter P-INAR) for the model disturbances.
Different contributions have been focused on testing for the presence of a (possibly un-
known) serial dependence in stable P-INAR models, especially because conventional
methods for continuous time series may fail.

A first contribution can be found in [1], where a test statistic, based on the score func-
tion, was proposed for the P-INAR(1) model. Then, score-based statistics were compared to
other proposals (e.g., the runs test and Portmentau-type statistics) in terms of empirical size
and power [2], while [3] developed generalized score-based statistics to take into account
under- and equidispersion in INAR models. Recently [4], found that the (conditional)
maximum likelihood ratio may be an efficient alternative compared to the score test in the
P-INAR(1) models. Under the null hypothesis of non-serial dependence, i.e., « = 0 in the
P-INAR(1), these statistics can be generally approximated in large samples by well-known
free parameter distributions, such as standard normal or Chi-squared.

In practice, asymptotic approximation issues can lead to poor performance in such
tests. The simulations in [2,4] confirmed that the score-type tests are undersized in case
of series of small or moderately small sample sizes (i.e., when T = 50,100 and T is the
sample size), also showing bias from the nominal level with moderately large samples (e.g.,
T = 500, 1000).

In terms of empirical power, the Monte Carlo results of [3] evidenced a considerable
gap between performance in small samples (e.g., T = 100) and moderately large samples
(e.g., T = 500) under a set of local alternatives (x € {0.01,...,0.15}). The presence of
underdispersion and overdispersion may play a relevant role in this context, and the
tests can exhibit more or less sensitivity with respect to the possible deviations from the

Mathematics 2022, 10, 2501. https:/ /doi.org/10.3390/math10142501

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10142501
https://doi.org/10.3390/math10142501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7529-4689
https://orcid.org/0000-0001-9489-3564
https://doi.org/10.3390/math10142501
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10142501?type=check_update&version=2

Mathematics 2022, 10, 2501

20f18

Poisson assumption. To overcome these issues, researchers have employed response surface
regression to adjust the critical values of the tests. Moreover, this method is strongly based
on arbitrary choices for both the Monte Carlo setup and the model specification.

In this paper we investigate, through both a simulation study and three empirical
applications, if and how bootstrap methods can improve inference in testing serial depen-
dence for P-INAR models. Bootstrap methods in INAR were introduced by [5,6] in the
context of confidence bounds of forecasting. More recently, refs. [7,8] developed either
parametric and semiparametric bootstrap methods to obtain more reliable inference in point
estimation (via bootstrap-based bias correction) and confidence bounds, while [9] extended
resampling methods in a more model-based forecasting perspective. From another point of
view, ref. [10] proposed a parametric bootstrap procedure to test distributional assumption
for INAR innovations. All authors pointed out the inconsistency of the conventional time
series bootstrap, proposing methods that take into account the nature of integer-valued
data in the resampling scheme.

Starting from [7], we propose a straightforward semiparametric bootstrap imposing
the null hypothesis (of non-serial dependence, i.e., & = 0) in the bootstrap data-generating
process (DGP). The usage of “restricted” methods, which appears quite novel in the INAR
context, can be found in [11,12] in bootstrapping linear regressions, also considering
endogenous regressors. To the best of our knowledge, this is the first work proposing a
semiparametric bootstrap algorithm to test for the presence of the INAR effect, especially
considering time series of small or moderately small length. Bootstrap algorithms for
score-based statistics have been proposed to solve other econometric issues. For instance,
ref. [13] considered bootstrap methods for score-based statistics in the case of instrumental
variables with possible weak instruments.

The remainder of this paper is structured as follows: the P-INAR(1) model and the
score-based test statistic based on Poisson assumption are presented in Section 2. Section 3
introduces the new semiparametric bootstrap algorithm, while the results of Monte Carlo
simulations are shown in Section 4. Applications of these methods on real datasets are
presented in Section 5, and a general discussion is provided in Section 6. Finally, Section 7
contains some conclusions and further possible advances.

2. The Model and Score Test Statistic
Consider the following stable INAR(p) model, introduced in [14,15], defined as:

P
Xp=) 0;0Xii+er=mOX;1+0apOXpp...+, 1)
i=1

where {€;} is ani.i.d. nonnegative integer-valued having a finite mean y, and variance 07 <
0. The processes «; ©® X;_; denote p mutually independent binomial thinning operators,
representing a stochastic sum of i.i.d. stochastic processes (see [16] for further details).
This work focuses on testing serial dependence in one-lagged INAR models. Thus,
without loss of generality, we consider throughout the rest of the paper the following stable
INAR(1) [15]:
Xp =00 Xp 1 +e, )

where a € (0,1) is the parameter of interest, also denoted as the thinning parameter. In (2),
the symbol © is the binomial thinning operator, i.e., a random sum of i.i.d. random variables
{Y;}, with Y; ~ Ber(«), independent of X;, such that E(Y;) = « and Var(Y;) = a(1 —«).

The DGP of marginal process varies according to the distribution of the innovations
{et}. In the case of i.i.d. & ~ Po(A), the model is called P-INAR(1), also assuming
equidispersion, i.e., E(¢e;) = V(&) = A.

Under such assumptions, parameter estimation can be conventionally carried out
through Yule-Walker equations, conditional least squares and conditional maximum likeli-
hood; see, e.g., [14,17]. In what follows, we consider the score-based test statistic for serial
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dependence in P-INAR model, introduced in [1,2]. To test for the presence of the INAR(1)
effect, the following system of hypothesis is considered:

Hy:a=0 vs. Hy:a>0. 3)

where g, i.e., the parameter of interest, comes from Equation (2).

Score statistic for testing P-INAR(1) model, with parameters (&, A), takes the following
specification [2,3]:

T o o
A L (xp-1 = A)(xr — A)
SP(A) =71/ =L . )
A

where A = ¥ = T! Zthl x¢. The statistic in (4) converges in distribution to a standard
normal [1,3].

3. Bootstrap Algorithm for Testing INAR

In this Section, a new semiparametric bootstrap method for the test statistic in
Equation (4) is presented. We remark that conventional non-parametric approaches for
continuous time series, e.g., block bootstrap, ref. [18] and the semiparametric autoregres-
sive bootstrap [19] should not be applied because they do not take into account the true
characteristics of integer-valued time series, leading to inconsistent results. In addition, the
infeasibility of conventional methods for time series has been shown in [7].

We consider a semiparametric bootstrap for its suitability, employing a “restricted”
algorithm, i.e., imposing & = 0 in the bootstrap DGP and obtaining &; = x;. This restric-
tion ensures that residuals have the same support of the innovations” DGP. In practice,
the pseudo residuals are sampled from the empirical distribution function (EDF) of the
restricted residuals (under the null hypothesis of & = 0).

The following algorithm summarizes the proposed semiparametric method.

Semiparametric Bootstrap Algorithm
Given a random sample x, ..., xT of size T,
Step 1. Estimate the parameters (&, A) and the test statistic 5. Residuals can be obtained
imposing a« = 0, i.e., & = xy;
Step 2. Use &; to obtain bootstrap pseudo-residuals €3, ..., €%, i.e., €f ~ EDF(&;);
Step 3. Create x7, ..., x7, plugging the pseudo-residuals in the bootstrap DGP;
Step 4. Compute the bootstrapped score statistic

t—1
§* = 5" (A*) = T 1/2E - ©)

where A* = Ty x5
Step 5. Repeat B times steps 1-4, producing S*,..., §Z, ceey §§;
Step 6. Obtain the bootstrap p-value as:

B

pr=B"1Y I(S;] > 5]
b=1

Moreover, the pseudo-residuals of Step 2 can be also obtained by using a parametric
method, where the bootstrap DGP is constructed based on more specific assumptions.
Specifically, for the P-INAR(1) model, the restricted residual {sf}tT:l is sampled from a
Poisson distribution with parameter equal to the estimate of A. To summarize, it is assumed
that ef ~ Po(A). A possible drawback of the parametric method in the P-INAR case is
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the sensitivity with respect to deviations from Poisson assumption, especially for what
concerns the degree of dispersion.

4. Simulation Study

In this Section, a simulation study is performed to assess the proposed methodology
via the comparison between the semiparametric bootstrap and the parametric bootstrap,
using the asymptotic test as a benchmark.

4.1. Setup

The finite sample behaviour of the bootstrap-based score test, illustrated in the previ-
ous Section, was analysed by generating M = 10,000 samples according to the following DGP:

Xt = O X1+ &,

where &; ~ Po(A) considering the following alternative parameter settings: A = {2,5,10}.
Different sample sizes were used for the simulations, such that T = {50, 75,100,250, 500},
while the considered nominal level for the test was 0.05. To generate Monte Carlo samples,
a pre-run of 500 observations was carried out. The empirical size of bootstrap-based statistic
$* was evaluated under & = 0, and an increasing sequence of « by 0.05 (starting from a = 0)
was considered for the empirical power, stopping at « = 0.8 to avoid the near-unit root
situation [20]. The number of replications used to compute the bootstrap p-values was set
equal to B = 999. We also computed empirical rejection frequencies both for the parametric
bootstrap illustrated in Section 3 and asymptotic rejection frequencies for the score statistic.
Performance was evaluated through both the empirical size and the empirical power.

Finally, computational times were evaluated to show the straightforward applicability
of the proposed bootstrap test. Time series of lengths ranging from 50 to 500, increasing by
50, were considered.

Deviations from Poisson Assumptions

We firstly evaluated the presence of overdispersion in the innovation process. In
this regard, the simulated DGP follows a negative binomial distribution, i.e., e,.~NB(r, p).
Given the (Fisher) index of dispersion, defined as the ratio between variance and mean of
the series, [; = (782 / e, we considered three following cases inspired by the design of [2]:

e Small overdispersion, considering {r = 10,p = 5/6} such that I; = 1.2;
*  Moderate overdispersion, with {r = 4, p = 2/3} resulting in I; = 1.5;
e  High overdispersion, with {r =1,p =1/3} and I; = 3.0.
In both cases, expected values of ¢; are equal to 2.
Then, we consider three cases of under-dispersion using a binomial distribution, i.e.,
€t ~ Bin(n, p), with the three following parametrisations:

*  Small underdispersion, considering {n = 2, p = 0.1} such that I; = 0.9;
*  Moderate underdispersion, with {n = 2,p = 0.5} and I; = 0.5;
e High underdispersion, with {n =2,p = 0.7} and I; = 0.3.
The number of Monte Carlo simulations and bootstrap iterations were equal to those
considered for the Poisson-based DGP.

4.2. Main Results

We start from the Poisson case (equidispersion). Table 1 summarizes the main results
in terms of empirical size.

Even in the equidispersed case, the asymptotic rejection frequencies can be quite
below the nominal level, especially with series of moderately small length (i.e., T < 100
and A = 2,5,10). Nevertheless, the distribution of rejection frequencies obtained through
semiparametric bootstrap (hereafter SPB) shows the successfulness of proposed method
even with series presenting moderately small length. Indeed, the good performance
of parametric bootstrap (hereafter PB), which outperforms the SPB in some simulation
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scenarios, can be due to the combination of (a) the imposition of the true DGP in the
simulation setup and (b) the usage of a score statistic which is specifically suited for
equidispersed Poisson arrivals.

Table 1. Empirical size of the bootstrap-based score test under Poisson DGP. ASY: asymptotic, SPB:
semiparametric bootstrap, PB: parametric bootstrap.

DGP Mean Variance I; T ASY SPB PB
Po (2) 2.00 2.00 1.00 50 0.0350 0.0469 0.0501
75 0.0356 0.0461 0.0491
100 0.0385 0.0463 0.0555
250 0.0445 0.0473 0.0486
500 0.0449 0.0495 0.0483
Po (5) 5.00 5.00 1.00 50 0.0316 0.0472 0.0515
75 0.0350 0.0444 0.0494
100 0.0382 0.0490 0.0522
250 0.0464 0.0509 0.0508
500 0.0451 0.0524 0.0437
Po (10) 10.00 10.00 1.00 50 0.0329 0.0462 0.0462
75 0.0367 0.0503 0.0496
100 0.0361 0.0476 0.0530
250 0.0424 0.0501 0.0477
500 0.0458 0.0498 0.0491

Figure 1 shows the performance of the bootstrap test in terms of empirical power,
considering 15 different scenarios. The overall performances of SPB and PB are comparable
with respect to the asymptotic test. Although the two bootstraps exhibit a conservative
trend, especially with & < 0.4 when T = 50,75, and a« < 0.2 when T = 250, the SPB out-
performs the PB in all considered scenarios, especially when & > 0.2 and with moderately
small T (T = 50,75,100). In addition, the PB outperforms the asymptotic test in the case of
moderately small series (T = 50,75) and for a reasonably large « (i.e., & > 0.4).

50 /| 75 100 | 250 /| 500

(@)od

(S)od

(ot)od

00 02 0.4 0.6 0.8 0.0 0.2 0.4 06 08 00 0.2 0.4 0.6 08 00 02 0.4 0.6 0.8 00 0.2 04 06 0.8

Parametric — Semiparamiric

Figure 1. Empirical power of the bootstrap-based score test under Poisson DGP. The black dashed
line is the empirical power of the asymptotic test, while the red dashed line represents the nominal
level of 0.05.
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The considered tests do not appear to be particularly sensitive with respect to different
choices of the A parameter. To conclude, in the case of Poisson innovations, both SPB and
PB are reasonable choices to improve inference in testing for the presence of INAR(1).

Figure 2 illustrates the results of computational costs in terms of the median computed
through Monte Carlo replications and considering the 95% quantile intervals. To summa-
rize, the computational cost appears very satisfactory, ranging from 5 and 30 ms, while
the semiparametric bootstrap outperforms the parametric one. The gap between the two
methods grows as the sample size increases.

milliseconds

100 200 300 400 500

PB — SPB

Figure 2. Plots of the median computational cost of the semiparametric (blue line) and parametric (red
line) bootstrap procedures (B = 999), computed through Monte Carlo replications, with increasing
sample size. Upper and lower bands of the grey area represent the 2.5 and the 97.5 quantiles of the
distribution of the computational costs.

In the cases of DGPs deviating from Poisson assumption, the results of the tests show
substantial differences. Empirical sizes of SPB and PB in the case of overdispersion are
depicted in Table 2 along with the asymptotic size. Even with a low value of overdis-
persion (I; = 1.2), the PB shows worse performance than the asymptotic test, exhibiting
rejection frequencies that doubled the considered nominal value. Furthermore, in the case
of either a moderate or high degree of overdispersion (I; = 1.5,3.0), both the PB and the
asymptotic test are severely oversized, appearing totally unreliable. Indeed, they exhibit an
increasing trend of empirical sizes as the sample length of the series increases. Surprisingly,
the SPB performs well throughout the three considered scenarios, especially when T is
sufficiently large.

Regarding the empirical power, illustrated in Figure 3, when the overdispersion is
low (I; = 1.2), the three tests show similar behaviour as the INAR parameter « increases.
When T is quite large (e.g., T = 250,500), the SPB, the PB, and the asymptotic test rapidly
reach the unity for « > 0.2. However, severe overdispersion (I; = 3.0) leads to a similar
behaviour for the PB and the asymptotic test, producing unreliable over-rejections even
for small values of . Conversely, the SPB, which is generally dominated by both the PB
and the asymptotic test, presents a behaviour that is compared to the case of equidispersed
Poisson innovations.
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Table 2. Empirical size of the bootstrap-based score test under negative binomial DGP. ASY: asymp-
totic, SPB: semiparametric bootstrap, PB: parametric bootstrap.

X E(X) Var(X) I T ASY SPB PB
NB (10,5/6) 2.00 2.40 1.20 50 0.0567 0.0467 0.0958
75 0.0642 0.0466 0.0924
100 0.0638 0.0485 0.1004
250 0.0719 0.0485 0.1024
500 0.0722 0.0492 0.0971
NB4,2/3) 2.00 3.00 1.50 50 0.0934 0.0440 0.1776
75 0.1023 0.0474 0.1810
100 0.1069 0.0486 0.1825
250 0.1177 0.0504 0.1899
500 0.1252 0.0505 0.1911
NB(1,1/3) 2.00 6.00 3.00 50 0.2029 0.0435 0.4541
75 0.2228 0.0438 0.4698
100 0.2306 0.0483 0.4881
250 0.2571 0.0511 0.5021
500 0.2620 0.0518 0.5080

Considering underdispersed innovations (e.g., when they follow a binomial distribu-
tion), the PB and the asymptotic tests appear useless once again. Table 3 illustrates how
the PB and the asymptotic test are both quite undersized even with slight underdispersion
(I = 0.9). Therefore, when I; = 0.5 and I; = 0.3, the rejection frequencies are practically
equal to 0 for each considered T. As in the case of overdispersed innovations, rejection
frequencies of SPB are distributed around the nominal level of 0.05.

Table 3. Empirical size of the bootstrap-based score test under binomial DGP. ASY: asymptotic, SPB:
semiparametric bootstrap, PB: parametric bootstrap.

X E(X) Var(X) I, T ASY SPB PB
Bin (2, 0.1) 0.20 0.18 0.90 50 0.0251 0.0523 0.0323
75 0.0314 0.0499 0.0341
100 0.0308 0.0489 0.0323
250 0.0353 0.0524 0.0312
500 0.0356 0.0500 0.0320
Bin (2, 0.5) 1.00 0.50 0.50 50 0.0004 0.0472 0.0005
75 0.0005 0.0465 0.0003
100 0.0006 0.0427 0.0001
250 0.0006 0.0493 0.0002
500 0.0003 0.0512 0.0000
Bin (2, 0.7) 1.40 0.42 0.30 50 0.0000 0.0421 0.0000
75 0.0000 0.0478 0.0000
100 0.0000 0.0494 0.0000
250 0.0000 0.0473 0.0000
500 0.0000 0.0471 0.0000

The empirical power in the case of binomial distribution of the innovations is sum-
marized in Figure 4. Considering slight underdispersion (I; = 0.9), the SPB, the PB, and
the asymptotic test share a similar behaviour: when T > 100, the rejection frequencies
are practically stackable. Moreover, when the underdispersion is moderate or severe
(I; = 0.5,0.3), the PB and the asymptotic test suffer from the under-rejection, as already
seen in the empirical size. Thus, the PB seems to perform worse than the asymptotic test,
while the SPB confirms its apparent insensitivity with respect to the deviations from the
equidispersion. In addition, the SPB is more powerful with respect to both the PB and the
asymptotic test.
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Figure 3. Empirical power of the bootstrap-based score test under negative binomial DGP. The black
dashed line is the empirical power of the asymptotic test, while the red dashed line represents the
nominal level of 0.05.
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Figure 4. Empirical power of the bootstrap-based score test under binomial DGP. The black dashed
line is the empirical power of the asymptotic test, while the red dashed line represents the nominal
level of 0.05.

5. Empirical Applications
Here, the proposed SPB is applied to three case studies.
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5.1. Independent Counts: Scored Goals by a Football Team

The first example concerns the series of scored goals of a football team, representing a
reasonable case of Poisson time series without persistence in time. Scored goals have been
previously used as a data example in the estimation of bivariate INAR [21-23], modelling
scored goals in the first and in the second half. Our data include scored goals by the
Arsenal Football team in the English Premier League between Season 2009-2010 and Season
2018-2019 (10 Seasons), for a total of T = 380 matches (Figure 5).

The plot of the series can be found in Figure 5. Descriptive statistics show that the
average number of goals is ¥ = 1.92, and the estimated dispersion index is [; = 1.02.

Wtitintihe |

2010 2012 2014 2016 2018

Figure 5. Time series of scored goals by Arsenal in English Premier League between Season 2009-2010
and Season 2018-2019.

5.2. INAR (1) with Equidispersed Poisson Innovations: IPs Data

To introduce Poisson INAR-based control charts, Weiss [24] presented a count of differ-
ent IP addresses registered by the Department of Statistics of the University of Wurzburg.
The data were collected in eight hours on 29 November 2005 and are available from [25],
see Figure 6. The time unit is equal to 2 min, and the length of the series is T = 241.

Descriptive statistics show that the average number of IP counts is X = 1.32, and
the estimated dispersion index is again close to the unity, [; = 1.06. According to the
Yule-Walker estimation, the estimated thinning parameter is & = 0.22.

5.3. INAR (1) with Possible Overdispersion: Strikes Data

Finally, we also consider a dataset of 108 monthly work major stoppages in U.S
between 1994 and 2002. This dataset has been considered in many contributions regarding
integer-valued time series models [25-28]. The data are illustrated in Figure 7. The mean is
close to 5 strikes per month, while the estimated dispersion index is I; = 1.60, suggesting
the presence of overdispersion. The estimated thinning parameter is & = 0.57.
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Figure 6. Time series of IP addresses.

10~

Figure 7. Montly time series of major strikes in U.S. between 1994 and 2002.

5.4. Main Results of Applications

Firstly, the estimated autocorrelation and partial autocorrelation functions (ACF and
PACE, respectively) of the mentioned dataset are depicted in Figures 8-10. Table 4 summa-
rizes descriptive statistics and results of SPB, compared with PB and asymptotic test (in
terms of p-values) where the number of iterations is set equal to B = 99,999.

Considering scored goals, SPB confirms the inability to reject the null hypothesis.
Moreover, it is possible to appreciate lower bootstrap-based p-values (SPB and BB) when
compared with the asymptotic one. In the case of the IP dataset, the SPB suggests to reject
the null hypothesis considering a nominal level of 0.05 (but even lower), but the bootstrap-
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based p-value is greater than the one obtained with the PB and than the asymptotic p-value.
This result is in line with the empirical power observed in the simulation section in the
case of INAR(1) with Poisson innovations. For the last dataset (Strikes), all the p-values
are practically equal to zero since the estimated thinning operator appears very different
from zero according to the Yule-Walker estimation. However, simulations of Section 4 raise
further doubts on the reliability of the asymptotic method and the PB.

ACF

lag
PACF

Figure 8. Estimated auto-correlations of the dataset Scored goals: (top panel) autocorrelation
function (ACF); (bottom panel) partial autocorrelation function (PACF).

ACF

PACF

Figure 9. Estimated auto-correlations of the dataset IPs: (top panel) autocorrelation function (ACF);
(bottom panel) partial autocorrelation function (PACF).
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Figure 10. Estimated auto-correlations of the dataset Strikes: (top panel) autocorrelation function
(ACF); (bottom panel) partial autocorrelation function (PACF).

Table 4. Results of empirical applications.

Dataset x o2 Iy & ASY SPB PB
Scored 1.92 1.96 1.02 —0.06 0.8853 0.2402 0.2284
Goals
IPs 1.32 1.39 1.06 0.22 0.0002 0.0013 0.0005
Strikes 4.94 7.92 1.60 0.57 0.0000 0.0000 0.0000

6. Discussion

The proposed semiparametric bootstrap helps to improve the performance of the
score-based statistic in the case of the P-INAR model in terms of empirical size, also
considering series of moderately small length. Under the i.i.d Poisson assumption for the
innovations, the parametric bootstrap also exhibits excellent results due to the specific
features of the simulation setup, while the satisfying performance of the semiparametric
method suggests its usefulness, especially in a more generalized context (e.g., under several
possible distributions for the innovations). In terms of empirical power, the semiparametric
bootstrap generally dominates the parametric one.

In this regard, an analysis on the asymptotic theory will be carried out in further
studies. Therefore, under i.i.d. Poisson disturbances, numerical exercises suggest that S*
may converge to a N(0, 1) in the bootstrap sense (i.e., conditionally on the data), which is
also the limit distribution of the score-based statistic S¥ [1-3]. Table 5 shows the averaged
estimated moments of S* computed using a B = 999 bootstrap iterations and 10,000 Monte
Carlo replications in the case of A = 2 and & = 0, with a series of length T = 1000. The
Jarque—Bera test is also used to check normality of S*. The presented exercise shows how
the averaged estimated moments of S* are reasonably close to the moments of a standard
Gaussian distribution, while the rejection frequencies of the Jarque—Bera test on the two
statistics S* slightly exceed the nominal value used for the normality test (0.05).
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Table 5. Numerical exercise: averaged estimated moments of S* computed with two bootstrap
algorithms (PB and SPB). The last column contains the rejection frequencies of the Jarque—Bera test
considering a nominal level of 0.05.

Method Mean Variance Skewness Kurtosis JB Test
PB —0.031 0.998 0.014 3.011 0.063
SPB —0.031 0.997 0.015 3.013 0.059

Moreover, previous simulation studies show that the SP statistic can fail in case of
different parametric arrivals [2,3]. This is confirmed by the simulations carried out in
Section 4, while the Figure depicted in the Appendix A (Figure A1) shows how S’ is
sensitive to both the degree and the type of dispersion. For instance, the (simulated)
distribution of S” under the null hypothesis is flatter under moderate overdispersion
(I = 1.5), and then it less rejects Hy : « = 0. Under these situations, the parametric
bootstrap fails since the degree of dispersion is not included in the bootstrap DGP. Thus,
simulations suggest that the distribution of S* in the case of the parametric bootstrap
converges (conditional to the data and under the null hypothesis) to a standard Gaussian
distribution, even when I; << 1 or I; >> 1. Conversely, the semiparametric algorithm
is able to include the level of dispersion in the bootstrap DGP. Thus, numerical exercises
employing two-sample Kolmogorov-Smirnov test show that S* reasonably mimics the
asymptotic distribution of S” under the null hypothesis for any (finite) value of I; > 0.

These arguments can be strengthened by looking at the distribution of the bootstrap
p-values. Indeed, conventional bootstrap validity can be also checked when the bootstrap p-
values are (asymptotically) uniformly distributed between 0 and 1 (see e.g., [29]). Figure 11
presents a comparison between (simulated) asymptotic and bootstrap p-values in the case
of i.i.d. Poisson innovations and « = 0. For both algorithms, the bootstrap p-values are
close to the 45-degree line, suggesting that they are (asymptotically) uniformly distributed.
Moreover, the other two subsequent figures illustrate the simulated distributions of boot-
strap p-values in case of deviations from Poisson assumptions under & = 0. In the case of
moderate overdispersion (Figure 12), i.e., e,~NB(4,2/3) and I; = 1.5, the parametric boot-
strap p-values are systematically lower than the asymptotic ones. In addition, numerical
evidence shows that they are not uniformly distributed, e.g., the mean of the p-values is not
close to the expected value (i.e., 0.5), and the one sample Kolmogorov—-Smirnov test rejects
the null hypothesis of uniform distribution between 0 and 1. On the other hand, p-values
obtained through semiparametric bootstrap are distributed around the 45 degree line, and
numerical evidence shows that they are uniformly distributed (estimated mean is close to
0.5, and the Kolmogorov—-Smirnov test does not reject the null hypothesis). In the case of
underdispersed innovations, i.e., ¢;~Bin(2,0.5), an opposing behaviour can be observed
(Figure 13). The parametric bootstrap p-values are always greater than the asymptotic ones
and are not uniformly distributed, while the semiparametric p-values are, again, uniformly
distributed and close to the 45 degree line.

A last consideration may regard the generation of underdispersed innovations. We
remark that results of INAR(1) with binomial innovations (both in terms of empirical size
and power) may be partially influenced by the intrinsic characteristics of the series, which
involves counts that are constrained to assume few modalities, especially for small values of
the thinning parameter «. Indeed, the performance of the semiparametric bootstrap is also
checked using the Good distribution (see, e.g., [25,30]), also denoted as the polylogarithmic
distribution, which is more appropriate to model underdispersed counts. Details of the
used DGP and the results of the simulation study are presented in the Appendix B.
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Figure 11. Comparison of asymptotic and bootstrap p-values under the null hypothesis and Poisson
innovations: (left panel) semiparametric bootstrap; (right panel) parametric bootstrap. The red
dashed line represents the 45-degree line.
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Figure 12. Comparison of asymptotic and bootstrap p-values under the null hypothesis and Negative
Binomial innovations: (left panel) semiparametric bootstrap; (right panel) parametric bootstrap. The
red dashed line represents the 45-degree line.
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Figure 13. Comparison of asymptotic and bootstrap p-values under the null hypothesis and binomial
innovations: (left panel) semiparametric bootstrap; (right panel) parametric bootstrap. The red
dashed line represents the 45-degree line.

7. Concluding Remarks

The score-based statistic, formalized in [2,3], is a reasonable way to test for the presence
of serial dependence in integer-valued time series. In the case of Poisson innovations
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(P-INAR model), a semiparametric bootstrap algorithm can represent a straightforward
solution to improve the performance of the test in terms of empirical size, especially with
series of short (or moderately short) length. The method also shows a good performance in
terms of empirical power, especially for a combination of reasonably large values of time
persistence parameter and sample size. Furthermore, the parametric bootstrap represents
also a possible competitor.

Considering not-equidispersed innovations, both the asymptotic test and the paramet-
ric bootstrap appear practically useless. Conversely, simulations and numerical exercises
suggest that the semiparametric algorithm may be able to “restore” inference either in the
case of overdispersion or underdispersion.

Further research will regard asymptotic theory to investigate the theoretical behaviour
of the bootstrap-based score statistic (5*) under both parametric and semiparametric ap-
proaches. The validity of semiparametric bootstrap in the case of dispersed innovations
will be proved through a broader concept of validity occurring in the case of randomness
of limit bootstrap measures [29]. In addition, the proposed bootstrap algorithm can be
extended to more generalized versions of the score statistic [3], even considering possible
other sources of misspecifications (e.g., zero inflation) arising in discrete time series. The ap-
plicability of score-based bootstrap test should be also investigated through the analysis of
real integer-valued time series in many fields, such as finance, healthcare, and environment.
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Appendix A

Density

Figure A1. Probability density function of S” under the null hypothesis (x = 0, solid black line)
against the N(0, 1) (red dashed line): (left panel) moderate overdispersion (¢;~NB(10,0.5)); (right
panel) moderate underdispersion (¢;~Bin(2,0.5)).
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Appendix B

Here, we present the results of empirical size and power of the semiparametric boot-
strap considering the Good distribution for the arrivals. The Good distribution is a non-
negative integer-valued distribution with parameters z and s allowing for the presence of
underdispersion, presenting the following probability mass function:

Zx+1(x + 1)75

P(X=x)= Fzs)

(A1)

for0 < z < 1and s € R, where F(z, s) represents the following polylogarithm function:

[o0] Z]’l
F(z,;s) =) et
n=1

The Good distribution is a particular case of the Lerch three-parameter distribution [31],
whens € R, 0 < z < 1 and v = 1. Both mean and variance, as well as the moment
generating function, depend on the parameters s, z and the polylogarithm function.

The results concerning the SPB-based test computed on series generated by using
the Good distribution show a similar behaviour as in the case of binomial innovations.
In particular, the empirical size in Table A1 of SPB is more powerful than its asymptotic
counterpart. Moreover, the empirical power plots in Figure A2 again confirm the presence
of an insensitivity to deviations from equidispersion, as already mentioned in the previous
cases. The SPB rapidly reaches the unity, even with moderate sample size and, more in
general, the SPB power curve is more powerful with respect to the asymptotic test.

(G-z09

(o1-'z0)o

(05-'209

Figure A2. Empirical power of the bootstrap-based score test under Good arrivals (lightblue line) .
The black dashed line is the empirical power of asymptotic test while the red dashed line represents
the nominal level of 0.05.
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Table A1l. Empirical size of the bootstrap-based score test under Good DGP. ASY: asymptotic, SPB:
semiparametric bootstrap.

X E(X) Var(X) I, T ASY SPB
G (0.2;-5) 2.73 2.32 0.85 50 0.0178 0.0447
75 0.0215 0.0481
100 0.0226 0.0490
250 0.0211 0.0461
500 0.0267 0.0518
G (0.2,—10) 5.84 424 0.73 50 0.0089 0.0458
75 0.0102 0.0466
100 0.0106 0.0492
250 0.0099 0.0492
500 0.0117 0.0502
G (0.2,-50) 30.69 19.67 0.64 50 0.0050 0.0470
75 0.0044 0.0477
100 0.0037 0.0419
250 0.0052 0.0518
500 0.0056 0.0509
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